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Abstract. Existing automated MT evaluation methods often require expert hu-
man translations. These are produced for every language pair evaluated and,
due to this expense, subsequent evaluations tend to rely on the same texts,
which do not necessarily reflect real MT use. In contrast, we are designing an
automated MT evaluation system, intended for use by post-editors, purchasers
and developers, that requires nothing but the raw MT output. Furthermore, our
research is based on texts that reflect corporate use of MT. This paper describes
our first step in system design: a hierarchical classification scheme of fluency
errors in English MT output, to enable us to identify error types and frequen-
cies, and guide the selection of errors for automated detection. We present re-
sults from the statistical analysis of 20,000 words of MT output, manually an-
notated using our classification scheme, and describe correlations between error
frequencies and human scores for fluency and adequacy.

1   Introduction

Automated machine translation evaluation is quicker and cheaper than obtaining hu-
man judgments on translation quality. However, automated methods are ultimately
validated by the establishment of correlations with human scores. Overviews of both
human and automated methods for MT evaluation can be found in [1] and on the
FEMTI1 website [2]. Although existing automated methods such as BLEU [3] and
RED [4] can produce scores that correlate with human quality judgments, these meth-
ods still require human translations, which are expensive to produce. BLEU requires
up to four human ‘reference’ translations against which MT output is automatically
compared and scored according to modified n-gram precision. The test corpus used
for this research comprised 500 sentences from general news stories, with four human
translations of each. RED, on the other hand, automatically ranks MT output based on
edit distances to multiple reference translations. In [5], 16 human reference transla-
tions of 345 sentences in two language directions were used from the Basic Travel
Expression Corpus [6].

To eliminate the expense of producing human translations, and to investigate the
potential of a more portable method, our aim is to design an automated MT evaluation
system, initially for language pairs in which the target language is English, which
does not require human reference translations. The system will detect fluency errors
                                                          
1 A Framework for the Evaluation of Machine Translation in ISLE.
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characteristic of MT output, and will be designed to meet the needs of post-editors,
purchasers and developers.

2   Texts for Evaluation Research

Many published MT evaluation projects, such as BLEU [3] and the DARPA evalua-
tion series [7] have based their research entirely on newspaper texts. Many subsequent
MT evaluation experiments have also made use of the DARPA corpus, such as [8],
[9], [10], [11], [12] and [13]. Consequently, we conducted a survey of MT users in
2003 to find out which text types were most frequently translated by MT systems. Re-
sponses showed a great difference between the use of MT by companies/organizations
and by individuals who machine translated documents for personal use [14]. It was
found that companies most frequently machine translated user manuals and technical
documents on a large scale. As a result, the decision was taken to collect such texts
for our evaluation research, along with a smaller number of legislative and medical
documents, which also figured highly among survey responses. The resulting multi-
lingual parallel corpus is TECMATE, (a TEchnical Corpus for MAchine Translation
Evaluation), comprising source texts, human and machine translations, and human
scores for fluency and adequacy for an increasing number of texts [15].

3   Designing an Error Categorization Scheme

The decision to devise a classification scheme of fluency errors stemmed from the
need to identify error types in MT output to guide automated evaluation. Statistics
from the human annotation of MT output using such a scheme would provide infor-
mation on the frequency of error types in texts produced by different MT systems and
would help us select errors for automated detection. Statistics would also enable us to
compare error type frequency with human judgments for fluency and adequacy, ena-
bling us to focus on the detection of those error types whose frequency correlated
with lower human scores for one or both of those attributes.

Fine-grained error classification schemes are not practical for the black-box
evaluation of large numbers of machine translations; such a method is even more
time-consuming than, for instance, the evaluation of fluency or fidelity at segment
level. Consequently, few MT error classification schemes have been devised, and
most have been designed with a particular purpose in mind. The SAE J2450 Quality
Metric, developed by the Society of Automotive Engineers [16], and the Framework
for Standard Error Marking devised by the American Translators Association [17]
were both designed for the evaluation of human translations and are insufficiently
fine-grained for our purpose. Correa’s typology of errors commonly found in auto-
matic translation [18] was also unsuited to our needs, largely because it was designed
for glass-box evaluations during system development. Flanagan’s Error Classification
for MT Evaluation [19] to allow end-users to compare translations by competing sys-
tems, Loffler-Laurian’s typology of errors for MT, based on linguistic problems for
post-editors [20] and classifications by Roudaud et al. [21], Chaumier and Green in
[22] provide a more useful starting point for our work. However, these are still insuf-
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ficiently fine-grained for our purpose, all rely on access to the source text, and most
are based on errors found in translations out of English. As our intention is to design
an automated error detection system that does not require access to the original or to
any human translation for comparison, it was essential to devise categories based on
the analysis of MT output in isolation.

Our classification of errors was progressively developed during the analysis and
manual annotation of approximately 20,000 words of MT output, translated from
French into English by four systems (Systran, Reverso Promt, Comprendium and
SDL’s online FreeTranslation2). The four machine translations of twelve texts (each
of approximately 400 words) from the TECMATE corpus were annotated with error
types. The texts comprised three extracts from software user manuals, three FAQs
(frequently asked questions) on software applications, three press releases on techni-
cal topics and three extracts from technical reports taken from the BAF corpus3. All
texts were chosen on the basis that they would be understandable to regular users of
computer applications.

Annotations were made according to items that a post-editor would need to amend
if he/she were revising the texts to publishable quality. Although the source text was
not made available, knowledge of the source language was necessary, as the scheme
requires untranslated words to be annotated with parts-of-speech. Furthermore, it was
important for the annotator to be familiar with the named entities and acronyms (eg.
names of software applications) in the texts, to better represent the end-user and code
these terms appropriately.

Errors were annotated using the Systemic Coder4, a tool that supports hierarchical
linguistic coding schemes and enables subsequent statistical analyses. Error types
were divided according to parts-of-speech, as this would provide more detailed in-
formation for analysis and would enable us to make more informed decisions when
selecting and weighting errors for our automated system. As the Coder supports the
insertion of new nodes into the hierarchy at any time, this facilitated the progressive
data-driven refinement of the coding scheme. For example, after annotating around
1,000 words, a decision was taken to sub-divide ‘inappropriate’ items (see Figure 1)
into ‘meaning clear’, ‘meaning unclear’ and ‘outrageous’ (words with an extremely
low probability of appearing in a particular text type and subject area). This refine-
ment would enable us to make better comparisons between MT systems, and isolate
those errors that have a greater effect on intelligibility.

During these initial stages of analysis, it became clear that, having set out to anno-
tate fluency errors, adequacy errors were also detectable as contributors to disfluency,
despite the absence of the source text. Words or phrases that were obviously incorrect
in the given context were marked as ‘meaning unclear’ and can be seen as both flu-
ency and adequacy errors. For this research, we can, therefore, define each annotated
error as a unit of language that surprises the reader because its usage does not seem
natural in the context in which it appears.

                                                          
2 http://www.freetranslation.com/
3 http://www-rali.iro.umontreal.ca/arc-a2/BAF/Description.html
4 http://www.wagsoft.com/Coder/index.html
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Fig. 1. Fluency Error Categorization Scheme
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4   Organization of Error Categories

The current scheme contains all error types found in the French-English MT output.
However, the organization of categories reflects the constraints of the tool to a certain
extent. It was noticed during the annotation process that items often involved two and,
in rare instances, three error types. For example, a noun could be ‘inappropriate’, its
position within the phrase could be incorrect and it could lack a required capital letter,
or a verb could be ‘inappropriate’ and the tense also incorrect. The scheme was, there-
fore, organized in such a way that the tool would allow all of these combinations of
categories to be assigned to the same word or group of words where necessary.

Table 1. Some definitions of categories and examples of annotation

Error category Definitions and examples
Outrageous The item has an extremely low probability of appearing in this text

type and subject area.
Eg. beach rather than time slot, shelterers rather than (web) hosts.

Multi-word
verb structure

A verb comprising multiple words (in addition to prepositions) is
incorrect.
Eg. are more priority than as opposed to take priority over.

Noun string /
named-entity
word order

The constituent parts are ordered incorrectly.
Eg. Properties Internet Connection rather than Internet Connection
Properties.

Noun string /
named-entity
arrangement

The constituent parts are ordered incorrectly and additional words
are included (common in translations from French into English).
Eg. window of definition of the filter rather than filter definition
window.

Noun string
appendage
position

Two noun strings are ‘combined’ so that when translated into Eng-
lish, the word order is incorrect.
Eg. tabs of options and regulations should be options and regula-
tions tabs.
Here tabs of options would be marked ‘noun string arrangement’ and
the words underlined would be marked as ‘incorrect noun string
appendage position’.

Noun inappropri-
ate, meaning clear

Eg. …a cd-rom placed in the reader of the device

Noun inappropri-
ate, meaning un-
clear

Eg. …activating the notch, you will see the lunar globe …

Verb inappropri-
ate, meaning clear

Eg. …if the open file was already registered in this format …

Verb inappropri-
ate, meaning un-
clear

Eg. …the main window behaves the menu bar...

Adverb position Eg.    Francophone users avoid systematically using…

Definite article
omitted

Eg.    Among *** most frequent, … (Three asterisks are inserted to
mark the omission of an item.)
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An item can be annotated with up to four main categories: part-of-speech, verb
tense or conjugation, incorrect position and ‘other’, as shown on the left-hand side of
Figure 1. Sub-categories must then be selected, moving from left to right, until the fi-
nal node is reached. The Systemic Coder allows categories to be added, moved or
deleted at any time. This will be essential for the analysis of MT output from other
source languages, in which we expect to find different error types. Table 1 provides
definitions of some of the categories with examples of coded text.

5   Capturing the Essence of Fluency and Adequacy

Statistics from our annotations were compared with human evaluation scores to ex-
plore correlations between the number of errors annotated and intuitive judgments on
fluency and adequacy. Each of the 48 machine translations was evaluated by three
different judges for each attribute. Texts were evaluated at segment level on a scale of
1-5, using metrics based on the DARPA evaluations [7]. For fluency, evaluators had
access only to the translation; for adequacy, judges compared candidate segments
with an aligned human reference translation. A mean score was calculated per seg-
ment for each attribute. These scores were then used to generate a mean score per text
and per system. Methods and results are described in [15].

Assuming that all error types in the classification scheme affect fluency, we ini-
tially compared the total number of errors per system with human fluency scores. We
then removed all error categories that were considered unlikely to have an affect on
adequacy (such as ‘inappropriate’ items with a clear meaning, unnecessary items, in-
appropriate prepositions and determiners, omitted determiners, incorrect positions of
words, spelling errors, case errors and incorrect verb tense/mood or conjugation, the
majority of these being an inappropriate present tense in English). The remaining
classification of adequacy errors was then compared with the adequacy scores from
our human evaluations, as shown in Table 2.

Table 2. Human scores and error counts for fluency and adequacy

System Mean human

fluency score

and rank

Number of

fluency

errors and

rank

Mean human

adequacy

score and

rank

Number of

adequacy

errors and

rank

Systran 3.519 (1) 1015 (1) 4.136 (2) 127 (1)

Reverso 3.466 (2) 1020 (2) 4.142 (1) 132 (2)

Comprendium 3.221 (3) 1195 (3) 4.013 (3) 161 (3)

FreeTranslation 2.827 (4) 1460 (4) 3.644 (4) 287 (4)

Human fluency scores and the number of annotated fluency errors rank all four
systems in the same order. The picture is slightly different for adequacy, with Systran
and Reverso competing for the top position. We calculated Pearson’s correlation coef-
ficient r between the human scores and the number of errors per system for each at-
tribute. A very strong negative correlation was found between values: for fluency the
value of r = -0.998 and for adequacy r = -0.997. Of course, only four pairs of vari-
ables are taken into consideration here. Nevertheless, results show that we have man-
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aged to capture adequacy as well as fluency by annotating errors without reference to
the source text.

6   Correlating Error Frequency and Human Scores by Text Type

We computed error frequencies for the four text types. For each of the four systems,
user manuals were annotated with the largest number of errors, followed by FAQs,
technical reports and finally, press releases. The number of fluency errors and the sub-
set of adequacy errors were then compared with human scores for fluency and ade-
quacy according to text type. No significant correlation was found. In fact, human
scores for fluency were highest for user manuals for all systems, yet these texts con-
tained the largest number of annotated errors. It is clear, therefore, that errors must be
weighted to correlate with intuitive human judgements of translation quality. The two
main reasons for the large number of errors annotated in the user manuals were (i) the
high frequency of compound nouns  (eg. computer interface items and names of soft-
ware applications), which, in many cases, were coded with two error types (eg. inap-
propriate translations and word order) and (ii) the high number of inappropriately
translated verbs, which although understandable in the majority of cases, were not
correct in the context of software applications (eg. leave instead of quit or exit, regis-

ter or record instead of save etc.) Furthermore, user manuals were annotated with the
largest number of untranslated words, yet many of these were understandable to
evaluators with no knowledge of French, having little or no adverse effect on ade-
quacy scores. A further experiment showed that 58% of all untranslated words in this
study were correctly guessed in context by three people with no knowledge of French.
In fact, 44% of these words, presented in the form of a list, were correctly guessed out
of context.

7   Selecting Error Types for Automated Detection

The eight most common error types (from a total of 58 main categories) were found to
be the same for all four systems, although the order of frequency differed between
systems and text types. The frequency of these eight errors represents on average 64%
of the total error count per system.

Table 3 shows that only in the case of inappropriate verbs (2) and inappropriate
prepositions (6) does the total number of errors correspond to the rank order of the
four systems according to human scores for fluency. The number of inappropriate
noun string content errors (7) corresponds to human rankings for adequacy. Further-
more, the frequency of very few error types in the entire scheme corresponds to hu-
man rankings of the four systems for either fluency or adequacy. It is also clear from
Table 3 that the frequency of particular errors within a given text type does not repre-
sent system performance as a whole.

Findings show that, while the frequencies of the above eight error types are signifi-
cant, detecting a small number of errors to predict scores for a particular text type or
system is not sufficient. Quality involves a whole range of factors – many of which
must be represented in our automated system. Furthermore, our intention is to build a
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tool that will provide information on error types to help users and developers, rather
than merely a mechanism for producing a raw system score. It is clear, therefore, that
a number of different error categories should be selected for detection, based on their
combined frequencies, and on their computational tractability; we still need to deter-
mine which error types could be detected more successfully.

Table 3. Top eight error types by system

Number of errors annotatedError type
Systran Reverso Comprend FreeTrans

(1) Incorrect compound nn sequence 130 145 151 148

Manuals/FAQs/Press/Reports 56/21/39/14 58/30/42/15 64/28/41/18 62/30/40/16

(2) Inappropriate verb 121 126 135 141

Manuals/FAQs/Press/Reports 51/31/20/19 38/42/23/23 47/39/22/27 48/46/22/25

(3) Unnecessary determiner 105 102 137 121

Manuals/FAQs/Press/Reports 31/14/18/42 28/15/18/41 39/20/24/54 31/17/19/54

(4) Inappropriate noun 77 82 79 105

Manuals/FAQs/Press/Reports 17/20/22/18 16/14/24/28 19/18/24/18 18/24/29/34

(5) Incorrect verb tense or mood 76 56 103 90

Manuals/FAQs/Press/Reports 29/30/11/6 12/24/13/7 40/42/14/7 25/35/13/17

(6) Inappropriate preposition 73 77 84 89

Manuals/FAQs/Press/Reports 27/21/8/17 23/19/12/23 24/22/18/20 28/28/15/18

(7) Inappropriate.nn string content 48 38 69 82

Manuals/FAQs/Press/Reports 23/9/10/6 11/8/17/2 26/18/19/6 35/13/27/7

(8) Inappropriate adjective 48 37 59 42

Manuals/FAQs/Press/Reports 7/8/13/20 7/6/8/16 8/8/17/26 5/11/7/19

8   Conclusions and Future Work

We have devised an adaptable fluency error categorization scheme for French-English
MT output, which also enables the detection of adequacy errors, without access to the
source text. Preliminary analyses show that the number of errors annotated per system
correlates with human judgments for fluency, and that a sub-set of error categories
correlates with human judgments for adequacy. The annotated MT output has pro-
vided us with valuable information for the design of an automated MT evaluation
system to help users and developers. Statistics are enabling us to identify the weak
points of participating systems, and findings show that we must aim to automatically
detect a good number of these to represent system performance.

Future work will involve:

• investigating inter-annotator agreement, as error annotation is subjective (for
some categories more than others);

• the subsequent investigation and evaluation of methods for automating the de-
tection of selected errors using machine-learning techniques on the annotated
and part-of-speech tagged corpus;

• investigating correlations between human judgments and error type/frequency
within texts;

• research into error weighting;
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• the classification of errors by relative difficulty of correction during post-editing
and/or by the possibility of correction by updating user dictionaries (although not
appropriate for online MT systems);

• expanding the scheme to accommodate additional source languages translated
into English;

• producing detailed documentation on the error categorization scheme, to include
a full tag-set with examples;
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