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AILTERNATIVE TO RE-ALIGNED MODELS FOR
PREDICTION IN MPC

J.A. Rossiter*

* Dept. of Automatic Control & Systems Engineering, Sheffield
University, Mappin Street, Sheffield, S§1 8JD, email:
J.A.Rossiter@sheffield.ac.uk, Tel. 44 114 2225685

J. Richalet **

** ADERSA, 10 Rue de la Croiz Martre, 91873 PALAISEAU
CEDEX, France, email: jacques.richalet@adersa.com

Abstract: Most papers on predictive control use either state-space models with an
observer or transfer function models with output realignment for prediction purposes.
Here it is shown that the this approach can have weaknesses, especially with regard
to noise rejection and the independent model approach should often be preferred.
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1. INTRODUCTION

Model predictive control (MPC), e.g.(Garcia et
al., 1989) is a popular control strategy, however
there is a significant discrepancy between the
early variants such as Dynamic matrix control
(DMC), (Cutler et al., 1980), IDCOM ((Richalet
et al., 1978)) and IMC (Garcia et al., 1982) and
the algorithms common in the academic litera-
ture, for instance (Generalized predictive control
(GPC), (Clarke et al., 1987). Historically the main
difference is in the type of model used for com-
putation of the system predictions; DMC and ID-
COM use FIR models, IMC uses an internal model
(often a FIR) whereas academia has favoured
transfer function and state space models. More
recently industrial vendor ADERSA in its product
PFC (Predictive functional control) have favoured
the use of independent models a concept that
bears a strong resemblance to the internal model
principle in IMC (Garcia et al., 1982) but specifi-
cally is not restricted to FIR models. They argue

that the use of transfer function models (or state
space models with an estimator) in MPC realigns
the model state on noisy data, hence giving poor
predictions (Rossiter et al., 2001). FIR models
avoid this shortcoming by basing the predictions
almost entirely on past input information with
only an output correction to avoid offset, however
they introduce bias errors due to truncation.

The independent (internal) model can overcome
the shortcomings of the FIR models (trunca-
tion, large number of parameters) by being trans-
fer function or state-space based while retaining
the advantages of low prediction sensitivity to
noise (by being based on inputs not outputs).
It has been shown in an earlier paper (Rossiter
et al., 2001) that the structure of the prediction
equations is such that one would expect the use
of an independent model to give more reliable
predictions than realigned models, that is less
sensitive to noise. However, that paper did not
consider the impact of such prediction errors on




the resulting closed-loop control law. Hence the This is easily rearranged into a more conventional
purpose of this paper is twofold. form in terms of z-transforms:
e To show how predictive control laws are de- Dy (2)At = —Ni(2)F
rived with realigned models and independent I I

models and thus to derive the sensitivity Dy (2) = T(2) + [I, D] 27 : Ne(2) = Ny 27
functions of the closed-loop in each case. 5 :

e To demonstrate by way of example how (5)
sensitivity varies significantly depending on

; The argument .(z) is dropped hereafter to improve
whether one uses the realigned model or the

clarity. Note that the corresponding Dy, N for

independent model. GPC and GPCT will be different as T affects the
The paper finishes with a discussion. definition of P, @ (Clarke et al., 1987).
2. BACKGROUND AND CONTROL LAW 2.2 GPC with an independent model
STRUCTURE

In this case the predictions are slightly different
from that adopted in (3). Simulate an independent
model Aj = Bu in parallel with the plant?
and use the measured offset y; — 4 to correct
predictions based on this model. The predictions

In this section we give only a quick overview of
how to compute the control laws; the reader is
refered to the literature (e.g. (Clarke et al., 1987))
for more details. As our only aim is to derive
the sensitivity functions, we will not dwell on the

most efficient realisation of these laws, but rather are R .
a convenient form that can be expressed using Y = HAU + PUpast + QYpast + L(yx — Gx) (6)
Z-transforms. The notation adopted is GPC for - '

v GPC with no T-filter (Yoon et al., 1995), GPCT ~ 10er® Ypast 1s based on past outputs of the model

(not process), Upqst is past absolute inputs (not
increments) and for example in the SISO case,
L is a vector of ones. Substitution into (1) and
minimisation w.r.t. AU gives a control law of the
form

2.1 Conventional GPC with a T-filter Aug = —DyUposs — ]\}k:gpast - My
{ Dy =1,0,0,..[HTH + W, *HTW, P

for GPC with a T-filter and GPCI for GPC with
an independent model. Note GPC is equivalent to
GPCT with T(z) = 1.

ixz;ni)};ec t(ocrlnairri{i?nf:eai ,c;sgtggtzntc}:iaoiu; E;eafto:r?::h j\irk =[1,0,0, "'][HTH + W] HTWyQ =
’ My =[1,0,0,..JJHTH + W, *HTW,L
J= Wy (R=Y)E +|WAUIE (1) ™
where W,, W, are weighting matrices, ¥ is a Again, as in (5), this is easily rearranged into a
vector of output predictions, R is a vector of neat form based on Z-transforms:

future set points! and AU is a vector of future _ " o Rl s
control increments. Assuming a model of the form Dilejus= <Bulelf— Milely; Af=>Bu (&)

¢ where Dp(z), Ni(z), My(z) depend upon the
A(z)yr = B(z)uy +T(Z)Z (2) parameters in Dy, Ni, M. Then (8) can be

where y, u,  are outputs, inputs and an unknown simplified to
zero mean random disturbance respectively. De- Diu=—Myy; D;=[Di+NeA1B] (9)

fine filtered values § = y/T, @ = /T, then it is
easy e.g. (Rossiter, 1993) to form predictions

Y = HAU + PAUpgst + Q¥past; (3) 2.3 Summary of control laws

where Aﬁpm, f’mn are vectors of past filtered
input/output values respectively and ¥, AU are
vectors of unfiltered future output/input predic-
tions respectively. Substitution of (3) into (1),
minimisation w.r.t AU and selection of only the

The z-transform representation of the control laws
for GPC, GPCT and GPCI are summarised in
table 1. Again, it is emphasised that Dy, Ny for
GPC and GPCT will be different in general.

first block element of the optimal AU gives rise to Table 1: Control laws

a control law of the form GPC D Au = —Npy
. Aup=-Dy Agpust o Nk?fastT GreT | ZEay = _ﬂy
Dy, =[I,0,0,..][H H + W,|'HTW,P (4) B 7;3 — MT
Ny = [1,0,0,..)[HTH + W, HTW,Q s e

2 Clearly one chooses A = A, B = B if possible

! Hereafter as it is not relevant, a zero setpoint is assumed.




3. COMPUTATION OF SENSITIVITY

The following assumptions are made (different
assumptions will give rise to different sensitivity
functions): (i) the sensitivity to the two signals
noise and disturbance captures a good range of
possibilities and (ii) the plant model is given as

A(z)yr = B(2)up +di; wr=yr+ur  (10)

where dy. is a disturbance signal, vy, is output mea-
surement noise and w;, is the measured output.
The controller acts on wy, not on .

The sensitivity functions, that is the transferences
from di. v; to y, u can be computed in a
straightforward manner by solving for yz, uy in
terms of dj, v using eqn.(10) and the control laws
of table 1. The notation adopted is that sensitivity
of z wr.t f is denoted Sy.. The sensitivities for no
parameter uncertainty are presented in tables 2-5.

Table 2: Output sensitivity to noise
GPC Svy = [A+ B(DrA)"IN] 1A
GPCT | Sy = [A+ B(DrA)"INi] 1A

GPCI Spy = [A+BD{'1M;J" A
Table 3: Output sensitivity to disturbances
GPC Say = A—FB(D];A)MIN,Q =
GPCT de = A+B(Dkﬂ)_lNk =
GPCI Say = [A+ BD;* M|~

Table 4: Input sensitivity to noise

GPC Spw = [DrA + N A™1B]7I N,

GPCT | Syu = [DrA + N A™1B]7IN,

GPCI Hog = [Di + MkA_lB]_le

Table 5: Input sensitivity to disturbances
GPC Saqu = [DpA + NkA_"lB ulNkAﬁl
GPCT | Sygu = [DipA + NkA_lB _1Nk./-1_1
GPCI Sau = [Di + M A7 BT M A1

The sensitivity to multiplicative model uncer-
tainty for the nominal case is

S, =l +KG|"'KG; G=A"'B (11)

The different controllers to be subsituted into this
expression are summarised in table 6.

Table 6: Nominal control laws
GPC [ K = [D:A]"TV;
GPCT | K = [DyA]7 Ny,
GPCI | K = D;'M;

4. EXAMPLES

The effectiveness of the independent model ap-
proach is illustrated by way of examples. The
information will be presented as Bode plots of
the sensitivity functions as this shows the varia-
tion of sensitivity over the whole frequency range.
Separate figures will give the sensitivity functions

Sensitivity of outputs to disturbances

Sensitivity of inputs to disturbances

10°

10 107" 10
Frequency

107 10
Frequency

Sensitivity of inpuls to noise

107

Sensitivity of outputs to noise

107! 10
Frequency

10 10° 10"
Frequency

Fig. 1. Closed-loop sensitivies to noise and distur-
bances, example 1

Sdy, Svy, Sdu, Svu,Sg with notation as in table
7. The frequency range is 0 to .

Table 7: Notation of plots
GPC solid line

GPCT | dashed line
GPCI | dotted line

For disturbances, it might be argued that the
focus should be on output sensitivity only for
low frequencies as one would not normally ex-
pect high frequency disturbances. However, the
integral action will deal with this which shifts the
focus back to the transients in disturbances, that
is high frequencies. Also one would expect noise
to be mostly high frequency and hence one should
focus mainly on the high frequency range of these
bode plots.

4.1 Ezample 1

This is a SISO example. The controller is designed
with n, = 30, n, = 3, W, = 1. The correspond-
ing sensitivity functions are displayed in figures
1,2.

A(z)=1-1.82"1 +0.81z72

B(z) = 0.0127 4+ 0.0032~2 (12)

T(z)=1-0.82""

Clearly using an independent model has much
reduced the input sensitivity to noise and distur-
bances (as well as multiplicative uncertainty) in
the high frequency range. This could be construed
as a good thing as one does not want the inputs
chasing noise as can happen with realigned models
(e.g. (Rossiter et al., 2001)). The output variance
is also smaller for high frequencies. The price is a
larger variance of output at intermediate frequen-
cies where one might consider noise/disturbances
are less likely to occur. Clearly GPCT is better
than GPC and more interestingly (as discussed in




Senaitnty 10 muRpiCatiee uncertainty
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Fig. 2. Closed-loop sensitivity to multiplicative
uncertainty, example 1

(Yoon et al., 1995)), if T'(z) = A(z) the sensitivity
plots of GPCT exactly replicate those of GPCL
The choice T' = A however may not always be a
wise choice of filter. GPCI also has better robust-
ness to model uncertainty (figure 2).

4.2 Ezample 2

This is a 2 by 2 plant with reasonably large
interactions in the step response characteristics.
However, the step responses are smooth with non-
minimum phase characteristics.
0 —2
—0.18] z

A(z):[l 0]+[—1.3 0 ]z_1+[ |
}z

01 0 -0.7
05 02| — i :
06 1]31"'[ }Zz*'[o?sg.:
(14)
Witk P le] —T1-0.80 *yny = B, ny, = S0, W, =1.
The corresponding closed-loop sensitivity func-
tions are plotted in figures 3-7 where the subplot
position corresponds to the matrix position, that
is row ’i’, col ’j’ of the figure corresponds to .S; ;.
Here we see a similar trend to example 1. The
independent model algorithm has the lowest input
and output sensitivity for high frequencies, but
poorer at intermediate frequencies. For robustness
to multiplicative uncertainty the case is less clear
cut though GPCI is clearly better than GPC.

0.4
0

-0.5 0.3
03 1

B(z) = [

4.3 Ezample §

This is a 3 by 3 plant with large interation.

100 —0.88 —0.16 0
A(z)=|01 0] + | 032 —0.96 —0.8 | z7 4+
001 0 0 —0.72
0.112 0.08 0 0.064 0.016 0
0 0.136 0.08 :—:‘2—}- —0.08 0.072 0.24 z“a
0.16 0 -0.112 0.16 0 0.0192
(15)
0.50.2 —5 1 21
B(z)=|2 0 03 |z7'+|-080605|z"2
0 09 —-04 1 0305

(16)

,  Sensitivity of outpuls to disturbances
10

10"

Frequency

Fig. 3. Output sensitivity to disturbances, ex. 2
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F;ig. 4. Input sensitivity to disturbances, ex. 2

Sensithvity of outputs to nolse

10°
Frequancy

Fig. 5. Output sensitivity to noise, example 2

With T'(z) =1—-0.8271,n, = 15, ny, = 30, W, =
1. The corresponding closed-loop sensitivity func-
tions are plotted in figures 8-12. Here we see that
the results are less conclusive but one can still see
a preference for the independent model at high
frequencies.

4.4 Discussion

The purpose here was to compare ‘simple’ ap-
proaches to minimising sensitivity, without the
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Fig. 6. Input sensitivity to noise, example 2
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Fig. 8. Qutput sensitivity to disturbances, ex. 3

use of involved robust control theory. For the
examples shown GPCI has outperformed GPC
and also on average outperformed GPCT. One
might argue that with a SISO case, one can al-
ways choose T = A (making GPCT equivalent
to GPCI) however this may not be desirable in
general. Moroever, for multivariable systems the

S‘ansltivity of inputs to disturbances \
10 10
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10° 10° J/\
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Fig. 9. Input sensitivity to disturbances, ex. 3
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Fig. 10. Output sensitivity to noise, example 3
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Fig. 11. Input sensitivity to noise, example 3

guidelines for choosing T' are much less clear cut
and then one can see that GPCI is likely to be
the best. Conversely, with GPCI, there is one less
control parameter to design (that is no T) and
without loss of performance. Hence at the very
least it is worth considering the use of an IM
at the outset of a control design. To compare
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Fig. 12. Sensitivity to multiplicative uncertainty,
example 3

the sensitivities arising from the use of different
models is relatively trivial in simulation and there
may be much to be gained. An offline case by case
comparison is essential in general, because one
cannot generalise. The conclusions will change for
different models and moreover if the disturbance
model differs from that in (10).

One might argue that. at least in the uncon-
strained case, that the Youla parameterisation can
be used to adapt all controliers (for realigned and
IM models) with the same¢ nominal performance
to have similar robustness and to give a conve-
nient decoupling of performance objectives from
robustness objectives it ¢ <o (Kouvaritakis et
al., 1992),(Garcia et al.. 19~2 for details). Hence

does the model choice really matter 7 To counter
this, it should be empliasi~d that one strength
of predictive contro! i~ tu¢ ability to do online
constraint handling. Svsrematic extension of sen-
sitivity functions to thi~ cias+ 1= non trivial and

scenario dependent. Howevir. to date no simple
and systematic means «f auzmenting robustness,

for instance via the Youl: parameterisation, has
been developed for the constramnt handling case.
Some ideas are presented in - Rossiter et al., 1998)

but need further work. I the meantime, one can
argue that if the prediction structure gives low
sensitivity in the nominal case. this is likely to
carry over to the constrained case in general.

5. CONCLUSION

It has been shown that the typical academic
practice of using realigned models in predictive
control can lead to poor sensitivity with respect
to noise. This is often corrected by the design of a
T-filter, however such a process is not systematic
beyond the guideline of using a low-pass filter with
poles near those of the plant. Here some examples
have shown that the alternative proposal of using

an independent model (internal model) gives low
sensitivity without the need for an extra design
parameter. It is expected that such benefits will
transfer to the constrained case where robust
design approaches are not easily applicable.
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