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Abstract

This paper presents an automatic locally adaptive finiteele solver for the fully-
coupled EHL point contact problems. The proposed algoritkes a posteriori error
estimation in the stress in order to control adaptivity inthbthe elasticity and the
lubrication domains. The implementation is based on thetfat the solution of
the linear elasticity equation exhibits large variatiofese to the the fluid domain
on which the Reynolds equation is solved. Thus the localeafent in such region
not only improves the accuracy of the elastic deformatidatgm significantly but
also yield an improved accuracy in the pressure profile directease in the spatial
resolution of fluid domain. Thus, the improved traction bdarry conditions leads to
even better approximation of the elastic deformation. ldeacsimple and an effec-
tive way to develop an adaptive procedure for the fully-dedEHL problem is to
apply the local refinement to the linear elasticity mesh. pitoposed algorithm also
seeks to improve the quality of refined meshes to ensure gteberall accuracy. It
is shown that the adaptive procedure effectively refinegtaments in the region(s)
showing the largest local error in their solution, and rexfuthe overall error with op-
timal computational cost for a variety of EHL cases. Spedilfjc the computational
cost of proposed adaptive algorithm is shown to be lineahn waspect to problem
size as the number of refinement levels grows.

KEYWORDS: elastohydrodynamic lubrication; finite element method; linear elastigity;
coupled approach; adaptive h-refinement; optimization of meshes

1 INTRODUCTION

The use of lubricants between the moving components of mechanical systpsprioeect them
from direct contact, and therefore reduces both friction and wear. Thisrileads to less energy
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consumption and increased life of the machine components respectively. fdhesenoving
components apart in the presence of a thin lubricant film, a pressure iatgahim the film due
to the relative motion of the components. Generally, for non-conforming conthetpressure
generated is very high, which causes a significant elastic deformation ionkect surfaces and
hence defines a new shape of the lubricant film. Such a class of problemavis as elastohy-
drodynamic lubrication (EHL) [1, 2,13,18,42,43].

The shape of the lubricant film depends upon the geometry of the contatttha resul-
tant elastic deformation of the contacting surfaces. A most commonly used methaldulate
the elastic deformation of the surfaces is based upon evaluation of an eldstimat&on inte-
gral [13,19,29,42,43] which is obtained by an analytical solution of thatie&asticity equation
on a semi-infinite domain. A number of efficient numerical techniques havedm&loped over
the past few decades using this half-space approach, for example the rauttilgti-integration
(MLMI) method [9]. Historically, the most common approaches for discretizivgglubrication
equation have been based on finite difference schemes [17, 42]. fitedkeds limit the dis-
cretization process to regular structured rectangular meshes using lemapgtoximations, and
have been combined effectively with the use of multigrid method [29]. Typicallgethédference
schemes are loosely coupled with the elastic deformation equation, which allow€ithent
combination of multigrid and MLMI [42, 43], but with a slowly converging outer iteration
heavily-loaded cases.

An alternative solution technique is the fully-coupled approach, which dsreisolving the
discretized elasticity and lubrication equations simultaneously, see for exam@3&]28], with
the goal of obtaining a faster convergence rate for the iterative solut@selexamples are based
on the half-space approach for the elastic deflection. The drawbadk effjproach is that it uses
the pressure from all points in the domain to calculate the deflection at eachvaloich makes
the resulting linearized system matrix dense. Furthermore, for heavy load&dbleian matrix
becomes almost singular, which makes it hard to reach the solution. A “diffakreleflection
method” was introduced by Evans and Hughes [15, 23, 24, 26]. Tvenéate of this method is
that it uses information from comparatively fewer points in the domain to calculatel#istic
deflection at each point. In other words the influence of pressure actingaant is reduced to a
limited locality of that point. Therefore this approach results in a less dens&xmatnpared to
the traditional half-space approach for elastic deflection.

Habchi et al. [20-22] also used a fully-coupled approach to solve the fEbblems. This
technique is different however since it replaced the half-space solutitimoohavith the direct
finite element approximation of the linear elasticity equation on a finite contact donfaén. T
resultant system of discrete equations is therefore very large but isesgdre author used a
sparse direct solver to solve the linearized system at each Newton itergtaoseSlirect solvers
are very efficient for small systems but as the resolution and/or the dimeoistoe problem
increases their performance deteriorates and a large amount of memoryirededecently
Ahmed et al. [2, 3] introduced an efficient preconditioned iterative methoduoh large and



highly sparse fully-coupled systems. This solution method leads to substamirggsa mem-
ory and time. Most importantly, both the memory and the time growth, with respecbldepn
size, is shown to be linear. For circular point contact cases, the auttedsnanually-generated
3D meshes for the linear elasticity approximation, which were based on a large noineper-
iments in order to obtain a satisfactory EHL solution at the lowest cost as fodddie that, in
the selection of those meshes, smaller mesh spacings were used only in tiotregnda where
the pressure solution exhibits the largest variation [17, 28]. Similarly, the solotitre linear
elasticity equation also exhibits large variations close to the contact region. Heaceesh el-
ements closest to the contact region are shown to have the largestattons the pressure and
the linear elasticity solutions [1].

In this paper, the development of an automatic locally adaptive finite elemletibscsscheme
for the fully-coupled EHL point contact problems is discussed, which esfthe mesh in the
contact as well as the elasticity domain based upon local error estimatesfetréiss. This
proposed algorithm therefore combines the several efficiency techrji2jss 48, 49] to obtain
performance results that are comparable to those of multigrid and MLMI [42bdBjwvith the
side effect of predicting the interior deformation and stresses for the domatements. It will
be shown that the proposed procedure effectively refines the elemdhtsregion(s) showing
the largest error in their solution, and reduces the overall error with optiomputational cost.
Specifically, the growth in the computational cost of the whole adaptive solutimegs is shown
to be linear with respect to problem size as the number of adaptive levels.grows

2 MATHEMATICAL MODEL AND FULLY-COUPLED APPROACH

2.1 Mathematical model

In this subsection an isothermal EHL point contact model is presented ininemsional form.
The EHL point contact model considers an equivalent geometry of a ¢onit@ce contact be-
tween two surfaces is represented by an elastic surface and a rigidgtaeehat the equivalent
elastic surface contains the total elastic properties of the original conitdatss, and hence the
solution will define the total elastic deformation of both contacting surfaces]2,21

2.1.1 Reynolds equatiorthis governs the pressure distribution through the contact region
(©2y) for the given geometry and properties of lubricant. It reads (e.g3]).
0

V.(€VP) ~ 5 (pH) =0, (1)

_ pH®
= 2=
tively. Also p = p(P) andi; = 7j(P) are the dimensionless density and viscosity of the lubricant
and)\ is a dimensionless speed parameter. In this work the Roelands [35] vistwslgl and the

wheree P and H are the (unknown) dimensionless pressure and film thickness respec-
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Dowson and Higginson [13] density model are used, although the concfumiemot dependent
upon these specific choices.

Finally, it is generally assumed that the pressure is equal to the ambieningrasthe bound-
ary of the contact region. Pressure lower than the vapour pressphysgally unacceptable,
thus the fluid will cavitate and the pressure will remain equal to the vapossire. This pro-
cess is called cavitation [14, 16, 42]. Since atmospheric and vapouupees® generally very
small compared to the pressure generated inside the contact region threyated as zero in this
model. Hence the pressure throughout the contact is bounded belowoby kas, together with
the principle of mass conservation [14], the Reynolds boundary condigasr

P=0o0on0Qy and VPi7i=0 atthe cavitation boundary,

wherei is the outward normal vector to the cavitation boundary afig is the boundary of
computational region. Note that this is a free boundary problem since the lochtiaritation
boundary is not known prior to computing the pressure solution. Amongst timusarossible
treatments to handle this free boundary problem (see for example [14]},6hs work consid-
ers a penalty method introduced by Wu [44]. This introduces an additiomal(terown as the
penalty term) for which the modified Reynolds equation reads:

V.(eVP) — 8% (pH) — (P~ =0,  throughout, (2)

whereP = 0 ondS)y, ¢ is a suitably large positive number ait = min(P,0). This term has
an affect of forcing any negative pressure towards zero, anddamhinates in the regions where
P <.

2.1.2 Film thickness equatiorithis determines the shape of the lubricant film in the contact.
For the circular point contact case (with non-dimensional radius ofture equal to one)
X2 4y?

H:H0+T+D(X,Y), 3)

where Hy is a central offset film thickness and is the elastic deformation [1, 21] (see Sec-
tion 2.2).

2.1.3 Load balance equatiorithis is a conservation law which ensures that the total pressure
generated balances the applied load. For the non-dimensional pointtocasea this requires [1,
43].
/ P(X,Y)dy = 2T, @)
Q; 3



2.2 Linear elasticity equation:

In the film thickness equation, the elastic deformatfidaf the contacting bodies can be modelled
by solving Lang’s equation of linear elasticity on a three dimensional dorf¥fior point contact
problems (e.g. [1, 31], with appropriate boundary conditions):

0 oU,

where repeated suffices imply summation over the number of space dimensier$, (th
Cijki = N0k + p(0ikdji + 0idji)

and ) andyu (known as Larg’s coefficients) are material properties given by

vE E

A:(L+mu—2m7 =50y

Hered;; is the Kronecker delta, whildt is the equivalent Young’s modulus ands the equiv-
alent Poisson ratio of the material used, see [22]. Note that the equalimnsplved subject to
the boundary conditions:

U=0 at the bottom boundafp;
on = n;Ciju st = —0isP atthe fluid boundarg; (6)
o, =0 elsewhere

A view of the 3D domairf2 (showing the contact region as a fluid bounddy)and the bottom
boundary (2p)) is given in the Figure 1. In [21] it is demonstrated that a geometry of size
60 x 60 x 60 is sufficiently large to provide accurate solutions for this non-dimensionakmod
Hence this elasticity domain is adopted throughout this paper (though a modifichtibis
domain would be of no significance to what follows). Note th&tX,Y") in equation 8) is
related to the displacement field through the following relation:

D=-U.|q, .

2.3 Fully-coupled approach

The solution of the EHL point contact problem consists of solving the Regredgiation (2),
the linear elasticity equation (5) and the load balance equation (4). These Efdticts may
be discretized using the Galerkin finite element method. However, since jymolde equation
exhibits an oscillatory behaviour in the pressure solution for heavily-loadselsc(see [29, 43]
for example), in order to get a stabilized solution a Streamline Upwind PetrovkKBa(SUPG)
method [11, 45] has been used. The details of our piecewise linear finite ¢ldivemretization
of all the EHL equations can be found in [1-3].
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Figure 1: A view of the 3D elasticity domai showing(2; (the fluid boundary) anflp (the
bottom boundary)

The fully-coupled approach involves the direct coupling of all of the discsgstems aris-
ing from the finite element discretization of the EHL equations to form a nonlinesersyof
algebraic equations for all unknowns (i.e. thelastic displacements at each point in the finite
element mesh covering, the pressure approximation at each point in the mesh cov&riramnd
the value ofHj). This monolithic system is solved in one pass using a Newton solver. Typically,
such a solver converges for all loadings provided a sufficiently goiidliguess is used (see
Section 5 for a more detailed discussion of this).

The discrete nonlinear system may be expressed in the following vector form:

RP(PaUaHO) =0
Ry(P,U) =0 (7)
Ry, (P) =0

Here Rp represents the system of, nonlinear equations arising from the discretization of
Reynolds equationR; is the linear system o8 x n, equations arising from discretization
of the linear elasticity equation anéy, is the scalar residual of the discretized load balance
equation. SimilarlyP is a vector of thex, unknown pressure coefficients] is a vector of the
3 x n,, unknown displacement components diglis the unknown central offset.

When a Newton'’s method is applied to system (he following linear system is obtained at
each outer iteration:

R R R
aPP 8UP aHIOD oP —Rp

aLi;}U Ru 0 U | =] —Ry |. (8)
s 070 6Hy —Rpy,



Starting with an initial estimate for the solution, the Newton procedure consist3viriggdhe
linearized system®] at each Newton iteration and this update is added to the solution obtained
at the previous iteration, to provide an improved solution. This process iategpantil con-
vergence is achieved. The details of the solution of the linearized sys&rase(discussed in
next section. If the initial guess is not sufficiently accurate then some watie@tion may be
required to achieve the convergence.

3 SOLUTION PROCEDURE

In this section we discuss the overall layout of the new adaptive algorithchingkis work. A

suitable initial mesh is first generated using NETGEN [37], where a finehnsessed in the
contact region compared to the other parts of the domain. The selection afexignétial mesh
permits a better starting solution than for a uniform coarse grid however teédismhoice for

this mesh will be shown to be non-critical for the adaptive procedure hidtelevel algorithm
used in this work can be split into the following steps.

0. Using the new mesh, build the corresponding data structures for thes&lividr.
1. Setup and solve the fully-coupled EHL problem using the solver destiib[2].

2. Estimate the error within each element of the elasticity dofiaifithe maximum refine-
ment level has been reached or all elements have a sufficiently smaltlerooutput is
produced and the code exits, otherwise a list of elements is created famefit.

3. Perform h-refinement. If the mesh optimization option is selected then goto, ided
wise goto step 1.

4. Optimize the locally refined mesh. Free up all the previous data structxoeptdor the
new mesh and the solution data, and goto step O.

In the following subsections, a detailed description is provided for each dodlibee steps
involved in the adaptive procedure.

3.1 Solver

The adaptive procedure requires the solution of a nonlinear sy$efollpwing each mesh re-
finement/generation. As described in the previous section, a Newton pro¢edpmdied to such
nonlinear systems, yielding a linear syste8h &t each outer iteration. The solution of the sys-
tem @) is the most expensive part of each Newton iteration. In this work, a rightemditioned
GMRES method [36] is used to solvg)(at each Newton iteration. The key feature (described
in [2]) that makes this approach computationally competitive is the choice of piticoer,
which allows both very fast convergence and a very rapid applicatioact mner iteration.
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This is based upon approximating t?% block in (8) by a single algebraic or geometric multi-
grid V-cycle [8, 10, 39] and using a fast sparse direct solver [dR]tHie (much smaller)a%
block of the preconditioner. Results presented in [2] show that this agipagbstantially out-
performs the application of a sparse direct solver to the whol8)pbpth in terms of memory
and of CPU requirements.

3.2 Error Estimation

Once the fully-coupled system is solved then the error within each element is testjraaing
an‘a posteriori’ error estimation. Aria posteriori’ error assessment is based on the computed
numerical solution and is therefore an essential ingredient for any addipiite element proce-
dure. Many such estimators have been developed, e.qg. [4, 7] anereds therein, however this
work is based upon the recovery approach first proposed by Ziemziend Zhu [47-49].

3.2.1 An‘aposteriori’ error estimateBy way of introduction, let us assume that is a finite
element approximation to an exact solutmf the linear elasticity equation. Then the error in
the computed solution is the difference:

e=1u-—uy,
and the error in their corresponding gradients or stresses, denotedshy
€, = 0 — Op.
For an elasticity problem, stresses are calculated from the finite element sdiytio
op, = DSuy,

where the elasticity matri¥d and the differential operat@ are given by [5] (for the8D prob-
lem):

l-v v v 0o 0 0 Z 0 0

v l-v v 0o 0 0 0 £ 0

D - B v v 1—-v 0 0 0 S_ 0 0 %
(1+v)(1—2v) 0 0 0 % 0 0 ’ ({% % 0

0 0 0o =& o0 o £ £

o o 00 | 12 0 &]

It is now possible to define the corresponding energy norm of the fanrais problem, based
on the stresses of the solution, via the following expression [47]:

lea |2 = /Q (0 — 03)"D (o — 07,)dY.

8



Since neither the exact solutiannor o are known, a reliable estimator of this error can be
obtained if the true gradientsare replaced with a suitable (higher order) approximatitin

les |2 = /Q (0" — on) "D} (0" — 0)dQ. ©)

Generally the gradients computed from the finite element approximation are tiliemars over
the inter-element boundaries. A recovered approximation can be madé aioekchy averaging
the elemental contribution of such gradients over the patch of elements stt@ingpde. It is
then possible to use the linear interpolating polynomials (the same as those usefiniitet ied-
ement approximation) to define a continuous, recovered, approximation ewehtiie domain.
This class of methods are often known as averaging methods [4]. Va#tinsators can be dis-
tinguished based on the specific steps involved in the construction of thegyavaraecovered
gradients.

A well-known recovery-based error estimator was proposed by Ziewddeand Zhu [47]
(known variously as the Zienkiewicz-Zhu or ZZ of Error estimator). Later on, these authors
presented an improved estimator based on superconvergent pategrydd®, 49]. These esti-
mators are based on the fact that there are points within the elements wheradienty are
more accurate and converge to exact values more quickly as the elemerdsizasgs. Specifi-
cally, such points exhibit superconvergent behaviour in the solutionr@ntherefore referred to
as superconvergent points. Thus a more accurate estjaigtef the true gradienfo) is recov-
ered at a node by interpolating between the gradients at the superamveoints in a patch of
elements surrounding that node. Nevertheless, the standard ZZ gtiroa®r is both economi-
cal and easy to implement, and it has been shown to be just as effectivapsesiaual-based
error estimators in different comparative studies, see for example [5-7].

It should be noted that the norm used in (9) is defined over the whole démbirpractice, the
squared value of the norm can be obtained by summing up the individualreleorgributions,
ie.

N
les = lle3II?, (10)
i=1

wherei is the element numbe, ||? is defined as in (9) but witk replaced the region occupied
by element (2; say) andV is the total number of elements in the current mesh.

Recall that a fully-coupled EHL problem consists of solving the Reynoldaiian, the linear
elasticity equation and the load balance equation simultaneously. For pointtqmotalems, the
linear elasticity equation is numerically solved o domaing?, while the Reynolds equation
is solved on &D fluid domain{2; which is a small part of the boundary ©f The solution of
the linear elasticity equation exhibits large variations close to the fluid region. This tetead
to the mesh elements close to the fluid region having larger estimated errdosnitey local
refinement on these elements therefore improves the accuracy of theaddstination solution
significantly. An important side-effect however is that refinement of thmefds that have a face



in Q¢ leads to local refinement of the fluid domain on which the Reynolds equatiotvisdso
Together, the increase in the spatial resolutiof?jnand the greater accuracy in the computed
elastic deformation yield a significantly improved accuracy in the pressufibepitthis, in turn,
improves the traction boundary condition, to allow an even better approximatiomr eldhktic
deformation. Hence, our hypothesis is that a simple and effective way tdogesn adaptive
procedure for the fully-coupled EHL problem is to apply local refinemetitédinear elasticity
mesh based upon local error estimation for the elastic stress alone. Thitdsipds explored

in sections 4 and 5 below, where its validity is demonstrated.

3.2.2 Refinement strateg¥f the global error is already within the prescribed bounds for a
given mesh then the goal is already achieved. However, when this is rezisbdocal refinement

is necessary in those parts of the domain which exhibit the largest drrtings work, a tolerance
(n:01) is specified for the target relative errayp) (n the computed stresses, i.e. :

gyl 1)
l[onl

The refinement, solution and error estimation steps are repeated until this oritesatisfied.
Unfortunately, it is not always possible to reach the target value {gay= 0.05 [46]) for
the error (especially for the 3D problems) due to the availability of computeuress (e.g.
memory and CPU cycles). Therefore additional stopping criteria must alsoelo#ieg, such
as maximum refinement levels, minimum element size, memory usage, etc.. In tRistheor
maximum number of refinement levels are used as a secondary stoppirigrcfitethe adaptive
procedure.

As stated earlier, refinement is necessary in the regions of largestlaraiher words, one
feature of an optimal mesh is that the error is equally distributed among all thergkemehe
mesh. Mathematically, this may be expressed as [32]:

1
2 * 12\ 2
onl|” + ||e 2
He:;Hz < Tltol <H H N H UH > = €tol,

wherei is the element numbed is the total number of elements a#nyg; (average element error)
represents the maximum permissible error for an element. In other wordstithie

G=""">1 (12)

specifies the set of elements to be refined. Derefinement is also possikd@etoomputations,
whenever; < gy < 1: however this is not considered in this work.
A slightly simpler way of defining;,; in (12) is based upon finding the maximum error over
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all of the elementse(,,,,.) and targeting elements for refinement according to the equation:
€tol = Cemaz- (13)

This is the approached used here, wherea selected constant (if not explicitly stated otherwise,
avalue 0.2 is used in this work for demonstration purposes, however a comparisonexecff
values is provided in [1]). Note that any decrease in this parameter maly ireflagging quite

a lot more elements for refinement and the required goal, of a near-optima] magmot be
achieved due to an excessive number of elements being refined at epeh sta

3.3 Refinement

Once tetrahedral elements have been marked for refinement this is then imiglémsing the
TETRAD software [38]. The algorithm used in TETRAD is hierarchical itun@ and is suitable
for both mesh refinement and derefinement processes.

Only the mesh refinement routines are used here, based upon all edgesfahe marked
elements being tagged for refinement into two. If an edge is marked formedimdhen it leads
to refinement of all elements sharing that edge. The refinement processiak account only
two types of subdivision. A regular subdivision in which each parembef# is divided into eight
child elements by introducing new nodes bisecting each edge. In the firstidadtas leads to
removal of four corners leaving an octahedron behind. The divisighi® octahedron further
results into four new child elements on the basis of dissection by the longeshdid3a, 38].
The other kind of subdivision, the so-called green refinement, takes wlaee not all of the
edges of an element are marked for refinement, and this avoids the possibilityoducing
“hanging nodes” (nodes on edges which are not the vertices of all elesiegring those edges)
without introducing any additional edge refinement. Note that green refinesften leads to
poor quality elements, and therefore a precaution is taken into account irtbpment of
TETRAD that a green element may not be refined further. In such g tas@revious green
refinement of the parent element is replaced with regular refinement.ti@gseen refinement
always appears at the interface between lower and higher grid lexetscénsequence, the poor
quality elements never appear in the region of interest provided appefieigging criteria have
been used for adaption. Finally, it should be noted that the scaling of tharhertal refinement
process is close to optimal linear behaviour [38] and is not significantlgtafieby the mesh
depth.

3.4 Optimization of Meshes

In [1], it is observed that the unstructured meshes resulting from hiecatanesh refinement
often lead to poor quality EHL results without appropriate mesh optimization. Iir otbels,
the accuracy of the EHL solution can be improved by optimizing the quality of néshtp any
computation. In this work, this fact is also taken into account for the meshasimgsrom the
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local refinement process.

In order to combine optimization with local mesh refinement, the meshes obtainethence
refinement is performed are passed to NETGEN [37], where a smoothinggsres performed
via edge and face swaps, local nhode movement, and some collapsing ofitsleMete that,
unlike [30], the optimization does not seek to reduce the error furtheerritiis undertaken
to ensure minimization of a quality functional which quantifies the quality of the mesh. A
advantageous side-effect of the optimization is that the collapsing of eleméimésdptimization
process also leads to a small reduction in the size of problem compared to thalarigsh. A
difficulty encountered with this approach is how to handle transfer of theiso data between
the grids before and after smoothing. Furthermore, the optimization procestesyd the mesh
hierarchy, so that neither de-refinement nor the use of geometric multigridruti¢éioning is
easily possible.

Smoothing via NETGEN [37] also has the feature that the mesh optimization onlypiaoes
in the interior of the domain, i.e. the surface mesh remains unchanged. Vaetage of this
is that the latest estimate of the pressure solution can be transferred to tioptimized mesh
without any difficulty. However, to produce an initial guess for the elastidgtuton on this
changed mesh, one needs to solve the elasticity equation correspondingtiofédoe pressure.
Hence, at the cost of a solution of the elasticity equation (equivalent to lesghbacost of
one fully-coupled Newton iteration) one obtains a consistent initial guesswioich the fully-
coupled iteration converges very quickly. Note however that the nextereént of greer2D
elements on the fixed surface mesh will lead to even more poor quality surfateaieenents,
regardless of an optimized mesh. The poor quality surface mesh in the fluid region may affect
the accuracy of the pressure solution. One possibility to avoid the low quatfigceumesh is
to perform the mesh optimization only at the final level of the mesh hierarchy, tmimhe
accuracy of the final solution. This is therefore considered as one obHsghbe strategies in this
work.

4 EHL RESULTS

Recall from the previous section that the post processing (smoothing) aefidped mesh has
the potential to improve the accuracy of the computed solution on that mesh. Neggdrdhat
if the optimization is performed then it destroys the mesh hierarchy. Moreoptmizing the
meshes at each refinement level may result in a poor quality surface ritesh aumber of
refinement levels since any green refinement at the surface remaissinrturn, may affect
the accuracy of the solution of the Reynolds equation. To assess the@cofithe solution
procedure three different possibilities are therefore considereidhwitimately lead to three
variants of the main algorithm (see the start of Section 3).

e The first variant of the solver skips step 4 and repeats from step 1 umtsttipping cri-
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Table 1: Non-dimensional parameters for the contact between stestssifi2].

Parameters Values

Moes parametet, 10

Moes parameter)/ 20

Maximum Hertzian pressurg;,  0.45GPa
Viscosity index,« 2.2 x 10" %pa?
Viscosity at ambient pressurg;  0.04 Pas

Total speeds 1.6ms!

terion is reached. In this case TETRAD keeps a record of all of the reéne history

and therefore green elements are prevented from further refinearahtt{e use of the
geometric multigrid preconditioner is possible too, though not implemented here)eand th
initial guess at each stage is a simple interpolant from the previous solution.

e The second variant of the main solver utilizes step 4 at each refinemenaiteldierefore
repeats the process from step 0 with the new mesh. Since the surfaceamblence the
2D fluid mesh, does not change, so the solution of the Reynolds equation igtrads
to this new mesh without any difficulty, and solving the elasticity equation yields an ini-
tial guess for the displacement using this new mesh. Hence, an overallviedlpiratial
guess leads to fewer Newton iterations to achieve convergence of thedwlpled sys-
tem. However, the quality of the surface mesh may deteriorate with each additioaia
refinement.

¢ To avoid the risk of successive green refinement at the surface theghijrd variant only
utilizes step 4 at the final level of refinement, and hence a surface medaiisezbwith a
relatively good quality.

Having defined the different variants of the adaptive algorithm, a compddasoade between
their accuracy and performance for a typical EHL problem. The tes cassidered in this
section is taken from [42] and given in Table 1. In the calculations, two eifiteinitial coarse
meshes are used. There is no specific reason in the choice of these initigsnotiser than to
produce a relatively good starting solution and allow the sensitivity to the chbinéial mesh
to be considered. The first initial mesh is composed of a totaéh@T1 points wherel87 of them
lie on the surface common to the fluid domain. This means that this initial mesh is ebjativ
fine close to the contact region compared to the remaining region of the elastoiird In
the second choice of an initial mesh, relatively small mesh sizes are useihgialchesh with
22234 points in total, of then§91 points are in the fluid region.

4.1 Implementation of Error Estimator

Using initial mesh with16671 mesh points (for demonstration purposes), Figure 2 shows a cut
through the centreline of th&D domain after different iterations of h-refinement based adap-
tivity. The elements are coloured using their element sizes. Hence the elemiignsry small
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(a) Mesh at refinement level-1 (b) Mesh at refinement level-2

(c) Mesh at refinement level-3 (d) Mesh at refinement level-4

-4 -3 -2 -1 0 1 2

(e) Color scheme used for different valuedwfelement size).

Figure 2: A view of meshes at different refinement levels based upaniteh mesh with16671
points.

mesh sizesi{, ~ ¢~*) are shown by red and those with large & e?) are shown by purple. One
can see that the local refinement is targeting mainly those parts of the domaitcactbe contact
region. However, as the refinement levels go up, the refinement alsalexte the parts of the
domain away from the fluid region. Moreover, Figure 2(c) shows arshaped region (corre-
sponding to the pressure-ridge region that is present in a typical EMticag see Figure 3) of
the most highly-refined elements. This indicates that this is a region wheredbsupe-ridge
affects the elastic deformation solution more significantly. Overall, this experiraadtdthers
reported below and in [1]) suggests that our hypothesis, that the ggdparor estimation and
refinement strategy is effective for fully-coupled EHL problems, doeseddold. In particular,
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/ pressure-ridge

Figure 3: A typical EHL solution - note the typical pressure-ridge whichuczon the outflow
side of the contact.

the correspondingD mesh for the Reynolds equation is getting finer in the region where, quali-
tatively, it may be expected. A more quantitative assessment of this followsrexigubsection
(along with a comparison of different initial meshes).

4.2 Accuracy Appraisal

In this subsection, an accuracy appraisal of the different varianteafdlver is considered. As
a first case, the initial mesh with6671 mesh points is used as the base level mesh. The EHL
problem is set up and solved on this starting mesh. Once the solution is obtaicedeiar
estimation on each element of the mesh is made according to equation (9) (b repitaced
the region occupied by element.e. 2;), while a global error estimation is obtained according
to equation (10). Having the local error estimate for each element in haetipdelements are
marked for refinement according to equation (13). As soon as the refinésngerformed, the
procedure is repeated again until the maximum number of levels specifiexhaleed (for testing
purposes the maximum refinement level is used here as stopping crit&ewa)! that variant 2
of the solver also performs an optimization process on the refined meshashatefinement
level while variant 3 applies the optimization process only at the last refindenaht

For the different mesh refinement strategies, Table 2 shows a compdaribeir dvehaviour in
terms of problem size (both in the pressure unknowns and total probles) sizd the solution
properties (in terms of central and minimum film thicknesses). In the caseifofm (global)
refinement (optimized and non-optimized), the pressure unknowns aeaging by about a
factor of four, and the total problem size by a factor of about eight, ¢t &vel. On the other
hand the local refinement process targets elements for refinement soobienp sizes grow
more slowly. Note that in each case the local refinement mostly affects the elertesgsa
the contact region (see, also Figure 2). It can be seen that as thedfineiment level goes
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Table 2: Statistics for solutions using uniform refinement and adaptivéirneneent. Variant 1
performs no mesh optimization, variant 2 performs optimization at every levelyanmaht 3

performs optimization at the finest level only.
level | uniform refinement | h-refinement

| non-opt opt. | variantl variant2 variant3

number of pressure unknownsg

0 431 431 431 431 431

1 1777 1777 897 897 897

2 7217 7217 3357 3489 3357
3 - - 8679 7477 8679
4 - - 16874 19231 16874

Total degrees of freedom
0 50043 50043 | 50043 50043 50043
1 381809 354230| 66136 61210 66136
2 2994948 270403 385831 279022 385831
3 - - 1122655 639962 1122655
4 - - 3739788 3011678 2827140
central film thicknesd${,.
0 0.39677 0.39677| 0.39677 0.39677 0.39677
1 0.42500 0.42446| 0.40666 0.40644  0.40666
2 0.43071 0.43002| 0.42479 0.42482 0.42479
3 - - 0.42931 0.42829 0.42931
4 - - 0.43025 0.43024 0.43027
minimum film thicknessH .,

0 0.26047 0.26047| 0.26047 0.26047  0.26047
1 0.28472  0.28442| 0.27163 0.27208 0.27163
2 0.29051 0.29112| 0.28715 0.28744 0.28715
3 - - 0.29034 0.28947 0.29034
4 - - 0.29133 0.29121 0.29129

up the difference between the computed solution to that of uniform refineraeas becomes
smaller. For example, variant 1 results in approximately the same solution afterviele t&
refinement with a much smaller problem size compared to that with the uniform mefirie
cases. Variant 2, which optimizes the meshes at every refinement |lexis $e yield the same
accuracy in results as variant 1, but with a relatively smaller problem Nizee. that it was not
possible to perform a third level of uniform refinement (with or without optiriarg due to
unavailability of computing resources as one can see that this would lead tplarger problem
size.

It should be noted that the output of variant 3 differs from variantl§ anthe finest level due
to the additional optimization process. This optimization process leads to a signifazetse
in the total size of the finest level problems while ensuring the overall acguwf the solution.
In other words variant 3 yields the same accuracy in the solution (comparediamtvl) with
a smaller problem size at the finest level. Overall, it appears that the comltex$ of both
H. and H,,, are converging approximately quadratically with each mesh refinement, ahd th
this observation holds for each variant. Furthermore the results suggesatizts 2 & 3 end
up with the same accuracy in their solution with relatively small problem sizes gechpa
variant 1. Indeed, we shall see next that both variants 2 & 3 resulttiartseccuracy per degree
of freedom than both variant 1 and the uniform refinement cases.

A comparison of the estimated global errors obtained for each variant gbther is shown
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Figure 4: A comparison of global error estimation using a coarsest mdg6df points.

in Figure 4. Note that the global error estimation is for the stress, with a @ingepressure
profile (different for each mesh strategy) as the traction boundanyttmmdrhe cases of uniform
refinement (with and without optimization) along with the hand-tuned mesh ca=sstéd “sel-
meshes”) [3] are also included. One can see that a non-optimized uniédimement process
leads to small reduction in the (estimated) error with increasing problem sizeevdq if the
meshes are optimized after each uniform refinement step then an improved redeiction in
the error is obtained. In this example, the local refinement cases (all thrimts) appear to
have a superior error reduction rate, with respect to problem size, as mhtpaboth cases of
uniform refinement. It can be seen that optimization of meshes at each refiinewed further
improves the rate of error reduction with respect to the problem size.Utdhtso be noted that
the last level optimization (variant 3) significantly reduces the error at testflavel, and results
in approximately the same accuracy as that obtained with the use of optimizativeratevel
(variant 2). Finally, the hand-tuned mesh cases perform better thancéeddinement without
post-optimization of meshes (variant 1) however the automatic adaptivity with smesbthing
does better still.

As a second test case, a different initial mesh compos@da¥4 mesh points is considered.
Figure 5 shows the accuracy appraisal for different variants ofdheiscompared to the use
of uniform refinement and the hand-tuned mesh cases. The same belwti®iresults can be
observed as before, however the case of optimized uniform refinésnemiv competitive with
the error reduction rate for the non-optimized local refinement. Neverth@éean again be seen
that the local refinement cases (both with optimization at only the last or atlevet, variants 3
& 2 respectively) perform better than the other cases in terms of agcpeadegree of freedom.

As a whole, one can conclude from these experiments that the locaineimef meshes with
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Figure 5: A comparison of global error estimation using a coarsest me2®{ points.

post optimization at only the final, or at all levels, results in more accurate resultsegree of
freedom. Most importantly, the adaptive algorithm (with at least final levéhopation) leads

to better results compared to the hand-tuned mesh cases. Indeed, the usenaftia mesh
refinement based upda posteriori’ error estimation has clearly led to better meshes than the
hand-tuning approach described in [3].

10000
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variant 3 — /
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100000 1e+06
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time (sec)

100 /)?
"
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(a) €tol = 0~26m.a.7:

Figure 6: A comparison of performance of different variants of adefivite element solver
using the coarser initial mesh.



Table 3: Statistics of solution at different refinement levels. Variant lop@g no optimization,
variant 2 perform optimization at every level, and variant 3 performs opttinizat the finest
level only.

level | uniform refinement h-refinement
non-opt. opt. | variantl variant2 variant3
Total nonlinear iterations

0 14 14 14 14 14

1 9 9 10 9 10

2 4 4 5 4 5

3 - - 4 3 4

4 - - 5 3 3
Average number of linear iterations per one nonlinear iteration

0 11.4 11.4 11.4 11.4 11.4

1 12 11 11.8 11.1 11.8

2 13.3 13 15.0 13.5 15.0

3 - - 15.0 12.7 15.0

4 - - 15.0 11.0 11.3

4.3 Performance

In this subsection, the CPU timings of the different variants of the propodaptise finite el-
ement solver are assessed. For the initial mesh case 1, the computational &rpésttad in
Figure 6. Here, an initial jump in the computational time can be observed while svgtfriom
the base level to the first level. The reason is that the first refinemesegs¢ed to refinement of
only a few elements meaning that the refinement overhead was relativedy($ag Section 4.5
for further details). Moreover, variant 2 applies an optimization procesthe refined mesh
which leads to a slightly smaller problem size but the total time has increased cahhpatber
two variants. After the first level, the growth in the time is almost linear (.&V)) for each of
the variants, however variant 3 shows a jump in the computational time on the fiebdllee to
the optimization process on this last level mesh. Overall, the optimization of thed efieghes,
at least at the final level, leads to a relatively small change in computational tute flelatively
more accurate results, as discussed above).

Table 3 gives statistics of average number of linear iterations and the numbenlofean
iterations for each variant of the adaptive solver. It can be seen thag¢ asfthement level in-
creases in each case, fewer nonlinear iterations are required to achiseegence because of
the availability of the good initial guess based upon solution at the previous lleyeortantly,
the performance of the solver seems independent of the adaptivity metbddMoreover, the
optimization of meshes at final level in variant 3 results in a relatively small nuoflmenlinear
iterations compared to variant 1. Similarly, variant 2 requires even fewdinean iterations at
the intermediate levels. In addition to nonlinear iterations, variant 3 requires fiewar itera-
tions per nonlinear iterations at the final level while this number is also reducedriant 2 at
the intermediate levels as well.

The most important observation of all however is that overall, the averagéeruof linear
iterations per nonlinear iteration appears to be independent of the problestiagizach variant
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Figure 7: A comparison of performance of different variants of adafiivite element solver
using the finer initial mesh.

of the solver. Note that this observation provide another evidence thaetf@mpance of the
preconditioner [2] is optimal within this adaptive algorithm.

As a next case, Figure 7 shows a similar behaviour in the computational times talniiegs
with initial mesh case 2. No jump in the growth of time is observed on the first laxelta
the refinement of a lot more elements. Again note that the optimization of refineces)edh
least at the final level, the CPU time is the same as if the meshes are not optimigetheB
advantage of optimization of meshes is that the results thus obtained are hetative accurate.
Finally, all three variants of the solver appear to be close to optimal with ajppately linear
growth in the computational time (again demonstrating the optimal performance of the multileve
preconditioner). The qualitative behaviour of the iteration counts is similar tostihatn in
Table 3.

4.4 Further Discussion

In this subsection, an overall comparison between the behaviour and refficdé different
schemes is presented. Note that all cases presented here make us6 gfréddnditioning of
the elasticity block (and that geometric multigrid preconditioning is not possible foratli@nts
of the algorithm that include the mesh optimization). Figure 8 shows a comparisoe estik
mated global error with respect to the computational time for the different scheomsidered,
using the initial mesh case 1. The hand-tuned mesh cases [3] are also éhidudake a com-
prehensive overall comparison. It can be seen that the hand-tunédcamess and the different
variants of the adaptive algorithm are very efficient in reducing the eampared to the uniform
refinement cases. Moreover, the automatic adaptivity of the differergntarof the algorithm
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performs just as well as the hand-tuned mesh cases. Note that each oftiee adaptive algo-
rithm is fully automatic in optimizing the computational process. On the other hand, theemes
used in the hand-tuned mesh cases are based on a large number of axjseionedtain a de-
sired accuracy at minimal cost. Furthermore, both the variants 2 & 3 of th@ieglalgorithm
are comparatively better than the variant 1 in reducing the overall ereofixed computational
cost.

4.5 Accuracy of Intermediate Solves

The results presented so far were obtained by solving the nonlinear Elepr to full accu-
racy at each refinement level. However, it is generally not necessaglve the problem too
accurately at each intermediate level. In other words, it is only necegsaojve a problem to a
sufficient precision to obtain a good approximation to the solution in order totdire@daptive
procedure. In this subsection, the effect of different stopping tolesafar nonlinear solves at
each of the intermediate levels is discussed. It should be noted that the Viggbdeblem will
always be solved to full accuracy. For this purpose, an experimeeitip sising variant 3. Recall
that variant 3 only performs optimization on the refined meshes at the finallietkis experi-
ment, refinement criterioey,; = 0.25 e, IS USed. Note that, there is no specific reason for the
choice of variant 3 of the solver or the refinement criterion other than t@rtaktypical test. A
total of four refinement levels are used in this experiment, with initial meshlcasea base level
mesh. The results obtained for different stopping tolerances for theddeswlver are given in
Table 4, in terms of the number of pressure unknowns (np), the total pnadige, the nonlinear
iterations (ni), the linear iterations (li) and the total solve time (excluding time for optimization
at the final level), the optimization time at the final level and the global error estimation
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Figure 8: A comparison of performance of different solvers.
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Table 4: Effect of different stopping tolerancés eing the machine unit roundoff) for interme-
diate level nonlinear solves upon the overall performance of the adajotiver.
abstol | np totaldof ni li time(sec) opt-time(sec) estimated global error

U% 12835 1569053 3 36 1640 669 0.0429396
1073 12818 1567527 3 36 1495 666 0.0429393
1072 12768 1562842 3 34 1276 666 0.0429871
107! 12747 1564912 3 32 1262 669 0.0429649
107° 12323 1277703 5 61 1327 537 0.0461213
10000 ————— —
abstoI:U1/3

abstol=10—e—

1000 j

time (sec)

ool o

10

100000 le+06
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Figure 9: The effect of tolerance for the intermediate solves over thierpgnce of an adaptive
procedure.

Note that significant savings in the computational times are achieved with ansadrethe
tolerance. The use of tolerance as high@s' leads to abou25% savings in the total solve time
while keeping the other values almost unchanged. A further increase tolérance tol0—°
affects the refinement process more significantly. This tolerance resulsialker problem with
a relatively large error. Most probably, the quality of initial guess is alstos good causing
the computational work to grow slightly compared to tte! case. Hence, an intermediate
tolerance ofl0~! is recommended on the basis of this, and similar, tests.

Finally, Figure 9 shows the behaviour in the growth of the computational time facihaate
and approximate solves at intermediate levels (excluding the optimization time).aDreee
that the jump in the computational time at the first level has not appeared in thefctse
approximate solve, and the algorithm has led to a smooth linear growth in the computational
time. Note that for each levél(i = 1,2, 3,4), the problem is solved approximately until the
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(i — 1) level.

5 HEAVILY LOADED PROBLEMS

So far, the accuracy and the performance of adaptive algorithm (a#t traeants) has been
discussed in detail for a single moderately-loaded EHL case. The sanal peeformance of
the adaptive algorithm is observed for other moderately-loaded EHL test, dasexample, the
caseM = 50, L = 10 with p, = 0.79 G Pa [40] and the cagd = 200, L = 10 with p;, = 0.97
G Pa [42], so they are not repeated here.

Heavily-loaded cases are comparatively more difficult to solve however. Seawly-loaded
cases may require under-relaxation as well as a better initial guess forethtmNprocedure
to achieve convergence. Note that throughout the work presentechbamder-relaxation was
used, i.e. a full Newton step was employed in the Newton procedure. Hovilewder to ob-
tain a good performance of the adaptive procedure for more heavily-lozaks$s one needs
to provide a high quality initial guess to the next refinement level. For exampiee ifefined
mesh following an adaptive step is not sufficiently fine then the solution of tharliglasticity
equation (with interpolated pressure as traction boundary conditions) yiekttea iitial guess
compared to an interpolated linear elastic solution. However, once the meshagestlffifine
then the interpolated linear elastic solution provides a slightly better initial guessovi for
heavily-loaded EHL cases the fluid equation is advection-dominated in the coegamt. Hence
starting with a very coarse initial mesh can lead to intermediate solutions with oscilfa&sy
sure and may even cause failure of convergence of the Newton iteratite tina the overall
stability of pressure solution is ensured with the use of SUPG method as @ekirif5] and
addition of smoothing diffusion [22] based upon the minimum of element size in a. mesh

In the following subsections, accuracy and performance of propaksatiae algorithm is dis-
cussed for a heavily-loaded case with = 1007.6, L = 12.05 andp,, = 2.0 G Pa [41]. Based
upon the performances of different variants of the adaptive algorittsaexsin the previous sec
tion, we shall only consider the variant 2 to assess the performance mtiveedalgorithm. This
choice provides similar accuracy to variant 3 but with lower overall memayirements.

5.1 Accuracy

In this subsection, the accuracy appraisal of variant 2 of the adaptiverss considered. The
initial mesh is chosen sufficiently fine in order to obtain an acceptable startimpso Table 5
shows a comparison against results from [41] in terms of central and mininmrthftknesses
of the solution. It is possible to see the convergence behaviour of botle abthtion methods
(our adaptive algorithm and method of [41]). Note that the adaptive algootiiyntargets spe-
cific regions for refinement, based upon the error estimator, so theupeedsgrees of freedom
are not increasing at the same rate as in Venner’s model [41]. One e#imas@s the refinement
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Table 5: Validation of results of variant 2 (with = 0.3) of adaptive finite element solver:
M =1007.6, L = 12.05 andp;, = 2.0 G Pa.

Venner [41] This model
Nz X Ny H, H,, Ny Total dof H, H,,

65 X 65 1.213 x 1072 7.918 x 107* — — - -
129 x 129 2.281 x 1072 6.566 x 1073 | 4854 666160 2.293 x 1072  3.903 x 1073
257 x 257 2613 x 1072 8975 x 1073 | 6419 745902 2453 x 1072 7.718 x 1072
513 x 513 2.690 x 1072  9.424 x 1072 | 13711 1602287 2.583 x 1072 8.319 x 1073
1025 x 1025  2.712x 1072 9.594 x 1073 | 22154 3350526 2.656 x 1072  8.954 x 1073
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Figure 10: A comparison of global error estimation for moderately and heavitletb&HL
cases.

level goes up both models appear to be converging to the same solution. Moteevkfference
between the solution of two models is getting smaller as the number of refinement ewsl gr
Note that a further refinement level would require more memory than is availatdetypical
workstation for this 3D model. However, the results presented here still vatliatccuracy of
the proposed algorithm for this heavily-loaded problem (and demonstratedtyativaty permits
an equivalent accuracy to the method of [41] to be reached with far fdegrees of freedom).
Figure 10 shows a comparison of global error estimation with respect to praite for the
moderately-loaded caséf = 20, L = 10) and heavily-loaded casé{ = 1007.6, L = 12.05).
It can be seen that the estimated global error for both EHL cases isimgdaicthe same rate
with respect to problem size despite the use of different base level masklethe additional
challenges posed by the highly-loaded case. In other words, the \sdaptiver for heavily-
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Table 6: Statistics of solution at different refinement levels of variant 2 (with0.3) of adaptive
finite element solverd = 1007.6, L = 12.05 andp;, = 2.0 G Pa.

np totaldof | ni avg.li time (sec)

4854 666160 | 15 35 1382
6419 745902 7 46 2618
13711 1602287 4 27 4533
22154 3350526 4 28 8838
variant 2 —k—
10000
)
(O]
)
(0]
£
1000 —
1le+06
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Figure 11: Performance of variant 2 (with= 0.3) of adaptive finite element solver.

loaded EHL cases seems to be as effective as for the moderately-loatezhEds.

5.2 Performance

In this subsection, the CPU timing performance of variant 2 of the propodaptiae finite

element solver is assessed. Table 6 gives statistics for the number of aoritarations, the
average number of linear iterations per nonlinear iteration, and computational timegdot 2a
of the adaptive solver. Note that as the refinement level goes up, thebdtitgilaf the good initial

guess based upon solution at the previous level leads to fewer nonlingdioiterto achieve
convergence. It should be noted that for this heavily-loaded case doerpgiitioned iterative
solver requires slightly more linear iterations per nonlinear iteration (as expectwa@vier, the
average number of linear iterations per nonlinear iteration is still independent pfdbieem

sizes. Moreover, the computational times are growing linearly as the probleinaigases, i.e.
the solver still has optimal computational complexity.
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Note that, for sake of demonstration, the problem is solved accurately at efwdment
level to observe the performance of the preconditioned iterative solyavifl2in the adaptive
solver. The behaviour of the computational time with respect to problem sizeecagen more
clearly in Figure 11. Note that the jump in the graph after the first refinemeesitilesimilar to
that in Figure 6 and may be removed by using an approximate solve at the inigerledels
(as in Figure 9). Furthermore, despite of solving the problem accuratelyeaiediate levels,
no further jumps in the computational times are observed at later refinement kevdlshe
computational time grows linearly with respect to the problem size. In other wbrdgptimality
of the preconditioned iterative solver [2] is still maintained with this adaptiverdkgo for this
heavily-loaded EHL case.

6 CONCLUSION

In this paper, an adaptive finite element solution to a fully-coupled EHL probigsrbeen dis-
cussed. A ZZ-error estimator has been used to find the local and glopadx@mations to the
stress errors. These error estimations have been used to mark elemesfinfonent which
were exhibiting larger errors than a prescribed tolerance. The locaémedint of the meshes
was carried out using the algorithm that is described in Section 3.3, threetsafavhich have
been considered. The first variant applies a standard h-adaptivetfatg. The second variant
considered the post-optimization of the meshes at each refinement leveéimtoidcrease the
accuracy. With the post-optimization process for the meshes, a new meslvtaased at each
level which means that the hierarchy of meshes does not exist anyma®. ridither the dere-
finement nor the use of GMG based preconditioner is easily possible. Var@rthe adaptive
solver only utilizes mesh optimization at the final level in order to avoid the possibiiigk-
cessive green elements on @@ surface mesh (which remains unchanged by the optimization
process).

The accuracy appraisal of all three variants of the solver were maulg tug different initial
meshes against the use of uniformly refined meshes (both optimized and tmizeg) and
against the hand-tuned meshes [3]. The results showed that both idret 2aand the variant 3
perform best in terms of accuracy. In other words, variant 2 & 3 lotnge resemblance with an
hr-adaptive algorithm (at least at the final level) resulting in superiofteelthough optimiza-
tion of the meshes results in a loss of the nested grid property, the unchsudgace meshes
allowed us to generate a high quality initial guess (by solving a linear elasticiblgunowith
the interpolated boundary condition) to reduce the computational work at teecpudmt levels.
Moreover, all three variants of the solver show essentially linear growthein ¢omputational
time. Significantly, it is shown that an approximate solve at each of the intermésliate leads
to a slower linear growth in the computational time.

Furthermore, due to additional time required for the optimization process of meahests 2
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& 3 require a slightly longer time than the variant 1 (for a fixed problem sizeyvéver, both
the variants 2 & 3 of adaptive algorithm are comparatively better than the variarreducing
the overall error at a fixed computational cost. Indeed, it is demonstratethéhperformance
of proposed adaptive algorithm is maintained for heavily-loaded EHL casiésthe optimality
of the preconditioned iterative solver [2] being preserved despite a sligietdse in the solution
times.

Perhaps the most important observation is that our computational experimenisadsaon-
strate that using the error in the stress to control the mesh adaptivity ispaigpecfor fully-
coupled EHL problems. The resulting adaptation of the surface mesh in thetagimn allows
the pressure profile to be captured accurately and with many feweredegtéreedom than is
possible with a conventional finite difference scheme. Moreover, sinesssinformation can
not be obtained using a surface integral solver based upon a ha#-approximation, this adap-
tive approach can only be applied when a finite element approximation to the dlaesticity
problem is used.

The key contributions of this work may be summarised as follows. We have imedda
new adaptive procedure for the fully-coupled EHL problem, based sofeiy @& local error
estimate for the stress due to the elastic deformation, and demonstrated thanMidisgpaaobust
mechanism for adapting the mesh in both the elasticity and the Reynolds discretiZateohave
developed an adaptive strategy that combines h-refinement and r-rafiin@mge movement) in
a manner that allows locally optimal mesh refinement. The combination of local atiaptid
our novel multigrid-based preconditioner, for the inner iterations of the NeWtglov solver,
allow this fully-coupled EHL problem to be solved with linear time complexity for the finsé:
hence providing the first demonstration of the competitiveness of the fully-abapferoach with
less general, but also optimal, half-space approximations such as [4&yFamd importantly,
we have shown that the proposed technique is robust for heavily-lazded, which are by far
the most computationally challenging.
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