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Abstract

A stability method for nonlinear systems of the form & = A(z)z with the
origin as the only equilibrium point has been obtained. Examples are given

to demonstrate the method.
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1 Introduction

The Lyapunov approach to the stability of nonlinear systems has been widely
studied by researchers. Due to the difficulty of finding a Lyapunov function
which characterizes the nonlinear system in general,.a new method has been
developed to test the stability of a class of nonlinear systems. In this paper
the nonlinear variation of parameters formula is used to derive a stability
criterion for a nonlinear ordinary differential equation. In section 4 we prove
a stability theorem for a class of nonlinear systems. Examples are given to
illustrate the theorem. In the last section we consider the applications of this

theorem to nonlinear systems which generate a semisimple Lie algebra.




2 Inequalities

The following inequality [1] will be used in the next section to derive a sta-
bility criterion for nonlinear systems.
Theorem 2.1: Assume that v;(t) (i € I') are nonnegative continuous functions
defined on [t,,00), which satisfy the inequality

5(8) < M(Et) + X e et 1)

jel

Where );(t) is a nonpositive continuous function and a@’(t) are nonnegative
continuous functions, [ is a countable index set.

If there exist h > 0,6 € (0,1), and d; > 0 such that

1 a'i'(t) vi(to)
—A; > h e e < 4 —_—
Ai(t) >, a jEEIdj () §<1 S‘lé.];) a < (2)

for all ¢t > t, and 7 € I, then there exist a constants w > 0 and m > 1 such

that
'Uz'(t) < msup 'Uj(tO) exp—u(t-to) (3)
d; el dj
for all ¢ > t,, and ¢ € I. For the proof of the above theorem see [1] I,




3 Nonlinear Systems

We shall study the general nonlinear system
z(t) = f(z),z € R" (4)

Where f(z) is analytic function, and we shall assume that £ = 0 is an isolated

equilibrium point of (4), i.e.
f(0)=0. (5)
We can put the system (4) in the form
z(t) = A(z)z,z € R™ (6)

2 . ‘ a .
where A:R™ — R™ is a matrix valued function and merely continuous.

Let us consider the case when A(z) is a diagonal matrix

111.1 )\1 0‘ . 0 Iy

E.g 0 Ag -0 T2

o) RS0 e f e

and )\;:R — R, 7 = 1,2,...,n, are analytic functions. £ = 0 is the only

equlibrum point 7.e: £ = 0 for z = 0.




Since Xi(z), ¢ = 1,...,n are analytic functions, #(t), 1 = 1,...,n can be put

in the following form:

Z; = I'i(z)z; + z’:: ai(z)z; (8)

for 2 =1,...,n, where T;(z) < 0 for z; # 0.
Definition: The zero solution of (4) is said to be globaly exponentially stable

if there exist w > 0,7 > 1 such that
| 2 ||< memlt=t) || g, | (9)

for all t > ¢,,z(%,) € R™.

4 Stability Theorem

Consider the nonlinear system (8)
2; = Ti(z)z: + Y a}(z)z; (10)
i=1

for i = 1,...,n, where I';(z) < 0 for z; # 0.
Theorem {.1: The zero solution of (10) is globally exponentially asymp-

totically stable if it satisfies the following conditions:

1. z = 0 is the only equilibrium point.
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2. There exist constants ~ > 0, § > 0 and d; > 0 such that

| _ d; | aj(z) |
Ii(z) < -h <0, d‘Z Tie)] <é<1 (11)

fort=1,..,n,z; #0and for all t > ¢,.

Proof. From (10) it follows that

zit) = zi(t, )exp(f Iy (x(f))dv)_i_zj‘ Tl exp(f R g (1)
hence
| 2i(2) 1<) 2i(to) | expie P07 d*>+2 / | ai(a(s)) || 25(s) | expla TV g,

(13)

Let | z; |= vy, then we have

w_:v,(t)exp(ﬂa”*“”fmz [ 1aia(6)) 1wyt | expUameei) g1

and moreover, we have
5(0) < Te(O)u(e(t) + 3 | ai(a(0) | w0 (19)
Let
lzl=3 2. (16)

1=1
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Then, we have

i.e.

Hence

forallt >t,and 2 =1,...,n. Then

;(t
2] ¢ o
d; sel

| 23(t) | + | 2at) | 4.4 | 2a(t) |< msup

vi(to) _ | zi(to) | | z(t) |l
d; d d; (an)
vi(to) _ |l z(to) ||
< 1 18
& = 4 -7 o
] to [
sup v;(ts) < sup | z(t,) |l & (19)
ier dj T jer 4
By Theorem 2.1, there exist w > 0 and m > 1 such that
vi(t) v;(ts) —w(t—to)
b il °
d ~ ms;éf d; ¥
(20)
to i,
l| :c( ) ” exp—w(t—ta) lmi(t) |-<_ md; sup H x( ) ” exp—w(t—tg)
d; Jel d;
Il z(to) |l —w(t—t,) =
exp~ U\ d 21
o P g:l e (21)
n to
1 2(t) € m 3 desup L2 pmute-ta) (22)
k=1 €l d
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If

Il =(2) |l
dy
m’; sJLé}; Z =M (23)
then
| z(t) ||= M exp(t=te) (24)

This shows that the zero solution of (10) is globally exponentially asymptot-
ically stable 1

Ezample 4.1:

g1(t) = —z3+0.5z3z,

mg(t) = = (1 -+ Eg) Ts+ T1Z3
This system can be put in the form

13'1 (—.’JS? + 0.5.7)2.’31) 0 Iy
$.2 0 —(1+$§)+E1 T2

The origin is the only equlibrum point, f(0) = 0. Let d; = d, = 1.

= Fl(:c):cl + a;(m)zz
$a(t) = —(1+23)z2 + 222
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= Ty(z)z; + a3(z)zy

Fl(l‘) == ...zi < 0 fOT‘ s _-’é 0
B = (<0 for w0
|_G'M _ |0.5:J:§ | B
||P1(a:)| B |_m%|—0-556<1
aj(z) | _ 05z, p
|Ta(z)| — | -(1+22)] <6<l

Hence, the two conditions are satisfied, and the zero solution of the above
system is globally exponentially asymptotically stable. From this example
we can see that for a nonlinear system to be stable it is not necessary that
the eigenvalues be negative definite.

Ezample 4.2:

E;(t) = (—231 + 1122)5'2?
Zi(t) = —(1+ 23—z +z3z])z;

z3(t) = —(1+ 23422+ )73

This system can be put in the form

351 (—2&% + 502):]31 0 0
z, | =] 0 —(1 + 2% — z; + £222) 0

I

I3

T3




The origin is the only equilibirum point, f(0) = 0. Let d; = d; = d5 = 1.

z,(1)

Z3(t)

—2zlz, + zlz,
I'y(z)z1 + a3(z)z2
—-(1+z2 4 zgmg)mz + 2123
T2(z)z, + ai(z)z,

—(1+4 22 + 22)z3 — 7125
T'3(z)z3 + aj(z)z:
-2z <0 for

$1-'}£0

—(14+22+2322) <0  for =z,#£0

I'3(z) —(1+z3+23)<0  for z3#0
| a3(=) | EA
<é<l
| T1(z) | | —22% | ~
| ai(z) | | 22 |
<6<l
| Ta(z) | | —(1+ 2% +232]) | ~
<o) I

| Ts(z

Therefore the zero solution is globally exponentially asymptotically stable.

| —(1+=23+23)| ~
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Now we will consider the following nonlinear system

2(t) = f(=(t)) | (25)

where f(z):R™ — R" is analytic function. Then

#(8) = f(z(t)) = Ble)e+ 3 ai(z)e; (26)

1=1
where B(z):R™ — R™ is a diagonal matrix and a;(z):R* — R" are column

vectors. We can write the above system in the form

#i(t) = bula)z;+ Z (27)

Theorem 4.2: The zero solution of the above nonlinear system is globally

exponentially asymptotically stable if the following conditions are met:
1. z = 0 is the only equilibrium point.

2. There exist constants h < 0, § € (0,1) and d; > 0 for ¢ = 1, ...,n such

that

b,-,-(:n)'( h < 0,2::,750

d; | aj(z) | <5<1 28
Zd|bu | <L ()

i




Proof. The proof of the theorem is as in Theorem 4.1

Ezample 4.3

Z.l(t) = —(2 + Ig)(ﬂl + .'ijz

ig(t) = —(1+ exp("))mg + 0.5z,
z = 0 is an isolated equilibrium point, f(0) = (0). let d, = d> = 1.

Z1(t) = —(2+ z3)z1 + 272
= bz -t ak{d)eg
(1) = —(1+ exp®))z; + 0.5z,
= bp(z)zy + ai(z)zy
bu(z) < 0 for z#0,

622(1) < 0 fOT‘ .'.'C'T’LO

| ay(z) | | 22 |
= <éf<l1
| b1a(z) | | —(2+23) | ~
| a¥(z) | 0.5
= < § <.
| bya(z) | | —(exp(=) +1) | =

Hence the zero solution is globally exponentially asymptotically stable.

Ezample 4.4:

£i(t) = —(1+zd)z; + 2223

12




To(t) = —(zf+ 2]+ z3)z2

Zs(t) =

T

+

B3y

2

~ (2 + 2} + 23)z3

z = 0 is an isolated equilibrium point, f(0) = (0). let dy = d; = ds = 1.

(1)
z,(t)
z3(t)

bu(CD)
622(33)

b33($)

| a3(z) |
| b11(z) |
0
| ba2(z) |
| a¥(=) | + | a3(=) |
| baa(z) |

—(1 + z2)zy + ziz3
511(33)331 + aé(z)ms

—(23 + 2} + z3)z2

baa(z)z2
Iz .'132
—(2+zi+2)zs + 3“3:1 e -5132

baal)ms + a3(z)n + ()
0 for z#0
0 for 240
0 for z#0

:
BTt
jeprer blit

2 2
I(ml +2:E2) |2 S 6 < 1.
2[(2+2+z3)]|

Hence the zero solution is globally exponentially asymptotically stable.
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5 The Application of Semisimple Lie Algebras
We shall consider in this section the nonlinear system"
z(t) = A(z)z (29)

where A(z):R* — R”, z € R™.
If the Lie algebra generated by A(z), (see [3]), is a semisimple Lie algebra,

then the nonlinear system (29) can be put in the form

#(t) = H(z)z + Y eaz)Faz (30)

acd
where H(z) is the Cartan subalgebra and F, are the roots. H(z) can be

diagonalized by a linear transformation, say P.

y = Pz

§ = P'H(y)Py+ ) ea(y)P ' FoPy

aEl
v o= A@y+ X ea(y)Eay (31)
acd
In general, by this transformation, the original system is transformed to

a simpler one. Then we can use the result obtained in the previous sections

to test for the stability of the system. We can arrange the equations of the

14




above system to be in the form

vi = Bi(y)yi + Zn: a;(y)y; (32)

i=1

by splitting the coefficient of y; in the equation y;(t) into a negative definite
part (Bi(y)) and the rest can be accommodated in the a} functions.

Theorem 5.1: The zero solution of (32) is globally exponentially asymp-

totically stable if it satisfies the following conditions:
1. £ =0 is the only equilibrium point.

2. There exist constants A > 0, § > 0 and d; > 0 such that

1 &d;|aj(z) |
Bi(z) £ -h L0, —_ <é<l1 33
. S TAT -
ford = 1,0, & £ 0 and for all 2 >4,
Proof. as in Theorem 4.1 0.
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Ezample 5.1: Let us consider the semisimple Lie algebra A;, (other types
of semisimple Lie algebras B,, D.,... etc can be applied similarly). Consider

the following two dimensional nonlinear system

.5'51 fl(w) fiz(iﬂ) I,
Ty fa(z) —fi(z) | \ 22

where

fi(z) = —zi+7)
flz(-’B) = =2z17;
fa(z) = =223z, 4+ 0.5z]

The functions fi(z), fiz(z) and fz;1(z) are functionally independent. The Lie
algebra generated by A(z) is semisimple of the type A, and spanned by the

following matrices:

1 0 01 00
hl = ) Elz = ) E21 s
0 -1 00 10
where h, spans the Cartan subalgebra. E;; and E;; span the root spaces of

the semisimple Lie algebra. By splitting the coefficient of z; in the equation

Z;(t) into a negative definite part (call it 8;(z)) and the rest into the functions

16




a’, the system equations can be put in the following form:
g1 = Pu(z)zr + ay(z)z + ay(z)z,
where aj(z) =0, j = 1,2 and Bi(z) = —(zf + z2), and
T2 = Poz)zs + ai(z)z) + a(z)zs

where (;(z) = —(z1 + z2), a?(z) = 0.5z¢ and a%(:c) = 0. The origin is an
isolated equilibrium point. Let d; = d; = 1. From the above equations we

have

Bi(z) = —(z1+23) <0
0

1 B:(2) | < dx]
Bo(z) = —(21+23) <0

| af(m) | _ 0.5.7;;'

| Ba(z) | $g+$%<5<1,

Therefore the zero solution of the system is globally exponentially asymptot-
ically stable.

Ezample 5.2: Consider the following nonlinear system

) fii(z) = fa(z) + fa(z) a12(z) a13(z)
2 | = | falz)+ fa(z) az(z) az(z)
T3 fai(z) fa(z) + fao(z)  faa(z) — 3fa(z) — faz)

17
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where
ax(z) = 2fu(z) + faa(z) + fra(z) = fur(2) + 2fa1(2) + 2f2(2)
ai3(z) = —4fu(z)+ f22(2) = fra(z) + 3fu(e) + frs(z) — 6fa(z)
—2f52(2) - fas(z)
an(z) = —fu(z) = falz) + fa(z) + fa(z) + fa(c)
an(z) = fu(z)+2fn(z) = 3fa(z) = 3fau(z) = falz) + foa(z).

Let fu(z), faa(z), fr2(z), far(z), fra(z), far(2), fa2(z), f2a(z) be functionally
independent. Then the Lie algebra generated by A(z) is semisimple with

the following matrices as its basis:

(1 2 —4 0 1 1 01 -1
hi = |0 -1 1f|vhe=f0 -1 2]|:Fz2=]00 o0
\0 0 0 0 0 1 00 0
(-1 -1 3 001 2 2 —6
Fy = |1 1 —3|,Fs=f{o0o00 | Fa=|11 -3
\0 0 0 000 11 -3

18




0 2 -2 0 0 -1
Foo = 01 -1]| Fa=]00 1
01 -1 00 O

where ky and h, span the Cartan subalgebra. There exists a linear trans-

formation P, which diagonalizes the Cartan subalgebra:

1 =1 2
P=190 1 1
0 0 1

Let

fiu = —(1— (22— 23)%)
faz = *(1+$§)

fiz = =3(z1 4 z2 — 3z3)(z2 — z3)

_ =(2+ 22 + (21 + 72 — 323)?)
fa = (21 + 22 — 223) (22 — z3)

fa = 3

fis = —0.5(1+2(z2 — z3)%)
fa = —zi(e:—za)

fas = —za(zs — ).

19




The above system can be put in the following form:

i = Az
g = fu(e)h + faa(z)he + fra(z)Fiz + far(2) P + fisFis + far(2)Fa
+  fso(2)Fa2 + fas(z) Fas
z = Py
y = Plz= (P"'H(z)P + Za:fa(m)P'lFaP)y
v = (Ay)+ gf;(y)Ea)y
¥ = fu@hy+ )k + f12(9) B + £31(9)En + f13(¥) Bas + fay(v) By

¥ farz(y)EBZ + féa(y)E23

1 0 0 0 0 0
hi = o =10 - ha=]0 =1 0
0 0 0 0 0 1

E;;, where ¢ # j, are the matrices with 1 on the ¢j'th component and 0

elsewhere and

f11(y) = "(1 = yg)

falv) = —(1+43)

20




'

fi(y) = =3uny:

fuly) = “EEBEEW),,
fay) = 4

fia(y) = —0.5(1+23)
faly) = —¥3yvs

fa(y) = —vsys.

Now we can test for the stability of this system using the previous theorem.

z = 0 is an isolated equlibrum point. Let d; = d; = d3 = 1.

vi = —(1— vy +(=3y2)yz — 0.5(1 + 2y2)ys
v1 = —(143y3)y1 +yiy1 — 0.5(1 + 242 )us
= Ay + a1(y)ys + a3(y)ya

v2 = (2+y3—vl)ya— (24 2v3 +v3)y2 + (—y2ys)ya

v2 = —(vi +v2 429wz

= Ba(y)y2
g3 = —(14+93)vs +v3u1 — (v3v2)v2
ys = —(1+y3+9393) +vin

ys = Ba(y)ys + ad(y)w

21




Pi(y) < O
lal(y) |+ |ad(y)| _ ¥3+0.5(1+2y2)  (0.5+2y7) g
| () | = Tt a+a)) .

Ba(y) < 0
0

TA T 6

|l32(y) | < <1
Bs(y) < 0O

|a3(w) | _ y2 s

|53(y) ] (]_ +y§ + ygy%) <é< 1.

Hence the zero solution of the system is globally exponentially asymptotically

stable.

22
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