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ABSTRACT 

Bacterially-derived bacteriohopanepolyols (BHPs) are abundant, well preserved lipids 

in modern and paleo-environments. Bacteriohopanetetrol (BHT) is a ubiquitously 

produced BHP while its less common stereoisomer (BHT isomer) has previously been 

associated with anoxic environments; however, its biological source remained 

unknown. We investigated the occurrence of BHPs in Golfo Dulce, an anoxic marine 

fjord-like enclosure located in Costa Rica. The distribution of BHT isomer in four 

sediment cores and a surface sediment transect closely followed the distribution of 

ladderane fatty acids, unique biomarkers for bacteria performing anaerobic 

ammonium oxidation (anammox). This suggests that BHT isomer and ladderane lipids 

likely shared the same biological source in Golfo Dulce. This was supported by 

examining the BHP lipid compositions of two enrichment cultures of a marine 

anammox species (‘Candidatus Scalindua profunda’), which were found to contain 

both BHT and BHT isomer. Remarkably, the BHT isomer was present in higher 

relative abundance than BHT. However, a non-marine anammox enrichment 

contained only BHT, which explains the infrequence of BHT isomer observations in 

terrestrial settings, and indicates that marine anammox bacteria are likely responsible 

for at least part of the environmentally-observed marine BHT isomer occurrences. 

Given the substantially greater residence time of BHPs in sediments, compared to 

ladderanes, BHT isomer is a potential biomarker for past anammox activity. 
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1. INTRODUCTION 

Bacteriohopanepolyols (BHPs) are structurally diverse triterpenoids synthesised 

by a wide range of bacteria (although not all bacteria synthesise BHPs; e.g. Rohmer et 

al., 1984; Farrimond et al., 1998; Pearson et al., 2007), and likely have the same 

membrane-ordering role as sterols in eukaryotes (Kannenberg and Poralla, 1999; 

Sáenz et al., 2012). BHPs are the biological precursors of hopanoids, lipid biomarkers 

found ubiquitously in the geological record (Ourisson and Albrecht, 1992). 

Understanding the biological origin of specific BHPs and their associated 

environmental setting is crucial for deciphering the geohopanoid record and for 

reconstructing paleoenvironmental conditions (Zundel and Rohmer, 1985; Summons 

et al., 1999; Brocks and Pearson, 2005).   

BHP specificity can range from broad to narrow. For example, BHPs can be 

ubiquitous (bacteriohopanetetrol [BHT, Fig. 1, I] is found in many bacterial cultures 

and environments), linked to particular environmental conditions (2-methyl and 3-

methyl hopanoids might be synthesised as a result of environmental stress; Doughty et 

al., 2009; Welander and Summons, 2012), or related to specific microbial processes 

(amino-BHPs, especially hexafunctionalised 35-aminobacteriohopanepentol, are 

synthesised by aerobic methane oxidisers; Cvejic et al., 2000; van Winden et al., 

2012). Most described source organisms of BHPs have been aerobic bacteria, such as 

heterotrophs, methanotrophs, and cyanobacteria (Rohmer et al., 1984; Ourisson et al., 

1987; Farrimond et al., 1998). However, there have been a few reports of BHPs, as 

well as the gene responsible for their cyclisation (squalene-hopene cyclase), occurring 

in anaerobic bacterial cultures (both obligate and facultative), including anaerobic 

ammonium oxidizing bacteria, sulfate-reducing bacteria and Geobacter sp. (Sinninghe 

Damsté et al., 2004; Fischer et al., 2005; Blumenberg et al., 2006; Rattray et al., 2008; 

Eickhoff et al., 2013).  

Recently, Sáenz et al. (2011) reported a link between an isomer of 

bacteriohopanetetrol (BHT isomer; Fig. 1, II) and anoxic marine environments. 

Various designations have previously been used for this isomer [e.g. BHT II in Sáenz 

et al. (2011); BHT isomer 2 in Talbot et al., (2003c) and in Blumenberg et al. (2010)]. 

From here on, we will refer to this isomer as “BHT isomer”. The stereoconfiguration 

of BHT was confirmed as 22R, 32R, 33R, 34S (Bisseret and Rohmer, 1989). However, 

as BHT isomer has not yet been isolated, the exact stereochemistry of this particular 

BHT is undetermined. Certain possibilities can be nevertheless ruled out. The close 
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relative retention times of BHT and BHT isomer excludes the much earlier eluting 

17,21(H)-BHT configuration (Talbot et al., 2008a). Moreover, in sediments 

underlying the Benguela Upwelling system, which were shown to contain significant 

amounts of BHT isomer, the predominant (98%) bishomohopanol (the resulting 

hopanol after periodic acid treatment of a tetrafunctionalised BHP) configuration was 

22R-17,21(H), indicating a likely “biological” configuration of the hopanoid ring 

system for BHT isomer (Blumenberg et al., 2010). Consequently, the likely difference 

between BHT and BHT isomer occurs on the chain, which would not be apparent 

after periodic acid treatment. BHT isomer stereochemistry could differ from BHT at 

the C-34 position (i.e. 22R, 32R, 33R, 34R [Fig. 1, II]). This particular BHT 

stereochemistry was identified by nuclear magnetic resonance (NMR) in species of 

acetic acid bacteria (Acetobacter pasteurianus and A. aceti ssp. xylinum, which has 

since been reclassified as A. pasteurianus) containing BHT and a BHT isomer 

(Peiseler and Rohmer, 1992). However, until the exact stereochemistry of the marine 

BHT isomer is determined, we cannot disregard other possibilities. The 22R, 32R, 

33R, 34R configuration (II) of BHT has also been reported in approx. 1:1 mixture 

with the 22R, 32R, 33R, 34S configuration (I) in a Frankia sp., a terrestrial nitrogen-

fixing plant symbiont (Rosa-Putra et al., 2001). In addition to Frankia sp. and 

Acetobacter sp., an aerobic Type II methanotrophic bacteria (Methylocella palustris1) 

isolated from a peat bog (van Winden et al., 2012) was shown to synthesise small 

amounts of BHT isomer.  

However, so far the major biological source organism in marine environments, 

where BHT isomer is most often detected (Blumenberg et la., 2010; Sáenz et al., 

2011; Wakeham et al., 2012; Berndmeyer et al., 2013; Kharbush et al., 2013), remains 

unknown. Sáenz et al. (2011) hypothesised that an anaerobic organism is responsible 

for the synthesis of the marine occurrences of BHT isomer.   

A study of the water column of the anoxic, sulfidic Cariaco Basin by Wakeham et 

al. (2012) revealed that the peak concentration of BHT isomer occurred at the 

chemocline, comparable to the peak in ladderane fatty acid concentrations. Ladderane 

lipids are synthesised uniquely by anaerobic ammonium oxidising (anammox) 

bacteria (Fig. 1, III - VI; Sinninghe Damsté et al., 2002), and are used as biomarkers 

                                                
1A Methylomonas-like strain of bacteria was incorrectly identified as synthesising BHT isomer by van 
Winden et al., (2012). Upon re-examination of the original chromatograms, we have concluded that in 
fact Methylocella palustris synthesizes BHT isomer. 
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for the anammox reaction in environmental systems (Kuypers et al., 2003; Hamersley 

et al., 2007; Jaeschke et al., 2009; Rush et al., 2012a). Since its first identification in 

the environment (Thamdrup and Dalsgaard, 2002), anaerobic ammonium oxidation 

has been found to be an important pathway in the marine nitrogen cycle, and the 

reaction is performed exclusively by bacteria referred to as anammox bacteria. 

Anammox bacteria are a deep-branching phylogenetic group (Strous et al., 2006), 

members of the order Brocadiales (Phylum Planctomycetes), and probably played a 

major role in ammonium oxidation in ancient environments. For example, it has been 

suggested that the anammox process was partly responsible for massive sinks in 

marine bioavailable nitrogen during widespread marine anoxia (Ocean Anoxic 

Events; OAEs) in the Cretaceous (Kuypers et al., 2004). However, diagnostic 

ladderane lipids contain concatenated cyclobutane rings and are susceptible to both 

microbial degradation (Rush et al., 2011) and thermal alternations (Jaeschke et al., 

2008) during burial, making ladderane fatty acids improbable tracers for anammox in 

ancient environments. 

 A study by Sinninghe Damsté et al. (2004), based on GC-MS analyses of five 

anammox enrichment cultures (in which strains of ‘Candidatus Brocadia 

anammoxidans’, ‘Ca. Kuenenia stuttgartiensis’, ‘Ca. Scalindua brodae’, and ‘Ca. 

Scalindua wagneri’ comprised 20 – 80% of the biomass), found that anammox 

bacteria also contain hopanoids, including BHT. Subsequently, BHT was also 

identified by way of GC-MS in another enrichment (±75% purity) of marine 

anammox bacterium, ‘Ca. Scalindua sp.’ (Rattray et al., 2008). Squalene-hopene 

cyclase was detected in the genome of ‘Ca. Kuenenia stuttgartiensis’ by Strous et al. 

(2006) and Pearson et al., (2007), and in the genome of ‘Ca. Scalindua profunda’ by 

van de Vossenberg et al. (2013). Thus, anammox bacteria are capable of synthesising 

hopanoids, including BHT, in anoxic environments. 

We have analysed sediments from Golfo Dulce, an anoxic, non-sulfidic fjord-

like enclosure located on the Pacific coast of Costa Rica. Anammox activity and 

bacteria have been reported in the Golfo Dulce water column and sediments 

(Dalsgaard et al., 2003; Schmid et al., 2007). Due to its geochemical conditions (i.e. 

very low sulfide concentrations, nitrate-rich water, anoxic basin; Ferdelman et al., 

2006), Golfo Dulce is an ideal location to study (bio)geochemical interactions under 

redox conditions that may have been extensive during past periods of Earth’s history, 

and are representative of oceanic oxygen minimum zones. Here, we focused on BHPs 
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(specifically BHT and its isomer) and the link between ladderane fatty acids in Golfo 

Dulce in order to potentially establish an appropriate biomarker for anammox bacteria 

that would expand the tracing of this nitrogen cycle process to ancient environments. 

This environmental study was complemented with BHP studies on highly enriched 

anammox cultures.   

 

2. MATERIAL AND METHODS 

 

2.1. Samples 

2.1.1. Golfo Dulce sediments 

Golfo Dulce is 200 m deep and is physically cut off from mixing with the 

Pacific Ocean by a sill at 60 m depth, which promotes anoxic water column 

conditions within the basin. Previous studies by Richards et al. (1971) and Ferdelman 

et al. (2006) reported three distinct chemical zones in the Golfo Dulce water column 

(Fig. 2): 1) an oxic zone (surface to 40 m); 2) a transitional zone, (40 – 110 m); and 3) 

a  nitrogenous zone [i.e. anoxic and containing nitrate and nitrite as most favourable 

electron acceptors (Canfield and Thamdrup, 2009); below ca. 110 m]. Apart from a 

few meters above the sediment surface, where low concentrations of sulfide may 

occur in the deep basin, Golfo Dulce anoxic water is non-sulfidic (Ferdelman et al., 

2006). Nitrate reduction was observed in the anoxic water column, where ammonium 

was not seen to accumulate, indicating the presence of the anammox process, which 

has been confirmed by nitrogen-labelling experiments (Dalsgaard et al., 2003).   

Sediment samples were collected in March 2008. Grab samples (comprising 

the upper few cm of sediment) across a basinal transect incorporated the three 

chemical zones, and were collected from 10 – 140 m water depth (Fig. 2). 

Additionally, four short sediment cores were collected (one from the oxic zone, one 

from the oxic-nitrogenous transition zone, and two from the anoxic zone) with a 

gravity corer. Soon after sampling (within 2 h), the cores were sub-sampled under a 

nitrogen atmosphere at 2 cm intervals, down to 26 – 54 cm (Fig. 3). Collected 

sediments were then immediately frozen, and were subsequently freeze-dried prior to 

analysis. Golfo Dulce oxygen concentrations were measured in near-bottom water 

samples retrieved along the sediment surface transect in a Niskin bottle at water 

depths of 2, 12, 19, 35, 50, 65, 80, 120 and 170 m. Measurement were performed 
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according to the Winkler method (Grasshoff, 1983), with a detection limit of 5 – 10 

µM.  

2.1.2 Anammox cultures and enrichment 

Two enrichment cultures of ‘Ca. Scalindua profunda’ were grown in sequencing 

batch reactors at different temperatures (15 and 23 °C) for over two years as described 

in van de Vossenberg et al. (2008). Previous microscopic analysis of these 

enrichments showed S. profunda comprised 80-90% of the cells, while other bacteria 

belonging to the phyla Bacteriodetes (including Flavobacteriaceae) and Proteobacteria 

(including Alphaproteobacteria) accounted for the majority of the remaining 

populations (van de Vossenberg et al., 2008; 2013). 

Sludge was obtained from a Dutch waste water treatment pilot plant that was 

using the anammox process (Paques B.V., Balk, The Netherlands). This sludge 

contained 70% bacterial dominance of ‘Ca. Kuenenia stuttgartiensis’ (Schmid et al., 

2000; Boumann et al., 2006). 

 

2.2. Lipid extraction  

 2.2.1 Golfo Dulce sediment extraction 

The freeze-dried sediments (0.2 – 5.6 g) were extracted 4 times for 5 min by an 

accelerated solvent extractor (ASE 200, DIONEX) using a solvent mixture of 

DCM:MeOH (3:1) at relatively low temperature (40°C) and medium pressure (6.9 

MPa), as described by Rush et al. (2012b). The obtained TLEs were dried using a 

Turbo Vap LV (Caliper Life Sciences), and stored at 4°C.  

 2.2.2 Anammox biomass extraction 

Cells were extracted using a modified Bligh-Dyer method (Bligh and Dyer, 1959; 

Cooke et al., 2008). Briefly, freeze-dried material (< 20 mg for bacterial cell material 

from culture, and 1 g for ‘Ca. Kuenenia stuttgartiensis’ sludge from Dokhaven 

wastewater treatment plant) was extracted in a Teflon tube with 19 mL of a 4:10:5 

(v:v:v) mixture of H2O:MeOH:chloroform. This mixture was sonicated at 40°C for 15 

min, and centrifuged for 10 min. The supernatant was transferred to a second Teflon 

tube, and the residue re-extracted twice more. The chloroform in the supernatant was 

separated from the aqueous phase by adding water until the H2O:MeOH ratio was 1:1 

(v:v), and collected. This procedure was repeated for the subsequent extractions. The 

collected chloroform was dried by rotary evaporation in a round-bottom flask. 
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2.3 Lipid analyses 

 2.3.1 BHP preparation and HPLC/APCI–MSn
 analyses 

A known amount of internal standard (5α-pregnane-3β,20β-diol) was added to 

aliquots of the extracts for BHP analysis. Samples were acetylated in 0.5 mL of a 1:1 

(v:v) mixture of acetic anhydride and pyridine at 50 °C for 1 h, then overnight at room 

temperature. Solvent was dried under a stream of N2 on a 50°C heating block. BHPs 

samples were dissolved in MeOH:propan-2-ol (3:2; v:v), and filtered on 0.2 µm PTFE 

filters.  

BHPs were analysed by high performance liquid chromatography coupled to 

positive ion atmospheric pressure chemical ionization mass spectrometry 

(HPLC/APCI-MS), using a data-dependent scan mode (3 events) on an HPLC system 

equipped with an ion trap MS, as described in Talbot et al. (2007) and van Winden et 

al. (2012). BHT and BHT isomer (Fig. 1, I and II) concentrations were (semi) 

quantitatively estimated based on the response factor of authentic peracetylated BHT 

standard (M. Rohmer; Strasbourg, France; Cooke et al., 2008) relative to the internal 

standard. Reproducibility was ± 20%, according to Cooke et al. (2010). BHT and 

BHT isomer concentrations in Golfo Dulce sediment samples were expressed in µg ∙ 

g-1 TOC.  

2.3.2 Ladderane fatty acid preparation and HPLC/APCI–MS/MS analyses 

Aliquots of the TLEs were saponified by refluxing with aqueous KOH (in 

96% MeOH) for 1h. Fatty acids were obtained by acidifying the saponified samples to 

pH 3 with 1 N HCl in MeOH, and extracted using DCM. The fatty acids were 

converted to their corresponding fatty acid methyl esters (FAMEs) by methylation 

with diazomethane (CH2N2). Polyunsaturated fatty acids were removed by eluting the 

sample over a small AgNO3 impregnated (5%) silica column with DCM. The fatty 

acid fractions were dissolved in acetone, and filtered through 0.45 µm, 4 mm diameter 

PTFE filters.  

Ladderane fatty acids were analysed by high performance liquid 

chromatography coupled to positive ion atmospheric pressure chemical ionization 

tandem mass spectrometry (HPLC/APCI-MS/MS) in selective reaction monitoring 

mode as originally described in Hopmans et al. (2006) and expanded in Rush et al. 

(2011). Four ladderane FAMEs (C18-[3]-ladderane fatty acid, C18-[5]-ladderane fatty 

acid, C20-[3]-ladderane fatty acid, and C20-[5]-ladderane fatty acid; Fig. 1, IV – VII) 

were quantified using external calibration curves of two standards of isolated 
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methylated ladderane fatty acids C20-[3]-ladderane fatty acid, and C20-[5]-ladderane 

fatty acid (Hopmans et al., 2006; Rattray et al., 2008). Two additional short-chain 

ladderane fatty acids (C14-[3]-ladderane fatty acid and C14-[5]-ladderane fatty acid) 

were analysed in the Golfo Dulce sediment cores, and were quantified using an 

external calibration curve of C14-[3]-ladderane fatty acid (Rush et al., 2011). A 

detection limit of 30-35 pg was achieved with this technique. The analytical 

reproducibility of ladderane fatty acid concentrations based on duplicate analysis was 

>8%. Ladderane fatty acid concentrations in Golfo Dulce sediment samples were 

expressed in µg ∙ g-1 TOC. 

2.3.3 NL5 

 The NL5 (iNdex of Ladderane lipids with 5 cyclobutane rings) is based on the 

observation that the relative length of the ladderane alkyl side chain adapts to 

variations in growth temperature of the anammox bacteria in cultures and the natural 

environment (Rattray et al., 2010). NL5 temperatures, as a means to determine the 

origin of the ladderane fatty acids, were calculated in the Golfo Dulce sediment cores, 

according to the equations of Rattray et al. (2010). NL� = ���-[�]-
���
���
	�����	����(���-[5]-ladd
���
	�����	����	�	���-[5]-ladder��
	�����	����)   (1) 

and NL� = 0.2 + �. !�	"#$%&$'()*'$+�,.-�.. /  (2) 

 

 

3. RESULTS  

 

3.1 Golfo Dulce surface sediments 

BHP and ladderane fatty acid concentrations were measured along a sediment 

surface transect that spanned the three chemical zones in Golfo Dulce (10 – 140 m 

water depth; Fig. 2). Oxygen concentrations across this transect dropped from 412 µM 

at 2 m water depth, to below detection limit (5 – 10 µM) at water depths >50 m.  

BHT concentration in surface sediments increased from 30 µg ∙ g-1 TOC at 10 m 

to 210 µg ∙ g-1 TOC at 24 m (Fig. 2) then decreased gradually down the transect (to 

100 µg ∙ g-1 TOC at 140 m), with the exception of 120 m, where BHT concentration 

was the highest (300 µg ∙ g-1 TOC, respectively). Most occurrences of BHT isomer in 
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the Golfo Dulce surface transect occurred in and below Zone 2, the oxic-nitrogenous 

transition zone (i.e. >70 m water depth; 4.0 – 38 µg ∙ g-1 TOC; Fig. 2), with the 

highest concentration at 120 m depth (38 µg ∙ g-1 TOC), matching the peak in BHT 

concentration. BHT isomer was also observed in the shallowest surface sediment, 

albeit in low concentration (0.7 µg ∙ g-1 TOC). 

Like the BHT isomer profile, the concentration of ladderane fatty acids increased 

with increasing water depth (Fig. 2). The highest concentration of ladderanes occurred 

in the anoxic zone (5.2 µg ∙ g-1 TOC; 120 m water depth), which coincided with the 

highest concentrations of BHT and BHT isomer. Ladderanes were present at low 

concentration in the shallowest surface sediment (0.2 µg ∙ g-1 TOC; 10 m).  

 

3.2 Golfo Dulce sediment cores 

Core 2C was located at 15 m water depth (Fig. 3a), in Zone 1, where oxygen 

concentrations in the water column were high (>250 µM: Fig. 2). BHT concentration 

in this core varied with sediment depth (fluctuating between 27 – 310 µg ∙ g-1 TOC). 

BHT isomer was only present in one sample in Core 2C (at 24 – 26 cmbsf), and in 

low concentration (0.7 µg ∙ g-1 TOC). Ladderane fatty acids were not detected. 

Core 6A (40 m water depth; Fig. 3b) was located at the upper boundary of Zone 2. 

BHT concentration at the top of this core was 84 µg ∙ g-1 TOC, and fluctuated between 

a maximum of 220 µg ∙ g-1 TOC at 2 – 4 cmbsf and a minimum of 12 µg ∙ g-1 TOC at 

the bottom of the core (42 – 44 cmbsf). BHT isomer and ladderane fatty acids were 

detected at low concentration (0.0 – 6.6 µg BHT isomer ∙ g-1 TOC and 0.0 – 0.7 µg 

ladderane fatty acids ∙ g-1 TOC) throughout most of this core (0 – 37 cmbsf), though 

not necessarily at the same depths. However, a significant peak in ladderane fatty acid 

concentration was observed at the bottom of Core 6A (7.7 and 8.2 µg ∙ g-1 TOC, 

between 37 and 44 cmbsf), which did not coincide with BHT isomer concentration.  

The peak concentration of BHT in Core 4A (Zone 3, 182 – 185 m water depth; 

Fig. 3c) occurred at the top of the core (380 µg ∙ g-1 TOC; 0 – 2 cmbsf). A secondary 

peak in BHT (360 µg ∙ g-1 TOC) occurred at 32 -34 cmbsf, and a smaller peak 

occurred at 17 -19 mbsf (220 µg ∙ g-1 TOC). Concentrations of BHT isomer and 

ladderane fatty acids were substantially higher than in the cores from Zones 1 and 2, 

and both lipids were observed throughout the core. Peaks in BHT isomer occurred at 0 

– 2 cmbsf (97 µg ∙ g-1 TOC), 17 – 19 (50 µg ∙ g-1 TOC), and 32 – 34 cmbsf (180 µg ∙ 
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g-1 TOC). Ladderane fatty acids peaked at the same depths as BHT isomer, with 

concentrations of 10, 2.9, and 2.7 µg ∙ g-1 TOC, respectively.  

The highest concentration of BHT was observed as a subsurface peak in the 

deepest core, Core 3B (190 mbsf; Fig. 3d). BHT concentration at 17 – 19 cmbsf was 

560 µg ∙ g-1 TOC. BHT concentrations were also high at the top (400 µg ∙ g-1 TOC; 0 – 

2 cmbsf) and bottom (220 µg ∙ g-1 TOC; 52 -54 cmbsf) of Core 3B. The maximum in 

BHT isomer concentration was also at 17 – 19 cmbsf (180 µg ∙ g-1 TOC). Ladderane 

fatty acid concentration was highest (8.5 µg ∙ g-1 TOC) at the surface (0 – 2 cmbsf) of 

core 3B. However, ladderanes also peaked (4.5 µg ∙ g-1 TOC) at 17 – 19 cmbsf. The 

BHT isomer distribution in the samples of Core 3B that were analysed followed the 

same pattern as the distribution of ladderane fatty acids.  

 

3.3 BHPs in anammox cultures 

 

In this study, three samples of cell material from two different anammox species 

were analysed for BHPs. Two enrichment cultures were of the marine species ‘Ca. 

Scalindua profunda’, grown at different temperatures (15 and 23°C, Figs. 4a and 4b, 

respectively). The third sample was sludge from a waste water pilot plant, where the 

non-marine anammox species ‘Ca. Kuenenia stuttgartiensis’ formed the majority of 

the microbial community (Fig. 4c).  

All three anammox samples contained BHPs, including BHT (Fig. 4). BHT 

isomer was observed in high relative abundances in the two marine Scalindua cultures 

(Figs. 4a and 4b). The most abundant BHP in the non-marine anammox was the 

composite BHP (i.e. a BHP with a more complex functional group, such as a sugar, at 

the terminal C-35 position), BHT cyclitol ether (Fig. 4c; III, Fig. 1). A small shoulder 

of BHT might be observed in K. stuttgartiensis (Fig. 4c), and potentially could be 

attributed to BHT isomer. Nevertheless, this possible peak of BHT isomer would only 

account for 1% of total BHPs in K. stuttgartiensis.  

BHT isomer was observed in higher relative abundance than BHT in the ‘Ca. S. 

profunda’ cultures (Figs. 4a and 4b), and was the most abundant BHP in both marine 

culture enrichments. BHT cyclitol ether was also observed in these Scalindua 

enrichments, but in smaller abundance than in the Kuenenia sludge.   

Screening of the marine anammox biomass for BHPs also revealed two unknown 

earlier-eluting components with parent ions of m/z 880 and m/z 894 (Figs. 4a and 4b). 
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MS2 revealed that both parent ions fragmented into the characteristic acetylated BHT 

fragment m/z 655 (Fig. 5). MS3 showed the distinctive fragments (m/z 191, 283, 463, 

475, 535, and 595) of acetylated BHT (cf. Talbot et al., 2003a). This confirms these 

are tetrafunctionalised BHPs associated with a composite terminal group (T+ of m/z 

226 or 240). Each composite group likely contains an odd number of nitrogen ions, 

due to the even mass/charge ratio of the parent ions (cf. BHT cyclitol ether; Fig. 1, 

III; Talbot et al., 2003b). The two BHPs probably vary by a CH2 group in the terminal 

group, as their masses (m/z 880 and 894) differ by 14 Da. The BHP with a parent ion 

of m/z 894 was only found in the ‘Ca. S. profunda’ culture grown at 15°C (Fig. 4). 

 

4. DISCUSSION 

 

4.1 Co-occurrence of anammox communities and BHT isomer in Golfo Dulce 

Throughout the Golfo Dulce sediments, BHT isomer and ladderane fatty acids 

followed a similar trend in their concentrations. This was especially true for the 

surface sediments. When plotted against each other, the concentration of BHT isomer 

versus the concentration of ladderanes in surface sediments showed a strong 

correlation (R2 = 0.97, p < 0.01; Fig. 6a), suggesting the same organism may be 

responsible for the biosynthesis of BHT isomer and ladderane fatty acids. As 

anammox bacteria are the only known source organisms of ladderanes (Sinninghe 

Damsté et al., 2002), it is likely that BHT isomer is synthesised by anammox bacteria, 

at least in this setting. 

For the most part, the concentrations of BHT isomer and ladderane fatty acids 

also correlated in the sediments from the deeper cores, though not as strongly (Fig. 6b, 

R2 = 0.54, p < 0.01; solid line). The concentrations of lipids in these sediments are 

probably affected by differential degradation rates of the BHPs versus ladderane fatty 

acids. In both Cores 4A and 3B (Fig. 3c and 3d), the concentration of ladderane fatty 

acids was highest at the top of the core and decreased substantially down core, 

whereas the highest concentration of BHT isomer occurred subsurface. A relative 

decrease in ladderane concentration with depth has been observed previously in 

sediments where degradation is a likely process (Rush et al., 2012b). These results 

indicate a preferential degradation of ladderanes versus BHT isomer, and may explain 

why the correlation between the two lipid types is not as strong with depth as it is at 

surface (Fig. 6a). The plot of BHT isomer versus ladderanes in deeper sediment (Fig. 
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6b) may show two different correlations: one representing the sediments from the 

bottom of the cores (3B and 4A, below 22 cmbsf; 6A, below 8 cmbsf) that are 

affected by preferential degradation (dashed line; R2 = 0.91, p < 0.01); and one 

representing the shallower sediments that are unaffected by preferential degradation 

(dotted line; R2 = 0.88, p < 0.01). The difference in sediment depth cut-off for 

preferential degradation between the shallow core (6A; 8 cmbsf) and deeper cores (4A 

and 3B; 22 cmbsf) may be due to the deeper cores in Golfo Dulce basin having higher 

accumulation rates (Hebbeln et al., 1996) whilst the shallow core in the transition 

zone may be more readily affect by β-oxidation of ladderane fatty acids (Rush et al., 

2011). This also reveals the potential worth of using BHT isomer in place of 

ladderane fatty acids as biomarkers for anammox in sediments from ancient 

environments.   

The peaks and troughs observed in BHT isomer and ladderane fatty acids 

concentrations in the Golfo Dulce sediment cores (Fig. 3) probably reflect changes in 

the flux of anammox lipids to the sediment surface relative to bulk sediment 

deposition. This could be due to shifts in nutrient availability for anammox bacteria, 

but also to dilution or concentration of anammox biomass resulting from mass 

deposition of sediment originating from shallower depths in turbiditic events. Such 

events can be responsible for sediment layers of up to 10 cm thickness with upward 

fining sequences in the deep basin, and were suggested to explain visual cm-scale 

layering of the sediment on the slope (Hebbeln et al., 1996; Thamdrup et al., 1996).  

There was, however, an exception to the general correlation of BHT isomer 

and ladderane fatty acid concentrations (Fig. 6b). A clear peak in ladderane fatty acids 

was observed at the bottom of Core 6A (Fig. 3b), which was not reflected in the BHT 

isomer concentration profile. This core was located at the upper boundary of the oxic-

nitrogenous transition zone (Zone 2), and it is likely that this setting is highly 

susceptible to minor shifts in the location of the redoxcline. This peak in ladderanes 

probably represents production by sedimentary anammox bacteria, as there was no 

detection of short-chain ladderane fatty acids at these depths (Fig. 7b). Short-chain 

ladderane fatty acids are produced when ladderane fatty acids, which have been 

synthesised in oxygen-depleted environments, are exposed to β-oxidation (Rush et al., 

2011). As only low levels of oxygen (<3 µM) are needed for the oxidation pathway to 

proceed (Rush et al., 2012b), short-chain ladderanes have been used previously as 

biomarkers for the microbial degradation of anammox bacterial lipids in low oxygen 
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environments. However, short-chain ladderanes have not been detected in anoxic 

environments (e.g. the Cariaco Basin, Rush et al., 2012b). The lack of short chain 

ladderanes at these two depths in Core 6A (Fig. 7) indicates that these ladderane fatty 

acids were neither synthesised in oxygen concentrations above 3µM, nor exposed to 

oxic conditions afterwards.  

In contrast to the bottom of Core 6A, short-chain ladderane fatty acids were 

detected alongside ladderane fatty acids at all depths in the deeper, anoxic cores 

(cores 4A and 3B; Fig. 7), usually in even higher concentration than the original 

ladderane fatty acids (0.4 – 15 µg short-chain ladderane fatty acids ∙ g-1 TOC in Core 

4A; 0.9 – 12 µg short-chain ladderane fatty acids ∙ g-1 TOC in Core 3B). This indicates 

that the ladderane fatty acids detected in these cores were probably produced at the 

oxycline, where oxygen was depleted enough for anammox to be active, but still 

present in high enough concentration for the β-oxidation to occur. It is therefore likely 

that the ladderane fatty acids in Cores 4A and 3B were produced in the water column, 

while the peak in ladderanes at the bottom of core 6A represents production in the 

(transitionally) anoxic sediment. Using nitrogen-labelling experiments, Dalsgaard et 

al. (2003) found anammox to be a significant process in Zone 3 of the Golfo Dulce 

water column. However, they did not detect any labelling evidence of anammox 

activity in the water column of Zone 2, while Schmid et al. (2007) found anammox 

activity in surface sediment in Zone 2 (at 55 m water depth), which further supports in 

situ benthic production as the origin of the ladderane fatty acid peak at depth in Core 

6A. Nevertheless, this peak probably does not represent in situ production at 37 – 44 

cmbsf, but rather surface activity by a sedimentary anammox community that was 

rapidly buried by a recent mass deposition or turbiditic event. Though NL5 

temperature data, derived from the ratio of C20 and C18 ladderane fatty acids with five 

cyclobutane rings (Rattray et al., 2010), does not always correlate with absolute 

temperature values (Rush et al., 2012a), it can be used to compare anammox growth 

environments within the same core. NL5 temperatures in Golfo Dulce (Fig. 7) show a 

lower growth temperature for anammox producing ladderane fatty acids at the bottom 

of Core 6A (14 °C) compared with the rest of the core (16 – 19 °C), which is 

consistent with an exogenous sedimentary origin of this deep ladderane peak. Thus, it 

is possible that sedimentary anammox bacteria have adapted differently than pelagic 

bacteria and do not produce BHT isomer, and that BHT isomer in marine sediments 

indicates pelagic anammox activity. However, as the exact function of BHT isomer in 



15 
 

the cell is unknown, we cannot hypothesise further as to why there might be a 

difference between sedimentary and pelagic anammox BHP compositions.  

Like BHT isomer, the concentration of BHT followed a similar trend as that of 

ladderane fatty acids, when both these lipids were present. However, BHT was also 

present when ladderanes were not detected. This suggests that the organism 

responsible for synthesising ladderane fatty acids is likely also biosynthesising BHT, 

but that it is not the exclusive source organism for BHT. Indeed, BHT has been 

observed in multiple bacterial cultures (e.g. Talbot et al., 2008b), whereas BHT 

isomer has not. 

 

4.2 BHP distributions in anammox cultures 

4.2.1 BHT and BHT isomer in anammox cultures 

To determine whether anammox bacteria are responsible for BHT isomer 

production, the hopanoid composition of three anammox enrichment cultures was 

investigated (Fig. 4). Several species of anammox bacteria exist, but so far only 

species belonging to the genus ‘Candidatus Scalindua’ have been observed in marine 

systems (Hamersley et al., 2007; Schmid et al., 2007; Pitcher et al., 2011; Borin et al., 

2013).  

BHT isomer was abundant in the two marine Scalindua enrichment cultures (Fig. 

4a and 4b). A small shoulder detected in the ‘Ca. Kuenenia stuttgartiensis’ enrichment 

(Fig. 4c) could be attributed to BHT isomer, but would only make up 1% of total 

BHPs in this sample. If BHT isomer is not synthesised in substantial amounts by non-

marine anammox, this may explain the lack of BHT isomer in terrestrial samples. 

Nevertheless, in order to convincingly conclude that BHT isomer is solely a marine 

anammox lipid, other non-marine anammox cultures must be screened for their BHP 

lipid composition.  

BHT was observed alongside BHT isomer in the marine anammox cultures (Fig. 

4a and 4b). The proportion of BHT isomer increased in the warmer culture (BHT 

isomer/(BHT + BHT isomer) was 0.55 at 15°C and 0.64 at 23°C), potentially 

indicating a temperature dependence. Remarkably, BHT isomer was synthesised in 

higher relative abundance than BHT, and was the most abundant BHP in both 

Scalindua enrichments (Fig. 4a and 4b). As far as we know, this is the first 

observation of BHT isomer in higher relative abundance than BHT in a bacterial 

culture. However, BHT isomer has been observed in higher relative abundances than 
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BHT in three marine sediment samples from the Peru Margin (Watson, 2002), where 

anammox is known to be an important process (Hamersley et al., 2007; Rush et al., 

2012b). These findings strongly support the hypothesis that BHT isomer observed in 

Golfo Dulce marine samples and other anoxic environments is sourced from 

anammox bacteria.  

This is not, however, the first report of BHT isomer occurring in a bacterial 

culture. Previously, BHT isomers were identified by NMR in two strains of acetic 

acid bacteria (Peiseler and Rohmer, 1992). BHT isomer was also tentatively identified 

(by mass spectral analysis and by comparing chromatographic retention times) in 

Methylocella palustris, isolated from Sphagnum moss (van Winden et al., 2012). The 

22R, 32R, 33R, 34R  BHT configuration was found in equal proportion to the 22R, 

32R, 33R, 34S configuration in Frankia sp. (Rosa-Putra et al., 2001) by comparing 
1H- and 13C-NMR spectra to those of hemisynthesised BHT diastereoisomers 

published in Bisseret and Rohmer (1989). However, the BHT isomer in the first two 

cultures was only present in low abundance. Although BHTs are the most abundant 

hopanoid in Frankia (Nalin et al., 2000), other novel Frankia BHPs (e.g. BHTs with 

C35-substituted propionyl and pheylacetyl groups) described in Rosa-Putra et al. 

(2001) have, to the best of our knowledge, never been detected in the natural 

environment. Additionally, none of the aforementioned occurrences of BHT isomer 

was in a marine bacterium. To our knowledge, the marine anammox bacteria 

enrichment cultures in this study are the first bacteria in which BHT isomer is the 

primary BHP in a marine species. 

 

4.2.2 Novel BHPs in anammox cultures 

The marine anammox enrichments also contained two earlier-eluting composite 

BHPs, with parent ions of m/z 880 and m/z 894, associated with the indicative 

protonated base peak ion for BHT (m/z 655; Fig 4 a and b, Fig. 5). We can only 

speculate that polarity is the reason why these composite-BHPs elute much earlier in 

the chromatogram than other composite tetrafunctionalised BHPs. We also cannot 

explain why m/z 894 was only found in the ‘Ca. Scalindua profunda’ culture grown at 

15°C. However, as these BHPs were both synthesised in low abundances in culture, 

and as neither was detected in Golfo Dulce sediments, they might not be important in 

the environment. 
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In Sinninghe Damsté et al. (2004) other species of planctomycetes were analysed 

for hopanoids. Notably, a ubiquitous marine non-anammox planctomycete species, 

Pirellula marina (Lindsay et al., 1997), was also shown to contain BHT. As the 

presence of BHT was only confirmed by co-elution with an authentic BHT standard in 

one sample (‘Ca. Brocadia anammoxidans’), it remains a possibility that BHT 

identified in subsequent GC analyses, including the P. marina sample, was in fact 

BHT isomer or that the two isomers were not separated on the GC column used for 

this study. Until the exact BHT stereochemistry can be confirmed in other 

planctomycetes, caution should be used before interpreting BHT isomer in marine 

settings as a definitive indicator of pelagic anammox. 

 

4.3 Environmental occurrences of BHT isomer, and its potential relationship 

with anammox bacteria  

Despite the few occurrences of BHT isomer in soil bacteria cultures and 

enrichments (e.g. Peiseler and Rohmer, 1992, Rosa-Putra et al., 2001; van Winden et 

al., 2012), BHT isomer remains a rarely detected BHP in soil environments. This is 

likely because these bacteria are specific to particular environmental conditions and/or 

because they are not important producers of BHPs in the environment. To the best of 

our knowledge BHT isomer has only ever been detected once in a terrestrial soil 

environment. Pearson et al. (2009) investigated the distribution of hopanoids across a 

land-to-sea gradient. BHT isomer was detected in relatively low abundance (<10% of 

BHT) in a tropical soil, where squalene-hopene cyclase genes affiliated with 

anammox were also found. Although BHT isomer was detected in a nearby creek, 

where it made up <2% of BHT, it was not detected in the shallow open ocean. Talbot 

et al. (2003c) reported BHT isomer in non-marine sediments, from temperate, high 

altitude, and saline lakes. However, anammox bacteria cannot be disregarded as the 

source of BHT isomer in these systems. Anammox activity has been reported 

previously in several non-marine environments. 16S gene sequences affiliated with 

‘Ca. Scalindua’ spp. were observed in Lake Tanganyika (Schubert et al., 2006), in 

lake and wetland sediments in Michigan, U.S.A., and subtropical wetland sediments 

in Florida, U.S.A. (Penton et al., 2006). Anammox species relating to ‘Ca. Jettenia 

asiatica’ and ‘Ca. Brocadia fulgida’ were found in peat soils (Hu et al., 2011), and 

species relating to ‘Ca. Anammoxoglobus’ and ‘Ca. Jettenia’ were found in a flooded 

rice paddy soil (Hu et al., 2013). 16S gene sequences related to ‘Ca. Brocadia’ were 
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found in lake riparian zones in China (Zhu et al., 2013), and genes affiliated with ‘Ca. 

Kuenenia’, ‘Ca. Jettenia’, and ‘Ca. Scalindua’ were found in sediments from two 

Chinese rivers (Zhao et al., 2013). Clearly, there is need for further investigation of 

BHP distributions in other anammox genera in order to be able to potentially link 

anammox as the source of BHT isomer in non-marine settings.  

A re-examination of previous marine BHT isomer occurrences supports its 

association with anammox bacteria in marine environments other than Golfo Dulce. 

The co-occurrence of anammox ladderane fatty acids and BHT isomer in Golfo Dulce 

sediments are comparable to water column data from the Cariaco Basin, an anoxic 

basin off the coast of Venezuela (Wakeham et al., 2012). The peak in BHT isomer 

concentration in Cariaco Basin occurred within the core chemocline, where oxygen 

concentrations were below detection limit. The peak in ladderane fatty acids in the 

Cariaco Basin corresponded with this peak in the BHT isomer. Furthermore, 

anammox bacterial cell counts, using FISH, were highest within the chemocline. Both 

BHT isomer and ladderane lipids were not detected in the deeper, anoxic and sulfidic 

water column. 

Further circumstantial evidence that marine anammox bacteria are synthesising 

BHT isomer comes from the sites studied by Sáenz et al. (2011). The environments 

where BHT isomer was detected were all marine settings in which active anammox 

communities have been described previously, i.e., in the Arabian Sea (Pitcher et al., 

2011), and the Peru Margin (Hamersley et al., 2007). As mentioned previously, BHT 

isomer was also reported in sediments from the Benguela Upwelling system 

(Blumenberg et al., 2010), where Kuypers et al. (2005) used nitrogen isotope 

labelling, phylogenetic, and lipid analyses to demonstrate that anammox was an 

important process in the overlying waters. Similarly, a recent study of BHPs in 

Gotland Deep, central Baltic Sea (Berndmeyer et al., 2013) revealed BHT isomer to 

be present in a well-developed “suboxic zone” of the water column (108 – 135 m 

water depth) as well as in surface sediments (0 – 8 cmbsf). Anammox activity was 

previously detected in the suboxic and anoxic water of Gotland Deep following a 

complete ventilation of the basin (Hannig et al., 2007). Kharbush et al. (2013) 

detected BHT isomer in the anoxic part of the California Current water column, in 

which anammox squalene-hopene cyclase gene sequences were also amplified. 

Combined, these studies indicate that anammox production of BHT isomer may be a 

widespread marine water column process. 
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4.4 Implications for the marine sedimentary record  

We show here, for the first time, that enrichment cultures dominated by 

marine anammox bacteria synthesise BHT isomer in high abundance. Therefore, it is 

likely that the presence of BHT isomer in marine sediment is due to anammox 

activity. Thus far, the oldest known occurrence of BHPs is in 54.4 Ma sediments from 

Kilwa, Tanzania (van Dongen et al., 2006), and BHT isomer has been observed in 

1.75 Ma marine sediments from the Benguela upwelling region (Watson, 2002). In 

contrast, the oldest fossil occurrence of ladderane fatty acids was in 140 ka Arabian 

Sea sediments (Jaeschke et al., 2009). A preferential degradation of ladderane fatty 

acids can already be observed in the scatter plot of BHT isomer versus ladderanes in 

the deeper Golfo Dulce cores (Fig. 6b; dashed line). The slope of the line of best fit is 

much steeper for the deeper sediments than that for the surface sediments (Fig. 6a) 

and shallow core sediments (Fig. 6b; dotted line), indicating a relative decrease in 

ladderane fatty acid concentrations. As BHPs are evidentially better preserved than 

ladderanes in sediment, BHT isomer may likely be a more appropriate biomarker for 

identifying anammox in the geological past.  

 

5. CONCLUSIONS  

Ladderane fatty acid and bacteriohopanepolyol distributions in Golfo Dulce 

sediments strongly suggest that anammox bacteria were responsible for the presence 

of the BHT isomer is this environmental setting. This hypothesis is supported by the 

confirmed presence of BHT isomer in two ‘Candidatus Scalindua profunda’ 

anammox enrichments. BHT isomer was not detected in a non-marine anammox 

enrichment (dominated by species ‘Candidatus Kuenenia stuttgartiensis’). These 

results indicate that marine anammox are likely responsible for at least some of the 

marine BHT isomer occurrences thus far observed, and that BHT isomer might be a 

stable, more suitable biomarker than ladderane fatty acids for past anammox activity.  

The exact stereochemistry of the BHT isomer remains unknown, requiring 2D-

NMR studies to fully elucidate its structure. However, as marine anammox bacteria 

are difficult to culture, obtaining enough cell material to isolate BHT isomer with 

preparative LC was not possible in this study, but should be considered in future 

work. 
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As with any novel potential biomarker, many questions remain. Why do only 

certain species of (marine) anammox bacteria synthesise BHT isomer? How does 

temperature regulate BHT isomer distributions? What is the role of the other 

composite-BHTs found in the cultures? However, such fundamental questions relate 

not only to BHT isomer, but to BHPs in general, emphasising the importance of 

further studies on BHP regulation and membrane physiology. 

Marine sediments in settings where anammox is known to be an important 

process (i.e. oxygen minimum zones, anoxic basins) should be screened for the 

presence of BHT isomer in order to validate its use as a biomarker for paleo-

anammox activity. Optimistically, these studies will reveal the merit of using BHT 

isomer as a biomarker for past anammox activity, and advocate the use of BHT 

isomer in demonstrating past changes in the relative importance of anammox (as seen 

in the Baltic Sea), as well as fluctuations in nitrogen cycling in response to ocean 

redox changes through the geological record. 
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FIGURES 
 

Figure 1. Chemical structures of BHPs and ladderane fatty acids: (I) 
bacteriohopanetetrol (BHT), (II) bacteriohopanetetrol isomer (BHT isomer); the exact 
stereoisomer structure is unknown, however, 22R, 32R, 33R, 34R is a likely structure, 
(III) BHT cyclitol ether, (IV) C18-[5]-ladderane fatty acid, (V) C20-[5]-ladderane fatty 
acid, (VI) C18-[3]-ladderane fatty acid, and (VII) C20-[3]-ladderane fatty acid. 
Proposed stereochemistry of BHT isomer (II) from Peiseler and Rohmer (1992). 
 

Figure 2: BHT (black circles), BHT isomer (white circles), and ladderane fatty acid 
(grey triangles) concentrations (expressed in µg ∙ g-1 TOC) along a sediment surface 
transect across the three distinct chemical zones in Golfo Dulce. Analytical 
reproducibility for BHT and BHT isomer was ±20%. Analytical reproducibility for 
ladderane fatty acids was ±8%. Oxygen concentration (µM) was measured by Winkler 
titration at water depths of 2, 12, 19, 35, 50, 65, 80, 120 and 170 m, and is shown in 
red.  
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Figure 3: BHT (black circles), BHT isomer (white circles), and ladderane fatty acid 
(grey triangles) concentrations (expressed in µg ∙ g-1 TOC) in Golfo Dulce sediment 
cores (a) oxic zone (15 m water depth), (b) oxic-nitrogenous transition zone (40 m 
water depth), (c) anoxic zone (182-185 m water depth), (d) anoxic zone (190 m water 
depth). Reproducibility for BHT and BHT isomer was ±20%. Reproducibility for 
ladderane fatty acids was ±8%.  Note the scale for BHT concentration is different in 
(d). Missing BHP data points are due to samples being completely used for ladderane 
analyses. 
 

Figure 4. Base peak and mass chromatograms of m/z 655 (indicative protonated base 
peak ion for BHT and BHT isomer), m/z 880, m/z 894, and m/z 1002 + 1044 
(indicative protonated ions for BHT cyclitol ether) in (a) ‘Candidatus Scalindua 
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profunda’, cultured at 15°C, (b) ‘Candidatus Scalindua profunda’, cultured at 23°C, 
and (c) ‘Candidatus Kuenenia stuttgartiensis’, in enriched sludge from a wastewater 
treatment plant. 
 

Figure 5. APCI mass spectra of novel BHPs with proposed [M+H]+ of (a) m/z 880 and 
(b) m/z 894 (peaks indicated in Fig. 4) in ‘Candidatus Scalindua profunda’ cultured at 
15 °C. MS2 and MS3 were obtained from targeted scanning of m/z 655, 880 and 894 
of the same sample. Note that full MS were corrected for background. 
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Figure 6: Scatter plot of ladderane fatty acid concentrations versus BHT isomer 
concentration in Golfo Dulce surface sediments (a) and deeper, core sediments (b). 
Data points for (a) are from transect samples (0 – 0.5 cm; Fig. 2) and core tops (0 – 2 
cm; Fig. 3). Dashed line in (b) is line of best fit for sediments (closed circles) possibly 
affected by preferential degradation of ladderane fatty acids (Core 3B, >22 cmbsf; 
Core 4A, >22 cmbsf; Core 6A, >8 cmbsf). Dotted line is line of best fit for the 
overlying sediments (open circles). Solid line is line of best fit for entire deeper core 
data set. Note: the two samples (red circles) with ladderane concentration suspected to 
be the result of sedimentary production (Core 6A) were not used to generate the lines 
of best fit or the coefficients of determination (R2) in the core sediments (b). 
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Figure 7: Vertical distribution of the proportion of short-chain ladderane fatty acids 
(black bars) and NL5 derived temperatures (open lozenges) in Golfo Dulce surface 
sediment (a) and sediment cores (b-d).  


