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Abstract A flow-shop batching problem with consistent batches is considered in which

the processing times of all jobs on each machine are equal to p and all batch set-up

times are equal to s. In such a problem one has to partition the set of jobs into batches

and to schedule the batches on each machine. The processing time of a batch Bi is the

sum of processing times of operations in Bi and the earliest start of Bi on a machine

is the finishing time of Bi on the previous machine plus the set-up time s. Cheng et

al. [2] provided an O(n) pseudopolynomial-time algorithm for solving the special case

of the problem with two machines. Mosheiov & Oron [3] developed an algorithm of

the same time complexity for the general case with more than two machines. Ng and

Kovalyov [9] improved the pseudopolynomial complexity to O (
√
n). In this paper we

provide a polynomial-time algorithm of time complexity O
(
log3 n

)
.

Keywords Batch scheduling · Flow shop · Polynomial-time algorithm

1 Introduction

Ng and Kovalyov [9] investigated batching problems in a flow-shop environment and

derived complexity results for several special cases. One result is an O (
√
n)-time algo-

rithm for the following problem.

There are n identical jobs j = 1, . . . , n. Each job is ready for processing at time zero

and it has to be processed on machines M1,M2, . . . ,Mm in this order. The processing

time of job j is equal to p > 0 on each machine and is equal for all jobs. Batches

are formed on each machine. They may include any number of jobs. Jobs in a batch

are processed on each machine sequentially so that the processing time of batch Bi

on one machine is equal to pbi, where bi = |Bi| is the number of jobs in Bi. In other

words, jobs of batch Bi become available for downstream processing on machine Ml+1
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after completion of Bi on machine Ml. A setup time s ≥ 0 immediately precedes the

processing of a batch on each machine and it cannot start until processing of a batch

has ended on the previous machine. No machine can process a job while performing a

setup. s and p are assumed to be integer. On each machine one has to partition the jobs

into batches and to sequence the batches so that the makespan is minimized. Using

standard three-field notation, the problem can be denoted as F |pij = p, s−batch|Cmax,

see, e.g., [1].

Ng and Kovalyov [9] show that there exists an optimal permutation schedule, i.e., a

schedule in which the jobs (and therefore the batches) are scheduled in the same order

on each machine. Furthermore, for the O (
√
n) algorithm they assume that the building

of batches is consistent among the machines, i.e., the batch partitioning B1, . . . , Bk is

the same on each machine. In such a situation one has to partition the set of jobs into

batches and to sequence these batches.

Let B1, . . . , Bk be a sequence of batches to be scheduled in this order on each

machine. Then the makespan of this schedule is equal to

Cmax =

k∑

i=1

(s+ pbi) + (m− 1)(s+ pbi∗), (1)

where bi∗ = max {bi|i = 1, . . . , k}. Minimizing the right hand side of (1) for a fixed k

is equivalent to solving the integer program

min
∑k

i=1(s+ pbi) + (m− 1)(s+ py)

s.t.
∑k

i=1 bi = n

1 ≤ bi ≤ y and integer, 1 ≤ i ≤ k.

(2)

As the objective function of (2) can be written

k∑

i=1

(s+ pbi) + (m− 1)(s+ py) = ks+ pn+ (m− 1)s+ p(m− 1)y,

(2) is equivalent to the integer program

min y

s.t.
∑k

i=1 bi = n

1 ≤ bi ≤ y and integer, 1 ≤ i ≤ k.

(3)

Summation of the constraints 1 ≤ bi ≤ y together with
∑k

i=1 bi = n provides

n =

k∑

i=1

bi ≤ ky or
n

k
≤ y.

This implies ⌈nk ⌉ ≤ y because y must be integer. Thus ⌈nk ⌉ is a lower bound for the

optimal solution value of (3). If n
k is integer, this lower bound is achieved by setting

bi = y :=
n

k
for i = 1, . . . , k.

Otherwise we set

bi =





⌊
n
k

⌋
for i = 1, . . . , k

⌈
n
k

⌉
− n,

⌈
n
k

⌉
for i = k

⌈
n
k

⌉
− n+ 1, . . . , k,
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i.e., we choose x = k
⌈
n
k

⌉
−n batches of size

⌊
n
k

⌋
and k−x = k−(k

⌈
n
k

⌉
−n) = n−k

⌊
n
k

⌋

batches of size
⌈
n
k

⌉
.

Thus the batching problem reduces to finding an integer 1 ≤ kopt ≤ n which

minimizes

ϕ(k) = ks+ p(m− 1)
⌈
n

k

⌉
= p(m− 1)

(
s

p(m− 1)
k +

⌈
n

k

⌉)

or

g(k) = ak +
⌈
n

k

⌉
(4)

with

a =
s

p(m− 1)
.

In this paper we present a polynomial-time algorithm which calculates an integer

1 ≤ kopt ≤ n which minimizes the function (4) for any fixed positive rational number

a. The shape of the graph of the function g(k) is shown in Figure 1.

Fig. 1 Function g(k) and its two components ak and
⌈

n

k

⌉

The paper is organized as follows. In Sections 2 and 3 properties of the function

g(k) = ak +
⌈
n
k

⌉
are derived. It is shown in Section 2 that the problem can be solved

easily if a is an integer. Additionally some symmetry properties for the values
⌈
n
k

⌉
are

derived. For non-integer values a the difficulties of calculating a value kopt ∈ {1, . . . , n}
which minimizes g(k) arise because g(k) is oscillating in a neighborhood of kopt. In

Section 3 this oscillation behavior is studied in detail. It leads to a polynomial-time

algorithm which is derived in Sections 4 and 5. In Section 6 it is shown that the running

time of this algorithm is O(log3 n). Section 7 contains some concluding remarks.

2 Symmetry and reduction to the case a > 1

In this section we first show that it is easy to minimize

g(k) = ak +
⌈
n

k

⌉



4

if a is a non-negative integer. Then for non-integer positive values a we reduce the case

a < 1 to the case a > 1 by using some symmetry properties of the values
⌈
n
k

⌉
.

To calculate a value kopt which minimizes the function g(k) if a is integer we

consider the continuous function

f(k) = ak +
n

k
.

The functions f and g have the following properties:

– f(k) is strictly decreasing (increasing) for k <
√

n
a (k >

√
n
a ) and reaches its

minimum if k =
√

n
a ,

– g(k) = ak +
⌈
n
k

⌉
=

⌈
ak + n

k

⌉
= ⌈f(k)⌉ holds for integer a .

Using these two properties we have for all k ≤
⌊√

n
a

⌋

f
(⌊√

n
a

⌋)
≤ f(k)

and therefore

g
(⌊√

n
a

⌋)
=

⌈
f
(⌊√

n
a

⌋)⌉
≤ ⌈f (k)⌉ = g(k).

Similarly it can be shown that

g
(⌈√

n
a

⌉)
≤ g(k) for all k ≥

⌈√
n
a

⌉
.

Thus,

kopt =





⌊√
n
a

⌋
, if g

(⌊√
n
a

⌋)
≤ g

(⌈√
n
a

⌉)
,

⌈√
n
a

⌉
, otherwise.

From now on let a be a positive non-integer number.

Definition 1 Integer values Ki are defined recursively as follows:

– K1 = 1;

– given Ki, let Ki+1 be the integer w with Ki <w≤ n, such that
⌈
n
ν

⌉
=

⌈
n

ν−1

⌉
for

ν = Ki + 1, . . . ,w−1, and
⌈
n
w

⌉
6=

⌈
n

w−1

⌉
.

Let r be the number of all Ki-values K1, . . . ,Kr = n. Notice, that the function

g(k) is strictly increasing in the interval [Ki,Ki+1 − 1]. Therefore, one can restrict to

the Ki-values when searching for an integer value kopt minimizing the function g.

The following theorem describes an important symmetry relation between the Ki-

values and
⌈
n
i

⌉
-values.

Theorem 1 There exists a symmetry relation between the values Ki and Kr−i+1 of

the form:

Ki =

⌈
n

Kr−i+1

⌉
for i = 1, . . . , r. (5)

Equivalently,

Kr−i+1 =

⌈
n

Ki

⌉
for i = 1, . . . , r (6)

holds.
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Before proving Theorem 1 we derive some useful properties.

For all positive integers j the inequality

1

j + 1
− 1

j + 2
=

1

(j + 1)(j + 2)
≤ 1

j(j + 1)
=

1

j
− 1

j + 1

holds, which implies the inequality

n

j + 1
− n

j + 2
≤ n

j
− n

j + 1
for all j ≥ 1. (7)

Lemma 1 If
⌈
n
j

⌉
=

⌈
n

j+1

⌉
, then

⌈
n
ν

⌉
−
⌈

n
ν+1

⌉
≤ 1 for all ν ≥ j .

Proof Assume that
⌈
n
ν

⌉
−
⌈

n
ν+1

⌉
> 1 , i.e.,

⌈
n
ν

⌉
−
⌈

n
ν+1

⌉
≥ 2 for some ν > j. Then

n

ν
− 1 ≥

⌈
n

ν

⌉
− 2 ≥

⌈
n

ν + 1

⌉
≥ n

ν + 1

or
n

ν
− n

ν + 1
≥ 1.

Furthermore
⌈
n
j

⌉
=

⌈
n

j+1

⌉
implies

n

j
− n

j + 1
< 1.

Together with (7) we have the contradiction:

1 ≤ n

ν
− n

ν + 1
≤ n

ν − 1
− n

ν
≤ · · · ≤ n

j
− n

j + 1
< 1.

⊓⊔

Definition 2 The index t is defined as the largest index such that Kν = Kν−1+1 for

ν = 2, . . . , t.

Observe that

Kν = ν for ν = 1, . . . , t

and
⌈
n

ν

⌉
<

⌈
n

ν − 1

⌉
for ν = 2, . . . , t,

⌈
n

t

⌉
=

⌈
n

t+ 1

⌉
. (8)

Furthermore, due to Lemma 1

⌈
n

Kν

⌉
=

⌈
n

Kν+1

⌉
+ 1 for all ν ≥ t. (9)

Lemma 2 For i = 1, . . . , r − t+ 1 the equality

⌈
n

Kr−i+1

⌉
= i (10)

holds.
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Proof Due to (9) and Definition 1 of the Kν -values
⌈

n

Kr−i

⌉
=

⌈
n

Kr−i+1

⌉
+ 1

holds for all i with r − i ≥ t. Thus, by induction we have
⌈

n

Kr−i+1

⌉
= i for all i with r − i ≥ t− 1, i.e., i ≤ r − t+ 1

because
⌈

n
Kr

⌉
= 1. ⊓⊔

Lemma 3 For i = 1, . . . , r − t+ 1 the equality
⌈
n

i

⌉
= Kr−i+1

is valid.

Proof By Definition 1 of the Kν -values we have
⌈

n

Kr−i+1

⌉
6=

⌈
n

Kr−i+1 − 1

⌉

which together with (10) implies
⌈

n

Kr−i+1 − 1

⌉
> i.

With
n

Kr−i+1
≤

⌈
n

Kr−i+1

⌉
= i and

n

Kr−i+1 − 1
> i

we conclude

Kr−i+1 − 1 <
n

i
≤ Kr−i+1 or

⌈
n

i

⌉
= Kr−i+1.

⊓⊔

Lemma 4 r − t < t and therefore
⌈
r

2

⌉
≤ t.

Proof Assume that r − t ≥ t. Then
⌈

n

Kr−t+1

⌉
= t = Kt =

⌈
n

r − t+ 1

⌉
, (11)

where the first equality holds due to Lemma 2 taking i = t, the second equality holds

due to Definition 2 and the third equality holds due to Lemma 3 taking i = r − t+ 1.

On the other hand, by Definition 2
⌈
n

t

⌉
=

⌈
n

t+ 1

⌉
,

which together with r−t+1 ≥ t+1 implies Kr−t+1 > r−t+1 or Kr−t+1−1 ≥ r−t+1.

Together with Definition 1 we have:
⌈

n

Kr−t+1

⌉
<

⌈
n

Kr−t+1 − 1

⌉
≤

⌈
n

r − t+ 1

⌉
,

which is a contradiction to (11). ⊓⊔
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Lemma 5 For i = r − t+ 1, . . . , t the equality

Ki =

⌈
n

Kr−i+1

⌉

holds.

Proof First we observe that in accordance with Lemma 4

r − t+ 1 ≤ t,

so that

r − t+ 1 = Kr−t+1.

It follows that ⌈
n

Kt

⌉
Lemma 2

= r − t+ 1 = Kr−t+1

and ⌈
n

Kr−t+1

⌉
=

⌈
n

r − t+ 1

⌉
Lemma 3

= Kt.

The statement of Lemma 5 now follows from the relations:

Kr−t+1 = Kr−t + 1, Kr−t+2 = Kr−t+1 + 1, . . . , Kt = Kt−1 + 1,

⌈
n
Kt

⌉
<

⌈
n

Kt−1

⌉
< · · · <

⌈
n

Kr−t+1

⌉

together with the equalities
⌈

n

Kt

⌉
= Kr−t+1 and

⌈
n

Kr−t+1

⌉
= Kt.

⊓⊔

Proof of Theorem 1 The proof is based on the above lemmas and equality

Ki = i for i = 1, . . . , t.

By Lemma 4 we have r − t + 1 ≤ t. Therefore, condition (5) holds due to Lemma 2

for i = 1, . . . , r − t, due to Lemma 5 for i = r − t + 1, . . . , t, and due to Lemma 3 for

i = t+ 1, . . . , r. ⊓⊔

In what follows we demonstrate that if 0 < a < 1, then the problem of minimizing

function g can be reduced to a symmetric problem with a > 1. For this purpose, we

indicate that the function g depends on the parameter a denoting the function g by

ga. We have to find an index i∗ such that Ki∗ minimizes ga(Ki) = aKi +
⌈

n
Ki

⌉
for all

i = 1, . . . , r. Due to Theorem 1

Ki =

⌈
n

Kr−i+1

⌉
for i = 1, .., r or

⌈
n

Ki

⌉
= Kr−i+1 for i = 1, .., r.

Therefore for a > 0 we have

ga(Kr−i+1) = aKr−i+1 +
⌈

n
Kr−i+1

⌉
= a

⌈
n
Ki

⌉
+Ki

= a
(

1
aKi +

⌈
n
Ki

⌉)
= ag 1

a
(Ki) .

(12)
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Thus, with (12) the Case 0 < a < 1 can be reduced to the Case a > 1. One has to find

Ki∗ such that g 1
a
(Ki∗) (where 1

a > 1) is minimal. Then Kr−i∗+1 =
⌈

n
Ki∗

⌉
provides

an optimal solution ga

(⌈
n

Ki∗

⌉)
for ga.

Now we derive an estimate on the value r of the possible Ki-values.

Lemma 6 The value of r is either 2s or 2s − 1 with a unique integer s ≤ t defined

from the condition: √
n+

1

4
− 1

2
≤ s <

√
n+

1

4
+

1

2
.

Proof Condition r = 2s implies together with Lemma 4 that s = r
2 < t. Thus

s = Ks
Theorem 1

=

⌈
n

Kr−s+1

⌉
=

⌈
n

K2s−s+1

⌉
=

⌈
n

Ks+1

⌉
Definition 2

=
⌈

n

s+ 1

⌉
.

Therefore s− 1 < n
s+1 ≤ s or

√
n+

1

4
− 1

2
≤ s <

√
n+ 1.

Observe that
√
n+ 1 <

√
n+ 1

4 + 1
2 .

If r = 2s− 1 for some s, then we have s = Ks. Indeed, by Lemma 4

t ≥
⌈
r

2

⌉
=

⌈
s− 1

2

⌉
≥ s− 1

2
,

which implies

s ≤ t

since s and t are integer. The latter inequality together with Definition 2 of t implies

s = Ks. By Theorem 1

s = Ks =

⌈
n

Kr−s+1

⌉
=

⌈
n

K2s−1−s+1

⌉
=

⌈
n

Ks

⌉
=

⌈
n

s

⌉
,

which implies s− 1 < n
s ≤ s or

√
n ≤ s <

√
n+

1

4
+

1

2
.

Observe that
√

n+ 1
4 − 1

2 ≤ √
n. ⊓⊔

To find an integer 1 ≤ i∗ ≤ r such that Ki∗ minimizes g we now assume that a is

a non-integer number with a > 1. As we show in the following lemma, the search for

i∗ can be limited to the range {1, 2, . . . , h1} with h1 ≤ t since the sequence Kh1+1 <

Kh1+2 < · · · < Kr is increasing.

Lemma 7 If a > 1 then Ki∗ ∈ {1, . . . , h1} where

h1 =

{
s, if

⌈
n

s+1

⌉
=

⌈
n
s

⌉
,

s+ 1, otherwise.

Furthermore h1 ≤ t.
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Proof Due to Definition 2 of t we have Ki = Ki−1 + 1 for i = 2, . . . , t. Together with

Theorem 1 this implies

⌈
n

Kr−i+1

⌉
= Ki = Ki−1 + 1 =

⌈
n

Kr−i+2

⌉
+ 1 for i = 2, . . . , t.

Because a > 1, this implies

g(Kν−1)− g(Kν) = aKν−1 +

⌈
n

Kν−1

⌉
− aKν −

⌈
n

Kν

⌉
≤ −a+

(⌈
n

Kν−1

⌉
−
⌈

n

Kν

⌉)
=

= −a+ 1 < 0

for ν = r − t+ 2, . . . , r, or

g(Kr−t+1) < g(Kr−t+2) < · · · < g(Kr).

Due to Lemma 4 the inequality t ≥
⌈
r
2

⌉
holds, which implies

r − t ≤ r −
⌈
r

2

⌉
≤ r − r

2
=

r

2

and therefore

r − t+ 1 ≤ r

2
+ 1

Lemma 6
≤ 2s

2
+ 1 = s+ 1. (13)

We are on the safe side if we look for a value Ki∗ such that g(Ki∗) is a minimum

of

{g(Kν)|ν = 1, 2, . . . , s+ 1} .

Notice that by Lemma 6

s ≤ t. (14)

Now h1 can be calculated by the following procedure.

If
⌈

n
s+1

⌉
6=

⌈
n
s

⌉
, then s 6= t and therefore by (14) s+ 1 ≤ t. Thus, we set

h1 := s+ 1.

Otherwise s = t and we can set

h1 := s.

⊓⊔

Notice that due to the above lemma we have

Ki = i

for all relevant i-values. For this reason in what follows we use i instead of Ki.

Lemma 7 immediately implies an O (
√
n)-time algorithm just by calculating h1

and evaluating values g (i) for i = 1, . . . , h1. Observe that the earlier algorithm due

to Ng and Kovalyov [9] has the same complexity bound. A faster O
(
log3 n

)
will be

formulated in Section 4.
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3 Oscillation

The results of the previous section imply that the case of integer a is easily solvable and

for the non-integer case one may consider a > 1. From now on we assume that a is non-

integer and greater than 1. The difficulties to find a positive integer kopt minimizing

the function g for non-integer values a arise because g is usually oscillating in the

area around the optimal solution value kopt. In this section we first present a general

description of the oscillating behavior of function g and then proceed with details and

justification.

Consider differences

∆i =
⌈

n

i− 1

⌉
−
⌈
n

i

⌉
(15)

which characterize the changes in the values of function g:

g (i− 1)− g (i) = ∆i − a.

As we show later in this section, ∆-values mainly decrease, but they may occasion-

ally increase by 1:

∆j ≤ ∆i + 1 for all 1 < i < j.

The increase/decrease structure of ∆-values has some important structural properties.

Consider the subsequence ∆2,. . . ,∆h1
which contains an optimum kopt.

- The first ∆j values are large and if ∆j > ⌈a⌉ , then function g is strictly decreasing.

- When ∆j achieves ⌊a⌋ for the first time for some j = l, the values of ∆j start

alternating between ⌈a⌉ and ⌊a⌋ and function g is oscillating (increasing when

∆j = ⌊a⌋ and decreasing when ∆j = ⌈a⌉).
- The oscillation range of ∆-values ends after ∆j changes to ⌈a⌉ for the last time for

some j = h− 1, all subsequent ∆-values are less than or equal to ⌊a⌋ and function

g is strictly increasing.

This means that the range {1, . . . , h1} can be narrowed to a smaller range {l, . . . , h}
with 1 ≤ l ≤ h ≤ h1 and within that range∆j ∈ {⌈a⌉ , ⌊a⌋}. We use notation A1 = ⌈a⌉
for the ∆j-value which leads to a decrease in g and and B1 = ⌊a⌋ for the ∆j-value

which leads to an increase in g.

As we show later in this section, there is a certain regularity in the pattern of A1

and B1. In particular,

(i) subsequence ∆l, . . . , ∆h starts with B1 A
1
. . . A

1
︸ ︷︷ ︸B

1 A
1
. . . A

1
︸ ︷︷ ︸ . . . B

1 A
1
. . . A

1
︸ ︷︷ ︸ con-

sisting of repeated A1 . . . A1 separated by a single B1;

(ii) the next part is of the form B1A1 . . . B1A1 with single occurrences of B1 alternat-

ing with single occurrences of A1;

(iii) the final part B
1
. . . B

1
︸ ︷︷ ︸A

1 B
1
. . . B

1
︸ ︷︷ ︸A

1 . . . B
1
. . . B

1
︸ ︷︷ ︸A

1 consists of repeated

B1 . . . B1 separated by a single A1.

If a − ⌊a⌋ ≥ ⌈a⌉ − a, i.e. a ≥ 1
2 , then the search can be limited to the first

subsequence B1 A
1
. . . A

1
︸ ︷︷ ︸B

1 A
1
. . . A

1
︸ ︷︷ ︸ . . . B

1 A
1
. . . A

1
︸ ︷︷ ︸ only. Depending on the number

of repetitions of A1, the patterns B1A1 . . . A1 are combined into blocks A2 and B2,

which are called level 2 blocks. They are defined in such a way that the cumulative

effect of A2 (B2) leads to a decrease in g (increase in g, respectively). Similar to level 1,
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the blocks A2 and B2 of level 2 are alternating in a manner described by (i)-(iii) with

the first part B2 A
2
. . . A

2
︸ ︷︷ ︸B

2 A
2
. . . A

2
︸ ︷︷ ︸ . . . B

2 A
2
. . . A

2
︸ ︷︷ ︸ followed by B2A2 . . . B2A2 and

then by B
2
. . . B

2
︸ ︷︷ ︸A

2 B
2
. . . B

2
︸ ︷︷ ︸A

2 . . . B
2
. . . B

2
︸ ︷︷ ︸A

2. Again, the search can be limited to

a smaller subsequence ∆l′ , . . . , ∆h′ (l ≤ l′ ≤ h′ ≤ h) corresponding to a part of

∆l, . . . , ∆h.

The process of grouping several lower level blocks into higher level blocks and

narrowing the boundaries of the search continues iteratively until at some level there

are no blocks in-between the left and the right boundaries. Since any higher level

block consists of at least 2 lower level blocks, the overall number of levels is no more

than log2 n. In what follows we explain the described approach in detail justifying its

correctness.

First we derive some properties of the ∆i-values.

Lemma 8 For integers 1 ≤ i < j < n and k ≥ 1 with j + k ≤ n

⌈
n

j

⌉
−
⌈

n

j + k

⌉
≤

⌈
n

i

⌉
−
⌈

n

i+ k

⌉
+ 1

holds.

Proof For each non-negative integer ν with j + ν + 1 ≤ n due to (7)

n

j + ν
− n

j + ν + 1
≤ n

i+ ν
− n

i+ ν + 1

holds. This implies

n

j
−
⌈

n

j + k

⌉
≤ n

j
− n

j + k

=

(
n

j
− n

j + 1

)
+

(
n

j + 1
− n

j + 2

)
+ · · ·+

(
n

j + k − 1
− n

j + k

)

≤
(
n

i
− n

i+ 1

)
+
(

n

i+ 1
− n

i+ 2

)
+ · · ·+

(
n

i+ k − 1
− n

i+ k

)

=
n

i
− n

i+ k
≤

⌈
n

i

⌉
− n

i+ k
.

Therefore, together with
⌈
n
j

⌉
≤ n

j
+ 1

⌈
n

j

⌉
−
⌈

n

j + k

⌉
≤ n

j
+ 1−

⌈
n

j + k

⌉
≤

⌈
n

i

⌉
− n

i+ k
+ 1,

i.e. ⌈
n

j

⌉
−
⌈

n

j + k

⌉
≤

⌈
n

i

⌉
− n

i+ k
+ 1.

In the previous inequality n
i+k is the only possible non-integer value. Hence it can be

replaced by
⌈

n
i+k

⌉
, which proves the lemma. ⊓⊔

Lemma 9 ∆j ≤ ∆i + 1 for all 1 < i < j.

Proof Application of Lemma 8 with k = 1 and i replaced by i− 1 as well as j replaced

by j − 1 proves the claim. ⊓⊔
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Lemma 10 Let j ≤ h1 be a positive integer. Then the following statements are correct.

(a) If ∆j > ⌈a⌉ then g(ν − 1) > g(ν) for all 2 ≤ ν ≤ j.

(b) If ∆j < ⌊a⌋ then g(ν) > g(ν − 1) for all h1 ≥ ν ≥ j.

(c) If ∆j = ⌈a⌉ then g(j) = g(j − 1)− (⌈a⌉ −a), i.e. g decreases by d = ⌈a⌉ − a.

(d) If ∆j = ⌊a⌋ then g(j) = g(j − 1) + (a− ⌊a⌋), i.e. g increases by e = a− ⌊a⌋.

Proof (a) By Lemma 9 for all ν < j we have ∆j ≤ ∆ν + 1. Furthermore, ∆j > ⌈a⌉
implies ∆j ≥ ⌈a⌉+ 1. Therefore

g(ν − 1)− g(ν) = a(ν − 1) +
⌈

n
ν−1

⌉
− aν −

⌈
n
ν

⌉
=

= ∆ν − a ≥ ∆j − 1− a ≥ (⌈a⌉+ 1)− 1− a > 0.
(16)

(b) By Lemma 9 for all j ≤ ν we have ∆ν ≤ ∆j + 1. Furthermore, ∆j < ⌊a⌋ implies

∆j + 1 ≤ ⌊a⌋. Therefore

g(ν)− g(ν − 1) = aν +
⌈
n
ν

⌉
− a (ν − 1)−

⌈
n

ν−1

⌉
=

= a−∆ν ≥ a−∆j − 1 ≥ a− ⌊a⌋ > 0.
(17)

(c) For ν = j (16) provides g(j − 1)− g(j) = ∆j − a = ⌈a⌉ − a.

(d) For ν = j (17) provides g(j)− g(j − 1) = a−∆j = a− ⌊a⌋.
⊓⊔

Notice that the statements of Lemma 10 need not to be true if j > h1 because for

j > t ≥ h1 the equality Kj+1 = Kj + 1 does not hold. Therefore one has to restrict

the search for kopt to the range 1, . . . , h1. Remember, we have no efficient algorithm

to calculate t.

Let l ≤ h1 be the smallest positive integer with ∆l ≤ ⌊a⌋. We may assume that

such an l always exists; otherwise ∆j > ⌊a⌋, i.e., ∆j ≥ ⌈a⌉ for all j ≤ h1, so that g

decreases in [1, h1] and kopt = h1. Furthermore, ∆j > ⌊a⌋ for at least one j; otherwise

∆j ≤ ⌊a⌋ for all j ≤ t, so that g increases in [1, h1] and kopt = 1.

Let h be the smallest integer with ∆ν ≤ ⌊a⌋ for all ν, h ≤ ν ≤ h1. If such an

integer does not exist, we set h = h1. Clearly l ≤ h and an optimal solution can be

easily identified if l ∈ {h− 1, h}. Therefore it remains to consider the case l < h− 1.

By Lemma 9 we have

∆ν ∈ {⌊a⌋ , ⌈a⌉} for all ν = l, . . . , h− 1.

We study the structure of the oscillation area defined by the sequence

∆l, ∆l+1, . . . , ∆h−1. We represent it as a sequence of repeated blocks of ∆-values of

two types A and B. Level 1 blocks A1 and B1 are of the form

A
1 = ⌈a⌉ ,

B
1 = ⌊a⌋ .

More complex level λ blocks Aλ and Bλ, λ = 2, 3, ..., are defined inductively. Each of

these blocks Aλ or Bλ consists of several blocks Aλ−1 and Bλ−1.

The following lemma describes the structure of the sequence ∆l, ∆l+1, . . . , ∆h−1

in terms of A1 and B1. The higher level blocks Aλ and Bλ are introduced and studied

after it.
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Lemma 11 The oscillation area has the form

∆l

B1 A
1
. . . A

1
︸ ︷︷ ︸ B1 A

1
. . . A

1
︸ ︷︷ ︸ . . . B1 A

1
. . . A

1
︸ ︷︷ ︸ B1A1B1A1 . . .

m1 m2 ms

∆h−1

. . . B1A1 B
1
. . . B

1
︸ ︷︷ ︸ . . . A1 B

1
. . . B

1
︸ ︷︷ ︸ A1 B

1
. . . B

1
︸ ︷︷ ︸ A1

ms m2 m1

(18)

where the block marked with ms (ms) corresponds to the last (first) occurrence of two

or more A’s (B’s),

mv ≤ mu + 1 for 1 ≤ u < v ≤ s,

and

mv ≤ mu + 1 for 1 ≤ v < u ≤ s.

The structure (18) can be described informally as follows. At the beginning of the

oscillation area subsequences of consecutive level 1 blocks A1 are separated by a single

B1. Symmetrically, at the end of the oscillation area subsequences of consecutive level 1

blocks B1 are separated by a single A1. mi and mi denote the number of repetitions of

A1 subsequences and B1 subsequences, respectively. If the middle part is non-empty,

then it consists of alternating single occurrences of A1- and B1-blocks. In what follows

we prove that (18) correctly represents the oscillation area.

Proof The proof is split into 2 parts.

Part (a). First we claim that a subsequence of the form

∆i ∆i+1 ∆j ∆j+1

. . . B1 B1 . . . A1 A1 . . .
(19)

is not possible. Indeed, in this case we would have (with Lemma 8)

2 ⌈a⌉ = ∆j +∆j+1 =

(⌈
n

j−1

⌉
−
⌈
n

j

⌉)
+

(⌈
n

j

⌉
−
⌈

n

j+1

⌉)
=

⌈
n

j−1

⌉
−
⌈

n

j+1

⌉

≤
⌈

n

i−1

⌉
−
⌈

n

i+1

⌉
+ 1 = ∆i +∆i+1 + 1 = 2 ⌊a⌋+ 1 = 2 ⌈a⌉ − 1

which leads to the contradiction 0 ≤ −1.

Due to the fact that a subsequence (19) is not possible to the left of an A1A1 . . . A1-

block of length at least two, all A1 . . . A1-blocks must be separated by a single B1 and

to the right of a B1B1 . . . B1-block of length at least two all B1 . . . B1-blocks must be

separated by a single A1.

Part (b). Now assume that mv ≥ mu + 2 for some 1 ≤ u < v ≤ s. Let ∆i and ∆i+k

be the ∆’s corresponding to the B-bounds of the A-block of length of mu and let ∆j

correspond to the first A1 in the A-block of length mv, i.e., we have the following

situation:

∆i ∆i+k ∆j . . . ∆j+k . . . ∆j+k+z

. . . B1 A
1
. . . A

1
︸ ︷︷ ︸ B1 . . . B1 A

1
. . . A

1
. . . A

1
︸ ︷︷ ︸ B1 . . .

mu mv
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where z ≥ 0. Again Lemma 8 leads to the contradiction:

(k + 1) ⌈a⌉ = ∆j +∆j+1 + · · ·+∆j+k =

⌈
n

j−1

⌉
−
⌈

n

j+k

⌉

≤
⌈

n

i−1

⌉
−
⌈

n

i+k

⌉
+ 1 = ∆i +∆i+1 + · · ·+∆i+k + 1

= (k − 1) ⌈a⌉+ 2 ⌊a⌋+ 1 = (k + 1) ⌈a⌉ − 1.

Thus, mv < mu + 2, i.e. mv ≤ mu + 1 for 1 ≤ u < v ≤ s. Symmetrically, it can be

shown that mv ≤ mu + 1 for 1 ≤ v < u ≤ s. ⊓⊔

Consider an oscillation area of the form (18) where by A1 the function g is decreased

by the value d and by B1 the function g is increased by the value e, see Lemma 10.

If d = e then the subsequences

B1 A
1
. . . A

1
︸ ︷︷ ︸ with mi ≥ 2

mi

in the left part of the oscillation area decrease g.

The subsequences

A1 B
1
. . . B

1
︸ ︷︷ ︸ with mi ≥ 2

mi

in the right part of the oscillation area increase g. The subsequences A1B1 in the

middle part do not change g. Therefore an optimal solution is given by the end of the

last B1 A
1
. . . A

1
︸ ︷︷ ︸ subsequence with mi ≥ 2 occurrences of A1.

It remains to consider the case d < e (the case e < d is treated symmetrically). In

this case an optimal solution can be found in

B1 A
1
. . . A

1
︸ ︷︷ ︸ B1 A

1
. . . A

1
︸ ︷︷ ︸ . . . B1 A

1
. . . A

1
︸ ︷︷ ︸

m1 m2 ms

(20)

Let l′ ≤ s be the smallest positive integer with ml′d ≤ e, i.e., ml′ ≤
⌊
e
d

⌋
. We may

assume that such an l′ exists because otherwise g achieves its minimum at the end of

sequence (20). Furthermore, mi >
⌊
e
d

⌋
for at least one i; otherwise the minimum is

achieved just before the oscillation area, i.e., it is given by the last position before the

oscillation area.

Let h′ be the smallest positive integer with mν ≤
⌊
e
d

⌋
for all ν ≥ h′. By the

definition of l′ the function g is strictly decreasing for all mν with ν < l′ and non-

decreasing for all mν with ν ≥ h′ (because in the latter case mν ≤
⌊
e
d

⌋
≤ e

d or

e ≥ mνd). Clearly, l
′ ≤ h′ and an optimal solution can be easily identified if l′ ∈{

h′ − 1, h′
}
. Therefore it remains to consider the case l′ < h′ − 1. With Lemma 11

mν ∈
{⌊

e

d

⌋
,
⌈
e

d

⌉}
for all l′ ≤ ν ≤ h

′ − 1. (21)

Define
A2 = B1 A

1
. . . A

1
︸ ︷︷ ︸ and B2 = B1 A

1
. . . A

1
︸ ︷︷ ︸ .⌈

e
d

⌉ ⌊
e
d

⌋ (22)
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Notice, that by the block A2(B2) the function g is decreased (increased) by

d
′ =

⌈
e

d

⌉
d− e ≥ e

d
d− e = 0 (e′ = e−

⌊
e

d

⌋
d ≥ e− e

d
d = 0). (23)

In what follows we will show that the new (considerably smaller) oscillation area

B1 A
1
. . . A

1
︸ ︷︷ ︸ B1 A

1
. . . A

1
︸ ︷︷ ︸ . . . B1 A

1
. . . A

1
︸ ︷︷ ︸

ml′ ml′+1 mh′−1

has the form

B2 A
2
. . . A

2
︸ ︷︷ ︸ B2 A

2
. . . A

2
︸ ︷︷ ︸ . . . B2 A

2
. . . A

2
︸ ︷︷ ︸ B2A2B2A2 . . .

m′
1 m′

2 m′
s′

. . . B2A2 B
2
. . . B

2
︸ ︷︷ ︸ . . . A2 B

2
. . . B

2
︸ ︷︷ ︸ A2 B

2
. . . B

2
︸ ︷︷ ︸ A2

m′
s′ m′

2 m′
1

where m′
s′ , m′

s′ ≥ 2, m′
j ≤ m′

i + 1 for 1 ≤ i < j ≤ s′, and m′
j ≤ m′

i + 1 for

1 ≤ j < i ≤ s′.

Notice, that level 2 blocks are sequences of level 1 blocks. This process will be iter-

ated considering level 2 blocks A2 and B2 instead of A1 and B1, etc. More specifically,

given level λ blocks Aλ and Bλ, where Aλ (Bλ) decreases (increases) g by dλ (eλ), the

blocks in level λ+ 1 are defined as

Aλ+1 = Bλ A
λ
. . . A

λ

︸ ︷︷ ︸ and Bλ+1 = Bλ A
λ
. . . A

λ

︸ ︷︷ ︸ .⌈
eλ

dλ

⌉ ⌊
eλ

dλ

⌋

Then by the block Aλ+1 (Bλ+1) the function g is decreased (increased) by

d
λ+1 =

⌈
eλ

dλ

⌉
d
λ−e

λ ≥ eλ

dλ
d
λ−e

λ = 0 (eλ+1 = e
λ−

⌊
eλ

dλ

⌋
d
λ ≥ e

λ− eλ

dλ
d
λ = 0). (24)

Later we will show that to identify Kopt one has to consider at most O (log n)

levels.

The next theorem generalizes Lemma 11.

Theorem 2 The oscillation area in each level λ has the form

∆l

Bλ A
λ
. . . A

λ

︸ ︷︷ ︸ Bλ A
λ
. . . A

λ

︸ ︷︷ ︸ . . . Bλ A
λ
. . . A

λ

︸ ︷︷ ︸ BλAλBλAλ. . .

mλ
1 mλ

2 mλ
sλ

∆h−1

. . . BλAλ B
λ
. . . B

λ

︸ ︷︷ ︸ . . . Aλ B
λ
. . . B

λ

︸ ︷︷ ︸ Aλ B
λ
. . . B

λ

︸ ︷︷ ︸ Aλ

mλ
sλ mλ

2 mλ
1

(25)

where

m
λ
sλ ,m

λ
sλ ≥ 2,

m
λ
v ≤ m

λ
u + 1 for 1 ≤ u < v ≤ s

λ
,

m
λ
v ≤ m

λ
u + 1 for 1 ≤ v < u ≤ s

λ
.
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Proof We prove the theorem by induction by λ-values. Due to Lemma 11 the theorem

is correct for level λ = 1. For the induction step we follow the structure of the proof of

Lemma 11.

Part (a). Consider the oscillation area at a level λ + 1, λ ≥ 1 consisting of blocks

Aλ+1 = BλAλ . . . Aλ with
⌈
eλ

dλ

⌉
repetitions of Aλ and Bλ+1 = BλAλ . . . Aλ with

⌊
eλ

dλ

⌋
repetitions of Aλ:

A
λ+1 = B

λ
A
λ
. . . A

λ

︸ ︷︷ ︸
⌈

eλ

dλ

⌉

, B
λ+1 = B

λ
A
λ
. . . A

λ

︸ ︷︷ ︸
⌊

eλ

dλ

⌋

(26)

Again a subsequence

. . . B
λ+1

B
λ+1

. . . A
λ+1

A
λ+1

. . . (27)

is not possible. Indeed (27) has the form

BλA
i′

λ . . . Aλ

︸ ︷︷ ︸
Bλ+1

BλAλ . . . Aλ

j′︸ ︷︷ ︸
Bλ+1

B
λ
. . . B

λAλ A
i′+ρ

λ . . . Aλ

︸ ︷︷ ︸
Aλ+1

BλAλ . . . A
j′+ρ

λAλ

︸ ︷︷ ︸
Aλ+1

. (28)

Let i′ be the index of the first ∆ν in the first Aλ of the first Bλ+1, i.e., the first

position in this first Aλ. Let j′ be the last position of the last Aλ of the second Bλ+1.

Furthermore let i′ + ρ be the first position of the second Aλ in Aλ+1 in (28). Notice

that the sequences ∆i′ . . . ∆j′ and ∆i′+ρ . . . ∆j′+ρ are identical. Let i < i′ be the

largest index with ∆i 6= ∆i+ρ and ∆ν = ∆ν+ρ for ν = i + 1, . . . , i′. Such an index

exists because block Bλ is the block preceding immediately position i′ in Bλ+1 and

Aλ is the block preceding immediately position i′+ρ in Aλ+1 (see (28)). Furthermore,

∆i+ρ = ⌈a⌉ and ∆i = ⌊a⌋. To show this, we decompose Aλ and Bλ into blocks Aλ−1

and Bλ−1:
Bλ= Bλ−1 Aλ−1. . .Aλ−1,

Aλ= Bλ−1 Aλ−1 Aλ−1. . .Aλ−1.

It is easy to see that only the first fragments of the above sequences are different while

the final parts are the same. We continue the decomposition into lower level blocks:

Bλ= Bλ−2Aλ−2. . .Aλ−2 Aλ−1. . .Aλ−1,

Aλ= Bλ−1Bλ−2 Aλ−2Aλ−2. . .Aλ−2 Aλ−1. . .Aλ−1.

Proceeding in a similar way we obtain:

Bλ= B1 A1. . .A1 A2. . .A2. . .Aλ−2. . .Aλ−2

Aλ= Bλ−1Bλ−2. . .B1 A1 A1. . .A1 A2. . .A2. . .Aλ−2. . .Aλ−2 (29)

which proves the claim that ∆i+ρ = ⌈a⌉ and ∆i = ⌊a⌋.
Let j > j′ be the smallest index with ∆ν = ∆ν+ρ for ν = j′ + 1, . . . , j − 1 and

∆j 6= ∆j+ρ. Again ∆j = ⌊a⌋ and ∆j+ρ = ⌈a⌉. Now we have with Lemma 8

∆i + · · ·+∆j + 2 = ∆i+1 + · · ·+∆j−1 + 2 ⌊a⌋+ 2

= ∆i+1+ρ + · · ·+∆j−1+ρ + 2 ⌈a⌉ (30)

= ∆i+ρ + · · ·+∆j+ρ

Lemma 8
≤ ∆i + · · ·+∆j + 1
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which provides the contradiction 2 ≤ 1.

Part (b). To prove that mλ+1
v ≤ mλ+1

u + 1 for 1 ≤ u < v ≤ sλ+1 assume that

mλ+1
v ≥ mλ+1

u + 2 for some 1 ≤ u < v ≤ sλ+1. Then similar to Part (b) in Lemma 11

we have the situation with the blocks Aλ+1 and Bλ+1 in level λ+ 1, λ ≥ 1:

. . . Bλ+1 A
λ+1

. . . A
λ+1

︸ ︷︷ ︸
mλ+1

u

Bλ+1 . . . Bλ+1 A
λ+1

A
λ+1

. . . A
λ+1

︸ ︷︷ ︸
mλ+1

u

A
λ+1

. . . A
λ+1

︸ ︷︷ ︸
mλ+1

v ≥mλ+1
u +2

Bλ+1. . .

Substituting lower level blocks instead of some of Aλ+1 and Bλ+1 we rewrite the above

sequence as follows:

. . .

Bλ+1

︷ ︸︸ ︷
B

λ
A
λ

i′
. . .A

λ
A
λ+1

. . .A
λ+1

︸ ︷︷ ︸
mλ+1

u

Bλ+1

︷ ︸︸ ︷
B

λ
A
λ
. . .A

λ

j′
. . . Bλ+1

Aλ+1

︷ ︸︸ ︷
B

λ
A
λ
A
λ

i′+ρ
. . .A

λ
A
λ+1

. . .A
λ+1

︸ ︷︷ ︸
mλ+1

u

Aλ+1

︷ ︸︸ ︷
B

λ
A
λ
. . .A

λ
A
λ

j′+ρ
A
λ+1

. . .A
λ+1

︸ ︷︷ ︸
m

λ+1
v −m

λ+1
u −1

Bλ+1. . . (31)

Definition of indices i′, j′ and i and j is similar to that in part (a). Namely, let i′ be

the index of the first ∆ν in the first Aλ of the first Bλ+1, i.e., the first position in this

first Aλ. Let j′ be the last position of the last Aλ of the second Bλ+1. Furthermore

let i′ + ρ be the first position of the second Aλ in Aλ+1 (see (31)). Notice that the

sequences ∆i′ . . . ∆j′ and ∆i′+ρ . . . ∆j′+ρ are identical. Let i < i′ be the largest index

with ∆i 6= ∆i+ρ and ∆ν = ∆ν+ρ for ν = i + 1, . . . , i′. Such an index exists because

block Bλ is the block preceding immediately position i′ in Bλ+1 and Aλ is the block

preceding immediately position i′ + ρ in Aλ+1 (see (31)). Furthermore, as shown in

Part (a), ∆i+ρ = ⌈a⌉ and ∆i = ⌊a⌋. Let j > j′ be the smallest index with ∆ν = ∆ν+ρ

for ν = j′ + 1, . . . , j − 1 and ∆j 6= ∆j+ρ.

We have
. . . Aλ

j′
BλAλ . . .

. . . Aλ

j′+ρ
Aλ . . .

By expanding BλAλ and Aλ, which follow Aλ

j′
and Aλ

j′+ρ
, respectively, we get

BλAλ = Bλ−1Aλ−1 . . . Aλ−1Bλ−1Aλ−1

Aλ = Bλ−1Aλ−1 . . . Aλ−1Aλ−1

BλAλ = Bλ−1Aλ−1 . . . Aλ−1Bλ−2Aλ−2 . . . Aλ−2Bλ−2Aλ−2

Aλ = Bλ−1Aλ−1 . . . Aλ−1Bλ−2Aλ−2 . . . Aλ−2Bλ−2

...

BλAλ = Bλ−1Aλ−1 . . . Aλ−1Bλ−2Aλ−2 . . . Aλ−2Bλ−3 . . . B2A2 . . . A2B1

Aλ = Bλ−1Aλ−1 . . . Aλ−1Bλ−2Aλ−2 . . . Aλ−2Bλ−3 . . . B2A2 . . . A2A1
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Again ∆j = ⌊a⌋ and ∆j+ρ = ⌈a⌉ and the sequences

∆i+1, . . . , ∆j−1 and ∆i+ρ+1, . . . , ∆j+ρ−1

are identical. Similar to Part (a), relation (30) holds leading to the contradiction 2 ≤ 1.

Symmetrically one can prove mλ
v ≤ mλ

u + 1 for 1 ≤ v < u ≤ sλ. ⊓⊔

We introduce the following notations. A block Xλ (Xλ = Aλ or Xλ = Bλ) at some

arbitrary level λ can be decomposed in a unique way into level 1 blocks∆ν ∈ {⌈a⌉ , ⌊a⌋},
i.e.,

X
λ = ∆i∆i+1 . . . ∆j .

The cumulative ∆-value of Xλ is defined as

∆Xλ =

j∑

ν=i

∆ν =
(⌈

n

i− 1

⌉
−
⌈
n

i

⌉)
+
(⌈

n

i

⌉
−
⌈

n

i+ 1

⌉)
+ · · ·+

+

(⌈
n

j − 1

⌉
−
⌈
n

j

⌉)
=

⌈
n

i− 1

⌉
−
⌈
n

j

⌉

and its length is given by

lXλ = j − i+ 1.

The values of ∆Xλ and lXλ for Xλ = Bλ and Xλ = Aλ can be calculated level by

level using the recursive formulas which follow from (22) and (26):

∆Bλ = ∆Bλ−1 +

⌊
eλ−1

dλ−1

⌋
∆Aλ−1 , ∆Aλ = ∆Bλ−1 +

⌈
eλ−1

dλ−1

⌉
∆Aλ−1 (32)

and

lBλ = lBλ−1 +

⌊
eλ−1

dλ−1

⌋
lAλ−1 , lAλ = lBλ−1 +

⌈
eλ−1

dλ−1

⌉
lAλ−1 (33)

with initial values

∆B1 = ⌊a⌋ , ∆A1 = ⌈a⌉ , lA1 = lB1 = 1. (34)

Due to Lemma 10 and (24) the values eλ and dλ are calculated recursively by

e
λ = e

λ−1 −
⌊
eλ−1

dλ−1

⌋
d
λ−1 and d

λ =

⌈
eλ−1

dλ−1

⌉
d
λ−1 − e

λ−1 (35)

with initial values

e
1 = a− ⌊a⌋ and d

1 = ⌈a⌉ − a. (36)
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4 A Polynomial-Time Algorithm

In this section we formulate an algorithm for finding an integer 1 ≤ kopt ≤ h1, which

minimizes g under an assumption that a > 1. The idea of our algorithm is to calculate

for each relevant level the corresponding oscillation area. The levels λ are considered

one by one. In our description we assume that in the current level λ condition eλ ≥ dλ

holds. The case eλ < dλ is symmetric and the corresponding version of the algorithm

which takes care of both cases can be easily derived.

The algorithm stops when an oscillation area contains at most two blocks. In this

case kopt can be identified easily. The algorithm can be described by a recursive pro-

cedure Optimize(λ, l, h), where l is a lower bound and h is an upper bound for the

oscillation area at level λ.

Procedure Optimize(λ, l, h)

1. If λ ≥ 2 then h :=Rightboundary(λ− 1, l, h);

2. l :=Updateleft(λ, l, h);

3. h :=Updateright(λ, l, h);

4. Calculate the blocks Xλ+1
l

and Xλ+1
h

, which can be of type Aλ+1 or Bλ+1 at level

λ+ 1 in which l and h are contained;

5. If at least one (λ+1)-block exists between Xλ+1
l

and Xλ+1
h

, then Optimize(λ+1,

l, h)

6. else CalculateOptimum
(
λ+ 1, Xλ+1

l
, Xλ+1

h

)

Rightboundary(λ − 1, l, h) provides an upper bound for the right boundary of

the oscillation area for λ ≥ 2. Such a boundary is provided by the last position of

the last Aλ−1Aλ−1-subsequence in an oscillation area at level λ − 1. The procedure

Updateleft(λ, l, h) and Updateright(λ, l, h) calculate the left boundary l̂ and right

boundary ĥ of the oscillation area at the next higher level, given a lower bound l

for l̂ and an upper bound h for ĥ. Notice, that Rightboundary(λ, l, h) and Upda-

teright(λ, l, h) with λ ≥ 2 are different procedures. Rightboundary(λ, l, h) identifies

the last position of the last AλAλ -subsequence in an oscillation area at level λ which

defines the input h for the procedure Updateright(λ, l, h). Rightboundary(λ, l, h) is

needed to cut off the BλAλBλAλ · · ·AλBλ · · ·BλAλ -part which under the assumption

eλ ≥ dλ is not relevant for identifying an optimal solution.

The procedure CalculateOptimum
(
λ,Xλ

l , X
λ
h

)
provides an optimal solution if

only one block Xλ
l = Xλ

h or two adjacent blocks Xλ
l and Xλ

h are left. If Xλ
l and Xλ

h

coincide and are equal to Bλ, then k − 1 provides an optimal solution where k is the

first index in Xλ
l . If X

λ
l and Xλ

h coincide and are equal to Aλ, then the last index

in Xλ
l provides an optimal solution. If Xλ

l and Xλ
h are two adjacent blocks, then for

Xλ
l X

λ
h we have the four cases: AλAλ, AλBλ, BλAλ, and BλBλ. In the last two cases

again k−1 provides an optimal solution where k is the first index in Xλ
l . In Case AλAλ

the last index in Xλ
h provides an optimal solution and in Case AλBλ the last index in

Xλ
l provides an optimal solution.

Minimize g is the main procedure which calculates Kopt.

Minimize g

1. l := 1;h := h1;

2. λ := 1;

3. Optimize(λ, l, h)
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In the first iteration of Minimize g the procedure Optimize(1, 1, h1) is called

in which l and h are calculated by Updateleft(1, 1, h1) and Updateright(11, h1),

respectively. Due to Lemma 11, the search can be narrowed to the subsequence

∆l, . . . , ∆h−1, marked by (18), with ∆l corresponding to the first occurrence of B1

and ∆h−1 corresponding to the last occurrence of A1. This is depicted in

(20)︷ ︸︸ ︷

B
1
︷ ︸︸ ︷
A
1
. . .A

1
. . .B

1
︷ ︸︸ ︷
A
1
. . .A

1
B1A1. . .B1A1

︷ ︸︸ ︷
B

1
. . .B

1
A1. . .

︷ ︸︸ ︷
B

1
. . .B

1
A1

l l l
∆2. . . ∆l · · · ∆h′ · · · ∆h−1︸ ︷︷ ︸

∆h. . .∆h1

If l < h−1 thenOptimize(2, l, h) is called which first callsRightboundary(1, l, h)

to find the last position h′ of the last subsequence A1A1. Now the level 2 starts which

is restricted to the range ∆l, . . . , ∆h′ marked by (20).

Next we describe the procedures Updateleft(λ, l, h) and Updateright(λ, l, h),

which by binary search provides the beginning and end of the oscillation area at level

λ + 1;
[
l′, l′′

]
and

[
h′, h′′

]
are the corresponding search intervals. The description of

Updateleft(λ, l, h) and Updateright(λ, l, h) for λ = 1 differs slightly from the de-

scription for λ > 1.

First we formulate Updateleft(λ, l, h) for λ = 1, afterwards we describe Upda-

teright(λ, l, h) for λ = 1 and finally the update procedures for λ > 1.

Procedure Updateleft(1, 1, h1)

1. l′ := 1; l′′ := h1; ∆1 := ∞;

2. While l′′ ≥ l′ + 2 do

3. j :=
⌊
l′+l′′

2

⌋
;

4. If ∆j > ⌈a⌉ then l′ := j;

5. If ∆j ≤ ⌊a⌋ then l′′ := j;

6. If ∆j = ⌈a⌉ then

7. Find the maximal ⌈a⌉-block

∆j′ ∆j ∆j′′

⌈a⌉ . . . ⌈a⌉ . . . ⌈a⌉

containing ∆j ;

8. If ∆j′′+1 > ⌈a⌉ then l′ := j′′ + 1;

9. If ∆j′′+1 ≤ ⌊a⌋ then

10. if j′′ + 1 < l′′ then l′′ := j′′ + 1

11. else if ∆j′−1 > ⌈a⌉ then return j′′ + 1

12. else l′′ := j′ − 1;

13. Return l′′

The procedure used in Step 7 for finding the maximal ⌈a⌉-block to which∆j belongs

will be discussed in Section 5.

If there is no exit from the while-loop 2-12 by the return in Line 11, then during

the performance of the while-loop always the inequalities ∆l′ > ⌈a⌉ and ∆l′′ ≤ ⌊a⌋ are

satisfied. Therefore by Lemma 9 l′ < l′′ is always satisfied. Furthermore in this case

the while-loop ends when l′′ = l′ + 1 is reached. At that point l′′ marks the start of

the oscillation area. Notice, that ∆l′ > ⌈a⌉ implies that ∆ν ≥ ⌈a⌉ for all ν ≤ l′.
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If on the other hand ∆j′′+1 ≤ ⌊a⌋, l′′ ≤ j′′ + 1 (which implies l′′ = j′′ + 1), and

∆j′−1 > ⌈a⌉, then again l′′ marks the start of the oscillation area.

Notice, that Updateleft(1, 1, h1) returns an index l with ∆l ≤ ⌊a⌋. If ∆l < ⌊a⌋
then l − 1 provides an optimal solution. Otherwise, ∆l = ⌊a⌋, i.e., l is the index of a

B-block.

The procedure Updateright(λ, l, h) for λ = 1 is shown below. It is symmetric to

Updateleft(λ, l, h) for λ = 1.

Procedure Updateright(1, 1, h1)

1. h′ := 1; h′′ := h1; ∆1 := ∞;

2. While h′′ ≥ h′ + 2 do

3. j :=
⌊
h′+h′′

2

⌋
;

4. If ∆j < ⌊a⌋ then h′′ := j;

5. If ∆j ≥ ⌈a⌉ then h′ := j;

6. If ∆j = ⌊a⌋ then

7. Find the maximal ⌊a⌋-block

∆j′ ∆j ∆j′′

⌊a⌋ . . . ⌊a⌋ . . . ⌊a⌋

containing ∆j ;

8. If ∆j′−1 < ⌊a⌋ then h′′ := j′ − 1;

9. If ∆j′−1 ≥ ⌈a⌉ then

10. if j′ − 1 > h′ then h′ := j′ − 1

11. else if ∆j′′+1 < ⌊a⌋ then return j′ − 1

12. else h′ := j′′ + 1;

13. Return h′

Updateright(1, 1, h1) returns an index h with ∆h ≥ ⌈a⌉. If ∆h > ⌈a⌉, then h

provides an optimal solution. Otherwise, ∆h = ⌈a⌉, i.e. h is the index of an A-block.

Next we describe Updateleft(λ+ 1, l, h) for λ ≥ 1. The corresponding oscillation

area has the form (25) where block Aλ decreases the objective function g by dλ and

block Bλ increases g by eλ. l is the first index in (25) and h is the last index. We

assume that eλ ≥ dλ. The case eλ ≤ dλ is treated symmetrically. In the case eλ ≥
dλ the last occurrence of an Aλ . . . Aλ-block with at least two Aλ repeated defines

a right boundary of the relevant BλAλ . . . Aλ-area. The blocks Xλ+1 considered in

Updateleft(λ+ 1, l, h) for λ ≥ 1 have the form

X
λ+1 = B

λ
A
λ
. . . A

λ

︸ ︷︷ ︸
m

Xλ+1

and its type depends on the number mXλ+1 of repetitions of Aλ. Up-

dateleft(λ+ 1, l, h) for λ ≥ 1 is similar to Updateleft(1, 1, h1), see the description

below.

Procedure Updateleft(λ+ 1, l, h)

1. l′ := l; l′′ := h;

2. Calculate the blocks Xλ+1
l′

and Xλ+1
l′′

in which ∆l′ and ∆l′′ are contained;

3. l′ := the last index in Xλ+1
l′

; l′′ := the first index in Xλ+1
l′′

;

4. While a (λ+ 1)-block exists between Xλ+1
l′

and Xλ+1
l′′

do
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5. j :=
⌊
l′+l′′

2

⌋
;

6. Let Xλ+1
j be the block to which ∆j belongs;

7. If m
Xλ+1

j

>
⌈
eλ

dλ

⌉
then l′ := the last index in Xλ+1

j ;

8. If m
Xλ+1

j
≤

⌊
eλ

dλ

⌋
then l′′ := the first index in Xλ+1

j ;

9. If m
Xλ+1

j

=
⌈
eλ

dλ

⌉
then

10. find the maximal sequence of repetitions of the block Xλ+1 = Xλ+1
j :

Cλ+1Xλ+1 . . . Xλ+1

j
. . . Xλ+1Dλ+1

(
Cλ+1, Dλ+1 6= Xλ+1

)
;

11. If mDλ+1 >
⌈
eλ

dλ

⌉
then

replace l′ by the last index in Dλ+1 and set Xλ+1
l′

= Dλ+1;

12. If mDλ+1 ≤
⌊
eλ

dλ

⌋
then

13. if the first index in Dλ+1 is smaller than l′′

then let l′′ be the first index in Dλ+1 and set Xλ+1
l′′

= Dλ+1

14. else if mCλ+1 >
⌈
eλ

dλ

⌉
then return the first index in Dλ+1

15. else replace l′′ by the first index in Cλ+1 and set Xλ+1
l′′

= Cλ+1;

17. Return l′′

The procedure for identifying block Xλ+1
j to which ∆j belongs and for calculating

the first and last indices of Xλ+1
j will be discussed in Section 5.

Notice, that during the performance of the procedure Updateleft(λ+ 1, l, h) for

λ ≥ 1 the inequalities m
X

λ+1

l′′
≤

⌊
eλ

dλ

⌋
and m

X
λ+1

l′
>

⌈
eλ

dλ

⌉
always hold. Therefore

Xλ+1
l′′

is to the right and Xλ+1
l′

is to the left of the Xλ+1, . . . , Xλ+1-block. This

implies that Cλ+1 and Dλ+1 always exist.

The procedure Updateright(λ+ 1, l, h) is symmetric to Updateleft(λ+ 1, l, h).

It remains to describe the procedure Rightboundary(λ, l, h) which calculates the

last position of the last AλAλ-subsequence in an oscillation area at level λ, λ ≥ 2, if such

a position exists. Again binary search is applied to find this position. More specifically,

we calculate a position j in a block in AλAλBλAλBλAλ . . . where AλAλ is the last

occurrence of two consecutive Aλ. In the second step the last position in AλAλ must

be calculated. This is easy if ∆j belongs to AλAλ. Otherwise, the first occurrence of

BλAλ in AλAλBλAλBλAλ . . . Bλ

j
Aλ must be identified. A corresponding method is

discussed in Section 5.3.

We start by calculating the last index h′ of the block containing l and the first

index h′′ of the block containing h. If there exists another block between these two

blocks, we calculate the block Xλ
j containing j :=

⌈
h′+h′′

2

⌉
. Then we distinguish the

two possible cases depending on whether Xλ
j is of type B or A. If Xλ

j is of type B,
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then the following three subcases are considered:

Case 1:
h′

AλBλ. . .AλBλAλBλ. . .Aλ
j

Bλ (the fragment ∆h′ , . . . , ∆j is covered by

AλBλ-sequences)

Case 2: AλAλBλ . . .AλBλ (nearest repeated Aλ which appear to the left

of Xλ
j )

Case 3: BλBλAλBλ . . .AλBλ (nearest repeated Bλ which appear to the left

of Xλ
j )

If Case 3 holds, then due to Part (a) in the proof of Theorem 2 there is no AλAλ-

subsequence to the right of Xλ
j . In this case we set h′′ equal to the first index in the

j-block Xλ
j . In the other two cases no BλBλ-subsequence occurs to the left of Xλ

j but

an AλAλ-subsequence may occur to the right of Xλ
j and we set h′ equal the last index

in the j-block Xλ
j .

The case Xλ
j = Aλ is treated symmetrically.

In either case we proceed with the new values h′ and h′′ and continue until there is

no other block between the h′-block and the h′′-block. If both blocks are Bλ-blocks then

we set h equal to h′. Otherwise we set h equal to h′′. Now we have reached a situation

in which no BλBλ occurs to the left of the h-block and we calculate the last position

of the last AλAλ which occurs before the h-block. The algorithm is summarized below.

Procedure Rightboundary(λ, l, h)

1. h′ := last index of the block containing l;

2. h′′ := first index of the block containing h;

3. While at least one block exists between the h′-block and the h′′-block do

4. j :=
⌈
h′+h′′

2

⌉
;

5. Xλ
j = the block containing ∆j ;

6. If Xλ
j is a B-block then

7. if

B
λ
B

λ
A
λ
B

λ
. . .A

λ
j

B
λ

8. then h′′ := the first index in the j-block Bλ

9. else h′ := the last index in the j-block Bλ

10. else if

B
λ
B

λ
A
λ
B

λ
. . .A

λ
B

λ
j

A
λ

11. then h′′ := the first index in the j-block Aλ

12. else h′ := the last index in the j-block Aλ;

13. If Xλ
h′ = Bλ and Xλ

h′′ = Bλ hold, then h := h′

14. else h := h′′;

15. Return the last position of the last AλAλ-block which does not end later than

the h-block

Steps 13 and 14 are such that h belongs to the block in the BλAλBλAλ . . .-area

after the last occurrence of AλAλ. Notice that procedure Rightboundary always

deals with the blocks Xλ
h′ and Xλ

h′′ in different positions in the λ-oscillation area so

that these two blocks never coincide.

An efficient procedure implementing Steps 7,10, and 15 is presented in the next

section.
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5 Calculating Block Boundaries

In Step 7 of the procedure Updateleft(1, 1, h1) and in a corresponding step in Upda-

teright(1, 1, h1) one has to calculate the boundaries of an AA . . . A-block andBB . . . B-

block, respectively. Similar calculations are needed for higher level Updateleft and

Updateright procedures. We also have to identify at the current level λ the block Xλ
j

in which ∆j is contained and to find the first and the last index of Xλ
j . This is done

by first calculating the boundaries of the level 2 blocks in which ∆j is contained, then

calculating the boundaries of the level 3 blocks in which ∆j is contained, etc.

In the next two subsections it is shown how to calculate AλAλ . . . Aλ-block bound-

aries for level λ = 1 and for higher levels λ. BλBλ . . . Bλ-block boundaries can

be calculated in a similar way. We also need to calculate the boundaries of an

AλBλAλBλ . . . AλBλ-block. A corresponding procedure is described in the third sub-

section.

5.1 Calculating Boundaries for AA . . . A-Blocks at Level 1

To calculate the left boundary of an AA . . . A-block at level 1 we consider the following

two situations:

Case 1 : B A A . . . A

∆i−δ ∆i−δ+1 ∆i−δ+2 . . . ∆i

Case 2 : D A A . . . A

∆i−δ ∆i−δ+1 ∆i−δ+2 . . . ∆i

with A = ⌈a⌉, B = ⌊a⌋ and D > ⌈a⌉ (cf. Lemma 9). In both cases

⌈
n

i−ν

⌉
−
⌈
n
i

⌉
=

(⌈
n

i−ν

⌉
−
⌈

n
i−ν+1

⌉)
+
(⌈

n
i−ν+1

⌉
−
⌈

n
i−ν+2

⌉)
+ ...

...+
⌈

n
i−1

⌉
−
⌈
n
i

⌉
= ⌈a⌉ ν for ν = 0, ..., δ.

Thus, ⌈
n

i− ν

⌉
= ξi + ⌈a⌉ ν for ν = 0, ..., δ (37)

with ξi =
⌈
n
i

⌉
holds.

Additionally,

⌈
n

i− (δ + 1)

⌉
= ξi + ⌈a⌉ δ + ⌊a⌋ = ξi + ⌈a⌉ (δ + 1)− 1 (38)

holds in Case 1 and

⌈
n

i− (δ + 1)

⌉
= ξi + ⌈a⌉ (δ + 1) + x with x ≥ 1 (39)

holds in Case 2.

Theorem 3 (a) Case 1 holds if and only if (37) and (38) are satisfied. (b) Case 2

holds if and only if (37) and (39) are satisfied.
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Proof The necessary part has just been proved. It remains to show that (37) and (38)

((37) and (39)) are sufficient for Case 1 (Case 2).

In Case 1 in which (37) and (38) hold, subtracting
⌈

n
i−ν

⌉
= ξi + ⌈a⌉ ν from⌈

n
i−(ν+1)

⌉
= ξi + ⌈a⌉ (ν + 1) yields ∆i−ν = ⌈a⌉ for ν = 0, ..., δ and ∆i−(δ+1) = ⌊a⌋.

In Case 2 in which (37) and (39) hold, a similar subtraction provides ∆i−ν = ⌈a⌉
for ν = 0, ..., δ and ∆i−(δ+1) = ⌈a⌉+ x with x ≥ 1. ⊓⊔

We give a geometric interpretation of Cases 1 and 2.

Consider first Case 1. Condition (37) is equivalent to

n

i− ν
≤ ξi + ⌈a⌉ ν and

n

i− ν
> ξi + ⌈a⌉ ν − 1. (40)

Furthermore, (38) implies

n

i− (δ + 1)
≤

⌈
n

i− (δ + 1)

⌉
= ξi + ⌈a⌉ (δ + 1)− 1. (41)

In this case the line ξi + ⌈a⌉ ν − 1 intersects the hyperbola n
i−ν in one point c′ = b′ or

two points c′ < b′.

Furthermore, the interval
[
c′, b′

]
contains the integer point δ + 1 and c ≤ 0 < c′

where in c the line ξi + ⌈a⌉ ν intersects the hyperbola. The situation with c′ < b′ is

depicted in Figure 2.

To calculate δ one has to find the smallest solution c′ of the equation

n

i− ν
= ξi + ⌈a⌉ ν − 1

which is equivalent to the quadratic equation

⌈a⌉ ν2 + (ξi − 1− i ⌈a⌉)ν + n− i(ξi − 1) = 0.

δ is calculated by

δ =
⌈
c
′ − 1

⌉
(42)

Fig. 2 Calculation of left boundary for A-repetitions
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Now consider Case 2 in which (37) and (39) are satisfied. Then besides (40) the

inequality ⌈
n

i− (δ + 1)

⌉
> ξi + ⌈a⌉ (δ + 1)

holds. The hyperbola does or does not intersect the lower line ξi + ⌈a⌉ ν − 1. In the

latter case, due to (40) c ≤ 0 < b, where c and b are intersection points of the hyperbola

and the upper line ξi + ⌈a⌉ ν, see Figure 2.

On the other hand, if the hyperbola intersects the lower line ξi + ⌈a⌉ ν − 1, then

due to (40) either c ≤ 0 < c′ or b′ < 0 ≤ b, where c′ and b′ are intersection points of

the hyperbola and the lower line ξi + ⌈a⌉ ν − 1. Observe that if c ≤ 0 < c′, then due

to (39) and (40), interval
[
c′, b′

]
cannot contain an integer point. In both cases case

δ = ⌊b⌋ where b is the largest solution of the equation

n

i− ν
= ξi + ⌈a⌉ ν.

We conclude that in order to find out which case applies and to calculate the

corresponding value δ one has to solve two quadratic equations.

The right boundary of an A...A-block can be calculated in a similar way.

5.2 Calculating Boundaries for AλAλ . . . Aλ-Blocks

We describe how to calculate the left boundary of AλAλ . . . Aλ-blocks at some level λ

greater than 1. Right boundaries are calculated similarly.
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Case 1 : Bλ−1 Aλ−1. . .Aλ−1Aλ. . . . . .Aλ Bλ−1 Aλ−1 Aλ−1. . .Aλ−1

Aλ-sequence : Bλ−1 Aλ−1 Aλ−1. . .Aλ−1Aλ. . . . . .Aλ Bλ−1 Aλ−1 Aλ−1. . .Aλ−1

Case 2 : Bλ−1Aλ−1. . .Aλ−1 Aλ−1 Aλ−1 Aλ−1. . .Aλ−1Aλ. . . . . .Aλ Bλ−1 Aλ−1 Aλ−1. . .Aλ−1

↑
i−l

Aλ (δ+1)
↑

j−l
Aλ (δ+1)

↑
i

↑
j

(43)

Bλ−1= B A. . .A A(2). . .A(2). . .Aλ−2. . .Aλ−2

Aλ−1= Bλ−2Bλ−3. . .B A A. . .A A(2). . .A(2). . .Aλ−2. . .Aλ−2 (44)

Case 1 : BA . . . A . . . Aλ−2 . . . Aλ−2 Aλ−1 . . . Aλ−1Aλ . . . Aλ

Aλ-sequence : BA . . . A . . . Aλ−2 . . . Aλ−2 Bλ−2 . . . B AA . . . A . . . Aλ−2 . . . Aλ−2 Aλ−1 . . . Aλ−1Aλ . . . Aλ

Case 2 : Bλ−1Aλ−1. . .Aλ−1 Bλ−2. . .B AA . . . A . . . Aλ−2 . . . Aλ−2 Bλ−2 . . . B AA . . . A . . . Aλ−2 . . . Aλ−2 Aλ−1 . . . Aλ−1Aλ . . . Aλ

↑ ↑
i−l

Aλ (δ+1) j−l
Aλ (δ+1)

Case 1 (cont.) : BA . . . A . . . Aλ−2 . . . Aλ−2 Bλ−2 . . . BA A . . . A . . . Aλ−2 . . . Aλ−2 Aλ−1 . . . Aλ−1

Aλ-sequence (cont.) : BA . . . A . . . Aλ−2 . . . Aλ−2 Bλ−2 . . . BA A . . . A . . . Aλ−2 . . . Aλ−2 Aλ−1 . . . Aλ−1

Case 2 (cont.) : BA . . . A . . . Aλ−2 . . . Aλ−2 Bλ−2 . . . BA A . . . A . . . Aλ−2 . . . Aλ−2 Aλ−1 . . . Aλ−1

↑ ↑
i j

(45)
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To calculate the block Bλ (Case 1) or Dλ (Case 2) at the left boundary of a

sequence Aλ...Aλ where

Bλ = Bλ−1Aλ−1...Aλ−1

Aλ = Bλ−1 Aλ−1Aλ−1...Aλ−1

Dλ = Bλ−1Aλ−1... Aλ−1 Aλ−1Aλ−1...Aλ−1

we compare the following sequences

Case 1 : BλAλ...AλAλ

Aλ-sequence : AλAλ...AλAλ

Case 2 : DλA
λ
...A

λ

︸ ︷︷ ︸
δ

Aλ

which can be written in the form (43). In (43), i (j) is a position of a ∆i (∆j) value

contained in the block Bλ−1 (Aλ−1) marked with i (j). Consequently, i − lAλ(δ + 1)

(j− lAλ(δ+1)) are contained in the blocks with offset lAλ(δ+1), as indicated in (43).

Recall that lAλ denotes the length of block Aλ, as introduced at the end of Section 3.

To define position i− lAλ(δ+1) compare the Case 2 sequence with the Aλ-sequence

in representation (43). Scanning these sequences from right to left there is the first

column where the blocks in the two sequences are different. This column is marked by

i − lAλ(δ + 1). Similarly, if we compare the Case 1 sequence with the Aλ-sequence in

representation (43) by scanning these sequences from right to left there, we get the first

column where the blocks are different marked by j − lAλ(δ + 1). The precise position

of i− lAλ(δ + 1) and j − lAλ(δ + 1) will be explained after a further decomposition of

the blocks in the columns marked by i, j.

Notice that A(1) := A = ⌈a⌉ and B(1) := B = ⌊a⌋. Also, if λ = 2 then (43) provides

directly the relevant structure and the precise positions i− lAλ(δ+1) and j− lAλ(δ+1)

and correspondingly i and j.

If λ ≥ 3 consider a further decomposition of Bλ−1 and Aλ−1 of the form (44),

which has been derived in Section 3, see (29). Substituting (44) the comparison (43)

can be extended to (45).

In representation (45), when scanning from right to left, i− lAλ(δ + 1) marks the

first position where the Case 2 sequence and the Aλ-sequence are different. Similarly,

j− lAλ(δ+1) marks the first position where the Case 1 sequence and the Aλ-sequence

are different.

To establish the boundaries of the Aλ . . . Aλ block we need to derive formulas

similar to (37)-(39). For Case 1 we compare the first two lines in (45) and conclude

that ⌈
n

j − lAλν

⌉
= ξj +∆Aλν for ν = 0, . . . , δ, (46)

⌈
n

j − lAλ(δ + 1)

⌉
= ξj +∆Aλ(δ + 1)− 1, (47)

⌈
n

i− lAλν

⌉
= ξi +∆Aλν for ν = 0, . . . , δ, (48)

where i and j are the positions marked in (45) and ∆Aλ is the cumulative ∆-value

of the block Aλ introduced at the end of Section 3. We demonstrate how condition
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(47) can be derived; the other conditions are similar. Consider the difference between⌈
n

j−l
Aλ (δ+1)

⌉
and ξj :

⌈
n

j − lAλ(δ + 1)

⌉
− ξj =

⌈
n

j − lAλ(δ + 1)

⌉
−
⌈
n

j

⌉

=

(⌈
n

j − lAλ(δ + 1)

⌉
−
⌈

n

j − lAλ(δ + 1) + 1

⌉)
+

+

(⌈
n

j − lAλ(δ + 1) + 1

⌉
−
⌈

n

j − lAλ(δ + 1) + 2

⌉)
+

+ · · ·+
(⌈

n

j − 1

⌉
−
⌈
n

j

⌉)

= ∆j−l
Aλ (δ+1)+1 +∆j−l

Aλ (δ+1)+2 + · · ·+∆j =

= ∆Aλ (δ + 1)− ⌈a⌉+ ⌊a⌋ = ∆Aλ (δ + 1)− 1.

For Case 2 a comparison of the last two lines in (45) leads to

⌈
n

i− lAλν

⌉
= ξi +∆Aλν for ν = 0, . . . , δ (49)

⌈
n

i− lAλ(δ + 1)

⌉
= ξi +∆Aλ(δ + 1) + 1 (50)

⌈
n

j − lAλν

⌉
= ξj +∆Aλν for ν = 0, . . . , δ. (51)

Theorem 4 (a) Case 1 holds if and only if (46) to (48) are satisfied. (b) Case 2 holds

if and only if (49) to (51) are satisfied.

Proof Again it remains to prove that (46) to (48) and (49) to (51) are sufficient for

Case 1 and Case 2, respectively. Notice that the sequences in (45) are part of the

oscillation area of level λ− 1, i.e. they consist of blocks of type Aλ−1 and Bλ−1 only.

The structure of this oscillation area is described by Theorem 2.

Part (a). Similar to the proof of Theorem 3 it follows from equalities (46) to (48) that

⌈
n

j − lAλ(ν + 1)

⌉
−
⌈

n

j − lAλν

⌉
= ∆Aλ for ν = 0, . . . , δ − 1 (52)

⌈
n

j − lAλ(δ + 1)

⌉
−
⌈

n

j − lAλδ

⌉
= ∆Aλ − 1 (53)

⌈
n

i− lAλ(δ + 1)

⌉
−
⌈

n

i− lAλδ

⌉
= ∆Aλ for ν = 0, . . . , δ − 1. (54)

(52) to (54) imply that the first δ blocks to the left of the Aλ-block containing ∆i

and ∆j must be Aλ-blocks and the next block is a Bλ-block.

The proof of Part (b) is similar. ⊓⊔

As discussed in the previous section conditions (46)-(48) and (49)-(51) can be

checked and a corresponding δ can be calculated using the technique of the previous

section.
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5.3 Calculation of Boundaries for AλBλAλBλ . . . AλBλ-Areas

To calculate the left boundary of an AλBλAλBλ . . . AλBλ-area we proceed in a similar

way as in the previous section.

For λ ≥ 3 consider the sequences given by (55). These sequences can be expanded

to (56) by substituting the expressions for Bλ and Aλ.

For λ = 1 the sequences (55) can be simplified by replacing Aλ by ⌈a⌉ and Bλ by

⌊a⌋. Similarly (56) can be simplified for the case λ = 2.
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Case 1 : Bλ BλAλ . . . BλAλ Bλ Aλ

AλBλ-sequence : Bλ Aλ BλAλ . . . BλAλ Bλ Aλ

Case 2 : Aλ Aλ BλAλ . . . BλAλ Bλ Aλ

↑ ↑ ↑ ↑
i−(l

Aλ+l
Bλ )(δ+1) j−(l

Aλ+l
Bλ )(δ+1) i j

(55)

Case 1 : Bλ−1Aλ−1 . . . Aλ−1 BλAλ . . . BλAλ Bλ−1Aλ−1 . . . Aλ−1Bλ−1 Aλ−1 . . . Aλ−1

AλBλ . . . : Bλ−1Aλ−1 . . . Aλ−1 Bλ−1 Aλ−1Aλ−1 . . . Aλ−1 BλAλ . . . BλAλ Bλ−1Aλ−1 . . . Aλ−1Bλ−1 Aλ−1 . . . Aλ−1

Case 2 : Bλ−1 Aλ−1Aλ−1 . . . Aλ−1 Bλ−1 Aλ−1Aλ−1 . . . Aλ−1 BλAλ . . . BλAλ Bλ−1Aλ−1 . . . Aλ−1Bλ−1 Aλ−1 . . . Aλ−1

↑ ↑ ↑ ↑
i−(l

Aλ+l
Bλ )(δ+1) j−(l

Aλ+l
Bλ )(δ+1) i j

(56)
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Sequences (56) lead to the following case dependent equations which are similar to

(46)-(48) and (49)-(51) and are necessary and sufficient for the corresponding situa-

tions.

Case 1:
⌈

n

j − (lAλ + lBλ)ν

⌉
= ξj + (∆Aλ +∆Bλ)ν for ν = 0, . . . , δ (57)

⌈
n

j − (lAλ + lBλ)(δ + 1)

⌉
= ξj + (∆Aλ +∆Bλ)(δ + 1)− 1 (58)

⌈
n

i− (lAλ + lBλ)ν

⌉
= ξi + (∆Aλ +∆Bλ)ν for ν = 0, . . . , δ (59)

Case 2:
⌈

n

i− (lAλ + lBλ)ν

⌉
= ξi + (∆Aλ +∆Bλ)ν for ν = 0, . . . , δ (60)

⌈
n

i− (lAλ + lBλ)(δ + 1)

⌉
= ξi + (∆Aλ +∆Bλ)(δ + 1) + 1 (61)

⌈
n

j − (lAλ + lBλ)ν

⌉
= ξj + (∆Aλ +∆Bλ)ν for ν = 0, . . . , δ. (62)

As before the two cases can be checked and a corresponding δ can be calculated by

solving two quadratic equations.

6 Complexity

The complexity of the overall algorithm Minimize g which identifies an integer kopt
minimizing g(k) can be estimated as follows.

In each level λ the blocks Aλ and Bλ contain one Bλ−1-block and at least one

Aλ−1-block of the previous level. Therefore the length of level λ+1 blocks is bounded

from below by 2λ. On the other hand, the length of the oscillation area is not increasing

which implies that the recursive procedure Optimize performs no more than O(log n)

recursive calls because the algorithm stops when reaching a level in which the oscillation

area has no more than two blocks. Using the recursive formulas (32) to (36) we calculate

the values ∆Aλ , ∆Bλ , lAλ and lBλ also in time O(log n).

To identify the level λ block in which j is contained, we calculate for each level

ν = 2, . . . , λ the first and the last indices of the level ν block in which j is contained. If

j is contained in a Bν−1-block or Aν−1-block at level ν − 1 with known first and last

indices, we can find out in constant time whether j is contained in a Bν -block Bν
j or in

a Aν -block Aν
j at level ν. Furthermore, the first and the last indices of the level ν block

can be calculated in time O(1). All this can be accomplished using the techniques

described in Section 5. Thus, the first and the last indices of the level ν = 2, . . . , λ

blocks containing j can be calculated in O(log n) time. The overall time complexity of

each of the procedures Updateleft and Updateright is O(log2 n) because the while-

loops in these procedures are iterated at most O(log n) times. Similarly, the procedure

Rightboundary has complexity O(log2 n). We conclude that the main procedure Op-

timize(1, 1, h1) which performs at most log n recursive calls has complexity O(log3 n)

which is the complexity of the algorithm Minimize g as well.
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7 Concluding Remarks

In this paper we have resolved an open question posed in [9] for the flow-shop batching

problem with equal processing times and equal setup times, which is formulated as

an integer non-linear programming problem of one variable k with a solution region

given by the natural numbers not exceeding n. The objective function is of the form

g(k) = ak +
⌈
n
k

⌉
. For that problem we have developed a polynomial-time algorithm

for finding an integer solution kopt.

A non-integer optimum of the relaxed problem of minimizing the continuous func-

tion f(k) = ak + n
k is given by k =

√
n
a which can be determined easily by standard

calculus techniques. On the other hand, an integer optimum of g (k) cannot be obtained

by simple rounding since this optimum can be quite far from
√

n
a .

While the earlier algorithms have time complexities O(n) [3,6] and O (
√
n) [9],

which are both exponential with respect to the binary encoded input length, the com-

plexity of the new algorithm is O
(
log3 n

)
. The main challenges of developing a fast

solution algorithm involve identification of a complex discrete periodic structure, find-

ing out how it can be described in mathematical terms using a recursive representation

and proving that the identified structure and the algorithm based on this structure are

correct.

To the best of our knowledge, the technique developed does not have similar coun-

terparts in the optimization literature. However, we believe it has potential to provide

solutions to a range of high-multiplicity optimization problems, in particular to various

batching problems with equal processing which can be formulated in a form similar

to (3):

(i) the single machine batching problem to minimize the sum of completion times [4,

7,8,10,11],

(ii) the open-shop problem to minimize the makespan [5],

(iii) the job-shop problem to minimize the makespan [3].

For all above problems only pseudo-polynomial algorithms are known except for

problem (i) for which Shallcross [11] has developed a polynomial-time algorithm with

time complexity depending not only on log n, but also on log p and log s. The approach

used in that paper is quite different from ours.

An interesting open question is establishing a link between the periodic structure

derived for g (k) and the continuos optimum
√

n
a . We suspect that at least one of the

numbers
⌊√

n
a

⌋
or

⌈√
n
a

⌉
is close to the highest level block found by our algorithm.

Proving this could lead to a faster algorithm of time complexity O
(
log2 n

)
.
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