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ON WAVE-DRIVEN “SHINGLE” BEACH DYNAMICS IN A TABLE-TOP HELE-SHAW CELL

O. Bokhove1, A.J. van der Horn2, D. van der Meer3, A.R. Thornton4, W. Zweers5

The primary evolution of beaches by wave action takes place during storms. Beach evolution by non-linear breaking

waves is 3D, multi-scale, and involves particle-wave interactions. We will show how a novel, three-phase extension

to the classic “Hele-Shaw” laboratory experiment is designed to create beach morphologies with breaking waves in

a quasi-2D setting. Idealized beaches emerge in tens of minutes due to several types of breaking waves, with about

1s periods. The thin Hele-Shaw cell simplifies the inherent complexity of three-phase dynamics by reducing the

turbulence. Given the interest in the Hele-Shaw table-top demonstrations at ICCE2014, we will also discuss how

different versions of the Hele-Shaw cell have been constructed. Construction can be inexpensive thus yielding an

accessible and flexible coastal engineering demonstration as well as research tool. Beach evolution is sufficiently fast

and can start very far from equilibrium, allowing an unusually large dynamical range to be investigated.

Keywords: shingle beaches, wave breaking, table-top realization, Hele-Shaw cell

1. INTRODUCTION

In recent years, there has been a fair amount of numerical modelling of detailed surf-zone dynamics

with and without coupling to sediment and bed evolution at beaches. In the end all these numerical models

require dispersed multi-phase modelling through some kind of averaging, either to deal with the fine-scale

mixture of air and water bubbles and droplets during wave breaking (e.g., Lachaume et al. (2003); Helluy

et al. (2005); Dumbser (2011)), or the three-phase mixture of air, water and (sand or shingle) particles (e.g.,

Calantoni et al. (2006) and Bakhtyar et al. (2012); Deen et al. (2012)). This detailed modelling forms an

extension to the much more common and operational depth- and wave-averaged surf-zone morphodynamic

models such as used, e.g., in Soulsby (1997); Roelvink et al. (2009); Garnier et al. (2010) and McCall

et al. (2010). Most of this detailed numerical modelling is done in a vertical plane, in two dimensions,

because in general the dynamics in a vertical plane is considered to be a useful test environment. This

numerical modelling work in two dimensions is of academic character (including our own, e.g., Gagarina

et al. (2013)) and cannot provide a realistic prediction of surf-zone dynamics, because wave breaking and

particle transport are inherently three dimensional, especially on smaller scales.

To alleviate this shortcoming, we envision two alternative approaches. Firstly, instead of taking a ver-

tical plane, we take a three-dimensional yet thin slice-of-beach as domain, such that the particle dynamics

remain three dimensional. The computational effort is then still reduced considerably because the domain is

so thin, and a periodic boundary condition can be used along the shore. Secondly, using such a slice instead

of a fully two-dimensional domain opens the possibility to realize it within an experimental setting. The

joint motion of liquid and particles can then be studied within the narrow space between two parallel plates.

Waves are generated or enter the domain at one end and the particle beach lies at the other end, whereas the

top is open (see Fig. 1).

Hele-Shaw flow concerns flow between two parallel plates seperated by a small gap, in which the

viscous or Stokes flow profile is determined by the leading order balance between the viscous friction due

to the proximity of the plates and the driving pressure gradient in the plane of the plates. That results in

a predominantly parabolic or Poiseuille flow velocity profile between the plates. When one places objects

between the glass plates, the streamlines of the laminar flow around these objects can be visualized (Hele-

Shaw, 1898). The width of the gap can be optimized such that in the plane of the cell, inertial effects become

more or less important. When inertial effects become larger, larger deviations from the Poiseuille profile

emerge. We extended Hele-Shaw’s original laboratory experiment (Hele-Shaw, 1898) into a three-phase

version within the vertical plane with air, water and particles. It allows the study of beach dynamics in a

tank with a narrow gap, which is in the most extreme case just over one diameter to a few particle diameters

wide. In contrast to the numerical models in the vertical plane, particle dynamics in the Hele-Shaw set-up

remain three-dimensional (Bokhove et al., 2010).

The advantages of this set-up for studying beach dynamics are as follows:
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Figure 1: Schematic of Hele-Shaw cell. Wedge, waterline, particle bottom, and wave-maker are shown.

Parameters are initial water depth W0 = H0 − B0 = (10, 30, 50, 70)± 3 mm, bed level B0 = (20, 50, 80)± 2 mm

at rest, and wave-maker frequency fwm = (0.4, 0.7, 1.0, 1.3) Hz with angle θwm.

• the dynamics of the two fluids, air and water, and the particles is fully visible, since the “gravel”

particles of the “shingle” beach are not blocking the view;

• turbulence has been greatly reduced or even removed so one can focus on wave-induced bed transport

including breaking waves;

• the experimental data have great potential for the validation of existing and new predictive models;

• the time scales of the beach dynamics are much shorter than at natural beaches or in large wave

flumes, thus permitting a study of the dynamics very far from quasi-equilibrium; and,

• the (portable and affordable) set-up fits on a table-top such that it can also serve as an accessible

teaching and a pubic demonstration tool.

Three possible disadvantages are in order of importance: the hydrodynamic damping due to the proximity

of the glass plates, the effect of surface tension, and contact-line damping at the glass plates. The goals of

our study then become the following:

• to summarize the mathematics of the design of the Hele-Shaw beach set-up addressing the aforemen-

tioned disadvantages,

• to study the dynamics obtained in this table-top experiment,

• to report how we contructed several Hele-Shaw cells for the benefit of further development and use,

and

• to discuss its potential for improving numerical multiphase models for surf-zone morphodynamics.

These goals are matched by the following outline. In Section 2, the mathematical design is summarized.

Subsequently, we show in Sections 3 and 4 that all types of wave breaking can occur during the bed

evolution such that a variety of interesting quasi-steady beach profiles emerge. Given the increased damping

due to the proximity of the glass plates, offset in part by large wave forcing, we show that the Gamma

Alumina particles used in our beach experiments, behave more like shingle than sand beaches (Short, 2000;

Powell, 1990). In Section 5, we highlight prominent features and differences in a comparison of the three
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table-top realizations constructed hitherto. Finally, we conclude in Section 6. The work in this article runs

partially in parallel with our previous work (Thornton et al., 2014), but concerns different data sets, which

shows that the experimental results are robust. In addition, a comparison between different realizations of

the Hele-Shaw cell is made.

2. MATHEMATICAL DESIGN OF HELE-SHAW BEACH

The simplified table-top dynamic beach with breaking waves in Fig. 1 is a so-called Hele-Shaw cell.

It is an extension with the three phases air, water and particles of the original (liquid-filled) cell developed

by Hele-Shaw (Hele-Shaw (1898); Lamb (1993)). It consists of two glass plates put in the vertical plane

with bottom and sides closed and an open top (see Fig. 1). The design of our Hele-Shaw beach experiment

was based on mathematical analysis of approximate models for the hydrodynamics for a fixed bed. Even

though we are interested in bed erosion and creation by breaking waves, the case with a fixed bed allowed

us to calculate the optimal gap width between the two glass plates before the experiment was built. To

obtain an estimate of this optimal gap width, we will simplify the hydrodynamics and summarize a valida-

tion of the resulting two-dimensional “Navier-Stokes” equations against damped wave experiments, before

highlighting the predictions of a shallow-water model of wave breaking on a fixed sloping beach.

A narrow gap width between the glass plates, just over one particle, is desirable to enhance the visual-

ization and limit the dynamics to be nearly two-dimensional. At the same time, this gap needs to be wide

enough to allow for nonlinear breaking waves and beach formation. In the classic Hele-Shaw case, the

parabolic flow profile in the vertical plane (e.g., Batchelor (1967); Wilson and Duffy (1998)) is

(u,w) =
3

2
(ū, w̄)(l2 − y2)/l2 (1)

with u = u(x, y, z, t) and w = w(x, y, z, t) the velocity components in the horizontal, x, and vertical, z,

directions, lateral direction y, gap width 2l and the laterally averaged mean velocities ū = ū(x, z, t) and w̄ =

w̄(x, z, t), and time t. Under the approximation that the local flow profile is parabolic in the lateral direction,

we can substitute (1) into the three-dimensional Navier-Stokes equations for the hydrodynamics of water

and average these across the gap. Given the anisotropy in the length and velocity scales along and normal

to the vertical plane, the viscous balance across the gap is assumed to be dominant. An approximation

is then made in which slow variations in the vertical plane on scales larger than the gap width are still

permitted. After averaging and neglecting Reynolds-stress terms, the resulting two-dimensional Euler or

“Navier-Stokes” equations with linear momentum damping become

∂ū
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+ βū
∂ū
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+ βw̄

∂ū
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= − 1

ρ

∂p
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− 3νū

l2
, (2a)
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= −

1

ρ

∂p

∂z
−

3νw̄

l2
− g, (2b)

∂ū

∂x
+
∂w̄

∂z
=0, (2c)

in which ν is the viscosity of water, g the acceleration of gravity, p = p(x, z, t) the pressure, ρ the constant

density of water, and β = 6/5 a scaling factor originating from the width-averaging mentioned. The first

two equations are the momentum equations in the x– and z–directions, and the last equation expresses that

this width-averaged velocity in the vertical plane is incompressible. Higher-order contributions beyond the

lateral flow profile (1) are ignored in (2), which especially concerns omissions in the three-dimensional

boundary layers near the free surface, side walls and near particles. In contrast to classical Hele-Shaw flow

(Hele-Shaw, 1898), by design we aim to include inertial effects in the vertical plane, with (weak) deviations

from the parabolic profile, cf. investigations in other Hele-Shaw cells on Faraday free surface waves (Ra-

jchenbach et al., 2011) or Kelvin-Helmholtz instability (Plouraboué and Hinch, 2002). Nevertheless, for

the flow in the bulk away from boundaries, these linear damping terms in the momentum equations of (2)

are reasonable, as we will discuss next.

Validity of Linear Momentum Damping

To assess the validity of the hydrodynamical model (2), we compared water wave simulations based

on (2) a posteriori with simple damped wave experiments in our Hele-Shaw cell without particles. We
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substitute (ū, w̄) = (∂φ/∂x, ∂φ/∂z) with velocity potentrial φ = φ(x, z, t) into (2) in a domain with a free

surface and fixed bottom as well as side walls, to obtain the potential flow equations for water wave motion

but with an additional linear damping term. To simplify the presentation, we set β = 1 hereafter, but this

does not change the argument below regarding the potential energy. The resulting system of water wave

equations can be derived succinctly from the following variational principle

0 = δ

Z T

0

✓

Z L

0

φs

∂h

∂t
dx − (P(t) + K(t))

◆

e3νt/l2 dt

⌘ δ

Z T

0

✓

Z L

0

φs

∂h

∂t
−

1

2
g(h − H)2dx −

Z L

0

Z h

0

1

2
|rφ|2dx dz

◆

e3νt/l2 dt (3)

with water depth h = h(x, t), the potential at the free surface φs = φs(x, t), mean still water depth H,

kinetic energy K(t), potential energy P(t), suitable boundary and end-point conditions for a tank of length

L and with a final time T . Miles’ classic variational principle for potential flow water waves (Miles, 1977)

arises from (3) in the inviscid limit for ν = 0, while our damped case in (3) includes the additional factor

exp (3νt/l2). The latter factor is the inverse of the integrating factor due to the linear momentum damping

in (2). (Note that the solution to two of the terms in (2), i.e., ∂ū/∂t = −3νū/l2 is ū = ū0 exp (−3νt/l2).)

The consequence of (3) is that in the damped case without forcing it is more revealing to plot the modified

potential energy (per unit width), ρP(t) exp (3νt/l2) rather than ρP(t) itself.

Figure 2: To determine the threshold gap width 2l, simulations of shallow-water simulations were per-

formed in the model (4) for γ = 1: snapshots of depth-averaged velocity u = ¯̄u(x, t), topography b(x, t)

(black, fat line) and free surface h(x, t) + b(x, t) (blue, normal line), for 2 l = 1.8mm and wave-maker fre-

quency 1.2Hz. The wave-maker is modelled as a steep, moving wall with fixed ∂xb(x, t) < 0 (seen on the

left), while the topography b(x) on the right is fixed. a) t = 3.25T , b) t = 3.5T , c) t = 3.75T , and d) t = 4.0T

with period T = 1s. A similar yet different simulation is found in Thornton et al. (2014).

In Thornton et al. (2014), a comparison between the potential flow model arising from (3) and a damped

wave-sloshing experiment in the rectangular Hele-Shaw cell with fixed walls shows that experimental data

and simulations compare reasonably well, for about one to one-and-a-half long-wave period. Hence, we

have shown that for driven flows on scales much larger than the gap width, the linear momentum damping in

(2) and (3) is a good leading-order model approximation because new waves keep coming in. The modelling

of the fine-structure in breaking waves may require resolution of three-dimensional free-surface boundary
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layers (cf. Vega (2001) in a related yet different free-surface problem on Faraday waves), the inclusion of

other flow profiles, and damping of the contact line (Vella and Mahadevan, 2005) at the water-air-glass

interface.

Figure 3: Space-time plots of breaking waves. The water surface (blue) and bed (red) of measured a)

plunging, b) surging, c) spilling and d) collapsing breakers.

The final design step was to derive a depth-avaraged shallow-water model by averaging (2) over the

depth and using the corresponding kinematic condition at the free surface (extending the classic derivation

in, e.g., Pedlosky (1987)). The resulting shallow-water equations with linear momentum damping (Thornton

et al., 2014) are as follows

∂(h ¯̄u)

∂t
+
∂

∂x
(γh ¯̄u2 + gh2/2

)

= − gh∂b/∂x + (γ − 1) ¯̄u
∂(h ¯̄u)

∂x
− 3νh ¯̄u/l2 and

∂h

∂t
+
∂(h ¯̄u)

∂x
= 0 (4a)

with the water depth h = h(x, t), depth- and width-averaged horizontal velocity ¯̄u = ¯̄u(x, t), bottom to-

pography b = b(x, t) as function of the horizontal coordinate x and time t. These are augmented with the

usual hydaulic bore relations (Lamb, 1993) such that the solutions remain single-valued except at isolated

locations where wave breaking processes are modelled as discontinuities in the water depth and velocity.

We performed various numerical simulations of these depth-averaged shallow water equations with linear

momentum damping for β = 1 and different values of the gap width 2l, as well as different wave-maker

amplitudes and frequencies around 1 Hz. A typical breaking wave in the form of a hydraulic bore was found

to survive the damping and travel across this fixed sloping beach of circa 0.5m length in the corresponding

numerical shallow water model for gap widths 2l > 1.5 mm and frequencies of about 0.5–1.3 Hz (Thornton

et al., 2014). Sample profiles of h(x, t) and ¯̄u(x, t) of one simulation are shown in Fig. 2. For smaller

gap widths and other frequencies, the bore would dampen out before reaching the water line. Hence, we

chose the Hele-Shaw cell to have a gap width of 2l = 2 mm given available Gamma Alumina particles with

diameter d = 1.75 ± 0.05 mm and effective density 2.08 ± 0.2g/cm3 with water-filled pores. We note that
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Lee et al. (2007) considered one particle settling in a Hele-Shaw cell, and observed quasi-two-dimensional

behaviour for gap widths 2l < 1.05d, and three-dimensional behaviour for 2l > 1.1d. With our choice of

2l = 2 mm and d = 1.75 ± 0.05 mm, we are in a quasi-three-dimensional regime of particle settling.

Figure 4: Phase diagram of beach morphologies. a) States in the parameter plane of initial water depth

W0 = H0 − B0 and wave frequency fwm, for an initial bed level of B0 = 8 cm. (For B0 = 2 and 5 cm the state

is quasi-static, except for fwm = 1 Hz, B0 = 5 cm and W0 = 5 cm, for which a sand bar developed.) b) Initial

water levels and bed heights (blue and red lines, respectively) and final bed height for a: b1) wet beach, b2)

dry beach, b3) sand bar, and b4) berm/dune.

3. WAVE BREAKING

Since we are interested in bed profiles emerging under breaking waves, we first report which types of

wave breaking occur in the Hele-Shaw cell. We found all types of wave breaking over dynamic beaches,

described in Peregrine (1983), including spilling, plunging, collapsing and surging breakers. The water

was dyed red to enhance the contrast and facilitate analysis of the measurements, obtained by a high speed

Photron SA2 camera at 1000fps. Space-time renderings of the four wave types are shown in Fig. 3, and

discussed in turn. In a plunging breaker, the wave front overturns and a prominent jet falls at the base of

the wave causing a large jet, Fig. 3a. We observe two bubbles caught during overturning. For a surging

breaker, a significant disturbance and vertical face in an otherwise smooth profile occurs only near the

moving shoreline, Fig. 3b. In a spilling breaker, whitish water at the wave crest spills down the front face

sometimes with the projection of a small jet, Fig. 3c. The grooves indicate the presence of (pre-existing)

bubbles. In a collapsing breaker, the lower portion of the wave’s front face overturns and then behaves like

a plunging breaker, Fig. 3d, where the lower portion of the wave is seen to shoot forward after circa 100ms,

and to separate from the top part of the wave. In the Hele-Shaw set-up these wave types are small-scale

versions smoothed by surface tension, when compared to violent three-dimensional breakers at beaches.

In a companion study (Thornton et al., 2014), we analyze the Irribarren number tanα/
p

Hb/Lb of these

waves with slope angle α, breaker wave height Hb and wave length Lb (Battjes, 1974). Even for long waves

Lb is based on the linear deep water waves. While at natural beaches Ib < 0.4, 0.4 < Ib < 2.0, 2.0 <

Ib < 3.3, Ib > 3.3 for spilling, plunging, collapsing and surging breakers, respectively, our preliminary

measurements in the first Hele-Shaw cell yield Ib = 0.8, 1.6, 1.7, and 1.9, respectively. These types of wave

breaking emerged during various stages of bed evolution into sand bars, beaches or berms, considered next

in detail.
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Figure 5: Bed heights in space-time. Time-space diagrams of bed height versus spatial coordinate x for a)

dry and b) wet beaches (boundary maxima), and c) a submerged sand bar and d) a berm/dune (interior

maxima). When dry land emerges the initial water level (black line) is indicated, in d) but also in a)!
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4. QUASI-STEADY BEACH MORPHOLOGIES

Time-dependent beach morphologies form on a time scale of minutes to hours, forced by waves that

occur on a typical time scale of one second. We undertook a parameter study (Van der Horn, 2012)

of beach formation by the action of (breaking) waves in which we varied the initial water depth W0 =

(10, 30, 50, 70) mm and bed level B0 = (20, 50, 80) mm at rest, before turning on the wave-maker in a

monochromatic frequency range of (0.4, 0.7, 1.0, 1.3) Hz (recall Fig. 1). The state of the bed was captured

every 10s with a Nikon D5100 camera. Depending on the parameters, several quasi-steady beach profiles

were observed to develop after 10 to 30 minutes.

These profiles are classified based on their physical nature using the mathematical bed profile b = b(x),

with b ⇡ B0 initially. When this bed profile b(x) has an interior maximum, its maximum is either submerged

(“sand bar”), or dry on top on its onshore side (“berm-dune or beach-dune”). When this bed profile b(x) has

a boundary maximum, it is either wet or dry (‘wet or dry beach’). A berm or dune emerges when water is

found at both sides of a berm. A beach-dune is a berm near the right wall, also with an interior maximum

bed height away from the boundary. A submerged sand bar arises when a “significant” amount of sediment

area transport, more than 10cm2 over the duration of the experiment, is taking place with an interior, wet

maximum of the bed height, and when none of the above definitions hold. Finally, in the quasi-static state

hardly any sediment area transport is taking place (less than 10cm2 and no parts fall dry). Four of these

states are displayed in Fig. 4, displaying both initial and final states, together with a phase diagram for the

case B0 = 80 mm. Space-time plots of the bed height evolution from a nearly flat submerged bed to the

dune, dry beach, wet beach or sand bar are given in Fig. 5, and range from 20 to 60 minutes. It is clear in

the phase diagram in Fig. 4 that the states evolve smoothly from one to the other. Furthermore, the activity

of the wave is less efficacious when: the wave has already lost its energy due to its breaking over the wedge;

the water is very shallow; the frequency is too high such that the viscous damping becomes too high; or,

when the water is too deep such that particles do not get picked up. The wet beach state emerges when

there are insufficient particles available to create a dry beach. Our beach profiles are remarkably similar to

those in Powell (1990) for shingle beaches in a 42 ⇥ 1.5 ⇥ 1.4m3 wave tank, which in turn resemble natural

shingle beaches. The difference is that our mean slope is with circa 1 : 3 about two times steeper than the

one in Powell (1990). In Thornton et al. (2014) other measurement series reveal similar results, confirming

the robustness of our findings.

Figure 6: Photograph of the first Hele-Shaw cell without water and particles. It shows the straighforward

wave-maker construction with the drill on the left, the transfer of rotational to translational motion, the

wave-maker rod and background grid.

5. COMPARISON AND CONSTRUCTION OF THREE DIFFERENT SET-UPS

Hitherto, three different realizations have been constructed of the Hele-Shaw cell to study beach dy-

namics. The first one was build in January 2010 for a public demonstration at the Qua Art Qua Science event
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“Fluid Fascinations” (Bokhove et al., 2010). It featured as a dynamic and visual illustration of the beauty

of fluid dynamics in the opening presentation. The motion of the intermittently breaking water line and

the underlying particle movement in the live demonstration was instantaneously recorded on camera and

projected on a large screen. The event concerned 13 artworks made by the artist Valerie Zwart, inspired by

and based on fluid dynamical slides from the late Professor Howell Peregrine (Cooker, 2010)6. The mathe-

matical design of the Hele-Shaw beach experiment and its construction were presented to highlight a shared

fascination with fluid dynamics and coastal engineering (Bokhove and Peregrine, 1998). The dimensions of

this cell are 0.6 ⇥ 0.002 ⇥ 0.3m3. The glass plates are spaced 2mm apart and seperated by two hard-plastic

spacers along the two vertical sides and flat bottom. Duct-Tape is used to seal the plates on these three

sides. The entire construction is placed in a wooden frame. Wooden strips screwed tightly onto a wooden

floorplate and side boards allowed one two squeeze the glass plates tightly against the plastic spacers. Due

to the water pressure, the glass plates slightly widened at the open top, especially in the middle. With two

small spacers and two small clamps this is minimized. Later a system of nuts and bolds was constructed

to squeeze the glass plates together through multiple holes in two aluminum U-bars attached vertically to

the wooden side boards, with their open sides facing another. The Gamma Alumina particles of diameter

1.75mm were used as “shingle” or “gravel”. Wave motion is generated by an affordable and rechargeable

drill, which rotating motion in the horizonal plane was transformed into linear motion along rails consisting

of two aluminum U-bars, facing another, via an axel. Attached to a wagen rolling on four metal wheels

in these two parallel U-bars is a vertical pin consisting of a welding rod, circular with a 1.5mm cross sec-

tion. This rod pushes the fluid between the two glass plates spaced thus generating the wave motion. Via

a wooden wedge on a string the drill speed is controlled, yielding a frequency of the wave motion around

1Hz. The rod traverses across about a third of the tank length (i.e. 0.2m) over nearly the entire water depth.

Particles near the wave-maker rod can trouble its motion, and potentially cease it. A perched beach set-up

is therefore used with a wedge keeping the beach section of particles in seperation from the flat-bottomed

wave-maker section of the cell. The wedge is a quadrilateral in shape with a longer base face parallel to a

shorter top face. A photograph of the dry set-up is shown in Fig. 6. Perched beaches are beaches where an

underwater offshore rigid barrier, parallel to the shore and either manmade or natural, limits or prevents loss

of onshore beach particles to the offshore side. It prevents the beach from disappearing. The wedge is made

of an old creditcard, taped up to fit sufficiently well between the two glass plates, in such a way that it can

still be removed with a pick (a welding rod with a hook a the end). A wooden suitcase on wheels was later

build around the set-up to allow (transatlantic) transport of all equipment. The study of the Iribarren number

of the four types of breaking waves in Thornton et al. (2014) is based on the study of early footage of beach

formation and breaking waves in this first set-up from January 2010, recorded at 50fps. Disadvantages of

this set-up are as follows:

• The sealing by Duct-Tape is prone to leaking.

• Cleaning of the tank to remove water and especially the particles is cumbersome. It is also a time-

consuming task to take out the glass plates, clean and reassemble them again.

• The entire set-up weighs circa 23.5kg, which makes it less portable.

• The tank was too short, given the long section required for the wave maker motion, and only revealed

similar bar, wet and dry beach formation, such as reported in Section 4, but no berm formation.

• The drill-operated wave motion can only be harmonic and needs to be adjusted by hand.

• Only perched beaches can be investigated due to the required wave-maker section devoid of particles.

The second version, built mainly by W.Z., included several improvements to permit more quantitative

scientific research:

• A longer cell was used of dimensions 0.6 ⇥ 0.002 ⇥ 0.3m3 and again set in a larger wooden frame.

• An inexpensive programmable wave-maker was made by using a disassembled printer and Arduino

technology, see Fig. 7. A programmed harmonic wave turned out to become non-sinusoidal be-

cause the printer motor was not sufficiently strong. It was replaced by a strong but more expensive

6V.Z. and O.B. were given these slides by the School of Mathematics in Bristol, with permission from the Peregrine family.
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Figure 7: The second, dry Hele-Shaw cell with the linear, programmable motor of a disassembled printer

on the right, the black wedge in the middle, white particles, and the clamping system.

programmable stepping motor in combination with the inverted pendulum consisting of two weld-

ing rods displayed in Fig. 1, instead of two vertical welding rods. Programmed harmonic motion

remained nearly harmonic, see Van der Horn (2012).

• The glass plates were sealed together permanently, and in one corner there was an in- and outlet valve

with a hose, closed off during operation of the wave-maker. This facilitated cleaning. Leakage repairs

were only occasionally required since the alcohol for cleaning the tank dissolved the sealing kit when

the alcohol was not flushed out sufficiently quickly. Similar 2mm spacer and U-bar clamp techniques

were used as in the first set-up.

• More attention was paid to screening and lighting such that high quality images were obtained, using

photography for the bed evolution (at 10s intervals) and short-time footage for breaking waves (at

1000fps). Again, only perched beaches can be investigated due to the required wave-maker section

devoid of particles. Given its increased weight and size, the second tank is less portable than the first,

but still fits on a table-top.

The third version of the Hele-Shaw cell, built by W.Z., is the portable version demonstrated at ICCE2014

and at open days of the School of Mathematics, see Fig. 8. It contains of the following improvements:

• It has dimensions 0.7 ⇥ 0.002 ⇥ 0.2m3. The tank consists of two glass plates in a metal frame, held

upright by two removeable metal stands at one side. The heavy, wooden frames in the two previous

versions have therefore been removed. See Figs. 8 and 10.

• It has a drill-operated wave pump connected to two syringes (inner diameter circa 0.04m) acting as

pistons in two vertical pipe sections attached to two hoses, one leading to the bottom corner of the

tank, and one to a valve for the addition and removal of water and particles. See the sketch in Fig. 9.

Smooth movement of the pistons requires vaseline to be used as a lubricant.

• When the hoses, wave pump, rechargeable drill and tank are disassembled, the entire kit fits in a large

suitcase with room to spare for personal travel ware. This ensures portability.

• Particles can freely flow anywhere in the tank. The beaches developing are not perched beaches and

as a consequence different quasi-equilibrium states were for the first time observed at the ICCE2014,

relative to those observed before in the other wave tanks, as reported in Section 4 and Thornton et al.

(2014). Beach evolution and cliff formation are elucidated in Figs. 10 and 11.
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Figure 8: Photograph of the portable Hele-Shaw set-up on the left and with the lead author on the right.

Photo courtesy: Jannette Frandsen at the ICCE2014.

Figure 9: CAD rendering of the wave pump design is shown with the two syringe pistons and gear box.



12 COASTAL ENGINEERING 2014

• The building costs are relatively low, making the set-up generally affordable provided one has the

hours available to construct it. This is an important point, stressed by several ICCE2014 participants

through remarks like: “finally a wavetank that is affordable by researchers in all countries" 7

Nonetheless, the portable version displayed at ICCE2014 requires the following improvements:

• Particles can flow back into the hose, even though this does not obstruct the operation, and the inflow

of water in the bottom corner of the tank causes the bottom of the tank to become bare. We therefore

aim to let the water flow into the tank at a higher level with a smoother inflow section, combined with

a fine gauze to prevent the particles from flowing back into the hose.

• The wave pump design requires turning and greasing, and will be made more rigid. While the drill

operates at sufficiently low speeds, the rechargeable battery lasts insufficiently long. Its speed is tuned

using tie-wraps, which is less inflexible, causing a sudden splash of water at the start.

• It is still too heavy, circa 11kg, so a plexiglass or aluminum version with glass plates is in the making.

Figure 10: Starting from a flat layer of particles and using wave-maker motion operated at a fixed drill

speed, a dry beach emerges after a few minutes (top left, top right, bottom left, bottom right). The height

of the dry land is governed by the maximum wave height available to deposit a particle at the beach top. In

the end, a quasi-equilibrium is reached after about 14min, given the finite amount of particles. Snapshots

at t = 10:24:18, 10:26:19, 10:32:01, 10:32:16hr. The waterline and bed profile have been enhanced. The

inflow connection is seen at the bottom left corner of the first three images. In the top left image, a strip is

holding back the particles during the levelling the tank. Movies of the beach formation can be found at the

public facebook page “Resurging Flows” of O.B and W.Z.

7“Can I make a movie and photographs?” was a question posed several times during the demonstrations at ICCE2014, to which

O.B.’s answer was: “Yes, please do but please refer to our articles”.
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Figure 11: The flat beach top progresses offshore once its maximum height has been reached. Snapshots

at t = 10:42:05, 10:54:16, 10:54:35, 10:59:50hr. From the second last (bottom left) to last frame (bottom

right) the wave frequency was raised, which increased the wave height thus leading to the formation of a

localized, higher cliff.

6. CONCLUSIONS AND DISCUSSION

We demonstrated the proof-of-concept of simplified beach dynamics caused by breaking waves in an

adaptation of the table-top laboratory experiment by Hele-Shaw (Hele-Shaw, 1898) containing the three

phases water, solid particles and air. A few simplified models of fluid dynamics were analysed to aid the

design of our experiment, but we did not yet provide (numerical) predictions of observed wave and bed

profiles.

A future goal is to validate aspects of mathematical and numerical models of beach and wave morphol-

ogy against beach dynamics in this table-top slice-of-beach with wave breaking. The set-up investigated was

not meant to closely mimick dynamics at natural beaches but the quasi-equilibirum bed profiles compare

qualitatively surprisingly well with shingle beach experiments (Powell, 1990; Williams et al., 2012). The

bed profiles we found are, however, twice as steep. Turbulence is dampened significantly in our Hele-Shaw

cell, which is a departure from reality at natural beaches or shingle beach experiments in large wave flumes.

The Hele-Shaw set-up does, intentionally and by design, allow a focus on wave breaking and fluid-particle

interactions without the need for turbulent closures, the latter which generally lead to numerical predictions

that are smoothened (e.g., see Bakhtyar et al. (2012), their Fig. 2) to such an extent that the predictions tend

to resemble our table-top free-surface measurements more closely than actual natural beach dynamics.

A key characteristic of our Hele-Shaw beach experiment is that particle, wave and water motions can be

measured and analysed thoroughly in the entire domain. This may allow closure relations for fluid-particle

interactions to be measured directly, a task that is usually reserved for numerical simulations. A combined

numerical and experimental approach has the added benefit that the observed interactions are real, thus

suffering neither from numerical errors nor closure problems.

The Hele-Shaw modelling environment for beach dynamics was designed to allow a complementary

validation of new (McCall et al., 2010; Vega, 2001; Thornton et al., 2006; Dumbser, 2011) and existing

forecasting models (Operational forecast models, 2014). In addition, it permits various extensions: one can
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think of using different initial bed and substrate slopes (Short, 2000), particles of varying size and density,

in order to mimick dynamics ranging from sand to shingle beaches (Short (2000); Powell (1990)), wider

gap widths to systematically increase the influence of turbulence, more complex and different wave-maker

motions, and changing water levels (e.g, mimicing tides). We aim to consider these extensions in the future

and hope our work will inspire others.

Finally, an overview was given of the construction and operation of three different realizations of

the Hele-Shaw set-up. One of these is a portable version, demonstrated at the ICCE2014, showing its

potential as an affordable wave tank to illustrate and investigate fundamental aspects of beach formation

and destruction by (breaking) waves in the classroom, in a small-scale research setting, and to the general

public.
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