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Abstract —In this paper, a new method for evaluating output frequency responses
of nonlinear systems under multiple inputs is developed based on two theoretical results
concerning the output frequency responses of nonlinear systems to multiple inputs and the
determination of output frequencies of nonlinear systems subject to multiple input
excitations. This method circumvents difficulties associated with the existing frequency
mix vector' based approaches and can be applied to evaluate nonlinear output frequency

» responses to multiple inputs so as to investigate nonlinear behaviours of practical systems

including electronic circuits at the system simulation and design stages.

Index Terms—nonlinear systems/circuits, output frequency responses, frequency

domain analysis, sinusoidal inputs.

1. Introduction

\ Most engineering systems including electronic circuits are intrinsically nonlinear.

i —
A =

Although measures_such as differential configurations, feedback, inverse function
cancellation, etc., are often taken to reduce nonlinear effects when practical design
problems are addressed, nonlinear effects can not be actually cancelled out completely
and it is therefore important to evaluate system behaviours to estimate how the residual

nonlinearity degrades system performances.

Systems such as transistor amplifiers and OTA-C filters (operational
transconductance amplifier-capacitor filters), which are designed to exhibit mainly linear

characteristics but which still possess unavoidable residual nonlinearities, can be
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reasonably regarded as weakly nonlinear systems [1] and can be investigated in the

frequency domain using the Volterra series theory of nonlinear systems [1] [2].

The frequency domain method of nonlinear systems based on the Volterra series
theory was initially established in 1950°s when the concept of Generalised Frequency
Response Functions (GFRFs) of nonlinear systems was introduced [3]. GFRFs were
defined as the multi-dimensional Fourier transformations of Volterra kernels in the
Volterra series expansion of nonlinear systems which extend the frequency response
function of linear systems to the nonlinear case. One of the important features of GFRFs is
associated with the description of nonlinear system output responses in the frequency
domain. The frequency domain output responses of practical systems are often directly
related to system physical performances especially for electronic circuits. Therefore,
analysis of the responses is important for examining system behaviours. Nonlinear effects
which are likely to be expected in practice can be determined at the system design and

simulation stage by evaluating and analysing the system output frequency responses.

In this analysis multiple inputs are defined as a summation of sinusoidal input
signals with different frequencies, which can be used at the design and simulation stage
and/or laboratory testing period of systems such as communication recetvers [4] to excite
the systems in order to examine the system output behaviours in the frequency domain,
Analysis of nonlinear systems with multiple inputs has been an important topic in the

frequency domain analysis of nonlinear systems using Volterra series theory since the

_ 1950’s. Many theories and methods have been developed to address problems associated

with this topic [5] {1] and applications of the associated theonies and methods to circuit

analyses can be fourd in [4] [6] [2] [7].

The presently available theories underlying analysis of nonlinear systems with
multiple inputs are almost all based on a concept called the ‘frequency mix vector’.
This concept reveals the manner by which intermodulation frequencies are generated in
nonlinear systems. Intermodulation is an important nonlinear phenomenon which indicates
that output frequency components of a nonlinear system could be much richer than the
components in the input, while in the linear system case the possible output frequency
components are exactly the same as the components in the corresponding input. Although

the analyses using the ‘frequency mix vector’ can clearly interpret how output frequencies
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of nonlinear systems are produced by particular frequency mixes, the output frequency
response components at frequencies of interest are generally difficult to evaluate in
practice using associated methods. This is because the output component of a nonlinear
system at a particular frequency actually depends on many different frequency mixes and it
is generally hard to identify all frequency mix vectors associated with these different

frequency mixes.

In this paper, the above problems associated with the frequency domain analyses
of nonlinear systems under multiple inputs are addressed. After introducing preliminary
knowledge concerning nonlinear system analyses under multiple inputs, an expression for
the output frequency responses of nonlinear systems to multiple inputs is derived which
can not only reveal how the nonlinear output frequency response is generated but can also
be readily used to evaluate the result. Then, output frequencies of nonlinear systems under
multiple inputs are analysed and an effective algorithm is developed to determine the
output frequencies from the input frequencies and the system nonlinearities. This
algorithm extends the concept regarding the relationship between the linear system input
and output frequencies to the nonlinear case where systems are under arbitrary multiple
input excitation. Finally, a new method is proposed to evaluate output frequency
responses of nonlinear systems under multiple inputs. The method is an organic
combination of the first and second results and provides an effective and practical means
for evaluating nonlinear frequency domain effects of practical systems including

electronic circuits at the system design and simulation stages.

2. Analysis of nonlinear systems under multiple inputs

Systems such as transistor amplifiers and OTA-capacitor filters which possess
weak nonlinearities can be described by a Volterra series representation. The Volterra

series representation of a nonlinear system can be generally written as
N :
Y1) =2 y,() (1)
n=|

where

_v,,(f):J:-J:hn (t,,---,‘r")ﬁu(t—t_,)d‘t, (2)
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u(t) and y(¢) are the system input and output, respectively, hn(‘t],---,'tn), I1sn< N,

are the Volterra kernels, and N Is the maximum order of system nonlinearities which is

finite for a wide class of nonlinear systems and input excitations [8].

Under the excitation of a multiple input defined by

- - |AI LA —_ 2 (i Jwt i —Jwt — - A.' Juygt ]
u(f)-gl .| cos(@,f + ,)—Z’\ > e’ + 5 e -—r:v;ﬂ?e (3)
where A, denotes the conjugate of 4, A, =4, and ®_ =-0,, the nth-order output

response of the system (1) and (2) can be described, by substituting (3) into (2), as

}’n(f)=ij,..J:wmhn(T!,.__,tn)ﬁ ziemdt

=1 1==R,:=0

1 : : W, = ~w. M
=— ¥ o DAl B U0 ju (4)
= i==R. 4=0 i==R. 1,=0
where
P . ) [~ r =T £ T,)
n(.jw:”"'!.}r@zw)_‘]-_;‘J._mhn(’ri7”"'tn)e d‘cl'”dTr? (5)

is the nth-order GFRFs H, (jo,,,jo,) of the system evaluated at
{ml,---,wn}z{m“,---,m,w}.

Equations (1) and (4) provide a general description for output responses of
“nonlinear systems under multiple inputs. Analysis of this response can, in most cases, be

sufficiently perfom;.ed based on equation (4) to investigate the nth-order portion of y(?)

and the total response is simply a summation of all y, (¢)'sfrom n=1to N .-

Equation (4) indicates that when a sum of R sinusoids is applied to a nonlinear
system, additional output frequencies are generated by the nth-order portion of the system
output consisting of all possible combinations of the input frequencies

~Wg, =0, ©,, O,

taken n at a time.

In order to illustrate this general expression, consider a practical example in [2]

which is an OTA with capacitor load as shown in Fig.1 (a). Fig.1 (b) shows the nonlinear




model of the OTA-C integrator with a nonlinear current source i, = f(v,) where f(.) is
the characteristic function of the OTA which can be exactly determined from the circuit

structure and parameters [2].

It can be shown from Fig. 1(b) that the circuit equations in the frequency domain

are given by

v, -¥,)G, =0
{ (a S) 5 (6)

(G, + joCW, = F{f[v.()]}=0

where G,=1R,, G,=1/R,, and V_,V, V, are Fourier transforms of

52 a? a

v (), v, (1), and v,(¢), respectively. Thus the block diagram description of the circuit

can be shown as in Fig.2.

Representing f[va(_z)] by the Taylor series expansion about the operation point

v (1) =0 yields

Fr 1= g0 0

14, (0]

where g, = | o Then the nth-order GFRFs of the circuit can be obtained as [2]
nl v (¢
; : B, .
H,(jo,,-, jo,) == . n=123, . (8)

Jl@,+, 40 YR C+1

- Consider a case where the circuit is subject to a one-tone input, i.e., R=1, and

examine the second order output response ), () of the circuit to this input. In this

specific situation,

R

ut)= 3y Ao i ﬁzueﬂ”:* (9)
=R 120 =0
and
13 - (10, 0,
A =5_E.:-Z‘.-[=o Z% A, H.(jo,, jo, )"
= %H:(—}'m,.—j'co])e‘:-““’" + %— H.(-jw, jo,)e/ (10)
2 s, (A

=l ; it
toT Ao, - jo,)e

+TH:(j'wL,j'm,,)e:*”1’

n




Moreover, substituting equation (8) into (10) for n=2 yields

-

(A“): g‘Rc =2 Wyt }A‘.
()= — = g +L—, ﬂRg
Y= T e RG pt &2

-

|A4,| ? 3 .
—‘j_gR +(A1) g_Ra e-,u,.

+ R, -
il 2° 1+20,RCj

1,2 1 g.R e A il 2 A2
25!‘411 g:&“*zm{(‘é,) [1+203,R9Cj]e +(A1) [1—20),}?0@]@ A }
8k, A}‘z

=%Atizg:Ra + cos[20,t + £4 —tan™ 20, R,C]| (11)

22w, R C) +1
Equation (11) indicates that the second order response of the circuit to the one-

tone input is composed of two frequency components w =0 and ® = 2®,, which are the
absolute values of the summations of the input frequencies —©, and w, taken two at a

time, 1.e.,

w, ~0|=|~0, +0,|=0, |0, -0 |=20, ad o, +0 =20,

The specific case above is a very simple example where the output frequencies
composed of all possible combinations of the input frequencies can be easily identified.
For general cases where systems are subject to arbitrary multiple inputs where R could be
any integer, the frequency domain analysis of nonlinear systems under multiple inputs is

_more complicated and is usually -carried out based on a concept called the ‘frequency mix

vector’ [1].

L

Because, under a multiple input, output frequencies generated by the nth-order
system nonlinearity consist of all possible combinations of the input frequencies
—Wg, +,—®,,®,, -+,0, taken n at a time, let m denote the number of times the
frequency ®, appears in a particular frequency mix, the frequency mix can then be

represented by the vector

T (12)

where the m s obey the constraint

Mgt A B Aoty =l (13)




Vector m is referred to as the nth-order frequency mix vector and the corresponding

output frequency is given by
0 = (ml — i )Q)l+”+(m.‘? — My }(DR (14)
Therefore, the output frequencies in y, (f) given by equation (4) can be interpreted as

those frequencies that can be generated by all possible choices of the m's such that (13) is

satisfied.

It has been shown that the output component in (4) which corresponds to a

particular frequency mix m is given by [1]

o A"
y"(t,m)z%[ H —'—')Hn(m—fi{jmfﬂ}""'m‘={fm—x}rm1{fﬂ)l},"',me{j(l)ﬁ})e““’

1=2R, =0 M, !)
(15)

where the GFRF H () is assumed to be symmetric , 1.€.
H:(jﬂ)l,jﬂ):)zH:(j(D:,j(UE)

in the n=2 case, for example, and m,{jco‘_} denotes m, consecutive arguments in H (.)

having the same frequency j, Thus the nth-order portion of y(¢) can be written as
Pa(8)= 2y, (t.m) (16)

where the summation over m is defined to be

—

n n
¥ = Zew X
L m_p=0mp=0
()

and the equation number {13) appended below the summation signs indicates that only
terms for which the indices sum to n are included in the 2R-fold summation.

The above analysis for nth-order nonlinear output responses to multiple inputs
clearly reflects how an output frequency component is produced by a particular
frequency mix and how the component can be evaluated using the associated

frequency mix vector.




Consider the above circuit example again but under a two-tone input. The

frequencies in the 2nd-order output response of the circuit are

©, =(m—m,)o, +(m,-m, o,
with the m ’s obeying the constraint
m,+m, +m+m, =2
The output component corresponding to a particular m . {m_z,mfl,ng,m:} can be

determined using equation (15) where the GFRF is defined by equation (8) for n=2.

)

In this case, it is not difficult to show the associated frequency mix vectors are
{L10,0}, {0110}, {0011}, {1001}, {1,010}, {0,1,0,1}, {2000}, {0.200}, {0,020}, {0,002}

and y,(¢) is therefore the result of the summation of y_(z.m) given by (13) over all these
frequency mix vectors.
Output frequencies corresponding to these vectors can be easily obtained as
-0, -0, —0,+0, =0, 0, +0,, —0,+0.=0, ~0.+0,, -0, +0,,
—20,, -20,, 20,, 20,
Therefore the practical output frequencies, which are the nonnegative results of the above

frequencies, are

@, 0y, =0y 20,

- i 1 i

20,, and- 0

Although, as shown above, the frequency mix vector is very helpful in nonlinear
A\f‘requency domain response analyses under multiple inputs, an important defect with this
concept is that disftir;ct frequency mix vectors of the same order may give rise to the same
output frequency. For example, when R=3, {ml,co:,m;}={1,2,4}, and n=2, the
frequency mix vector m=(0,0,-1,0,0,]) yields an output frequency W, =0,-0, =3,
while the frequency mix vector m=(0,0,0,1,1,0) also yields o, =w, +®, =3. So, in
general, equation (15) can not be used to represent the frequency response of the system

nth-order nonlinear output. Based on the concept of ‘frequency mix vector’, this response

can only be represented as

V= 3y, (em) (17)

all possible m
such that W , =




where y_ (1) denotes the total nth-order output response at frequency .

From (17) it is hard to evaluate y (t) practically. This is because, given a

frequency of interest ©, it is generally a very difficult job to identify all possible m’s such

that o, = w, however determining these m’s is necessary if y,, (1) is to be evaluated

from (17). In [5], a general algorithm was proposed to address this problem which
transformed the problem of identifying all possible m’s to the problem of sorting out all

possible integers p's such that
p@,F, TP, =W

Obviously the difficulties with the original method of identifying all possible m’s can not

be bypassed when using the algorithm in [5].

Motivated by the attempt to completely resolve the problem above with existing
methods, a new method is proposed in Section 5 to provide a practical and effective
strategy to evaluate the nonlinear frequency responses to multiple inputs and therefore to
investigate possible nonlinear behaviours of systems in the frequency domain. The
derivations and analyses in Sections 3 and 4 establish the important and necessary

theoretical basis for this new method.

3. Expression for output frequency responses of nonlinear systems under

multiple inputs

When a nenlinear system described by equations (1) and (2) is excited by a
multiple input (3),&1’9 system nth-order nonlinear output is generally given by equation (4)

which can be rewritten as

R

1 L & 4 W + L H: M
¥ M=y o Y A, )y A VH, (o, jo, )T (18)

n==R, 520 i,=-R,1,#0
where A(.) is defined by

Aw) A4 ifoeion,i==Il. Tk}
W)=
0 otherwise

(19)




In order to obtain a more transparent frequency domain to time domain

relationship, considering

A0).. A0 YH (~]0,.j0, ) =[A®. ). 40 YH (... jo, )]

(20)
where the * denotes conjugation, write equation (18) as
1 S Ao, YA )H (o, jo_ |
s Wy +o =)y =W - - »
70 2" aﬂm%w,) + YA, YA H, (O, ... o, e
'f';l; ZA(QJ!I yeodlo VH, (o, .., Jjo, Yo !
e
2 . . -
= > Re[ Y A, )r-Alo )H, (jo,,..,j0, )]
= all possible w=>0) Wy + =0, =0
| _ .
tor LA do o, o)
= Y |¥.(jo)cos[wr+ £Y, (jo)] (21)

all possibie w20

where

> Ao, yAlw H,(jo,,..,jo,) ©>0
» Y, (jo)= ST (22)
> Aw, y A )H, (jo,,..,jo,) @=0

O Tt 0, =0

In (21) and (22),

YA, ) Al )HH, (jo,,.., jo,)

W) Fra t0; =0

denotes the summation of

A, ) Ao )H, (o, ..., jo, )

over all the w,...,0,, ®, €{-W4,...~0,,0,,..0}, /=1, n, which satisfy the
a !

constraint
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Y (jw) defined by (22) is the nth-order output frequency response of the system
(1) and (2) to the input (3) in terms of nonnegative frequencies, which represents the

contribution of the nth-order system nonlinearity to the output frequency component @ .

Substituting (21) into (1) gives

}-(r)ziyn(r)=2 E?D(jm)‘rcos[cowé?n{jw)]

n=1 all possible w20

= Y RYV(wel=  FRAT(jwel= Y

all possiblew=20 n=1 all passiblew20

Y(jo)cofar+ LY (jow)]  (23)

all possiolew29

where

N
Y(jo)=3 Y,(jo) (24)
n=l
So, the output frequency response of a nonlinear system under a multiple input is given,

in terms of nonnegative frequencies, by

?(jco):z'&"’n(jw) ©=0

=l

1 _ .
=7 2, A®). A )H,(jo,,..jo, ) 0>0

- W, = =@

Y, (jo)=
- =5 DA A, )H (o ... jo,) ©=0

W -t =W
1 B

o, E =050 Oy i Wp b L Eliay

Notice that the relationship between the system output frequency spectrum Y(jw)
and Y(jo) is

Y(jo)
Y(o)={_ 2 ©*0 (26)
Y(jo) ®=0

Because of equation (23), Y(j®) can be more easily related to the system time domain
response.

11




It can be observed from equation (25) that the possible output frequencies in the

nth-order nonlinear output y,(7) are

W=+ ,+0,

h
with ©, € {-g,...,~@,®,,...,0,}, /=1,...,n. This clearly reflects how the output
frequencies are composed in this situation. In addition, from the definition of
> Ao, ) Ao, )H,(jo,,.., jo, )
m-'l *""?w’n:m %
the terms which compose the nth-order output frequency component Y, (jw) can be
readily identified. Therefore, the evaluation of “\?;_(jw) and, moreover, of the total
frequency response Y(j®) can easily be achieved using equation (25). This is because the

evaluation of Y,(jw) can be simply implemented in the following way

V(= TAL). A0 H(0,. o)

Lot

(27)

R

2, 4@ A Ao~~~ YA .. ja_ o0, )]

1
__A et
Zl =R 470 by = 4y 0
where n, =n for @=0, n, =n-1, for ©>0, and the terms in which

Ww-0,-.—0, #0, le{-R, .-l . R}

n-1

are zeros according to the definition of A() given by equation (19), and, moreover,
Y (jo) can be obtained by just making a summation of the results determined from (27)

from n=1 to N.

In order to illustrate how to evaluate ?n(jw) using the above idea, consider an

example where the OTA-C circuit in Section 2 1s excited by a two-tone input

u(t) =cos2t+cos3t

and the second order output frequency response Y.(jw) of the circuit at frequencies

W =1and w =3 isto be examined.




Inthiscase, R=2, 4 =4,=1, 0, =2, 0. =3,
A=1 ifoefo, i=+1+21={-3-223
A(CD):- 1 f { n. ) { D ')}
0  otherwise
and the second order GFRF
. . R,
H.(jo,, jo,) == 52
J(, +0,)RC+1
Therefore
?:(.Jw>=— ZA(w YA(© -0 VH,[jo, , j(®-0,)]
-- n==2, =0
1
=—{4(0)A(0-0)H,[jo_, j(w-0_)]

P

+A(0_)A(o-o_ ) H,[jo_,jo-o_)]
+A(0)A(0-0)H,[jo, j(o-0,)]

+A(W,)A(0 - 0,)H,[jo,, j(w-0,)]}

7—1”]{ A(=3)Alw+3)H[-37 (w+ 3)/ 1+ Al=2)A(o+ 21 8, [-2 . (@+2)]]

+AQQ)A(0-2)H,[2/.(0-2)j]1+ A(3)Alw-3)H,[3,(0-3)j]}
{A(w +3)+ A0 +2)+ 4@ -2) + A(w —3)}—-530—— (28)
JoR C+1
Thus Y, (1) and ?z(j?;) can be immediately obtained as
1 &R __ &R
¥ 1———-A4 A —D)+A(-2 =—{0+1+0+1} =
D=7 {A(4)+ AG)+ A1)+ A( w— F O =
and
G ] ) &R
Y (B =—71s g : ; = =
(3= A6+ AG)+ A+ 4O} = BRCA!

and the corresponding output components are therefore




{gllRo

,\_\‘Ilmzi)([ = —=———=2(0S t—tan™ RJC
Yewl?) NIRCY +1 ( :

and

y:fm:;')([) =0

Clearly, compared to the evaluation of an nth-order output response at a particular
frequency ® using equation (17), the computation of this response based on equation (25)
is much more straightforward and the difficulty with determining all possible frequency

L]

mix vectors for a specific frequency, which is necessary when equation (17) is used, is
circumvented. Notice that the expression for Y,(jw) given in equation (25) or (27)
accommodates all possible terms which could have contributions to frequency ® and,
when given a specific value of , the terms which actually have no effect on the response

at the specific frequency automatically become zero due to the definition of A(w).

The analyses and examples above indicate that based on equation (25) output
frequency responses of nonlinear systems under multiple inputs can easily be evaluated at
any frequencies of interest. However it is obviously unnecessary to evaluate the response
components at frequencies which are beyond the possible output frequencies since these
components are definitely zero. To address this issue involves determining possible output

frequencies of nonlinear systems subject to multiple input excitations.

-~ 4. Determination of output frequencies of nonlinear systems under

multiple inputs

—

For linear sys/tems it is well known that the possible output frequencies are exactly
the same as the frequencies in the corresponding input. However, this property does not
hold if the system is nonlinear. When a nonlinear system is subject to a multiple input, it
has been shown from the analyses in previous sections that output frequencies generated
by the nth-order system nonlinearity consist of all possible combinations of the input
frequencies —w,,++,~®,,®,,--+,w, taken n at a time. This result can be analytically

described as a set given by

{co | o=+, .+0,

£l

14




The problem to be addressed initially here is to develop an algorithm to determine

the frequencies composed of the nonnegative part of the result given by (29).

For the simplest case of n=1, it is obvious that these frequencies are

which can be rewritten in a vector form as
—_— 1
> | (o

W= :
!ZW1(R,j W,

: (30)

where
W=[o, + o) (31)

and ZL_I{(E,:), 1 €[ < R, denotes the summation of the elements in the /th - row of matrix

W

1

The output frequencies in the case of n=2 can be determined from

seeea

(32)
o, +o,[/==R,. ~11. R
Define two vectors
1 ;/
[=|%2R _ (33)
1
and
W=[-o0, 0, o, 0,] (34)

to express equation (32) in terms of a vector as

,_".
L 1




where

For n=3

-
|
iwl—mll
Iw1+m1‘
1 | —_—

o, + 0] > 71,0

! — "

0, - ol ||D Fa(2R,:)|
]“JR_CD1|
s + o
_!con'-oJR!“

0, -o,

: -,

: W,

t’fﬁ(l.:) ] m m:"

LHT‘L(R,;) frJ : :

@, - W,

_wg

: ®,

\\mR U}R

produced by the third order nonlinearity is

where

2w ]

S 7 (ReRY. |

16

(36)

, if'{s easy to show that the vector representing the output frequencies

(37)




w,1,:) W
W, = : : (38)
IW,2R))) W

Consequently the algorithm for computing the vector representing the

(nonnegative) frequencies in the nth-order nonlinear output is given by

!Z Wn(l,:)( ]
7, = f
~|2 P_VH[R(ZR)"“,:j_ (39)
IW .. (1) W @,
W = f L onz2 W=
IW..(RQRY.) W ®, |

Many of the elements in W, may be the same. Therefore the final result of this
algorithm is a set composed of all different elements of W,. Denote this set as Q then
Q, =({ W, }} (40)
where {{X}} means a set composed of all the different elements of vector X.
In order to illustrate the application of this algorithm, consider an example where
w =1 o,=3
_and the frequencies in the second order nonlinear output is to be determined.
In this case;

et

R=2 n=2;W =[0,..,0,] =[137,

I=[LL11], W=[-3~L13], W =W
|

1 |F-3 1 -3
1 | '-1 I o]
x
— | l 11
[ 171,y ] .
- . I 1 3 13
ﬂ"): : | = = d L . = - .
- e . Wi 1 -3 3 3
I (R, | | 1 3 |
X
| 1 3001
L1 L3]] § &
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-

1
= )

1> 70|

W, = : =
> 2z x2),)

D - O 2 O

r
L

therefore

From the above algorithm Q, can be determined for any ». Therefore, the

frequencies in the system output represented by Q can be obtained as

However, there is actually no need to obtain all €2 ’s and then to determine Q as shown

above. This is because for any » there is a determunistic relationship between the
frequencies in the nth-order nonlinear output and the frequencies in the (n+2)th-order

nonlinear output.

It can be shown from (39) that

_ I 0 - 0] W (L wiilr o .0 W
) W H:(L) R '

- 07 -0 : : - 0
Woa = A | PP : =

ol Fl-ilg g o W.(R2R)| W| |0 0 - ] w

— e PRS-
R2RY J L Ry J
(41)
and similarly
0 0 W
o 0 [ - 0| :
w.=l. . . W . (42)
00 « 1| W
—_——
R(zRy™ |
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Substituting (42) into (41) yields

[7
0 7 - 0f||0 7 -0

W‘I

(@]
O
|

.= : o P
0 0 -« I|[{O O « [ w
L RI2RS L RCZRS
0 o/ o - [0 O
I ol 0 I 0l |0 7 0
| :' : : .. |
00 « IJ0 0 o [ 00 . I|W
~ —_—
RIZR)" RZR RIIRY

R

g

R) n=1

JvR(?.R)”—l ;

W]

14

R(ZRY’

W

RQ2RY’

9

In the matrix given by (43), the first matrix block takes the form

10 O[O 0
01---001---05,_[

(43)

: LJ?f:a,:f o WY e H(RRRTLY e B(R2RYT Y
00 = H0 D w [J - -
R(“};" 2R
(44)
_the second matrix block becomes
[0 .. ofw] _ T
0 A 1
R2R)™ =|[@_g - 5 ==+ Wy W] [OIPEER IRETEERE Wg"* Wp ]
- . . . . \-H-‘v—-’
2R IR 2R
O 0 el I };V R(:RJA-I
—_—— B
R(2RY
(45)

and the third one becomes
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It is not difficult to observe from (44), (45) and (46) that elements of vector

‘z P—Vn—: (1, : )}

> s [R2RY™.:] ]

include all elements of the vector

{ iZW{ij

W, =

n

S RCRY™

This implies that
{W. 1 el{W.,1)
that is

£ ef s (47)

S

or all frequencies_in the nth-order nonlinear output are present in the (n+2)th-order

nonlinear output. ~ )

This conclusion was proved before [5] under the assumption that ®,,--+,0, form a
frequency base which means there does not exist a set of rational numbers {rl,---,rR} (not
all zero) such that

B0y @, =0
Since no assumptions are made on ®,,--,®, in the above derivation, the conclusion has

now been established for arbitrary input frequencies.




It is straightforward from (47) that the frequencies in the system output

0 =QIVUQ‘V-<‘2P.*1J (48)

where the value to be taken by p° could be 1,2,..‘,[1\//2] where [.] denotes to take the
integer part. The specific value of p* depends on the system nonlinearities. If the system

GFRFs A 1, ,()=0, for i=1,.,¢-1 and H,_,,_,(.)#0, then p'=¢q.

In the example above where a nonlinear system is subject to a two tone input with

®, =1, ®, =3, assume that the maximum nonlinear order N=2 and the first order
frequency response function H,(.)#0. It is straightforward to show that in this case

p" = 1. Therefore, the output frequencies of the system can be determined using (48) as

Q=0,UQ,., ., =0,U0 = 0246}Ufi3}= 012346}

Equations (39), (40), and (48) compose an algorithm for determining output
frequencies of nonlinear systems under multiple inputs. This result actually extends the
relationship between the frequencies in the input and output of linear systems to the
nonlinear case when the systems are subject to multiple inputs and is therefore also of

theoretical significance.

5. New method for evaluating nonlinear output frequency responses to

il multiple inputs

~

It has been shown in Section 3 that, based on the expression for the output
frequency responses of nonlinear systems to multiple inputs given by equation (25), output
components of nonlinear systems under multiple inputs at any frequencies of interest can
be readily evaluated. Equations (39), (40), and (48) derived in Section 4 provide an
effective algorithm for determining possible output frequencies of nonlinear systems in the
multiple input situation. Based on these two theoretical results, a new method is proposed

below to evaluate nonlinear output responses to multiple inputs.




The basic idea of this new method is to determine all possible system output
frequencies and the frequencies contributed by each order of system nonlinearities using
the algorithm derived in Section 4. Thus, if the frequencies of interest are beyond the
range of possible output frequencies, it is known immediately that the output responses at
these frequencies are zero. If the frequencies of interest are within the range of possible
output frequencies then the frequencies contributed by each order of system nonlinearities
provide important information concerning which order of systém nonlinearities could have
contribution to these frequencies of interest. Moreover, system output responses at the
frequencies of interest are evaluated using €quation (25) and the computation is
implemented by first calculating the responses at these frequencies contributed by the
nonlinear orders which really have contributions to these frequency components and then

simply making a summation of the results obtained for corresponding nonlinear orders.

The procedure of the new method is summarised in the following, which requires
the frequency domain model of the considered nonlinear system, ie the GFRFs,

H,(jo,, jo,), n=1,..,N, are known a prior,

(1) Calculate all possible output frequencies using equations (39), (40) and (48) to

yield the set Q.

(u) For n=1,2,..\N, calculate © to determine a set S, which is composed of the

numbers of the nonlinearity orders which have contributions to the output

frequency w, € Q at which the output component is to be evaluated.

(i) Compute Y, (jo,) as below

—_—

Y(jo,)=Y Y, (jo,) (49)
neSy
where
Yn[ij]:-;; A(w,)...Alw, )H,(jo, ..., jo, )

(50)

=t tey==Ra, =0
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i n ifw,=0
and n = .
! n—1 otherwise

(iv) Evaluate the output response at frequency @, as

Yo, (=Y (jo,)|cos(@,t + £Y(jo,)) (51)

The example of the OTA-C circuit in Section 1 is considered again to illustrate the

application of this method in the following.
Assume that f[v,(1)] can be approxir;]ated sufficiently well by a third order
polynomial
bR ) z:,gn‘ff(f)
where g # 0, forn =123, and the output response of the circuit to the multiple input
u(r)=cosW,! + cos W, = cost+cos 3t
at the frequency of interest w, =35 is to be evaluated.

The GFRFs of the circuit system are given by equation (8). They are all zero in
this case for n >3 but not zero for n=12,3 because f[v,(r)] can be approximated well
by a third order polynomial and g, #0, for »=1,2,3. Obviously the maximum order of
system nonlinearties in this case1s N =3.

o~ Because H,(.)# 0, p = 1. Thus, using (39), (40) and (48) with

R=3, W =[131. 1= [1,1,1,1], and W=[-3,-1,1,3]
yields

Q=0,UQ, ={0,1,23,4,5,6,79}
indicating that o, =5 belongs to the frequencies which possibly appear in the system
output.

Q,, Q,, Q, obtained using (39) in this case are

Q, ={13} Q.={0246} Q,={3579}




So S, =1{3} for the frequency of interest @, = 5.

Using equation (50) and considering that in this specific case,

R=2,4=4=10=1 0,=3,

4 =1 ifovefo, i=*1,x2}={-3-113}

0  otherwise

A(m)z{

gSRfJ

B30, i i) =
(@, jo,, jos) J(o, +, +0,)R.C+1

it follows that

?Uwa Je= Z?n(jw.4 )= ?,(JS)

nesy

=- 2 Z 4((,3 YA )AGS-, -, H[/w Jo_, j5-0, -w,)]

:,:—' 120l ==2a =

A=, )+ AG -0, —0, )+ A5 -0, —0)+ A5-0, —o.))
1 gR |AG-0,-0,)+AG-0, -0, )+ A5-0, ~0)+A5-0, -n.)
4 jSRCH+1| A5~ ~0,)+ A5-0 ~0 )+ A5-0 ~0)+A5-0 ~a,)
A5 =0, — 0, )+ A5-0, —0,)+ AB -0, 0 )+ A5-0. ~®,)

A543 4D+ A5+ T+ Y+ A5+ 3=1) £ 4543 =3)
1 g.R AG+1+3)+ A5 +1+D+A5+1-1)+ A(5+1-3
4 SRE+1 | AG—T4+3) Al -1+ DA ~1 - D 4B ~1-3

A(5=3 +3)+ AF=3+ 1)+ A= 3 =D+ HF~T~3

| w2 6

e g3 0. — "~ sy e
2 5RC+1 + A(3)+ A(1) 175

+ A(3)+ A(1) + A(-1)

Thus, in this case, the output response component of the circuit at ®, =5 1s

Yo,=s(t) = ——ﬁ%cos(ﬂ - Ztan™ (5R,0))

The method developed and illustrated above provides an effective means for
evaluating the output frequency responses of nonlinear systems under multiple inputs

based on the system frequency domain descriptions. Exact evaluation of system output




frequency responses can only be achieved using both system models and exact knowledge
of the corresponding input spectra. Multiple input signals can easily be generated with all
parameters of the signals under control. Methods are currently available for estimating the
GFRFs of nonlinear systems [9] [10] [11] [12] and for many systems such as electronic
circuits the GFRFs can even be derived directly from the system structure and parameters.
Therefore, this method can, hopefully, be widely applied to analyse nonlinear behaviours
of practical systems including electronic circuits at the éystemfcircuit design and

simulation stages.

6. Conclusions

The behaviour of practical systems, including electronic circuits, usually exhibits
nonlinear characteristics although measures are often taken to try to compensate for
undesirable nonlinear effects. It is therefore important to evaluate system output responses
so as to estimate how the nonlinearities affect the system performance. Multiple inputs are
typical sighais which are used to excite systems when the system performance in the
frequency domain is to be investigated. The existing methods for analysis of the responses
of nonlinear systems under multiple inputs are almost all based on the concept of
‘frequency mix vector’. This concept is useful for explaining how the output frequencies
of nonlinear systems are generated but it is difficult to use to evaluate the output response
at frequencies of interest. In order to overcome this problem, a new method is developed

_in the present study to evaluate the frequency domain reéponses of nonlinear systems
under multiple inputs. This is based on two theoretical results concerning the output
frequency responsgfgf nonlinear systems to multiple inputs and the determination of the
output frequencies of nonlinear systems subject to multiple input excitations. This new
method provides an effective means for evaluating nonlinear output frequency responses
to multiple inputs from system frequency domain models and nonlinearities and will

hopefully find wide applications at the system design and simulation stages.
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(a)

(b)

Figure 1. (a) OTA-C integrator (b) Nonlinear equivalent circuit

vO=%0] 0]

]

G, + joC

v, (1)

Figure 2. Block diagram of the OTA-C integrator




