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2. Fabrication and characterization

In order to investigate systematically the effects of a mid-infrared pump on the gain in a THz QCL, three different 
GaAs/Al25Ga75As structures have been designed and grown by molecular beam epitaxy on an insulating GaAs 
substrate. This material system has been chosen for its large value of conduction band discontinuity (223.5 meV), 
allowing good confinement of the high order states involved in the mid-infrared transition.  

The active regions have been processed into metal-metal and single-plasmon Fabry-Perot waveguides, 
and characterized in an FTIR spectrometer using a CO2 laser and a QCL master-oscillator power-amplifier (MOPA) 
[2] as external mid-infrared sources. 

3. Gain enhancement by quantum coherence

The maximum gain is reached when both optical fields are at exact resonance with the corresponding transitions. 
Under these conditions, the gain for the THz transition is given by:  THz = %&'()*+,-.() /()+0()12342+56( 7(9% − 9;) + |?4|+ (A)BA6)06(06)  C  (1) 

where D%; is the dipole moment of the THz transition, E%; is the refractive index of the THz mode, 9F is the 
population on the Gth subband, JFK is the linewidth of the transition G − L, and Ω/ is the Rabi frequency of the mid-
infrared drive field N/, defined as  Ω/ = DO;N/ ℎ⁄ .  The mid-infrared driving field enhances the gain in two ways: 
first, by depopulating the lower laser state 3, and second, by introducing the last term (in the brackets), which is 
proportional to the drive intensity and due directly to quantum coherence effects.  

This presentation will report the design and modeling of the laser performance. The fabrication process, 
characterization apparatus, and experimental results will then be presented and discussed. 
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