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Abstract. We introduce our Grid broker that uses SLAs in job submis-
sion with the aim of ensuring jobs are computed on time and on budget.
We demonstrate our broker’s ability to perform negotiation and to se-
lect preferentially higher priority jobs, in a tender market and discuss
the architecture that makes this possible. We additionally show the ef-
fects of rescheduling and how careful consideration is required in order to
avoid price instability. We therefore make recommendations upon how to
maintain this stability, given rescheduling.
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1 Introduction

Grids enable the execution of applications in a distributed fashion. It is however,
common that such applications are served in a best effort approach only, with no
guarantees placed upon the service quality. This is primarily due to the emphasis
in production Grids being placed upon the queuing of jobs ready for computa-
tion, with the sole intent of maintaining high resource utilisation, rather than
user satisfaction. It has also been known for some time that guaranteed provi-
sion of reliable, transparent and quality of service (QoS) oriented resources is
the next important step for Grid systems [23, 3].

In many commercial and scientific settings, guarantees that computation is
going to be completed on time are required. It is therefore important to estab-
lish during the submission of a job the requirements of the users in terms of
completion time and the priority they hold for the work.

In order to motivate our work and illustrate the need for time guarantees
we present two scenarios. The first is a commercial scenario, such as animation,
where frames may be computed overnight before the animation team arrives,
partial completion of the work delays or stops the team from starting the next
days work [2]. The second scenario is in an academic environment where it
is common before conferences for Grids to become overloaded [16]. To further
focus our work and enhance its relevence we consider the types of application
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running upon the Grid. The focus of our work is hence upon Bag of Task based
applications, which are the predominate form of workload in Grids [16].

Given the finite resources available (including budget), it is also wise to
prioritise jobs based upon the importance to the end user. In order that this
prioritisation is provided correctly an economic approach is used to ensure users
give more truthful indications of their priorities [6, 21].

In delivering these time and cost requirements, it presents the added advan-
tage that Grids can be moved away from the best-effort service which limits
their importance, as users’ would be more willing to pay or contribute resources
if results are returned on time, as late results are of limited use[20].

The main contributions of this paper are to:

— Introduce the architecture of the Intelligent Scheduling for Quality of Service
(ISQoS) broker. Its focus is upon job submission via the formation of service
level agreements, which cover job completion time and cost.

— Demonstrate how a tender market can be formed that actively selects jobs
of a higher priority, via their economic properties. We show this as part of
a transition from the dominance of the temporal constraints to the budget
constraints of a job submission.

— Introduce rescheduling and demonstrate how this can lead to price instabil-
ity, which is a key factor in a successful Grid market [34]. We therefore make
recommendations to counteract this instability.

The remaining part of the paper’s structure is as follows, in section 2 We
discuss the ISQoS general architecture, which leads on to a more in-depth dis-
cussion of the broker’s service pricing mechanism and offer evaluation in section
2.2. The pricing of resource and scheduling mechanisms used are then covered
in section 2.3, which are the main aspects of this paper’s experimentation. The
setup for this experimentation can be found in section 3 and the results may be
found in section 4. We then discuss related work in section 5 and conclude in 6.

2 The Broker

In this section we discuss the overall architecture of the ISQoS Broker. This
broker is primarily aimed at parameter sweep / bag of task applications [§],
which are the predominant workload upon the Grid [16].

It aims towards providing QoS via economic mechanisms and the ability to
negotiate to find the provider that is most likely to be able to complete the
computation on time and on budget.

The ISQoS Grid architecture is service oriented and is WS-Agreement for
Java (WSAG4J) [15] based and presents services to execute jobs. Avoiding clas-
sical architectures such as Globus [12] has allowed the focus upon scheduling and
the ability to negotiate service level agreements (SLAs). This includes the capac-
ity to perform scheduling for indicative purposes only, i.e. not for committing to
work, but merely to generate a candidate schedule for negotiation purposes. The
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Fig. 1: Overview of Architecture

use of scheduling in the architecture also brings it closer in style to the Maui
Scheduler [18] and OpenCCS [3] opposed to queuing based methods.

The broker focuses upon standards such as JSDL [27], but has the capacity to
swap out this term language used to describe the work being performed, so long
as it is XML based so that it can form part of the agreement. This is achieved
by having the part of the XML describing jobs contain an xsd:any type for
attaching the term language describing the job. This flexibility is also present in
the information provider which can use either GLUE [5] or Ganglia [13] based
representations of resources.

2.1 Broker Architecture

We present the overview of our architecture in Figure 1. It primarily consists of
three tiers: A broker, a provider and workers. The broker selects the provider to
use while the provider commands the workers to execute Grid jobs.

Jobs are submitted via the job submitter of the broker to the offer maker and
committer component of the provider. The broker is expected to contact various
different resource providers in order to establish a competitive market place.

The information submitted includes the job’s resource requirements, a budget
that the user has assigned for the completion of a job, the amount of markup
the broker makes for the service, which can be used as a notion of priority and
finally its temporal requirements. These will be shown as a due date by which
the job should be completed by and a deadline by when it must be completed.

The resource providers perform initial scheduling of the tasks within a job
so they can derive an estimate for completion time and price. They achieve this
by using a scheduling algorithm that is plugged into the provider. The price is
based upon the provider’s local pricing mechanism which feeds information into
the scheduling algorithm. The schedules generated are then converted to offers
to complete the work, which are then submitted back to the broker. These offers
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include information about the time and cost for completing the job and the time
for completing each task within a job.

The broker from the offers that have been returned, ranks them and filters
out poor offers i.e. sort by earliest and filter out unprofitable offers, though
various selection mechanisms may be used. One such example is establishing a
going rate from historic offers and comparing the current offer to that rate [19].
The broker then asks the user if it acceptable to proceed with the job at a given
price and completion time.

If the offer made to the user is acceptable the broker then submits the bag
of tasks that make up the job to the winning provider. In terms of the experi-
mentation in section 4 then any job that has its requirements met is accepted.
In the case of a production Grid, the user could resubmit the job with different
budget and time requirements in order to insure the job is accepted.

An accepted job is placed into the schedule and is recorded in the current
state of the Grid. The state records the mappings between workers and their
jobs as well as other information such as the current resource and job statuses.
The workers are represented as objects which maintain a copy of the XML
description of the resource and a reference to the XML parser used to interpret
the description of the job. This XML description of the job is taken from the
agreement which is attached as an xsd:any type, which allows for XML other
than JSDL documents to be used. The parser maintains a set of default questions
which can be asked about the job i.e. what is the size of the memory available?
or the what is the CPU speed?

The descriptions of the tasks are treated in a similar fashion and a basic list
of default questions are provided i.e. how much memory is needed. The resource
selector for a given task can then be asked to provide the list of acceptable
workers to the scheduler, without it needing to have a great understanding of
what a resource entails.

In terms of a job’s breakdown a job is a collection of tasks in the bag, that
need executing. Each task has several actions, these equate to: stage in, execute,
stage-out and clean the worker. Stage-out merely holds to the meaning of trans-
ferring data away from the worker. Clean removes the task’s working area upon
a worker node. If the Clean event is the very last action to be performed then
the job is submitted for billing.

The action executor merely waits for the next action in the schedule to be
ready for execution. At this point it sends a signal to the worker nodes to begin
their work.

2.2 Job Pricing and Offer Evaluation

The generation of offers and pricing follows work in [19]. It is hence summarised
here, to aid the discussion of our work. From each of the providers a resource
cost and completion time for the work is obtained. The broker needs to make
a profit so must make a mark-up from this initial resource cost. This is done
as a percentage of the original resource cost as shown in Figure 2a. In order
for a budget violation not to occur this must be below the maximum budget.
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Fig. 2: The generation of offers

This gives rise to a notion of budget slack or spare budget available. It also gives
rise to budget resilience i.e. the difference between resource cost and the budget
available, as the broker could notionally decide to use some of its profit towards
making a job complete on time. Hence the profit the broker makes represents
the minimum amount of money available, should it be required.

If a job is returned on time then it achieves its full service price. If it is
delayed then it returns a fraction of it based upon how far the completion time
is between the due date and deadline. Instead of having a penalty to the end
user the service charge is stopped at 0 and the broker pays for any resources
used that did not fail. This has useful properties in that the breakeven point
becomes a fixed point between the due date and deadline [19]. In doing so the
offer market is generated which is shown in Figure 2b.

2.3 Scheduling and Resource Pricing

The scheduling algorithm in use may be swapped out at will, as can the mech-
anism used to select a price for the resources. The scheduling algorithms that
have been implemented and used in this paper are round robin and a variation
of round robin that performs rescheduling. This variation is given below:

FOR EACH (Task) {
Get next worker in round robin order that meets resource
requirements
IF Worker.isEmpty() {
Place Task’s Actions; BREAK; }
FOR EACH (ACTION in Task) {
FIND insertion point WHERE (
Later Actions will not go past their Due Date
AND No action already started will be moved
AND Any action due to start will not be moved ) {
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Place Action in earliest position possible; BREAK;

}
}

The rescheduling variant takes the selected workers actions and moves them
along as far as their due dates will allow and places new actions in before them.
The aim is to have all new jobs start as early as possible and to reduce the
dependence upon arrival order in terms of how well a job is served. Actions
may not be moved however, if they are due to start or have already started and
movement of actions should also not make an action go past its due date.

The resource pricing mechanisms implemented aim to dynamically map the
demand for resources to the price. In this paper time for both network and
resource usage are billed equally. The charge per second of worker time derives
from the count of actions that the provider currently has in its schedule, which is
then mapped to a price. This although simple, as discussed in section 3, should
be suitable for experimentation.

3 Experimental Setup

We perform experimentation with the aim of demonstrating the effects of tem-
poral and budget constraints upon machine/task selection, with the intent of
creating a mechanism by which job prioritisation may take place. We focus this
experimentation upon high load scenarios where correct selection is most re-
quired. The configuration of the experiments performed is described next.

We sent 100 jobs with 8 tasks each into a Grid with 2 providers. Each provider
had 4 virtual machines, of which one also acted as a head node. Jobs were
submitted with a 30 second gap between submissions, from a separate broker
virtual machine instance. This is shorter than the time it takes to compute a
job, which means the Grid fills and resources become sufficiently scarce as per
a time sensitive, high utilization scenario presented earlier. Each provider uses
the round robin scheduling algorithm in section 4.1 and a rescheduling based
variation in section 4.2.

The virtual machines ran Ubuntu 11.10 (64bit) server, with full virtualization
and ran upon 4 physical hosts. The virtual environment was constructed using
OpenNebula 2.0 [28] and Xen 4.0.1 [32]. Each head node had 1GB of RAM
allocated and worker nodes 768MB. Each processor ran at a speed of 2.4GHz.

The ISQoS Grid uses WS-Agreement for Java v1.0 for the Broker and Provider
agreement process. Ganglia 3.2.0 [13] was used as the information provider.

Jobs were setup to be none data intensive and the stage in/out size was only
1 Megabyte. This mitigates issues with considering the network configuration of
the virtual cluster on the cloud testbed. The compute size was given as a value
of 3,000. This value derives from a reference processor of 3,000 MHz multiplied
by an expected duration of 1 minute. This means upon the resources available
the tasks are also expected to last approximately 1 minute.

This means that if a job was allocated to a single machine it would take 8
minutes to complete. The due date was hence set no lower than the submission
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Fig. 3: Transition to Budget Prioritisation - With Round Robin Scheduling

time + 8, with the knowledge that the Grid would soon be overtaxed. The
deadline was set to the due date + 4 minutes. We performed 6 runs of each trace
and 95% confidence intervals are marked on the graphs. The first 15 accepted
jobs of the traces have been ignored to counteract effects of starting with an
unloaded Grid.

We establish three different budgets that jobs could be given: 12,000 15,000
and 18,000. These values were chosen as they intersected the likely prices that
would be generated at different stages of the experiment. A fixed mark-up of
20% was chosen. A dynamic resource pricing mechanism was chosen which bills
time for both the use of network time and resource time equally. It derived its
charge from the count of actions that the provider currently has in its schedule,
thus tracking current demand. This was chosen as the jobs being submitted
were of equal size and there was no great need for a more complex solution. The
scheduling algorithm in use was not price aware so a single price could be set
for all resources upon a given provider.

4 Experimental Results

4.1 Transition to Economic Constraints Dominance

Figure 3 shows the gradual increasing of the due date and deadline. Initially
there is no preference based upon budget shown and the temporal constraints
take precedence. When the due date is at 12 minutes the lowest budget jobs at
12,000 start to be penalised and by 16 minutes the lowest budget jobs are all but
completely rejected. This is because as the due date increases a greater amount
of the work is allowed to be queued concurrently on each provider, causing the
resource costs to increase to match the demand.

The jobs with the highest budgets are hence accepted more readily in an ever
increasing fashion, whilst the middle budget range jobs increases temporarily as
the lowest budget jobs are no longer accepted. This clear prioritisation of jobs



8 Richard Kavanagh and Karim Djemame

80 +-- Average of Budget Violations
- Average of Temporal Violations
70 Average of No Constraint Issues 3 2

— - Average of Both Constraints

Count of Jobs
5
5
'
!
[

Due Date (Deadline +4 of Due Date) / Mins

Fig.4: All Constraint Violations - With Round Robin Scheduling

based upon the budget is seen to be a valuable property of the submission system.
This is achieved without any need for jobs to directly compete in an auction style
for resources.

In Figure 4, 5 and 6 constraint violations are counted. If the budget causes
constraining then a budget violation counter is incremented. A temporal con-
straint violation is considered to have occurred if the time before the breakeven
point is less than zero i.e. where the job is no longer making a profit. This point
where the broker breaks even is 16.67% of the way between the due date and
deadline [19]. It was useful to pick this point as the deadline was unlikely to be
ever passed due to the job admission policy in use filtering out unprofitable jobs.
The count of jobs is summed across all runs of the experiment.

In Figure 4 we see the constraint violations are initially of the temporal type
only, this is because the highly restrictive temporal constraints are dominating,
ensuring queue lengths do not increase sufficiently, which constrains the service
prices. As the due date gets larger the budget constraints become more dominant
and service price rises.

In Figure 5 and 6 we show the budget pressures for jobs with a set value.
The biasing towards the higher priority/budget jobs is hence demonstrated.

Figure 5 shows that initially jobs are either not meeting the temporal con-
straints or they are accepted. As the due date is increased the budget constraints
become dominant. Though temporal constraints are still being violated, it is also
the case that the budget constraints are being violated as well, so practically the
budget constraints are taking precedence.

Figure 6 like Figure 5 again shows that initially jobs are either not meeting
the temporal constraints or they are accepted. As the due date is increased
the budget constraints again become more dominant, but it takes much longer
for jobs to be predominantly rejected because of budget violations, which is an
indication of the desired property of prioritisation.
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4.2 Introducing Rescheduling

We previously indicated in section 2 that different scheduling algorithms may
be selected at provider level. This can introduce more complex situations where
rescheduling may be performed. In this case we show how this can have a pro-
found effect upon the market.

In the case where rescheduling is performed similar results can be obtained
to the none rescheduling case. There are however notable differences.

Firstly we see in Figure 7 that the budget constraint becomes more dominant
than the temporal constraints much later on as in comparison to Figure 4. This
is reflected in the distinction between the amount of jobs accepted of each type,
where the lower budget jobs are no longer rejected entirely. This is in part caused
by fewer jobs being accepted, leading to a slightly lower resource cost. On average
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Runs)

28/85 jobs without rescheduling and 26/85 with rescheduling, but it is also more
significantly down to greater fluctuations in the service price.

We can see from Figure 8 that the service price when rescheduling occurs
drops significantly at various stages of the trace. This means the price is suf-
ficiently low enough for the lower budget jobs to be accepted even when the
temporal constraints are at their most relaxed and higher workloads on the
server might be expected.

4.3 Price Stability and Selection

In sections 4.1 and 4.2 we saw that before the budget constraints became dom-
inant that selection pressures did not favour jobs based upon the budget avail-
able. Hence should a Grid become overworked then in order to make selection
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preferences the economic factors should become dominant, by changing the re-
source/service price. We also saw in section 4.2 how price stability affected the
ability of the mechanism to maintain this selection pressure. We therefore suggest
various ways that might allow for a more stable price.

The mechanism by which the price is selected may be changed to make
an incremental step change from the previous price. This would hence avoid
some of the fluctuations and allow for rescheduling. The moderated changes
however would have to reflect the completion of spikes in load. Spikes in load can
occur for example just before an important conference [16]. The price smoothing
mechanism would be required to remain responsive and should not for example
artificially maintain a high price at the end of a peak in demand. This is because
the system as a whole could either have unrealized profit or utility [25, 21].

The simplest solution would be to ensure that pricing does not rely upon
already completed work for pricing. This means any billing event will hence not
effect the price, by removing jobs from the queue that are used as part of the
measure of current load. An example of such a measure would be to take the
difference between the current time and the average completion time of all jobs
for the provider.

Alternatively billing events would have to purposefully be held apart. In
holding these events further apart it would reduce the number of occurrences,
where a lot of work is removed from the queue at the same time. This would
require a scheduling algorithm that was geared specifically towards the pricing
mechanism. If individual tasks would not be allowed to interweave, then this
would help prevent the near simultaneous execution of billing actions. However,
if a single very large job completes then regardless of dispersion of billing events
the price would fall and potentially harm the selection process.

5 Related Work

Economically oriented Grids have had a long history, including in the early years
work such as Nimrod/G [1] and G-Commerce Wolski2001. Nimrod/G is similar
in that both our work and theirs intend to serve parameter sweep/bag of task
applications, however we have a much stronger focus upon QoS provision.

In more recent years work such upon the SORMA project has created the
Economically Enhanced Resource Manager (EERM) [24, 26]. This includes var-
ious features such as: demand forecasting, dynamic pricing, SLA formation and
the ability to selectively violate less interesting SLAs [24]. We like EERM use
dynamic pricing and SLAs but our SLA focuses upon delivery time of the com-
puted results and cost while encoding the acceptable delay into the agreement,
negating some of the need for renegotiation. We also use a negotiation mech-
anism to advise end users of the current state of the Grid instead of rejecting
work that has already been accepted.

To cover this subject further a good catalogue of market mechanisms may be
found in [25,7,4]. A discussion of SLAs and pricing functions may also be found
in [33] that covers the subject well. WS-Agreement has previously been used
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for job submission in cases such as AssessGrid [11], VIOLA’s MetaScheduling
Service (MSS) [22] and others [30] .

The brokering mechanism we present revolves around its pricing mechanism
so it is appropriate to discuss the related pricing models. Early models focus
purely on slowdown such as First Reward & Risk Reward [17] and First Price
[10], thus are very system centric. Irwin et al indicate a gradient based approach
to deadlines to be open to heuristic methods as opposed to hard deadlines [17],
which is common to all related models, but is worth mentioning.

Another pitfall we have avoided is that penalty bounds are also not always
set, such as in [17,10] and LibraSLA [9]. This has issues, as pricing mechanisms
should have properties such as budget balance and individual rationality among
others [31].

First Profit, First Opportunity & First Opportunity Rate [29] like our work
uses the same scheduling algorithm to schedule as they do for admission control.
However, our broker’s mark-up, gives it rationale for participation in the market
while also generating a marked difference in providing a boundary of acceptable
QoS. This boundary presents itself in both temporal and budget parameters of
the model.

The Aggregate Utility [2] model has a lot of flexibility in specifying user
requirements but this is at the expense of complexity for the end user. Finally
Resource Aware Policy Administrator (RAPA) [14], focuses upon divisible load
but has issues in that it caps the maximum deadline in order to limit the maxi-
mum penalty paid.

6 Conclusion and Future Work

In conclusion we have discussed the architecture of our broker that establishes
a tender market. We have focussed upon describing the submission system and
the SLA structure, while also showing the effects of changing the scheduling
algorithm in use. We have focussed upon job prioritisation and demonstrated
how economic constraints can establish this, whilst also showing an initial period
of the temporal constraints holding dominance. Given that users will be aiming
to set the budget assigned to jobs as low as possible the budget constraints
are likely to always have the desired effect. We finally introduced rescheduling
and showed how it can lead to price instability by causing the schedule to have
several jobs cleared from it due to completion within close succession. Our future
work will investigate how to ensure the stability of the resource price, given the
possibility of rescheduling.

L A list of WS-Agreement based implementations can be seen at:
https://forge.gridforum.org/sf/wiki/do/viewPage/projects.graap-
wg/wiki/Implementations
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