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Fitness Distance Correlation as a Measure of GA Performance

Liwen He and Neil Mort
Department of Automatic Control and Systems Engineering
University of Sheffield, Sheffield S1 3JD, UK
Research Report Number 723

Abstract: In this paper, the mathematical interpretation of correlation coefficient is
reviewed to explain the conditions under which it operates. Using the work of Jones
and Forrest (1995) on fitness distance correlation (FDC) as a measure of problem
difficulty for genetic algorithms, a novel framework combining FDC with the
Experimental Design perspective in statistics is proposed. It is shown that this method
not only satisfies the mathematical condition of correlation coefficient, but also that it
is closely relevant to genetic operators, such as crossover and mutation, and can
therefore be used to predict the performance of genetic algorithms more accurately.
Different well-known problems such as epistasis interactions, isolation or needle-in-a-
haystack, high fitness variance, deceptiveness and multimodality, which make the GA
search process difficult, are investigated. Experimental results show that this
framework is an effective metric for GA performance on the fitness landscape, and
offers useful guidance in constructing efficient genetic algorithms.

Keywords: Fitness Distance Correlation, Fitness Landscape, Genetic Algorithms, Experimental Design
1. Introduction

In earlier published work (Jones, 1995, Jones and Forrest, 1995), a measure of search difficulty, known
-as fitness distance correlation (FDC), is introduced to predict the performance of a GA on problems
with known global optima. This work on heuristic and genetic algorithms suggests that the connection
between fitness and distance to the global optima will have strong effect on search difficulty. The
authors provide a statistical summary of many well-studied problems, and indicate that FDC can be a
reasonably good predictor of GA performance. They also report some cases which FDC cannot detect,
and advise the examination of a scatter plot of fitness versus distance as an alternative. They further
suggest that a more accurate framework of FDC should be developed which utilizes genetic operators
to define the distance from the optima.

Following their work, Altenberg (1997) constructed a counterexample to FDC. In his example, the FDC
coefficient converges to a very small negative value, while the fitness and Hamming distance scatter plot
displayed no discernible structure between them. In addition, he demonstrates that crossover- based
fitness distance correlation may be used as a estimator of GA performance.
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Our work is inspired by two observations:

1. Previous studies show that Hamming distance based FDC is too simple a statistical summary
for the prediction of GA performance,

2. Jones and Forrest’s FDC works well only for low dimension of the search space (< 2 2y, it is
ineffective for high dimensional search spaces.

In this paper, we propose a novel framework which combines FDC with the Experimental Design
perspective of statistics, an approach that not only conforms to the mathematical condition for
computing the correlation coefficient, but also is very relevant to genetic operators, such as crossover
and mutation. In particular, our work considers the fitness versus distance scatter plot as a very
important primary step since it provides richer information, and is thus effective for different dimensions
of the problem search space. Unlike crossover-based FDC, this method works without actually running
the genetic algorithm. It is simpler and more economical, requires less computation effort, and yet,
achieves a better result.

Since the most difficult thing in using genetic algorithms is the representation issue and encoding of

| practical problems [Fleming, 1997], this method can assist the programmer to construct an efficient

genetic algorithm for problem optimization.

The remainder of this paper is organized as follows: the mathematical background on correlation
coefficient is reviewed in section 2, and the relationship between the FDC coefficient, fitness landscape
and GA difficulty is discussed in section 3. Then the 1deas behind our FDC framework are stated in
section 4, and section 5 reveals that our FDC method is relevant to GA dynamics. The utilization of the
FDC framework in different test problems is reported and analyzed in section 6; this paper is terminated
by the conclusion and discussion in section 7. For completeness and to provide useful background
information, some figures reported from the previous studies are contained in an Appendix.

2. Correlation Coefficient

Given that many mathematical formula are valid only under certain specific conditions, it is necessary to
review the conditions under which the correlation coefficient is appropriate [Chaterfield, C, 1978]:

1. the mathematical justification for this correlation coefficient deperids on two random variables
having a bivariate normal distribution

2. only when the relationship between the two variables appears to be approximately linear, can we
consider linear correlation analysis

As we know, most random variables arising from natural and social phenomena conform very well to
the normal distribution. Thus in the case of two random variables, X and Y, each corresponding
marginal distribution for these will conform to a normal distribution. Though it is not easy to prove
theoretically that bivariate random variables (X, Y) will exactly conform to the bivariate normal
distribution, it is convenient to assume that pairs of measurements follow a bivariate normal distribution
in engineering practice. This statement is a basic assumption for the following discussion.

Linear correlation can provide a reasonable explanation for the two examples of a relationship between
fitness and distance which is not detected by FDC in Jones and Forrest’ s previous study. The fitness
distance scatter plots of Long Path problems (Horn, Goldberg and Deb, 1994) and Liepins and Vose’ s




Transform problem (1990) show that there is no linear correlation between two variables, one plot
displays a zigzag shape and the other displays a X shape. (see Appendix figure 1 (#) and (/) ). It is
therefore unsuitable to utilize FDC as a statistical measure in these circumstances.

3. Relationship between the FDC Coefficient, Fitness Landscape and GA Difficulty

3.1. Interpretation of FDC CoefTicient

The FDC coefficient is said to be positive if “ large’ values of both variables Y (Fitness) and X
(Distance) tend to occur together, and is said to be negative if * large’ values of one variable (Fitness)
tend to occur with ‘small’ values of the other variable (Distance) and vice versa.

The FDC coefficient is said to be high (close to +1) if the points (X; , yi) cluster in a straight line and is
said to be low (close to 0) if the observed points are widely scattered.

The variables are said to be uncorrelated if there is no relationship between them, and in this condition,
the FDC coefficient is close to or equal to zero. Different types of correlation coefficient are illustrated
in Figure 1.
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Figure 1. (a) High negative FDC coefficient (b) Low negative FDC coefficient
(c) positive FDC coefficient (d) No correlation

3.2. Structure of Fitness Landscape

The fitness landscape of a genetic search is made up of directed and spatially-connected graphs. Their
vertices represent the genotype and are labeled according to the fitness function, while their edges are
Jabeled with small positive values between 0 and 1 which express the probability of moving from one
vertex to another. The NK-fitness landscape defined by Kauffman (1989) is the graph where only 1-
mutant neighbors are connected (for example, see Figure 2(a)), thus this fitness landscape is only
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pertinent to point mutation. Our fitness landscape is fully connected, that is to say, there are (; edges




(Q=2', I is the bitlength of genotype) in our fitness landscape (for example, see Figure 2(b)). In general,
all 1-mutant, 2-mutant, 3-mutant, ..., k-mutant (k < /) neighbors are relevant to the mutation operator
and crossover operator (This point is discussed further in section 5). More specifically, the fitness
landscape defined in this paper is a pictorial image of (/+1) dimensional space whose points are fully-
connected and assigned a real fitness value. The edge are labeled with the value p; € [0, 1] (fori </
and j < /) which represents the probability of moving from one vertex i to another vertex j. For
example, if the genetic operators are universal crossover and point mutation, the maximum Hamming
distance between parent and offspring is (/2+1), so the probability of moving between any two points
whose Hamming distance is greater than (//2+1) is equal to zero.
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Figure 2. Fitness Landscape with dimension 2° of space generated by:(a) point mutation (b) crossover plus point mutation

000
(0.47)

From the viewpoint of genetic search, a fitness landscape is regarded as mountainous: that is, those
vertices with best fitness value are named as ‘ peaks’ or global optima, and a population would be
expected to be moved by genetic operators such as selection, mutation and recombination to those
peaks since genetic algorithms search for optima. The point with fitness value greater than all its
neighboring points is termed a local optimum, for example, the vertex 111 in figure 2(a).

An important measure of fitness landscape is its smoothness and ruggedness, or in more precise terms,
the ° correlation structure’ of the fitness landscape. A smooth or correlated landscape means
neighboring points in the genotype space have nearly the same fitness values. The fitness value of one
point will provide relatively accurate information about the fitness values of neighboring points. On the
other hand, a rugged or uncorrelated landscape indicates very large fitness differentials between
neighboring points, and the fitness value of one point carries no information about the expected fitness
value of neighboring points. However, different landscapes have different definitions of the neighboring
relationship. The neighboring points in the NK-fitness landscape defined by Kauffman (1989) are 1-
mutant. The neighboring points in our approach are 1-mutant, 2-mutant, ... k-mutant ( k< /).

3.3. Measurement of GA Difficulty

In the fundamental theory of GAs, a number of factors have been addressed from different viewpoints
which prevent GA search achieving global optimization, such as spurious correlation or hitch-hiking,
(Scaffer, et al, 1991, Forrest & Mitchell, 1993; Mitchell, 1996), epistasis interaction (Davidor, 1991;
Rochet, 1997), isolation or needle-in-a-haystack (Horn and Goldberg, 1995), high fitness
variance(Grefenstette, 1993), deceptiveness, (Goldberg, 1987, Whitley, 1991), and multimodality
(Ohkura and Ueda, 1995; He & Mort, 1998a).

Unfortunately, there is no accurate mathematical model to measure the problem difficulty for genetic
algorithms, as each of the above elements represent just a part of the total picture. Some of them




overlap with each other. For example, in the NK-fitness landscape (Kauffman, 1989), increasing the
degree of epistatis interaction, K, increases the ruggedness of fitness landscape, but also, increases the
multimodality--the number of local optima become larger, and the fitness variance also increases. Most
multimodal optimization problems have some kind of deceptiveness property, and can be regarded as
the most deceptive problem. (Ohkura and Ueda, 1995; He and Mort, 1998a).

Other promising approaches to the GA difficulty measurement problem are computing the
autocorrelation of fitnesses obtained from a random walk on the landscape (Weinberger, 1990), and the
correlation length of landscape, (Manderick, et al, 1991). More recently, Hordijk (1995) introduces the
autocorrelation of a time series (known as the Box-Jenkins approach) of fitness values generated by the
random walk on the landscape.

These metrics, although effective in investigating the GA difficulty, are not easily utilized in practice as
most of them are more complex than using genetic algorithms themselves. The objective of this paper is
to provide a simple and economical evaluation methodology to measure GA performance, and then use
it rapidly construct genetic algorithms for engineering optimization problem solving.

One statistical metric which characterizes the correlation structure of fitness landscape is fitness distance
correlation coefficient. Preliminary results suggest that it can provide a reliable indication of problem
difficulty for genetic algorithms. For a maximization problem, the closer to zero the FDC coefficient is,
the more rugged the fitness landscape is, and so the more difficult is the genetic algorithms search for
the optimum,

4. New FDC Framework with Experimental Design

Genetic search can be regarded as a process of exploitation on directed and spatial graphs whose
vertices are assigned by the fitness function. These graphs are the fitness landscape. FDC is a simple
method to measure the relationship between fitness and distance to the global optimum, where the
_ distance is approximated by the Hamming distance under the actual genetic operators. Given a set F =
{f1i, f2, ..., Ju} of 1 individual fitnesses and a corresponding set D = {d, d>, ... , dn} of the n distance to
the nearest global maximum, the fitness distance correlation coefficient r is calculated as:

r= criy/ (3% 5D)

n

where cmp = z (fi - fu)(d; - diw)

i=1
is the covariance of F and D, and s¢, sp, fmand dn are the standard deviations and means of F and D
respectively. 2" or 4000 randomly points are sampled from the fitness landscape as the candidate
individuals in the work of Jones and Forrest (1995).

Experimental design is a traditional statistical methodology. It extracts information from a number of
carefully selected, representative, but, randomly-produced data sets, and attempts to account for the
observed phenomena explicitly. This perspective requires substantial human interaction and
interpretation in the light of the particular problem being examined. (Chaterfield, 1978; Reeves and
Wright, 1995)

A new FDC framework with experimental design is proposed here. It is inspired by the phenomenon
that Jones and Forrest’ s FDC cannot work well in a large search space, such as the 64 bit Royal Road
function (Mitchell, 1996). Figure 3 shows the fitness distance scatter plot of the Royal Road function




RR1 according to the Jones and Forrest FDC method. From the viewpoint of Hamming distance axis, it
is clear that the randomly generated 4000 points are symmetrical about the line HD=//2=32 on the
Hamming Distance axis, and situated within the interval [20 45]. That is to say, their FDC just contains
the information about part of the entire Hamming distance region in fitness distance scatter plot. A large
amount of information about the fitness values close to or far away from the global optimum as
measured by Hamming distance has been lost. This information is very critical to the FDC framework,
and without it, there is a high probability of drawing invalid conclusions. According to Figure 2.(d)
provided by their study on the 128 bit Royal Road function (see Appendix 2), the 4000 random points
are also limited within the interval [40 88] on the Hamming distance axis.
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Figure 3. fitness distance scatter plot of 64 bits Roval Road function RR1 (Jones and Forrest FDC method)

On the basis of the above discussion, a novel FDC framework is proposed and stated as follows (using a
search space greater than or equal to 2% as an example):

1. generate 4000 random points, marking their intervals along the Hamming distance axis as [di da];

2. generate 3000 points in the interval of [1 di] and [dz /] respectively along the Hamming distance
axis

3. calculate the corresponding FDC coefficient at these three region as r1, v, and .

4. compare the values of 1, ry, and ry for different ‘benchmark’ problems

Special attention should be paid to step 2, where the experimental design perspective is implemented.
Our target is to generate evenly distributed points within intervals [1 di] and [d2 /], and only the
mutation operator is used here for simplicity.

When the mutation operator is applied to the global optimum a number of times, the simulation results
show that the frequency distribution of the offspring is approximately a discrete normal distribution with
mean value equal to (mu*/) measured along the Hamming distance (to the global optimum) axis. Here,
mu is the mutation rate, and / is the binary length of the global optimum. Therefore a number of
carefully selected values of mutation rate can be used to produce approximately evenly distributed
points within the interval of [1 di] and [d2 /]. These control mutation rate values are named as Xi, X2,
...y Xp and yy, ¥2, ..., yp Tespectively.

Jones (1995) suggested that Hamming distance is strongly related to the mutation operator in traditional
genetic algorithms which use a binary string representation. The number of times that a mutation
operator must be utilized to transform a given string to the global optimum is monotonic with Hamming
distance. But the crossover operator is regarded as a more important genetic operator; mutation is just a
safety strategy to prevent premature convergence in classical genetic algorithms. This suggests again
that the previous FDC framework is a too simplistic for the GA performance assessment.

In the next section, we will show that our FDC framework is closely related to the crossover operator,
and the dynamic property of FDC is clarified.




5. Dynamic Property of the Novel FDC Framework

Jones and Forrest (1995) recommend that a stronger predictor of GA optimization performance would
be FDC analysis using distance measures based on the genetic operators themselves. Altenberg (1997)
constructs two kinds of crossover-based fitness distance correlation analysis methods. The relevant
fitness distance scatter plots can be found at Appendix 2. This approach works well for some
applications.

Now, the relationship between our novel FDC framework and the GA dynamic property is made clear.

First, the role of genetic operators such as selection, crossover, and mutation in the evolutionary
procedure is reviewed. An initial population is generated randomly, pairs of bitstrings are chosen as the
parents to produce the offspring through crossover, then mutation is implemented to every single
bitstring. Though there exist many different crossover methods such as single point crossover, double
point crossover, multi-point crossover, universal crossover, etc, and the resulting offspring are
dependent upon both the particular crossover method used and the composition of the population, any
offspring in the next generation can be regarded as flipping some specific bits of the parents in the
previous population. This process can be simulated equivalently by the inverse operation: the mutation
operator is applied to the global optimum with different values of control mutation rate. This operation
is indicated in the section 4. Therefore, our fitness distance scatter plot can be considered as a statistical
summary of the random sampling points from an evolutionary procedure of applying genetic operators
onto the entire population.

6. FDC Experimental Results and Analysis

As indicated in the previous section, a number of well-studied problems which represent GA difficulty
have been selected as candidates for our research. These problems include epistasis interaction, isolation
or needle-in-a-haystack (NIAH), high fitness variance, deceptiveness and multimodality. The test
functions are summarized in the Appendix. Since the spurious correlation or hitch-hiking problem
comes from the characteristics of the genetic algorithms themselves, the FDC framework cannot detect
It

However, before any further investigation, it must be emphasized that any comparison between problem
difficulty for GA optimization should be based on these being approximately equal dimension in each
problem search space, since it is well-known that problem difficulty is proportional to the input size of
the GA search space.

Therefore, our test problems are the 64 bit Royal Road function RR1 and RR2 (Forrest and Mitchell,
1993), 16 copies of 4 bits Whitley’ s (1991) F2 fully deceptiveness function (total 64 bits), NIAHI
function (Jones and Forrest, 1995), NIAH2 function (Grefenstette, 1993), FDC counterexample
(Altenberg, 1997), maximum multimodality (Horn and Goldberg, 1995) and the combinatorial
multimodal optimization problem (63 bits) (He and Mort, 1998a, 1998b) which are of the approximately
same dimension of search space. According to the experimental design perspective indicated in section
4, the FDC framework is computed in the following procedures:
1. Randomly generate 4000 points which is situated within the interval of [20 45] on the Hamming
distance axis. The fitness distance correlation coefficient ry in this interval is calculated, making 1y
the FDC coefficient in the Jones and Forrest approach.




2. Mutation of the global optimum is used to produce approximately evenly distributed points within
the interval of [1 20] and [20 /], and the control mutation rate values are carefully selected as 1.5//,
4.0/1, 6.5/1, 9.0/, 10.5/1, 13.5/1, 16.5/1, and 47.5/1 , 50.5/1,53.5/1, 56.5/1, 59.5/1, 62.5/1. The respective
FDC coefficients are calculated as r. and ry.

The fitness distance scatter plots are summarized in Figure 4. (a) to (d), and the FDC coefficients are

displayed in table 1.
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Figure 4. Fitness distance scatter plot
(a) (b) 64 bits Royal Road function RR1 and RR2;
(c) 16 copies of 4 bits Whitley's F2 fully deceptiveness function
(e) NIAH2 function (f) FDC counterexample
(g) maximum multimodality (63 bit) (h) combinatorial multimodal optimization problem (63 bits)

(d) NIAH1 function




( Note: Since the axis values of the points in the fitness distance scatter plot are integer, in order to
display the distribution of points clearly, visualization programming is introduced here by adding a small

random value within the range 0 — 0.25 to both the fitness and Hamming distance values.)
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RR1 -0.8924 (0.0017) -0.1766 (0.0160) None
RR2 -0.8368 (0.0031) -0.1767 (0.0160) None
Deceptive(Whitley F2) -0.8799 (0.0033) 0.5112 (0.0139) 0.9718 (0.0009)
NIAHI None None None
NIAH2 0.3355 (0.0156) 0.2114 (0.0167) 0.4493 (0.0117)

FDC Counterexample

0.0448 (0.0160)

-0.0024 (0.0138)

0.2541 (0.0155)

Maximum Modality

-0.9848 (0.0002)

-0.9695 (0.0006)

-0.9856 (0.0003)

Combinatorial Multimodality

-0.5951 (0.0067)

-0.0022 (0.0168)

0.7143 (0.0060)

Table 1. FDC coefficient of all Test Functions

The above FDC coefficient values are the mean values of ten computations of FDC on the different test
functions with the variance contained in parenthesis. The variance in our novel FDC framework is very
small, which means that the fitness landscape for the ‘ random walks’ is siatistically isotropic. A
statistically isotropic landscape is one in which the statistics of the sequence of fitness values are the
same regardless of the starting point selected. More formally, these fitness landscapes are those in which
fitness values assigned to the configurations also form a stationary random process for the assumed joint
distribution of fitnesses (Weinberger, 1990). That is to say, all the test problems satisfy the condition, so
the random walks on these fitness landscapes can be regarded as stationary random processes.

The fitness scatter plots in figure 4 shows that they can display approximate linearity at the three
different intervals of Hamming distance, therefore, the utilization of FDC coefficient is achieved with
some confidence.

The interpretation of FDC coefficient as a measure of GA difficulty is.reviewed here. According to our
previous discussion, v represents the tendency of a population to move to the target optimum ( I
negative) or in the reverse direction (rys positive) when a random initial population is generated. ri. and
ry. are closely connected to the GA dynamic property indicated by the use of genetic operators such as
crossover and mutation., They predict the trend of a population’ s movement which is guided by the
fitness function after a few evolutionary generations.

Without loss of generality, the problems considered are always maximization. The global optimum is
always at the point of (0, FVm) in the fitness distance scatter plot (FVpax is the fitness value of the
global optimum). Thus, linking with the previous discussion in section 3, the following rules are
generated:

1. high negative FDC coefficient (close to -1) represents a smooth ﬁtness landscape, and it is easy for
genetic algorithms to search for the global optimum ¢ Vou, P,
2. low negative FDC coefficient means a rugged fitness landscape, and it is relatively dlfﬁcult for genetic




algorithms to search for the global optimum

3. population evolving on the fitness landscape with positive FDC coefficient will drift to a local
optimum or another global optimum far away from the target global optimum. Thus a positive FDC
coefficient represents GA deceptiveness, the higher the positive value (closer to +1), the more
deceptive the problem.

Now the results of the FDC coefficient computations for the test problems in table 1 are analyzed by
considering also their respective fitness distance scatter plots in figure 4.

1. The FDC coefficients in these two function are consistent with the GA simulation results reported in

Forrest and Mitchell (1993). (see Appendix 1). All the values of 1 and ry in the RR1 function and
RR2 function are negative, and ry is ‘ None’ , so they represent non-deceptive problems. From the
analysis of Rochet (1997), the epistasis interaction in the RR2 is greater than that of RR1. It is seen
that the 1. value provides confirmation of this since r. in RR1 function is smaller than that of RR2
function, so our FDC can accurately predict the epistasis interaction in genetic algorithms
applications. Note also that ry; is the measure used in the Jone and Forrest approach, and produces
values that are virtually equal for RR1 and RR2 functions, so it cannot be used satisfactorily an
indicator of GA search difficulty for Royal Road functions.

2. In the results presented, the value of ry for Whitlety’s F2 fully deceptive function is high positive,
and greater than the absolute value of rp. That is to say, the fitness landscape around the local
optimum is smoother than that around the global optimum, therefore the population is moved away '
from the global optimum to a local optimum. Our FDC framework therefore accurate!y predicts the
deceptiveness problem from the value of ry.

3. ‘Needle-in-a-Haystack’ is regarded as a GA-Hard problem traditionally because of its fitness

isolation and high fitness variance. Two types of NIAH problem are considered in this paper. The

fitness value of the NIAH]1 function is zero everywhere except for one point. Our FDC framework

does not include the optimal point because the mutation operator is applied to the global optimum,

so all these FDC coefficients are non-existent (None), and not equal to the zero as indicated by Jones

and Forrest (1995). This result shows that since FDC coefficient does not exist, the GA used in this

function is no more than a random search method since no reference to fitness variance is made.

The values of FDC coefficients of the NIAH2 function are all positive, so this function is just a GA

deceptive problem, and therefore is difficult for GA search. This result confirms the report in
Grefenstette (1993) that if the optimum is not in the initial population, it will never be found by a GA

search. From our FDC analysis, it is seen that the secret of NIAH2 is the deceptiveness problem. ;
Isolation and high fitness variance in the global optimum is not a necessary condition for GA search i
difficulty, since the GA search is irrelevant to the fitness value of the global optimum. ”

4. The values of i, and ry in Altenberg’s (1997) FDC counterexample are positive, which means that
this function represents the deceptiveness problem in general, and given that rp is close to zero, the
fitness landscape around the global optimum is extremely rugged, so this function is very difficult for
genetic algorithm search. This analysis is in accordance with the simulation result in Altenberg’ s
paper: even for the 50 b1t function, the mean number of function evaluations in finding the optimum
at 41% success rate is 10 it is reasonable to assume that the number of function evaluations of the
64 bit function would be greater than 10°. Compared with the mean number of function evaluations
to find the optimum by GA at 100% success rate on the 64 bit Royal Road function RR1 (Mitchell,
1996, P130) given as 61334, this counterexample is very difficult for a GA search.

5. All FDC coefficients of Maximum Modality are high negative (close to -1), which represents a

s




very smooth fitness landscape and it is very easy to search for the global optimum by GA. This
analysis is fully in keeping with the simulation results in which 39 out of 40 runs of GA for the
bitlength 49 function succeed in converging to a global optimum in Horn and Goldberg (1995). Also,
it should be made clear that massive multimodality is all the local optima whose fitnesses is smaller
than the single global optimum, so non deceptiveness is represented in this function which is
therefore easy for GA search.

6. The value of r; in the Combinatorial Multimodal Optimization Problem is positive, though the value
of 1 is negative. Moreover, the absolute value of ry is greater than that of r, so for any definite
global optimum, it is not easy to search by GA as deceptiveness is apparent. This analysis is in
accordance with the GA simulation result on this function (He and Mort, 1997). Also, it should be
pointed out that while the Maximum Modality function has only one global optimum, the
Combinatorial Multimomdal Optimization Problem (CMOP) has a number of global optima and a
large number of local optima, so CMOP can be regarded as a most deceptive problem (Ohkura and
Ueda, 1995; He and Mort, 1998a,b).

7. Conclusion and Discussion

On the basis of the pioneering work of Jones and Forrest (1995) on FDC as a measure of problem
difficulty for genetic algorithms, a novel framework combining FDC with the Experimental Design
perspective in statistics is proposed. This approach not only meets the mathematical condition of
correlation coefficient, but also is closely relevant to genetic operators, such as crossover and mutation.
A number of different well-known test functions with particular GA difficulty factors including epistasis
interaction, isolation, high fitness variance, deceptiveness and multimodality are investigated. Numerical
results demonstrate that this framework is an effective statistical summary for GA performance on the
respective fitness landscape.

Though this work uses the 63 or 64 bits test functions as examples, other problems with different
dimension of search space can be addressed in a similar way. Also, it should be recognized that the FDC
coefficient is merely a relative value used to compare predicted GA performance on the different fitness
landscapes with approximately the same dimension of search space. We do not recommend a special
value of FDC coeflicient to be a standard for GA search difficulty, only the relative performance is
measured using our FDC methodology.

Since the fitness landscape is related to different encoding or representation issues and the assignment of
fitness functions for GA applications, this framework provides simple and effective guidance to
construct genetic algorithms for practical engineering problems.
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Appendix

1. Test Functions and their reported results

(1) Royal Road functions RR1 an RR2 are shown below.

Royal Road function RR1
s; =1111111 )********************************************************; =28
§p SHEkkEEEx]]]] 1]1]***************uz********************************-‘ =8
S3 :****************11]111]]****************************************: c3= 8
S4 :************************1111]11j********************************: C_1=8
55 =********************************1]11111]************************-‘
Sg :****************************************11]111]1****************: —8
S- :************************************************11]1111]********; c-= 8
58 :********************************************************l1]1]111-_ CS= 8
SDP1=111]111111111]1]]1111111111111]1]11111111]]111]1]1]]111]11111111:cc,]_n=64

(2) Royal Road function RR2
s) =“““Jj********************************************************: ci =%
g EEERERRx | | 1]J]]]************************************************: ca=§
53 =******x$********11”11“****************************************-_ ;=8
54 =***x*********x**********l]]]11]1********************************-_ c.=8
G IR R R KKK R R R AR ] ] ] T1 1] ] %ksbtskshskar sk o kKA Kk cs=8
S TR AR AR A AR A R AR AR KA A KK AN ] | 11111 TR*sksksksksskrsonskok sk, ce=8
s- :***x*:‘c******************************************}111]1]1********: c-=8§
53 :********************************************************]111]111-_ cy=8
so =111111111 11111]1************************************************-_ Co= 16
Sy SRFF R R A AAER] ] | ]11]1]]111]1********************************: ci=16
51 :********************************1I1ll]11llll]1]1****************; =16
5 :************************************************111]1]111]1”111: =16

S13=111ITLIEITIIII1111 1001111111 11T IRkkasbnsmmbnhaksk kb wbsk kb kmbhrbhohshsd, o = 37
Sy STEERRRCsEE AR R R R ) T] DI TR I T T T i ey =80

sopl=llllllllillJl1111111]11111111]111]1111111]1111]111]111]]111]111]:COPF 192

In RR1 function, the given order-8 schema is a building block, the fitness value RR1(s) is the sum of the
coefficient ¢, corresponding to each given schema of which bit string s is an instance. For example,
RRI(1111111100...0)=8, RR1(111111111111111100...00)=16, and RR1(sop)=64.

In RR1 function, some certain intermediate stepping stones with higher fitness contribution are added
based on RR1 function, RR2 is calculated in the same way as RR1: the fitness of a bit string s is the sum
of the coefficient corresponding to the each schema (si-s15) of which it is an instance. For example,
RRI(1111111100...0011111111)=16, since this string is an instance of both schema s; and ss, but
RRI(111111111111111100...00)=32 since this string is an instance of s;, s, and so. Also the optimal
fitness value is 192, since it is an instance of all schema in the list. The reported GA simulation result is:

Function Evaluations to Optimum

500 runs RR1 RR2

Mean 62099 74563
(3) Whitley’s 4 bit fully deceptive function F2

This function is such that all low order hyperplane (order 4 schema) information leads the search away
from global optimum 1111 to local optimum (deceptive attractor) 0000

f(1111)=30 f(n100m=22 f(0110)=14 f(1110)=6
f(O000)=28 f(1000)=20 f(1001)=12 f(1101)=4




£(0001)=26 f(L011)=18 £(1010)=10 £1011)=2
£(0010)=24 f(0101)=16 1(1100)=8 f(0111)=0

(4) Needle in a Haystack function NIAH1:
The fitness value is zero everywhere except for one point.

(5) Needle in a Haystack function NIAH2:

Consider an L-bit space representing the interval [0 1] in binary encoding. Let the fitness function f be
defined as:

Jixy =24 if x=0

Jix) = X’ otherwise
It is almost impossible for a GA to find the optimum if the initial population does not include the
optimum in both the above NIAH functions.
(6) FDC counterexample: consider the following fitness function of bit string x:

F(x) =max [1 - D(x) L / {2 [L-H(x)]H(x)}, 0]

where, D(x) = ZJH Ix; - x| € [0, L-1];
H(x) is the Hamming distance to the global optimum 0, 0 is the all Os bitstring which has the maximum
fitness value F(#) =1 - 1/[2 (L-1)]. The reported GA experimental results are:

Bit length Mean Evaluations Success
24 56.3K 100%
32 164K 93%
50 10° 41%

(7) In order to illustrate that massive multimodality by itself does not imply difficulty for GA search, a
maximally multimodal function which has the maximum number of possible * attractors’ but is easy for
GA search may be constructed as:

Jmcasy(5) = 1(8) + 2 % frn(s)

where, Jem(s) = 11if odd (u(s)); 0 otherwise
and  w(s) is the unitation of a string s which is equal to the number of 1s in s. For example, #(01011)
=3, 1s odd. The GA simulation results is:

Problem Size No. of Trials (of 40) converging to optimum
/=29 40
/=39 39
/=49 39

(8) Combinatorial Multimodal Optimization Problem (CMOP):

CMOP comes from a practical manufacturing scheduling problem. A number of integers is characterized
by the vector W= {176 380 216 688 144 497 153 12 714 231 310 170 6 660 50 114 282
12 454 128 2066} . A great integer is given as P=811. Some of these integers will be sampled without
replacement to form the combinations whose sum is close to P but no more than P. The fitness value is
assigned to be the number of the combinations subject to the constraint condition:

Zm C, =P m - sum(W¥)

i=]
where C, is i-th combination. m is the number of combinations. This is a typical combinatorial
optimization problem with at least two optima as shown below:




sum(C,)

497 12 380 144 176
310 231 153 660 216
0 114 12 6 282
0 454 266 0 128
807 811 811 810 802

w
[
1]

sum(C,)

216 12 380 144 176
310 231 153 6 - 497
282 114 12 660 128
0 454 266 0 0

808 811 811 810 801

So the optimal fitness value m=5, just 5 combinations can be found from these integers which satisfies
the constraint condition. This combinatorial multimodal optimization problem has numerous global
optima. The results of 50 trials of a simple GA using 30,000 function evaluations are reported as

follows:

Final fitness value until maximum generation 5 4 3

Number of fitness value found in 30 trials 18 26 6

2. Fitness Distance Scatter Plots reproduced from Jones and Forrest (1995), (Figure 2)
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distance scatter plots. Function sources are given in Table 1. FDC values for
functions on more than 12 bits are computed from a random sample of 4000 points. The functions are as follcnfvs:
(a-c) one, two and three copies of Deb & Goldberg’s fully deceptive 6-bit problem (r = 0.30). Notice the additive
effect. (d) Holland’s royal road on 128 bits (b = 8, k = 4 and g = 0), (r = 0.27). (e-g) one, two and three coples
of Whitley's F2, a fully deceptive 4-bit problem (r = 0.51). (k) Horn, Goldberg & Deb’s long path problem with
11 bits (r = —0.12). Notice the path. (ij) De Jong’s F3 binary and Gray coded with 15 bits as a maximizadtion
problem (r = —0.86 and —0.57). (k) Liepins and Vose’s fully deceptive problem on 10 bits (r = 0.98) and (1)
their transformed problem (r = —0.02). Correlation cannot detect the X. :

Figure 2: A sample of fitness
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Figure 2: A scatter plot o7 3¢ dis—i=cdon of fitnesses v
Hamming distance for the =< fun=son. L = 64 bits. (&
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3. FDC counterexample reproduced from Altenberg (1997)
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