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Abstract
Conventional system identification algorithms are based on the minimisation of
the one step ahead prediction errors. In this study it is shown that one step ahead
predictions do not always provide a good assessment of model quality. The model
predicted output which can be considered as the long range prediction is suggested
as an alternative criterion for model assessment. Based on this criterion a new
system identification algorithm is developed.

1 Introduction

Conventional system identification algorithms are based on the minimisation of the one
step ahead prediction errors. Typically the data set is split into an estimation set which is
used to identify the model and a test set which is used to assess the predictive capacity of
the model obtained. If the one step ahead predictions over both the estimation data and
the test data are good the model is considered as acceptable. This procedure is regarded
as universally correct and has been used in system modelling and identification for various
model forms. These include the linear ARMAX model (Autoregressive Moving Average
model with eXogenous input) and the NARMAX model (Nonlinear ARMAX) and in neu-
ral network training for the multilayer perceptron (MLP) and radial basis function (RBF)
architectures.

T.:e efficiency of one step ahead predictions for model assessment is examined in the
prusent study. A theoretical analysis shows that one step ahead predictions over a test
ceia set may not always provide a good assessment of model quality if the input and
caiput are stationary signals. Assessing identified models based on one step ahead pre-
dictions can therefore produce incorrect results. This is demonstrated using an example
where the model which provides almost perfect one step ahead predictions over the esti-
mation and test data sets has incorrect step and frequency responses.

An alternative criterion for model assessment is the model predicted output. Although
not often addressed, model predicted output has long been used for model assessment (
for example Ljung 1987, Billings et al 1989, 1992). Model predicted outputs can be con-
sidered as multistep predictions with prediction horizons from 1 to N — d, where N is the
data length, d is the maximum value of the input and output lags, and these are therefore




more sensitive to unmodelled dynamics than one step ahead predictions. However, until
recently model predicted output has not been used as an optimisation index in system
identification (Berger 1995, 1997). This is possibly because the model predicted output
is usually a high order nonlinear function of the model parameters. In Berger (1995,
1997) the model structure was assumed to be known a prior: and the minimisation of
model predicted outputs was achieved through optimising parameter estimation. But the
model predicted output mainly depends on the model structure. If a model structure is
insufficient to describe the system, optimising the parameter estimates will achieve a very
limited improvement in the model predicted output. Therefore, when the model struc-
ture is unknown a priori, the optimisation of model predicted outputs should be done by
selecting a correct model structure while the parameters can be estimated using a least
squares algorithm if the model can be expressed in a linear-in-the-parameters form.

Motivated by the above observations a new system identification algorithm based on the

minimisation of model predicted output errors is developed in the present study. Actu-
ally this algorithm minimises three performance indices: one step ahead prediction errors,

model predicted output errors and model size. This multi-objective optimisation problem
can be solved by optimising a combined cost function which is a weighted sum of these

three performance indices. But there exist at least two difficulties associated with the

minimisation of this combined cost function. First, weighting elements are not easy to

assign in practice. Although it is often claimed that weighting elements can be decided

in terms of the designers preferences it is very difficult to establish a quantitative rela-

tionship between values of the weighting elements and objectives such as approximation

accuracy. Second, the cost function is an (N — d)** order nonlinear function of the model

parameters. Even if the model structure is known @ priori, estimating the parameters

by directly minimising the high order nonlinear function is impractical if the prediction

horizon is extended to cover the data length. In the present study, the three performance

indices are minimised separately but simultaneously using a multi-objective genetic algo-

rithm (GA). Because model size and model predicted output are both dependent on the. -
model structure employed, minimisation of these three performance indices can be done
by selecting the optimal model structure from a set of candidate models using genetic
algorithms, while the parameters can be estimated using a least squares routine. The
advantages of the new algorithm are that it is not necessary to solve a high order nonlin-
ear optimisation problem for parameter estimation, and objectives such as approximation
accuracy are easier to realise.

The present study is organised as follows. In §2, the one step ahead prediction for model
identification and assessment are briefly reviewed, and the efficiency of one step ahead
prediction is analysed and illustrated. In §3, a new system identification algorithm opti-
mising model predicted outputs is developed. Numerical examples are presented in 84.




2 One step ahead predictions for model assessment

2.1 A brief review of the one step ahead prediction error for
model assessment

An important aspect of system modelling and identification is the problem of model struc-
ture determination, that is determining the model form, size and complexity. An under-
sized model will provide an inadequate representation but an oversized model will have a
tendency to overfit the given data and will often perform badly on unseen data. Determin-
ing an appropriate model structure is therefore important and has received considerable
attention in the literature. There are two main kinds of model selection methods; the
backward elimination method and the forward inclusion method. The backward elimina-
ti0n method starts with a large model and unimportant model elements are dynamically
removed. The model elements could for example be terms in a NARMAX model or
neurons in a neural network model. In the forward inclusion method important model
elements are dynamically added according to a selection criterion. The forward regression
orthogonal algorithm (Billings et ol 1988a) belongs to the inclusion method and has been
widely used in dynamic nonlinear system identification of various model forms. These
include the NARMAX model (Billings et al 1988b, Zhu and Billings 1993, Billings and
Mao 1997, and many others), radial basis function (RBF) neural networks (Chen et al
1990b, 1991, Brouwn et al 1994, Arciniegus et al 1994) and fuzzy systems (Wang and
Mendel 1992, Jang and Sun 1993, Wang and Langari 1995, and others).

Whatever method is employed assessing model quality is an important step in any sys-
tem identification procedure. Because of the ease of implementation the one step ahead
prediction is one of the most commonly used assessment indices. Typically the data is
divided into an estimation set which is used for model identification and a test set which is
used to test the model predictive capacity. If the model selected provides good predictions
over the test data the model is considered as acceptable (see for example Nahas et al1992,
Ligntbody et al 1997). But recent research suggests that this procedure may not always
be an acceptable test approach. This was illustrated by, for example Zhu and Rohwer
(1796) who demonstrated that using test data can cause incorrect estimation of the mean
+~.1 variance of a group of data. It is therefore instructive to examine the efficiency of
on - step ahead predictions for model assessment.

2 2 Numerical illustration of one step ahead predictions in
model assessment

The efficiency of one step ahead predictions for model assessment will be investigated in
this section where it is shown that one step ahead predictions over a test data set do not
always provide more insight regarding model inadequencies than predictions over just the
estimation data set. This is best illustrated using a simple example.




Example

Consider the model of a heat exchanger (Smith and Corripio 1997)

0.8
(30s + 1)(10s + 1)(3s + 1) (1)

G(s) =

Using a PRBS sequence with amplitude £3 as the input and a sampling period of 2
seconds 800 data samples were generated. The first 400 data samples were used for model
estimation and the last 400 samples were used for model testing. The maximum lags of
" the input and output were all set to 3, and the approximation accuracy was set to 99.9%.
The discrete time linear ARX model was identified

_ 0.0002749 + 0.002305z71 .
~ 1-1.9335z-1 + 0.94352-2 (2)

~

G(z™)

The one step ahead predicted output over the estimation and test sets are shown in Figure
1 (2) and (b) and clearly indicate that the model eqn (2) is adequate. Indeed the model
appears to fit almost perfectly. However the different unit step responses of the original
system eqn (1) and the identified model eqn (2) shown in Figure 2 (a) and (b) reveal that
the identified model is incorrect. This is conformed by the different frequency responses
illustrated in Figure 3 (a) and (b).
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Figure 1: One step predictions for model eqn (2) (a) the estimation data, (b) the test
data (solid-measurement, dashed-prediction)

= S5O EE=1=] M50 200 o so EE=2=) NS0 EX=1=1
Camn ) =53

Figure 2: Unit step responses for models eqn (1) and eqn (2) (2) the identified model eqn
(2), (b) the model eqn (1)
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Figure 3: Frequency responses for models eqn (1) and eqn (2) (a) the identified model
eqn (2), (b) the model eqn (1)

The input for the identification was a PRBS sequence and the system was therefore
persistently excited. But why was an insufficient model selected and why did the model
produce almost perfect one step ahead predictions? This 1s because the identification is
based on the contribution of candidate terms to the one step ahead output prediction
which is proportional to the correlation between the output and the candidate terms.
When the output signal changes slowly as in Figure 1, the correlations between the output
y(k) and the candidate terms y(k—1), y(k — 2) etc are large. This can occur for example
when the signals are over sampled. Thus, a medel with only a few terms such as y(k—1),
y(k — 2) will meet the approximation accuracy requirement. In this example, the omitted
model terms make little energy contribution to the output, in fact only 0.06%. The correct
model in this case is

_0.000248 + 0.00226z~* 4+ 0.00179z~2

o
G(Z ' ) T 1-2.309z"1 + 1.667z-2 — 0.4292-3 (3)

A comparison between models (2) and (3) shows that the structure of the identified model
eqn (2) was insufficient, and severe bias was induced due to the omitted model terms. As
a consequence the dynamic characteristics and and the static gain of the identified model
(2) are all quite different from the true model. This means that although the omitted
terms are trivial in terms of the energy of the output, these are important to the system
characteristics. Determining model structure according to one step ahead predictions may
therefore produce an incorrect result especially if the sample rate is inappropriate. The
one step ahead prediction over the test data set is expected to detect the inadequacies of
model (2), however the test failed. The failure is analysed in the next subsection.

2.3 A theoretical analysis of the failure of one step ahead pre-
dictions for model assessment

Consider the nonlinear dynamic model




where the regressors ¢;(k) are some nonlinear function of the input and output, and 6;

represent the parameters. ¢1(k) = [p1(k), ..., om(k)], $2(k) = [pm41(k), .- -, pa(k)], ©1 =
[61,...,6m]%, O3 = [6ms1,--.,0a]7. Notice that eqn (4) can be used to represent a wide
class of model types including radial basis function (RBF) neural network architectures,
fuzzy logic models etc.

Consider an insufficient model where the last a few terms on the rhs of eqn (4) have been
deliberately omitted

y(k) = ¢:1(k)@1 ()

and compute the least squares parameter estimate

6

(2%,%51) @F, Y
(8%,251) @51 (25101 + ©5202)
(3%,851) ' 05,2510:1 + (25, 21) ' 5, 25202

$7,% 37.%
B e s (6)

where ®; = [¢7(1),...,¢7 (V)T (: =1,2), Y5 = [y(1),...,y(N)]T and the subscript E
denotes the estimation data set.

Consider the one step ahead prediction errors over the estimation data
(k) = y(k)— (k) = ¢1(k)Os + $2(k)O2 = (k)01

= ¢,(k)O; — ¢1(k)(@E§E1)-1(@E§E2)62 (k=1,2,...,N) (7)

The variance of the one step prediction errors is

oty = IR
: @T @Ez @T @El @ QEI @ @El @T @El q)T @Ez
= BOJ(—E2)8,+ 05 (- B (= ) (R )es
N N N N
_en ey 2ndn)- (%@Ez) @3‘(“’“%)(“’*‘“%1) (e,
N N
3L,% 3. ® 3L, @ 3T, @
= Blef(—E e, — 0~ B~ (e (8)

Now consider the one step ahead prediction errors over the test data set

(k) = y(k)—§(k) = $1(K)O: + $2(k)O2 — $1(k)Os

e qbg(k)@z~¢1(k)(@E§E1)"1(¢E§E2)®2 E=N41.. . 2N (9

Define &7; = [¢T(N +1),...,¢T(2N)|T (s =1,2), Y7 = [y(N+1),...,y(2N)]?, where the
subscript T' denotes the test data, to yield the variance of the one step ahead prediction




errors over the test data

&L & 3T & 3T &gy, BT D 3T & 8T &

ol = E[@%’(T—2'*"—2)92+@g"( EfrVEl)( E_lN El) ! T1)( 1251y 25 E2)92
3T &, 0T & 3T & 3T, &5, 0L, @ 3T &

-0( Tj\r =) E}\T =1 ElN =)0; — 05 ( E;v =) E}v LR T}v 2)0,]

(10)

Assuming the input and output are stationary signals, then for large N

T & E1 &1 &, .
L2 O i — constant matrix

N N
@gﬁm e 4’%\?’” — constant matrix
‘i’g}fﬁ‘? . q)%}fﬂ —— constant matrix
@%\?Ez ~ ‘I’%R?Tl — constant matrix
Egn (10) becomes
2~ Blof(2E2eny, — of(Zalen Mada . Tadme o2

Eqn (11) shows that the variances of the one step ahead prediction errors over the test data
and estimation data are approximately equal if the input and output signals are stationary.
For example, the variances of the one step prediction error over the estimation and the
test data sets were 7.9605 x 10~° and 8.3867 x 10~° for the example in §2.2. This implies
that if the one step predictions over the estimation data can not detect the presence of
unmodelled dynamics, the unmodelled terms may not be detected by the one step ahead
prediction over the test data either. Eqns (8) and (10) suggest that if the parameters
of the omitted model terms are small, the test can fail even if the input and output
are nonstationary. Indeed, experience in practical system identification shows that it 1s
net unusual for the model to have terms that are dynamically important but which have
relztively small parameters and make a relatively small contribution to the one step ahead
output prediction.

Notice that the problem discussed above is the model underfitting problem. The above
illustration and analysis does not contradict the well known result that predictions over
the test data may degrade if the model is overfitted.




3 A new identification algorithm based on the model
predicted output

3.1 Using model predicted output for model testing and sys-
tem identification

Consider a nonlinear polynomial model

y(k) = F[y(k—1),.._,y(k—‘ny),u(k-1),...,u(k_nu),
e( —1),...,e(k = n.)] + e(k)

= Zc‘m 9 +& k‘) (12)

1=1

where y(k) and u(k) denote the output and input at time instant k, {e(k)} is an inde-
pendently and identically distributed random noise sequence with zero mean and finite"
variance. Many algorithms can be used to identify the model eqn (12), for example the
forward regression orthogonal algorithm (Billings et al 1988a), prediction error algorithm
(Soderstrom and Stoica 1989) and others. But almost all these identification algorithms
employ the following cost function or the variants of it

N
Z — g(k))® (13)
where §(k) denotes the one-step ahead prediction at time instant &

g(k) = Fly(k=1),...,y(k—ny),u(k = 1),...,u(k — ny), &k = 1),...,é(k — n.)] (14)

and F' denotes the estimation of the function F, é(k) = y(k)—7(k) denotes the estimation
of the prediction errors. In §2 it was shown that the one step ahead prediction may not.
be sensitive to the omitted terms which are dynamically important but which have small
parameters and which make a relatively small contribution to the one step ahead output
prediction.

An alternative criterion for model assessment is the model predicted output. The model
predicted output at time instant k denoted by 7(k) is defined as follows

7(k) = Flglk —1),...,5(k —ny),u(k — 1), ..., u(k = ny),0,...,0)] (15)

Notice the difference between F(k) and (k). In the computation of model predicted
output, the prediction errors at previous time instants are inherited by the predictions at
later time instants. Thus, the model predicted output is more sensitive to the unmodelled
terms and model predicted output is a more severe requirement on the model accuracy
than one step ahead predictions. Indeed, The inadequency of model (2) becomes obvious
if model predicted outputs are used to assess the model, as shown in Figure 4.
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Figure 4: Model predicted outputs for model eqn (2) (solid-measurement, dashed-model
predicted output)

Model predicted output has long been used for model assessment (see for example Ljung
1987, Billings et al 1989, Billings et al 1992). But until recently the model predicted
output has not been used as an optimisation index in system identification. Berger (1995
and 1997) proposed the cost function

N

7 =3 ly(k) - (k)2 (16)

k=1

but assumed the model structure was known a priori. Optimisation of the model predicted
outputs were achieved through an optimising parameter estimation. But when the model
structure is unknown, optimisation of the model predicted output should be done by
selecting the correct model structure because model predicted outputs mainly depend on
the model structure. If a model structure is inadequate to describe the system, parameter
optimisation can achieve very limited improvements on the model predicted output.

3.2 The basic idea for a new algorithm

Motivated by the above analysis a new model structure detection algorithm using the
mcdel predicted output is developed in the present study. Actually the new algorithm

cu out errors and model size. This multi-objective optimisation problem can be sum-
w-iised as follows

3 = min{ S-1u(k) - (47

J» = min{n}

Jo = min{ S-10(6) - (4)F

k=1




where n denotes the number of terms in the model. This multi-objective optimisation
problem can be solved by optimising a combined cost function which is the weighted sum
of the three performance indices

N N
7= 0 Ll 8) = SR + 2o (k) ~ TR + dom (17)

where ); (i = 1,2, 3) are weighting elements. Minimising this combined cost function has,
however, at least two difficulties. First, the weighting elements are very difficult to select
in practice. Although it is often claimed that weighting elements can be assigned in terms
of the designers preferences it is very difficult to establish a quantitative relationship
between values of the weighting elements and model properties such as approximation
accuracy. Second, the combined cost function is a high order nonlinear function of the
unknown model parameters. Even if the model structure is known a prior directly opti-
mising the high order cost function is impractical even if genetic algorithms are employed.

In this study the three performance indices are minimised separately using a multi-
objective genetic algorithm. Because an approximation accuracy requirement is often set
for the model to be identified, the three-objective optimisation problem can be converted
into a constrained double-objective optimisation problem

e min{gjl[y(k) -5
T &= in g}

subject to

i YR
1— Lk=1 [%i}:)yz(:)(k)] > cutof fi

where cutoff, is the required approximation accuracy. In this study the system will be
limited to linear-in-the-parameter models including polynomial models and rational mod-
els, so that the orthogonal algorithm (Korenberg et al 1988) can be used to select model
terms. The orthogonal algorithm selects model terms according to the contributions to
the one step ahead predicted output using the error reduction ratios. Because the error
reduction ratios depend on the order in which the candidate terms are orthogonalised, em-
ploying different orthogonalisation paths which specify the orthogonalisation order for all
candidate terms, might yield different model structures. The forward regression orthog-
onal algorithm (Billings et al 1988a) and minimal model structure detection algorithms
(Mao and Billings 1997) have been developed as possible solutions to this problem. How-
ever, this property of the standard orthogonal algorithm can be made full use of in this
study to produce a set of candidate models, the optimal model can then be selected from
the set according to the model predicted output and model size.

Genetic algorithms (GAs) have been successfully applied for model structure detection

10




and were implemented as a constrained single-objective optimisation problem (Mao and
Billings 1997). The above constrained double-objective optimisation problem can be
solved in a similar way using multi-objective GAs. The difference between single-objective
GAs and multi-objective GAs is that the latter involve a ranking process which converts

performance index vectors into scalars. Details of the new algorithm using multi-objective
GAs are described below.

3.3 Details of the identification algorithm

Once they are incorporated into the framework of a genetic algorithm different optimi-
sation problems are solved in a similar way. Typically, a genetic algorithm consists of
the following operations; encoding, fitness value assignment, reproduction, crossover and
mutation. Some of the operations in the multi-objective genetic algorithm are similar
to those used in the single-objective genetic algorithm (Mao and Billings 1997), and are

therefore summarised in Appendix I. Only the ranking and fitness operation will be de-
sceribed here.

3.3.1 Ranking and fitness assignment

Inspired by the principle of natural evolution that individuals which adapt to the environ-
ment will survive and hand down chromosomes to descendants, optimal search procedure
of GAs is guided by the fitness of individuals (Goldberg 1989). In single objective genetic
algorithms, fitness can easily be assigned as proportional or inversely proportional to the
value of the performance index that i1s to be optimised. In the present multi-objective
optimisation problem, the performance index of each individual is a vector which consists
of the model predicted output errors and model size. The performance index vectors need
to be transformed into scalars in order to assign fitness values in a similar way to the
single-objective case. The transformation process is called ranking, and the transformed
scalars are called ranks.

Each individual represents an orthogonalisation path. By applying a standard orthogonal
algorithm using the order defined by the individuals, a set of candidate models can be
obtained. Model predicted outputs corresponding to each model can be computed using
eqn (15) and ranked (Fonesca and Fleming 1998). Assuming that the performance index
vectors for individuals ¢ and j are respectively [Ji; Ju), [J1; J2;]. There are 9 relations
between the two vectors

(1) Joy <€ Jaz, Juj < Jus (9) Jop = Tz, Jig < s
(3) Jo; < Jai, J1j = Jui (4) Jo; > Jaiy J1; > i
(B) Iy = I, oy Jus (6] Ja5 > Jai, Jig = Jig
(7) Jgy = Jog, Sy = Jns (8) Jo; < Joi, Jy; > Ui
(9) J2; > Jai, J1j < Jui

11



The physical interpretation of cases (1) and (2) is that the candidate model j has smaller
or equal model predicted output errors than model ¢, but the number of terms in model j
is less. In case (3), the model ;7 has the same prediction error as model 7, but the number
of terms in model j is less. In these three cases model 7 is considered as better than model
1. Following a similar analysis, it can be seen that model 5 is no better than model ¢ in
cases (4)-(7). In case (8), model j has less terms than model 3, if the model predicted
output error of model j is slightly larger, that is

1 Ji; ~ Jui
i y3(k) Jai — Ja;

< cutof f,

then model 7 can be considered as a better model than model i, where cutoff; is the
threshold which is typically set to 0.01% — 0.05%.

In case (9), model j has more terms than model z, if it has a significant reduction of the
model predicted output error compared with model z, that is

1 Jii — Ji;
T y2(k) Jaj — Jai

> cutof fz

then model 7 can be considered as better than model 2.

Comparing the performance index vector of each individual with the others in the current
population, the rank of each individual can be determined.

Once a ranking is obtained, the fitness can be computed using the following mapping

scheme f Iy
fi = Jmaz — M(Ti - Tm-i'n,) (18)

Tmaz — Tmin

where 7. lenotes the rank of the :** individual. Tmin, Tmaz, a0d frmin, fmes are the min-
imum and maximum ranks in the current population, and the minimum and maximum
fitness values respectively. In this study fmin and fmez are set to 0.5 and 1 respectively.

Typically, a genetic algorithm consists of encoding, fitness assignment, reproduction,
crossover and mutation. The successive application of these operations in the new iden-
tification procedure is described in the following subsection.

3.3.2 Summary of the new algorithm

The new algorithm can be summarised as follows

(I) Generate an initial population set P consisting of [ individuals, each individual
represents an orthogonalization path. Set the current generation number ¢ = 1.

(II) Apply the standard orthogonal algorithm using the orthogonalization path repre-
sented by each individual to obtain the corresponding model structure, compute the

14




model predicted output, corresponding model size, rank and fitness value. Form a
mating pool M using all individuals in the population set P at the probabilities
assigned to each individual according to the corresponding fitness value.

(III) Randomly select a pair of parent strings from the mating pool M. Choose a random
crossover point and exchange the parent string bits to produce two offsprings and
put the offsprings in the offspring set O. Repeat this procedure I /2 times.

(IV) Mutate each bit of each offspring in the set @ with a pre-specified mutation rate and

calculate the fitness value of each mutated offspring using the procedure summarised
in step (II).

(V) Select the [ fittest individuals from sets P and © by comparing fitness values.

(VI) Reset the set P with the newly selected ! individuals, reset the number of generations
1 =1t + 1, and nullify the offspring set O.

(VII) Steps (II)-(VI) are repeated until a pre-specified number of generations arrives.

Setting cutof fi and cutof f, to 99.9% and 0.02% respectively. Applying the above pro-
cedure to the example in §2, produced the following model

_0.000248 4 0.00226z~* + 0.0018z2

Ar.—-1
= 1
G(=") 1—-2.309z"1 +1.744272 — 0.42923 ( 9)

The model predicted output of model egn (19) are shown in Figure 5 which indicates
that the model is adequate to represent the original system eqn (1). This is confirmed by
the frequency and unit step responses of the model shown in Figure 6 which are almost
identical to those of the original system shown in Figures 3(b) and 2(b).

-, =0 oo 1 =0 E=T=1=) EY-1=) 300 =Y=1=) oo

Figure 5: Model predicted outputs for model eqn (19) (solid-measurement, dashed-model
predicted output)
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Figure 6: Frequency and step responses for model eqn (19) (a) frequency responses, (b)
unit step responses

4 Examples

4.1 Example 1

Consider the following model

2 x 229
(s 4 1)(s% + 30s + 229)

G(s) = (20)

Using a PRBS sequence with amplitude +3 as the input and a sampling period of 0.05
seconds 800 data samples were generated. The first 400 data samples were used for pa-
rameter estimation, the remaining 400 data samples were used for testing. The maximum
lags of the input and output were set to be 4, and the one step ahead prediction ap-
proximation accuracy was set to 99.98%. Fitting the data using a conventional algorithm
produced the following model

. 0.01442z~ + 0.0099z~2
=1N
G(™) = T "7g39,= +1.1982-2 — 0.2452-3 (21)

The one step ahead predictions over both the estimation and test data are perfect. But
the model predicted outputs, shown in Figure 7, indicates that the model is inadequate.

o EXe=] 100 TS0 200 Z=s0 =Y=Y=1 aso EX=1=]

Figure 7: Model predicted outputs for model eqn (21) (solid-measurement, dashed-model
predicted output)
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This is confirmed by the frequency and step responses of model (20) as shown in Figures
8-9.

L | | 11 1

o [Y=} 100 180 =200 o 50 100 150
L D] =)

[
0
0

Fiyare 8: Unit step responses for models eqn (20) and eqn (21) () the identified model
eqn (21), (b) the original model eqn (20)

| S S, B | | SR L |

o.3 o .- E
(=) =)

Figure 9: Frequency responses for models eqn (20) and eqn (21) (2) the identified model
eqn (21), (b) the model eqn (20)

Setting the approximation accuracy of the one step ahead prediction cutof f to 99.98%,
cutof fo to 0.02%, and applying the procedure summarised in §3.3.2, produced the follow-
ing model

(=) = 0.0018 + 0.01442-% + 0.0099z~?
&)= 1—1.939z"1 4+1.1982-2 — 0.245z~3

(22)

Ths model predicted output shown in Figure 10 indicates that the model eqn (22) is
adequate to represent the original system. This is confirmed by the step and frequency
responses shown in Figure 11.
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Figure 10: Model predicted outputs for model eqn (22) (solid-measurement, dashed-model
predicted output)
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Figure 11: Frequency and step responses for model eqn (22) (a) frequency responses, (b)
unit step responses

4.2 Example 2

Consider the nonlinear Hammerstein system shown in Figure 12

u(t) X(t) y(t)

—> static nonlinearity linear dynamics F———>-

Figure 12: A nonlinear Hammerstein system

The static nonlinear element scales the input u(t) to produce z(t), the linear dynamics
are represented by the transfer function G(s), whose output is y(t). In this example the
static nonlinear element and the linear dynamics are as follows

z(t) = 0.5u2(2) + u(t) (23)

256(0.9765 + 1)

G(S) = 26.27s3 4+ 36.3152 +10.145 4+ 1

(24)
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The input was a uniformly distributed random sequence with zero mean and amplitude
+1. A total of 800 data points were obtained by sampling at an interval of 1 second.

The first 400 data samples were used for parameter estimation, the remaining 400 data
samples were used for testing.

Assuming that the maximum lags of the input and output of the linear block are 3, the
approximation accuracy cutof f; was set to 99.98%. Fitting the data using a linear ARX
model and a conventional algorithm produced the model

. 1.5311 +4.335127! — 2.173522
-1 —_ 2
&(=") 1 —2.3188271 +1.82472% — 0.502823 (25)

The one step ahead predicted output over the estimation and test data were perfect. This
suggests that the identified model in eqn (25) is an excellent representation of the system.
However this is not true because the original system is nonlinear. The different unit step
responses of the identified model and the true system, illustrated in Figure 13 (a) and
(b), clearly show that the model eqn (25) is incorrect. The insufficiency of model eqn (25)
was successfully detected by the model predicted outputs as shown in Figure 14.

Now setting cutof f, to 0.02% and identifying the system using the procedure summarised
in §3.3.2 produced the following model

y(k) = 1.67y(k—1)— 0.688y(k —2) — 0.012y(k — 3) + 1.45u(k) + 5.33u(k — 1)
+1.26u(k — 2) + 0.724u* (k) + 2.66u*(k — 1) + 0.63u?(k — 2) (26)

T=oo _-—oo

TOo0O - - : at 2 S =
L l=1=1 b - “ B B SR em es aie e ,,,,,,, -

sco - - . 5 RN - =co |
4 : 1850 -

aco - < : 5

100 | -

S = < B0 T oo
Cam) =)

Figure 13: Unit step responses for models eqns (23)-(24) and eqn (25) (a) the identified
model eqn (25), (b) the model eqns (23)-(24)
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Figure 14: Model predicted outputs for model eqn (25) (solid-measurement, dashed-model
predicted output)

The model predicted output and the unit step responses are shown in Figure 15 (a)-(b).

Clearly the model has almost perfect model predicted outputs and almost identical unit
step responses with the original system model eqns (23)-(24).

1T=o v -

100 - -
-0
-

AR | o e wE B mve g e B s s Sas e R MR N B9R K —

(=] Too =00 OO - OO 50 TOo0

Cm) [4=3 ]

Figure 15: Model predicted output and step responses for model eqn (26) (a) model
predicted output (solid-measurement, dashed-model predicted output), (b) unit step re-
sponses

5 Conclusions

Conventional system identification and model assessment are based on the one-step ahead
predictions. In this study the efficiency of one step ahead prediction has been examined.
Theoretical analysis and numerical examples have demonstrated that one step ahead
predictions may not always be sufficient to measure model quality. The efficiency of
model predicted output for model assessment has been established and a new system
identification algorithm based on the minimisation of model predicted outputs has been
developed.
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Appendix I
A.1 Encoding

The bits of each individual represent the order in which candidate terms are orthogo-
nalised. For example the code of an individual of a model with 8 candidate terms is of
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the following form

P P, P P, P Pe Py Py
T i T T NPt S s
. 6 3 ¥ 2 4 8 5

where P; denotes the i** orthogonalised term. The physical interpretation of the above
string is that the first term orthogonalised in eqn (12) is 1 (k), the second term orthogo-
nalised is @g(k), ..., the last term orthogonalised is ps(k).

A.2 Reproduction

The roulette wheel approach was employed to implement the reproduction procedure
in this study. Each string is allocated a slot of the roulette wheel subtending an angle
prcportional to its fitness at the center of the wheel. A random number in the range of 0
to 27 is generated. A copy of a string goes to the mating pool if the random number falls
in the slot corresponding to the string. For a population with size [, the reproduction
process is repeated ! times and [ strings go into the mating pool.

A.3 Crossover

The purpose of the crossover operation is to generate new individuals by exchanging bits.
Assuming that two randomly selected parent strings are given by
Py P, Py Py Py Ps Py Py

P S T o T T e T e S
T 6 3 T 2 & 8 s
P, Py Py P, Py P Py Py
P s T s i e i et
1 3 8 5 4 7 2 6
First randomly select the bit at which orthogonalised term will be changed, for example F.
Then detect terms at this position in the parent strings, i.e., ¢7(k) and @s(k). Exchanging
positions of ps(k) and ¢7(k) in each string, yields two offsprings

Py P, P; Py 53 P Py Py
B T st T et S e R e g N e W o
1 6 3 S 2 4 8 7
Pl PZ PS -P{ PE, PS P-,! PS
P P NI N i S i S Y o W e
i 3 8 7 4 5 2 6

A.4 Mutation

The purpose of mutation is to generate a different individual which is not easy to achieve
by the crossover operation. In this study mutation is achieved by exchanging the selected
bit with a random selected bit of the same string. Consider for example, the following
string

Py P, Py Py Py Pg Py Py
P e T e T e S o . e TN
1 6 3 7 2 4 8 5
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If bit P, is supposed to mutate, exchanging this bit with a randomly selected bit from

P, — P, for example P, yields the mutated string

Py P, Py P, Py Py Py Py
4 6 3 7 2 1 8 5




