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Abstract: A method is introduced for optimal sliding surface design for
a class of nonlinear systems. First, a nonlinear system 1s approximated as
a linear time varying system and then an optimal sliding surface is
designed for approximated system. The control input, which is designed
by using approximated system, is then applied to the nonlinear system. It
is shown that the approximated system's response converges to the

nonlinear system's response.
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L. INTRODUCTION

An optimal sliding surface design
which minimises a desired performance
criterion for linear time invariant systems
has been studied and reported by various
authors [6,7,8,9]. The LQR problem for
linear time varying systems has also been
investigated in terms of optimal sliding
surface design [7]. Although different
design methods, each of which uses linear
or nonlinear switching surfaces, have been
suggested for nonlinear systems [2.,4,9],
the optimal selection of the switching
surface for a nonlinear system has not
been investigated yet.

In this work, we shall suggest a
method for choosing an optimal sliding

surface for a class of nonlinear systems
that can be represented by

Xx=A(x)x+ B(x)u (1.1)

where x €eR", ue€R", A(x) €R""and

B(x) e R™™. We shall present successive
approximation approach to approximate
the nonlinear system (1.1) by a time
varying system, i.e.,

1 = AN @4 a e 1.2y

We will use the result of [7], for optimal
sliding  surface  design in  our
approximated system. Then we apply the
control input, which is generated from the
approximated system, to the original
nonlinear equations.

The approximation theory is
given in section 2. Section 3 briefly
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explains Sliding Mode Control (SMC)
theory for linear time varying systems. In
section 4, the optimal sliding surface
design method is presented and the theory
1s applied to an example.

II. APPROXIMATION OF
NONLINEAR SYSTEM

We shall refer to the recent work
of Banks and McCaffrey [3] to explain the
approximation theory. It has been shown
that differential equations of the form

x(t) = A(x(£))x(2) + [ (), x(2,) = x,
2.1)

may be represented by the following
approximating  sequence of  linear
differential equations

()= AP + f() 22)
where
(t) = A(x) X" () + (1), x1(2,) =x,

We will give the following theorem
without proof (see [3]).

Theorem 2.1. Let A(x) satisfy

(A.1) p(A(x)) < p

(4.2) HA(x) —A(y)| = aﬂx—y”
Vx,y € R" and suppose that

T

o ||x| + j exp(—u(s—1,)||f (s)|ds

fo
(T—1t,)exp(u(T—1,)) <1.
Then the equation (2.1) has a unique
solution on [IO,T ] which is given by the
limit of the solutions of the approximating
equations (2.2) on C([rg,T],R").

I1.SMC OF LINEAR TIME
VARYING SYSTEMS

In this section, we shall briefly
explain the SMC design procedure for

linear time varying systems. We have, in
general,

%= A(t)x+B(t)u (3.1)

where x e R",u e R" , A(t) and B(t) are
time varying matrices of proper
dimensions. We shall assume that
(A(t),B(1)) is controllable in the time
interval  [7,,2,]. The control function is
designed to force the system to the

(n—m) dimensional time varying
switching hyperplane
olx,1)=C(1)x (3.2)

and the system is kept on the hyperplane
by directing the system states towards it,
1.e.,

o(x,t) >0 if a(x,t) <0
o(x,t) <0 if o(x,1)>0

On the other hand, desired
behaviour of linear time varying system 1s
achieved by deliberate choice of C(¢). In
most cases, some coordinate
transformations put the problem in an
easier form in the selection of C(z). Thus,
we define a time varying nonsingular

(3.3)

coordinate transformation
z(t) = L(t)x(t), where
L(t)B(?) =[ 0 ]
B, (1)
and

L)AL (2) +

S A, (5} A,(1)
L(OL =

(t) (t) I:Am(t) Azz(t):l

The system in the new coordinates
becomes

2 =4 (t)z; + 4,,(F)z;

2, =4, ()z,+ A, ()2, + B, (t)u
where z, e R"™ , z, €R" and B, (¢) is
a mxm nonsingular matrix. The time

varying transformation simply lumps the
control vector into the z,(¢).

(3.4)

The switching
equation (3.3) can be rewritten in the new
coordinates as 5

hyperplaﬂfe’ ; B

oy 0




alz,t)=C 1)z + (1)

Without loss of generality, we will
assume that C, = / and hence

o(z;ty=C ()z; +2; (3.5)

The system motion in the sliding mode,
i.e., motion restricted to the switching
surface o(z,t) =0, can be explained by
means of the equivalent control method.
The existence of a sliding mode implies
o(z,t)=0o(z,t) =0 for all =1, where
t, is the time at which the sliding mode
begins. Then the equivalent control is

Uy, =_BZW1[{C1AM +4,, +q}zl
+{Cid; + 4512, ]

which yields the so-called equivalent
system as

2, =d ()5 + 4,(t)z,
—{C4,,(1) + Cz}zl -G 4,(t)z,
. —C’lz.l T CEZ]

Note that the second equation represents
the constraint equations, 1.e.,
o(z,t)=C,(1)z, +z, =0 and hence we
can describe the system as a (n—m)th
reduced order system i.e.,

z, = A, (t)z, + A, (t)z,
o(z,t)=C/(t)z,+z,=0
or alternatively,
2, =A,()z, + A,(1)z, (3.6)
z, =—=C/(1)z, (3.7)

1l

Z

where z, plays the role of state feedback
control. In order to use the standart LQR
problem results, we need the following

lemma which is a generalisation of lemma
1 of [4].

Lemma 3.1. If the system in (3.1) is
controllable in the time interval  [1,,1,],
then the pair (A“(t),Au(t)) of the
reduced order équivalent system (3.6) is
also controllable in the time interval

[, ].

Proof: This follows by a simple extension
of the proof of lemma 1 of [4]. O

The general control structure
which satisfies the stability condition of
sliding motion -eqn.'s (3.3)- can be
formulated as

u=u, +ksgn(olz,t)) (3.8)

where sgn(-) is the signum function and
k is a column vector of dimension m
whose elements are k; <0.

IV. OPTIMAL SLIDING SURFACE
DESIGN

The dynamic optimization
problem for time varying linear systems is
well-defined, which is to minimise the
functional

J= JL(xTQ(t)x +u’ P(t)u)dt,t, <o

(4.1)
subject to the system equations
x=A(t)x+ B(t)u 4.2)
Then, the optimal control is
u’ =—P()B" (1)R(t)x (4.3)

where R(f) is the solution of matrix
differential Riccati equation,

R(t)+ R(t)A(t)+ AT ()R(t) -

R(OB)P' ()BT (R()+Q(t) =0
(4.4)

with the boundary condition R(#,) =0.

Using the above derivation, we
shall determine the equation of sliding
surface over which the sliding motion is
optimal with respect to the criterion

J= _fxTQ(r)xa’t, 0(t)=0 (4.5)

where ¢ is the sliding motion starting
time. We omit the control term in the
functional since the sliding mode motion
is control-independent and defined by the
equation of discontinuity surfaces.




By applying time varying
nonsingular transformation as described
in section III, the criterion in eqn. (4.5) is
written as

J= JL {2/ 0,(1)z,+22/ 0, (¢)z,

i ngzz (¢)z,}dt
(4.6)

where

LT 00 (1) — [Q.I(r) Qn(r)}

0, (1) On(1)

By introducing a new variable & which
relates z, and z,;

§=2z,+ Qz}l (r)Qsz (1)z, 4.7)

then, the reduced order system equation
(3.6) and the criterion (4.6) become

2 =(4,(1) - 4, ()O3 (1) OL (1)),

+ A, (1)
(4.8)

J= (040 -0: (1002 QL 1)z,
+&10,(0¢ }di

or,

!,

J= j'(z{Q' ()z,+EP(Ed  (4.9)

!

where

Q(f) = Ql](r)“le(t)Qz_zl (I)Qlj;(f) and
P(t)=Q,,(t). Then, by virtue of eqn.
(3), the optimum ¢ is given by
& =~P ()AL (1) R(1)z,

=—05, (1) 4, (1)R(1)z,
where
R()+R()A(@)+ A" (1)R(¢) -
R(t)B()P' ()BT (1)R(1) +Q(1)=0

and

A(t) = A, (1) = 4, (1) 05 (1) O, (1),

(4.10)

B(t)= A,(¢). Using eqn's (4.7) and
(4.10);

2, = "Cta (t)z,
= -0} ()AL ()R + 05 ())z,
(4.11)

or, the sliding hyperplane equation (eqn.
3.5) becomes

o(z,t) =z, + C/(t)z, (4.12)
Now, we shall apply the above theory to
an example.
Comment: Convergence of the controller
sequence follows easily from Theorem 2.1
by chooping the time interval [rs,rl] into
small enough pieces.

Example: We have a second order
nonlinear system

xi=A(x)x+b(x)u

where
0,50, <22 = P 32
A(x) — xl ':t._ xl'x2 ) x2
22, —3x) e A
and

. B 0
O =1 L,y

Each linear time-varying approximation
of the nonlinear system is represented as

x[i] - A{E—I](r)x[i} +b{=‘-1](t)u[f]
for i=1,..,5

where  A(t)= A= A(x,)  and
b (¢) = b = b(x,). The initial position
vector is x,=[1,0.5]". For each
approximation, we design sliding mode

controller which minimise the following
criterion

J = [ 7 g%, ] g, Yl

where g¢,,=1 and g¢,,=5. The
approximated control input is then applied
to the original nonlinear system.




Figure 1 shows the response of
w0 = A% 4 pl | The designed
control is then applied to the nonlinear
system. Figure 2 shows this result.

First approximated system response
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Figure 1- First approximated system
(x“] Jresponse.

States with First approximated control input
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Figure 2- Nonlinear system's response to
the first appoximated control input.

First Approximated System and Nonlinear System s Phase Planes
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. x1(app) and x1
Figure 3- Phase plane trajectories of the
first approximated system and nonlinear

System.

Phase plane trajectories of the first
approximated system and nonlinear
system are given in figure 3. Figure 4
shows the optimal sliding surface slope
for the first approximated system.

Switching Surface Slope for the first appoximated system, cO(t)
1.5 T T r T

0.5

A

0 2 4 6 8 10
Time, t

Figure 4- Optimal sliding surface slope
for the first approximated system.

Inserting the previous
approximation results into the nonlinear
system, we have, in general,

g _| @ (@) a '@y |0
Y| i TP R P P
az (2) a5 (1) y (1)

for i=2,..,5

We have taken the sliding motion starting
time of first approximation, 7, as the
general starting time of sliding motion.
The final time, £, is 10 and the boundary
condition for differential Riccati equation
is R(t,)=R(10)=0. The k value in
eqn. (3.8) is -0.5 for all approximations.

Second approximated system responses
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Time, t
Figure 5- Second approximated system

fa Jresponse.




Figures 5,6,7, and 8 show the results of
second approximation. The results of third
approximation are given in figures
9,10,11, and 12.

Siates with Second approximated control input
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Figure 6- Nonlinear system's response to
the second appoximated control input.

Second Approximated System s and Nonlinear System s Phase Planes
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Figure 7- Phase plane trajectories of the
second approximated system and
nonlinear system.

Time Varying Sliding Surface Slope, c1(t)
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Figure 8- Optimal sliding surface slope
for the second approximated system.

Third approximated system responses
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. Figure 9- Third approximated system

(xp])rcsponse.

States with Third approximated control input
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Figure 10- Nonlinear system's response to

the third appoximated control input.

Third Approximated System s and Nonlinear System s Phase Planes
05 T T T -

0 0.2 04 06 0.8 1 1.2
x1(app) and x1

Figure 11- Phase plane trajectories of the
third approximated system and nonlinear
system.

Fourth and fifth approximations results
are given in figures 13,14,15 and 16 and
figures 17,18,19, and 20 respectively.




Time Varying Sliding Surface Slope, c2(t)
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Figure 12- Optimal shiding surface slope
for the third approximated system.

Fourth approximated system responses
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Figure 13- Fourth approximated system
(xm Jresponse.
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Figure 14- Nonlinear system's response to
the fourth appoximated control input.

Fourth Approximated System s and Nonlinear System s Phase Planes
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Figure 15- Phase plane trajectories of the
fourth approximated system and nonlinear
system.

Time Varying Sliding Surface Slope, c3(t)
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Figure 16- Optimal sliding surface slope
for the fourth approximated system.

Fifth approximated system responses
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Figure 17- Fifth approximated system
(x"*Mresponse.




States with Fifth approximated control input
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Figure 18- Nonlinear system's response to
the fifth appoximated control input.

Fifth Approximated System s and Nonlinear System s Phase Planes
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Figure 19- Phase plane trajectories of the

fifth approximated system and nonlinear

system.

Time Varying Sliding Surface Slope, c4(t)
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Figure 20- Optimal sliding surface slope
for the fifth approximated system.

V. CONCLUSIONS

In this work, we have presented a
new method for optimal sliding surface

< ~design of a class of nonlinear systems.

~ Chur approach is based on optimal sliding

surface design of linear time varying
systems. We first approximate our
nonlinear system as time varying linear
systems and then use the optimal sliding
surface design method for linear time
varying systems. The simulation results
show the clear convergence and success
of the method.
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