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ABSTRACT 

This paper describes a genetic algorithm for the calculation of substructural analysis 

for use in ligand-based virtual screening.  The algorithm is simple in concept and 

effective in operation, with simulated virtual screening experiments using the MDDR 

and WOMBAT datasets showing it to be superior to substructural analysis weights 

based on a naive Bayesian classifier.  

 

INTRODUCTION 

 

Machine learning methods are widely used for ligand-based virtual screening.  Such 

methods take as input a training-set of molecules, each of which is known to be 

either active or inactive, and produce as output a set of rules that can then be used 

to predict whether previously unseen molecules in the test-set should be classified 

as active or as inactive.  Many different computational techniques have been used 

for this purpose, such as binary kernel discrimination, neural networks, random 

forests, recursive partitioning and support vector machines inter alia, as reviewed 

by, e.g., Goldman 1, Melville and Hurst 2, Mitchell 3 and Plewczynski et al. 4. 

 

In this paper we focus on substructural analysis, which was developed by Cramer 

and his co-workers in the Seventies 5, 6 and which was thus one of the first machine 

learning approaches to be applied to the analysis of chemical datasets.  In 

substructural analysis, it is assumed that each molecule in the training-set and test-

set is characterized by a set of binary descriptors, most commonly in the form of a 
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2D fingerprint in which each bit denotes the presence or absence of a substructural 

feature (often referred to as a fragment).  Associated with each such bit is a weight 

that is a function of the numbers of active and inactive training-set molecules that 

have that bit switched on, i.e., that contain the corresponding fragment.  This 

weight reflects the probability that a molecule containing that substructural feature 

will be active (or inactive); for example, the weight might be the fraction of the 

active training-set molecules containing that particular fragment.   A test-set 

molecule is then scored by summing (or otherwise combining) the weights of those 

bits that are set in its fingerprint, the resulting score representing the overall 

probability that the molecule will be active.  Substructural analysis was studied in 

considerable detail by Hodes in a National Institutes of Health project to develop 

novel anti-cancer agents 7-10, but it is only quite recently that the approach has 

become widely used 11-15.  An operational example of the use of substructural 

analysis is the PASS (for Prediction of Activity Spectra for Substances) system 

developed by the Poroikov group 11, 16, 17.  Some of the weighting schemes that have 

been used in substructural analysis are closely related to those obtained using a 

naive Bayesian classifier 18 (hereafter NBC), a well-established approach to machine 

learning that has become popular in chemoinformatics with the availability of the 

Bayesian modelling routine in the Pipeline Pilot software system 19-21.   

 

The cited references provide several examples of the successful use of substructural 

analysis in drug discovery projects.  In this brief communication, we describe an 

approach to the calculation of fragment weights using a genetic algorithm 

(hereafter GA) 22.  Given a training-set of molecules and associated bioactivity data, 

the GA (which is described in detail in the next section) computes fragment weights 

that can then be used as an alternative to those resulting from existing 

substructural analysis approaches.  A GA provides a (non-deterministic) way of 

exploring combinatorial spaces, such as the set of all possible fragment weights in a 

weighting scheme in the present context, and may hence provide a way of 

identifying sets of weights that are different from, and possibly superior to, those 

identified by existing approaches to substructural analysis.    

 

THE GENETIC ALGORITHM 

 

Each chromosome in the GA is a vector, each element of which contains a real-

valued number representing the weight of one of the fragments used to 

characterize the molecules in the dataset; thus, using the MDL key-set (see 
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EXPERIMENTAL DETAILS AND RESULTS), each chromosome has 166 elements.  The 

GA seeks to identify those weights that produce the best possible ranking of the 

molecules in a dataset, and hence to estimate an upper-bound to the effectiveness 

of virtual screening possible using the substructural analysis approach.  The basic 

idea is illustrated in Figure 1 using a training-set containing three molecules M1-3, 

each of which is represented by a fingerprint encoding the presence or absence of 

five fragments F1-5.   

 

Assume that the three fingerprints are as shown in Figure 1a where, for example, M1 

contains the second and fifth fragments F2 and F5.  An initial population of possible 

solutions is generated with the initial weights W1-W5 being assigned by a random-

number generator that has been primed in this simple example to generate integer 

weights in the range 0-10.  In the example, the population contains six 

chromosomes, C1-6, and the initial population is shown in Figure 1b.  Each 

chromosome is then used to compute the sum-of-weights for each molecule, as 

shown in Figure 1c.  For example, M1 contains F2 and F5, so its sum-of-weights using 

C1 is the sum of W2 and W5, i.e., 3; using C2 the sum is 8, and so on for C3-6.  

Considering just C1, the sums-of-weights for M1, M2 and M3 are 3, 6 and 1, 

respectively, meaning that the application of the weights in this chromosome results 

in a ranking 

M2 > M1 > M3 

of the training-set.  In like vein, C2 yields the ranking 

M3 > M2 > M1 

and so on for the remaining chromosomes C3-C6. 

 

Each chromosome thus corresponds to a particular ranking of the training-set, and 

this ranking can be used to compute a fitness value for that chromosome.  The aim 

of a virtual screening procedure is to cluster active molecules at the top of a 

database ranking, and hence the fitness function used in our GA is simply the 

number of training-set actives occurring above some threshold rank position; 

specifically, the fitness in the experiments reported below was the number of 

actives in the top-1% of the training set.   The resulting fitness values for each 

chromosome then provide the input to the next iteration of the GA, with the 

standard operations of crossover and mutation being applied to obtain a new 

population of chromosomes.  The procedure is repeated until the fitness values have 

plateaued or (as was the case in the experiments reported below) for a fixed 

number of iterations.  
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EXPERIMENTAL DETAILS AND RESULTS 

 

  The GA has been evaluated in simulated virtual screening experiments 

using datasets derived from the MDL Drug Data Report (MDDR) and World of 

Biological Activity (WOMBAT) databases.  The datasets used here are described in 

detail by Gardiner et al. 23: the MDDR dataset contained eleven activity classes and 

102,514 molecules; and the WOMBAT dataset contained 14 activity classes and 

138127 molecules.  The molecules in these two datasets were characterised by the 

MDL structural key definitions in the Pipeline Pilot software, i.e., 166-bit fingerprints 

where each bit describes the presence or absence in a molecule of a particular 

fragment substructure.  These keys were used for all of the experiments reported 

here.  The training-set for a particular activity class consisted of 10% of the actives 

and 10% of the inactives, with the remaining 90% of the database providing the 

test-set for which virtual screening was carried out.  The GA was run on the 

training-set, weights determined for each of the 166 fragments comprising a 

fingerprint, and then these weights used to rank the molecules in the test-set.   

 

Machine learning experiments are often evaluated using AUC values, i.e. the area 

under a receiver operating characteristic (or ROC) curve.  However, this 

performance criterion is less appropriate for evaluating virtual screening 

experiments since it takes the entire ranking of a database into account when 

calculating the effectiveness of a ranking, where as one is interested here in only 

that small fraction of the molecules that occur at the top of the ranking, since it is 

these that may need to be considered subsequently for biological screening.24, 25  

Rather than using AUC values, the screening performance was hence measured by 

the number of actives for the top-1% of the ranked test-set and the number of 

distinct Murko scaffolds 26 in those top-ranked actives was noted to provide a 

simple measure of structural diversity.   

 

The performance of the GA was compared with that of an existing substructural 

analysis method, early appropaches for which used empirical weighting approaches 

such as the SAS scheme described by Redl et al..6  Drawing on previous work by 

Robertson and Sparck Jones that presented a detailed theoretical rationale for the 

use of NBCs in information retrieval (where the aim is to rank a text database in 

order of decreasing probability of relevance to a query) 27, four NBCs have been 

described that could be used for ligand-based virtual screening 28, 29.  One of these, 
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R4, was used here to provide a basis for comparison with the results obtained using 

the GA.  Assume that a particular fragment occurs in a of the A active molecules 

and i of the I inactive molecules; then R4 is defined to be  










−

−
=

)/(

)/(
log4R

iIi

aAa
.                  (1) 

The numerator of this expression is hence the ratio of the number of active 

molecules in which the fragment occurs to the number of active molecules in which 

it does not occur; and the denominator is the corresponding ratio for the fragment’s 

occurrence or non-occurrence in inactive molecules.   Experiments were also 

conducted using the NBC in the Pipeline Pilot software 19-21; however the results 

obtained were comparable to those with R4 and hence only the latter sets of results 

are discussed here. 

 

  The GA has been described in general terms in the 

previous section.  An implementation of it requires the specification of the following 

parameters, where the alternatives that were tested are listed in brackets: parent 

selection procedure (roulette wheel, tournament or random); crossover procedure 

(one-point, two-point or uniform); crossover rate (0.60-0.95 in steps of 0.05); 

mutation rate (0.005-0.100); population size (100-500 in steps of 100); number of 

iterations of the GA (100-1100 in steps of 200).  A systematic, detailed series of 

tests was conducted using the renin and cyclooxygenase activity classes from the 

MDDR dataset.  These were chosen since they were the least diverse and the most 

diverse class respectively of all the 25 sets of actives studied in the experiments 

(where the diversity was measured by the mean inter-molecular similarities for the 

active molecules in a class when computed using Tripos Unity fingerprints and the 

Tanimoto coefficient).  On the basis of these initial experiments, all of the results 

presented here were obtained with a GA involving roulette-wheel selection, one-

point crossover, a crossover rate of 0.95, a mutation rate of 0.01, a population of 

200 chromosomes, and 500 iterations.  It was found that more consistent results 

were obtained when the mutation operator was constrained: if the R4 weight for a 

particular fragment was calculated to be positive then only mutations that resulted 

in a positive weight for that fragment were accepted, and similarly if the R4 weight 

was negative.  The GA was implemented using MATLAB, pseuodo-code for which is 

included in the Supplementary Material.   
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  The basic results are shown in Tables 1a and 1b for the 

MDDR and WOMBAT datasets respectively.  Each row of one of these tables 

corresponds to a single activity class and lists the total numbers of actives in the 

test-set, the numbers of active molecules retrieved in the top-1% by the NBC and 

GA weighting schemes and then the numbers of distinct Murcko scaffolds in these 

top-ranked actives.  The GA was run three times; the figures listed in the two tables 

are those obtained from the worst run, viz the run that resulted in the smallest 

number of top-ranked actives.  It will be seen that the GA is consistently, and often 

markedly, superior to the NBC in terms of both the numbers of actives retrieved at 

the top of the ranking and of the diversity of those actives.  The sole exception to 

this generalisation is the WOMBAT protein kinase C inhibitors where the GA and the 

NBC retrieved the same number of scaffolds.  For comparison with the results in 

Table 1, experiments were carried out with the MDDR renin and cycloxygenase data 

in which the active/inactive codes for the training-set molecules were randomly 

permuted prior to the execution of the GA, and the resulting weights were then 

applied to the test-set.  This y-randomisation procedure was repeated 100 times: 

the mean and standard deviation of the numbers of actives retrieved in the top-1% 

were 4.16 and 8.10 (renin) and 5.31 and 6.96 (cyclooxygenase), figures that are 

drastically less than those listed in Table 1 and that demonstrate the robustness of 

the GA solutions.    

 

The effectiveness of screening is illustrated diagrammatically by the enrichment 

curves shown in Figures 2a-2e; these curves are for some of the MDDR activity 

classes but entirely comparable behaviour is observed with the WOMBAT dataset.  

Each such curve shows the percentage of the actives retrieved in the top-X% of the 

ranked test-set for X <= 10 (since it is only the top-ranked molecules that are of 

interest in a virtual screening context).  It will be seen that in all cases the GA curve 

is above that for NBC at the top of the ranking (as indicated by the results in Table 

1) but that the NBC curve sometimes approaches (for the thrombin actives in 

Figure 2c), or crosses (for the 5HT reuptake inhibitor, 5HT1 agonist and D2 

antagonist actives in Figures 2b, 2d and 2e respectively), the GA curve when a 

larger percentage of the top-ranked molecules is considered.  This is in no way 

surprising since the fitness function of the GA focuses specifically on clustering the 

actives in the top-1% of the ranked test-set, without any consideration being given 

to their occurrence in the bottom 99% of the ranking.  To illustrate the effect of 

this focus, consider the WOMBAT D2 plots shown in Figures 3a and 3b.  In the first 

case, the fitness function is as described previously, i.e., it focuses on the top-1% 
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of the ranking.  In the second case, the fitness function has been set to maximise 

the number of actives in the top-10% of the ranking.  In Figure 3a, the plots cross 

at about 5% of the ranking; in Figure 3b, the separation between the two plots at 

1% is less marked, but the GA plot remains above the NBC plot throughout a much 

larger range of values.     

 

An inherent limitation of any GA is its non-deterministic nature and it is hence 

important to assess the degree of variation from one run to the next.   Ten runs 

were carried out on the MDDR renin and cyclooxygenase actives with the results 

shown in Figure 4, where a high degree of clustering will be seen: the mean and 

standard deviation of the numbers of actives retrieved in the top-1% were 712.8 

and 8.71 (renin) and 166.3 and 4.54 (cyclooxygenase).  The level of consistency 

suggested by these results is shown in more detail in Table 2.  Here, the first of the 

ten runs for each dataset was taken as a standard and then the set of top-1% 

actives identified by this run (the first of the ten columns in the main body of the 

table) were compared with the corresponding set in each of the nine remaining runs.  

The upper figure for each run in Table 2 is the number of actives retrievd in the top-

1% and the lower is the number in common with the first run.  For example, the 

second renin run identified 713 top-1% actives, of which 653 were identical with 

the actives identified in the first run: as will be seen there is a very high degree of 

consistency in the identities of the actives returned in different runs.  Experiments 

were also conducted to determine the consistency of the weights that are 

calculated in different runs of the GA.  For these sets of ten renin and 

cyclooxygenase runs, the Pearson correlation coefficient was computed between 

the sets of 166 weights computed for each distinct pair of runs.  The mean and 

standard deviation for the coefficient averaged over the 45 pairs of runs for each 

activity class were 0.79 and 0.025 (renin) and 0.79 and 0.024 (cyclooxygenase).   

 

CONCLUSIONS 

 

In this paper we have described a GA for the calculation of fragment weights for use 

in substructural analysis.  The GA is extremely simple in concept but effective in 

operation, since simulated virtual screening experiments using MDDR and WOMBAT 

data show it to be consistently superior to an NBC in terms of both the numbers of 

active molecules retrieved and the range of scaffolds within those sets of actives.   
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Both approaches have their limitations.  The NBC approach has a firm theoretical 

basis for the design of the fragment weights, but involves the assumption that the 

fragment occurrences are statistically independent, an assumption that is known to 

be incorrect 30, 31.  It would be possible to try to relax this assumption, as has been 

done when the Robertson-Sparck Jones weights (such as R4) have been used in 

information retrieval 32.  However, the resulting weights are far more complex in 

nature and have not proved to be any more effective in retrieving relevant 

documents than the basic approach that assumes independence 33, and there hence 

seems little reason to believe that things would be any different in the present 

context.  The GA approach as currently implemented has three limitations.  First, its 

inherently non-deterministic nature that has been discussed previously.  Second, it 

is currently focused purely on maximising the numbers of retrieved active molecules 

retrieved at the top of a database ranking.  However, it would be easy to implement 

more sophisticated functions that took account of multiple optimisation criteria, 

e.g., the diversity of the top-ranked molecules and of their computed 

physicochemical properties in a manner analogous to the library design tool 

described by Gillet et al. 34.  Second, the ‘black-box’ nature of a GA means that 

there is no algebraic formulation of the weights (such as Equation (1) for the R4 

weight) that could be used to rationalise the results that have been obtained.  We 

hope to address this in future work using a genetic programming approach to 

develop weighting equations based on variables such as a, i, A and I in Equation (1). 

 

.  We thank a referee for comments on an earlier version of this 

manuscript. 
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Activity class Actives Actives retrieved Murcko scaffolds retrieved 

  NBC GA NBC GA 

5HT reuptake inhibitors 323 34 56 17 20 

5HT1A agonists 744 103 140 52 71 

5HT3 antagonists 677 138 276 75 122 

Angiotensin II AT1 

antagonists 
849 372 404 

131 134 

Cyclooxygenase inhibitors 572 146 161 37 40 

D2 antagonists 356 47 60 24 33 

HIV protease inhibitors 675 226 326 106 151 

Protein kinase C inhibitors 408 94 123 34 38 

Renin inhibitors 1017 620 701 192 205 

Substance P antagonists 1121 262 325 120 133 

Thrombin inhibitors 723 226 344 99 147 

(a) 
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Activity class Actives Actives retrieved Murcko scaffolds retrieved 

  NBC GA NBC GA 

5HT1A agonists 533 249 285 58 63 

5HT3 antagonists 198 79 82 23 25 

Acetylcholine esterase 

inhibitors 

453 
218 230 67 69 

Angiotensin II AT1 

antagonists 

652 
514 521 105 115 

Cyclooxygenase inhibitors 869 549 583 32 67 

D2 antagonists 819 225 331 61 67 

Factor Xa inhibitors 758 288 337 75 86 

HIV protease inhibitors 1015 398 503 127 143 

Matrix metalloprotease 

inhibitors 

625 
362 391 86 94 

Phosphodiesterase inhibitors 536 239 259 84 88 

Protein kinase C inhibitors 128 92 94 15 15 

Renin inhibitors 427 301 331 73 86 

Substance P antagonists 502 217 243 52 55 

Thrombin inhibitors 379 200 212 73 77 

(b) 

.  Screening results using the GA described here and the R4 NBC for the (a) MDDR and (b) WOMBAT datasets 
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Activity class Run 

Renin 701 713 720 725 717 706 705 702 722 717 

 653 672 688 779 645 656 639 675 662 

Cyclooxygenase 167 163 161 174 171 170 164 161 163 169 

 150 146 162 150 159 142 141 148 154 

 

:  Numbers of top-1% actives in common in different runs of the GA.  The 

figure in the first column of the main body of the table is the number retrievd in the 

first run; each subsequent entry gives the number retrieved in a run and then below 

that the number in common with the first run.  
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Molecule F1 F2 F3 F4 F5 

M1 0 1 0 0 1 

M2 1 0 0 1 0 

M3 0 0 0 1 1 

(a) Fingerprints for three molecules M1-3 encoding five different substructural 

fragments F1-5 

 

Chromosome W1 W2 W3 W4 W5 

C1 6 2 7 0 1 

C2 4 3 1 8 5 

C3 9 9 3 6 7 

C4 1 7 5 1 3 

C5 8 4 8 2 8 

C6 5 8 4 7 2 

(b) Six chromosomes C1-6 encoding the weights W1-5 for F1-5 

 

Chromosome M1 M2 M3 

C1 3 6 1 

C2 8 12 13 

C3 16 15 13 

C4 10 2 4 

C5 12 10 10 

C6 10 12 9 

(c) Sums-of-weights using each chromosome C1-6 for each molecule M1-3 

 

. Operation of the GA using a population containing six chromosomes and a 

training-set containing three molecules, each of which is described by the presence 

or absence of five fragments  

 

  



15 

 

 

 

 

(a) 

 

 

(b) 
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(c)   

 

 

(d) 
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(e) 

: Enrichment curves for simulated virtual screening of MDDR activity 

classes: (a) HIV protease inhibitors; (b) 5HT reuptake inhibitors; (c) Thrombin 

inhibitors; (d) 5HT1A agonists; (e) D2 antagonists.  The continuous line in each case 

is for the GA and the dashed line is for the NBC. 
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 (a) 

 

(b) 

: Enrichment curves for simulated virtual screening of the WOMBAT D2 

antagonists with the fitness function set to maximise the number of actives in (a) 

top-1% of the ranking; and (b) the top-10% of the ranking.  The continuous line in 

both cases is for the GA and the dashed line is for the NBC. 
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(a) 

 

 

(b) 

: Enrichment curves for ten separate runs of the GA on two MDDR activity 

classes: (a) renin inhibitors; (b) cyclooxygenase inhibitors  

 

 


