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Abstract. This paper presents a novel approach for real-time egocentric
activity recognition in which component atomic events are characterised
in terms of binary relationships between parts of the body and manipu-
lated objects. The key contribution is to summarise, within a histogram,
the relationships that hold over a fixed time interval. This histogram is
then classified into one of a number of atomic events. The relationships
encode both the types of body parts and objects involved (e.g. wrist,
hammer) together with a quantised representation of their distance apart
and the normalised rate of change in this distance. The quantisation and
classifier are both configured in a prior learning phase from training data.
An activity is represented by a Markov model over atomic events. We
show the application of the method in the prediction of the next atomic
event within a manual procedure (e.g. assembling a simple device) and
the detection of deviations from an expected procedure. This could be
used for example in training operators in the use or servicing of a piece
of equipment, or the assembly of a device from components. We evaluate
our approach (’Bag-of-Relations’) on two datasets: ‘labelling and pack-
aging bottles’ and ‘hammering nails and driving screws’, and show su-
perior performance to existing Bag-of-Features methods that work with
histograms derived from image features [1]. Finally, we show that the
combination of data from vision and inertial (IMU) sensors outperforms
either modality alone.

1 Introduction

Automatically recognising human activities from videos is one of the fundamen-
tal research problems in computer vision and has generated a rich literature
[2–4]. During the last decade or so, it has received increasing attention due
to its far-reaching applications such as intelligent surveillance systems, human-
computer interactions, robotics, and smart monitoring systems. Most of the ear-
lier work in this area has been focused on recognizing periodic actions such as
‘clapping’, ‘jogging’, ‘walking’ etc. on relatively simple datasets [5, 6]. Lately,
attention has moved to more realistic, complex and challenging datasets [1, 7–
9]. These datasets incorporate videos collected from YouTube, movies, or by an
amateur using a hand-held camera. Even more recently, there has been growing
interest in activity recognition from an egocentric approach using first-person
wearable cameras [10–13].
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Most real-world activity recognition systems only classify activities after fully
observing the entire sequence, but this is unsuitable for recognition of atomic-
level, incomplete and/or ongoing activity. Such systems usually expect that the
same number of people or objects are observed over the entire activity whilst in
realistic scenarios often people and objects enter/leave the scene while activity is
going on. In order to approximate prediction from partial observation, traditional
sequential models such as hidden Markov models (HMMs) are often used [3].
However, from our experience they are unlikely suitable for 1) a varying number
of objects observed at different times and 2) the high dimensional discontinuous
sparse features such as histograms typically used today.

In this paper, we address the above-mentioned challenges while designing a
fast but competitively accurate computer vision system for monitoring industrial
activities. An industrial activity is assumed here to be a temporally ordered set
of procedural steps or atomic events for accomplishing a task in which people
and tools are involved in each step of the process. In such environments, the aim
of activity monitoring is to recognize atomic events using video from wearable
cameras in order to assist users/operators by providing on-the-fly instructions
from an automatic system. This enables continual interaction between users and
the system while performing a task. The system provides instructions and/or
messages via augmented reality in the form of video clips and/or text using a
see-through Head Mounted Display (HMD)[14]. There are three main objectives
of the proposed monitoring system: 1) to recognise the current event from a short
observation period (typically two seconds); 2) to anticipate the most probable
event that follows on from the current event; 3) to recognise operator deviations
from the correct activity (which may lead to quality and/or health and safety
problems).

In our approach, events are represented as object-object and object-wrist
spatiotemporal relations. For example, in everyday activities such as ‘making
coffee or tea’ and ‘cooking pasta’, the interactions between the person’s hands
and objects involved (cups, teapots, pans, etc.) are key to representing events.
These interactions contain important cues for recognizing such manipulative ac-
tivities. This is in contrast to traditional approaches where often configurations
and movements of the human body are the main cues. In our system, the in-
stantaneous positions of objects and wrists, in a world frame of reference, are
provided through detection and tracking using visual SLAM (Simultaneous Lo-
calization and Mapping) [15]. Spatiotemporal relations r between objects and
wrists are generated by considering their separation and its first derivative with
respect to time. We generate a codebook for these spatiotemporal relations using
an unsupervised K-means clustering algorithm on a training dataset. In order
to handle noisy object detection and tracking of the objects in our domain, we
characterise atomic events by the frequency of occurrence of codewords occurring
within a short temporal window (typically two seconds). This bag-of-relations

(BoR) approach contrasts with logical inference from the set of relations occur-
ring within the window. A key aspect of our approach is that the spatiotemporal
relations are learned instead of being predefined by hand as is common in other
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Fig. 1. Overview of our hierarchical framework: atomic events e are inferred using
spatiotemporal pairwise relations r from observed objects and wrists, and relations
rθ, rR and rA between body parts (elbow-shoulder and shoulder-torso) using inertia
sensors. Activities y are represented as a set of temporally-consistent e.

work [16–18] and which may not best fit the particular domain under considera-
tion. While creating the BoR, we replicate the histogram for each pair of object
categories, accumulating only those counts that apply to the relations between
instances of the respective categories. Thus, the final histogram differentiates
between events that involve the same relational codewords but different object
categories, as in for example pick up hammer and pick up screwdriver where the
action involving a hand is the same, but the category of object manipulated is
different.

The overview of our hierarchical framework for the hammering nails activity
is shown in Fig. 1. We model activities at layer 1 as a set of temporally-consistent
atomic events in layer 2. Similarly, each atomic event is described using a BoR,
which is composed of two histograms hvision and himu (layer 3). hvision is ex-
tracted from object (and wrist) interactions over a sliding window. The system
observes objects and wrists, which are the leaf nodes of the model (layer 4).
Similarly, himu captures the relative movements between body parts such as el-
bow w.r.t. shoulder and shoulder w.r.t. torso using a biomechanical upper-body
model, over the same sliding window. These relative movements are captured
by inertial sensors (IMU) as Euler angles θ, Euler rates R and Euler accelera-
tions A [19, 20]. We represent these movements as two pairwise relations such
as elbow-shoulder and shoulder-torso. In each pair, there are three possible re-
lations of rθ, rR and rA which correspond to the respective θ, R and A. In
this example, activity y refers to hammering nails which contains e = {pick up

hammer, pick up nail, hammer nail, put down hammer} atomic events.

The paper makes the following principal contributions: 1) a learnt represen-
tation for the spatial and kinematic relationship between pairs of objects, 2)
a histogram-based representation that summarises the relational structure be-
tween sets of (categorised) objects within a temporal window, and provides the
basis for atomic event classification, 3) an experimental evaluation that demon-
strates the viability of the approach within an industrially motivated setting and
that compares the contribution of different wearable sensors.
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2 Related Work

Several different approaches for activity recognition can be identified in the vast
literature on computer vision [2–4]. We categorize the existing work into three
main classes based on the complexity involved. The first class of research consid-
ers recognition of body movements of a single person such as jogging, walking,
clapping, etc. [21, 22, 5, 6]. The second considers object context for realistic ac-
tions such as skipping, drinking, smoking, etc. [9, 1]. The third kind involves
interaction of multiple objects and/or persons [23, 24].

In this work, we focus on the activity recognition involving manipulations
and/or interaction of multiple objects which forms the focus of this work. For
example, Ryoo [23] presented a probabilistic approach for human-human activity
prediction from streaming video using both dynamic and integral bag-of-words
representation of spatiotemporal features. Gupta et al. [9] introduced a Bayesian
model for recognizing human-object interactions with a likelihood model, which
is based on hand trajectories. Shi et al. [25] presented propagation networks
(P-nets) to describe glucose model calibration by applying temporal and log-
ical constraints. Veres et al. [26] proposed a method for monitoring workflow
activities in a car assembly line using a global motion descriptor. Sridhar et al.
[18] described an unsupervised approach for finding event classes from videos by
considering spatial and temporal relations between tracklets. Workflow activities
were monitored by Behera et al. [27] using HMM and pLSA (probabilistic Latent
Semantic Analysis). Simon et al. [28] presented a method that uses Petri-Nets
in order to recognize workflow activities.

In the proposed model, our goal is to recognize activities from the egocen-
tric viewpoint using a wearable camera and is quite different from the above-
mentioned approaches. Starner and Pentland were one of the first to use an
egocentric setup to recognize American sign language in real-time [29]. More
recently, Fathi et al. [12] presented a hierarchical model of daily activities by ex-
ploring the consistent appearance of objects, hands and actions from the egocen-
tric viewpoint. Aghazadeh et al. [13] extracted novel events from daily activities
and Kitani et al. [11] identified ego-action categories from first-person viewpoint.
Ward et al. [30] proposed a method to recognize wood workshop assembly ac-
tivities by using on-body sensors of microphones and accelerometers. Reiss et
al. [20] described a method for activity recognitions based on a biomechanical
upper-body model using on-body sensors of IMUs.

Our proposed approach initiates a framework in which activities and atomic
events are recognized in real-time using streaming data from wearable sensors
and the system should be able to provide required feedback to the user. More-
over, the goal is to describe events and activities with semantically meaningful
spatiotemporal relations based on object-object and object-hand interactions.

3 Activity Monitoring Model

The main goal of the proposed activity monitoring model is to analyze the live
streaming of an image sequence and assign atomic event and activity labels to
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it. The real-time detection and tracking algorithm processes each image and
then provides 3D positions of each detected object with respect to workspace
coordinates and its class type for further analysis [15]. Our model uses a sliding
window approach over the image sequence. Therefore, a complete activity se-
quence contains a set of windows w = {w1, w2, . . . , wW }, where each window wi

comprises Fi images wi = {I1, I2, . . . , IFi
}. As a result, each image Ij contains

Nj objects Ij = {o1, o2, . . . , oNj
} and each object ok will have class type c ∈ C

and a 3D XYZ position, where C = {hammer, screwdriver, wrist, bottle, etc.} is
the set of object categories, which are known in advance.

Inference involves assigning an atomic event label e ∈ E to each window wi

and an activity label y ∈ Y, where E = {pick up hammer, write address, etc.}
is a set of atomic events and Y = {hammering nails, labelling and packaging

bottles, etc} is the set of possible activities.

3.1 Pairwise Spatiotemporal Relational Features

The proposed spatiotemporal relational feature jointly contains two types of
information in a view-invariant fashion: 1) spatial configuration of objects in 3D
space and 2) the kinematics between them over time. Although, the proposed
relational feature is not scale-invariant, it has little or no effect in an egocentric
setup since a user only manipulates objects within his/her reach. Suppose the
system observed an image It at time t, then the detector provides category
cm, cn ∈ C and locations of the detected respective objects om, on ∈ It. The
spatiotemporal relation between the objects om and on is represented by

r = (dm,n,
ḋm,n

dm,n + ǫ
) ∈ ℜ2 (1)

where dm,n is the Euclidean distance between object om and on, and ǫ is a small
positive value to avoid division-by-zero errors.

We describe the relational feature r withK possible relational words α1 . . . αK .
In order to achieve this, the spatiotemporal features are grouped into K clus-
ters that constitute the relational vocabulary. We use a standard unsupervised
K-means clustering algorithm. Let an input F = {r1, r2, . . . , rn} be the set of
relational features. If we denote the center of the jth cluster as meanj , then each
feature r ∈ F is now mapped into the nearest relational word via:

αi(F) = {r|r ∈ F ∧ i = argminj ||r−meanj ||
2} (2)

where ||r−meanj || denotes the Euclidean distance between feature r andmeanj .
As a result, we have decomposed the set F into K subsets, α1(F), . . . , αK(F),
based on their spatiotemporal relations.

3.2 Category-specific Bag-of-relations (BoR)

We now discuss the creation of a BoR from the relational vocabularies.The pro-
posed spatiotemporal relational feature is based on the available object category.
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Fig. 2. a) Category-specific object pairs for the ‘hammering nails and driving screws’
scenario and b) category-specific bin assignment to BoR histogram.

For example, there are P = 15 possible category-specific pairs from C = {box, ba-
ton, hammer, screwdriver, wrist} categories (Fig. 2a). Both left-wrist and right-
wrist are separately detected and tracked. Our model considers ‘left-wrist’ and
‘right-wrist’ as a single category of ‘wrist’. This is due to often the same manip-
ulative tasks are carried out by a left-handed person and the system might have
not seen a left-handed person during training; further discussion on this point
is provided in the experiments and discussion section. We also includes intra-
category pairs (p1, p6, p10, p13 and p15) as shown in Fig. 2a. The main reasons
are 1) We believe that multiple objects belonging to the same category are often
observed in an activity; for example, two batons are observed at the same time
in this activity. 2) Misclassification, i.e. if a hammer is classified as box, and
we do not consider box-box pair then the relations between actual hammer-box
pair will not be considered at all; our model also adds another category called
unknown to the existing list of categories. This category is for those objects
whose types cannot be decided by the object detector due to a low confidence
measure. This could be due to occlusion or very little information being ob-
served by the detector. The spatiotemporal relations of this unknown category
with other known categories might provide vital cues to discriminate between
events/activities and therefore our system also considers this for the computa-
tion of pairwise relations. Moreover, our system could provide feedback to the
detector about the possible types for unknown based on previously observed
activities.

Next, we represent the sliding window wi ∈ w as a histogram h of relational
words with encoded object categories. In the conventional bag-of-words method,
the number of bins in the histogram is equal to the number of relational words
in the codebook, i.e. K. Each relational word αk in the codebook is mapped
to a unique bin bi ∈ h of the histogram. Each bi represents the frequency of
the corresponding relational word αk appears in the sliding window wi. In our
representation, we encode the object category along with relational word i.e.

bi = |Ai|,where Ai = {(αk, p)}, k ∈ {1 . . .K} and p ∈ {1 . . . P} (3)

Ai is the set of co-occurrences of relational word αk and the category pair p of
the related objects. Therefore, there are P ×K bins in the histogram h for our
category-specific representation instead of K. To illustrate, consider the example
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of the pick up hammer and take nail atomic events. Both of these events may
have the same temporal transitions α1 → · · · → αk i.e. in the case of pick up

hammer the wrist moves towards the hammer (Fig. 2b). Similarly, for take nail

the wrist moves towards to the box. Both have similar relative spatiotemporal
movement patterns and the only difference is that different objects are involved.
Therefore, encoding object category should provide discriminative cues for ac-
tivity recognition.

The approach generates a histogram hi for each sliding window wi ∈ w
after processing all images Fi ∈ wi and considering all possible category specific
pairwise relations r ∈ F. This histogram is the input feature vector for our
learning and inference procedure, which is presented in the next section.

3.3 Learning and Inference

During supervised learning, the task is to infer a function mapping from se-
quences x̄(n) to atomic events ē(n) and activities ȳ(n), given training examples
of (x(n), e(n),y(n)). Joint learning of these variables requires an unmanageably
large training set and very expensive approximate inference as pointed out by
Fathi et al. [12]. Therefore, an alternative approach is to exploit the indepen-
dence structure of the proposed hierarchical framework (Fig. 1). First, the model
learns to predict the atomic events from object-object and object-wrist interac-
tions (layers 2-4 of the framework) and then envisage activities (layer 1) from a
set of atomic events by exploiting their temporal structure. Consider the driving
screws example to have a better understanding of the temporal structure. The
atomic event ‘drive screw’ is possible only after events ‘pick up screwdriver’ and
‘pick a screw’.

We first solve the sub-problem of learning atomic events from the object-
object and wrist-object interaction is modelled by removing the activity layer
(layer 1) from the hierarchical framework. The goal is to learn a discriminative
function e = f1(h) by training a classifier on histogram h for each atomic event
e without considering the adjacent horizontal links (temporal) between atomic
events. We use a probabilistic multi-class Support Vector Machine (SVM) [31]
with a χ2 kernel using ‘one-vs-one’ methodology. Recently, Vedaldi and Zisser-
man [32] reported that the χ2 kernel performs better than other additive kernels
such as intersection and Hellinger’s for histogram-based classifications.

The next task is to estimate the activity label y from the complete proba-
bility distribution P (e1 . . . eT |h1 . . . hT ) of sequence of atomic events for a given
sequence of histograms. One could learn another discriminative function y =
f2(e1 . . . eT ) from a sequence of atomic events e and an activity label y. How-
ever, our model is targeted for live recognition of activities and atomic events.
Therefore, we learn the transition probability P (et|et−1) between atomic events,
starting probability of an atomic event P (e1) and the distribution of atomic
events given activities P (et|e1 . . . et−1, y) from the training examples. Thus, it
establishes the horizontal links i.e. transition probability between atomic events
and these links along with the P (et|e1 . . . et−1, y) distribution decide the most
likely activity label y (Fig. 1).
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Fig. 3. Snapshots from the ‘hammering nails and driving screws’ (1st row) and the
‘labelling and packaging bottles’ (2nd row). The first two images of each row are from
the top view (RGB-D) and the rest are from the chest-view fisheye camera.

During prediction at time t, the most probable on-going atomic event ēt and
activity ȳt label corresponding to the observed histogram h̄t, and the most likely
next atomic events ēt+1 are computed as:

P (ēt|h̄t) ∝ P (ēt)P (ēt|f1(h̄t))P (ēt|ēt−1)

ēt = argmax{P (ēt|h̄t)}

ȳt = argmax{P (ȳt|ēt)P (ēt|h̄t)}

ēt+1 = argmax{P (ēt+1|ē1 . . . ēt, y)}

(4)

4 Experiments and Discussion

In this section, we present results to validate the performance of our proposed
hierarchical framework.

4.1 Datasets

In order to test our hierarchical framework, we have obtained two datasets using
an egocentric setup. These datasets consist of non-periodic manipulative tasks
in an industrial context. All the sequences were captured with on-body sensors
consisting IMUs, a backpack-mounted RGB-D camera for top-view and a chest-
mounted fisheye camera for front-view of the workbench (Fig. 3).

The first dataset is the scenario of ‘hammering nails and driving screws’
(Fig. 3). In this dataset, subjects are asked to hammer 3 nails and drive 3 screws
using prescribed tools (not necessarily in this order and there is inter-subject
variation in this dataset). There are 9 different types of atomic events: 1) take
and put box, 2) take and put baton, 3) pick hammer, 4) take nail/screw, 5)
hammering nail, 6) put down hammer, 7) pick screwdriver, 8) driving screw and
9) put down screwdriver. A total of 27 sequences were captured, consisting of 3
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people performing the activity 5 times each and 2 people performing the activity
six times each. In this dataset, there are five types of object categories which
consists of hammer, screwdriver, baton, wrist and box.

The second dataset is a ‘labelling and packaging bottles’ scenario. In this
dataset, participants asked to attach labels to two bottles, then package them
in the correct positions within a box. This requires opening the box, placing
the bottles, closing the box, and then writing on the box as completed using a
marker pen. There are 9 different atomic events: 1) pick and put bottle, 2) stick
label, 3) pick and put box, 4) remove cover, 5) put bottle inside box, 6) take and
put cover, 7) write address, 8) take and put sticky tape dispenser, and 9) seal
the box with sticky tape. In this dataset, there are 23 sequences, consisting of 3
performing the activity 5 times each, and 2 people performing it 4 times each.
Five types of object categories namely, bottle, box, sticky tape dispenser, wrist
and marker pen are used in this dataset.

The duration of each activity is about 2500 frames recorded at 25 frames per
second. For evaluation purposes, these datasets were manually annotated by pro-
viding the start and end frames of each atomic event. To our knowledge, there are
no other available datasets that are captured in an egocentric setup with on-body
sensors of camera and IMUs in an industrial context. Our dataset is available
at http://www.engineering.leeds.ac.uk/computing/research/vision/cognito/. At
the moment, GTEA (GeorgiaTech Egocentric Activities ) is the only available
egocentric video dataset. This contains 7 kinds of daily activities [10].

4.2 Evaluation Methods

For all of our evaluations, we used a sliding window wi ∈ w of duration 2
seconds with 50% overlap and ‘one-vs-all-subject’ evaluation strategies. In ‘one-
vs-all-subject’, all sequences from one subject are used for validation and the rest
are used to train the model. We used this strategy on the assumption that ex-
perts are involved in demonstrating activities from which the system learns, and
subsequently the system would be required to guide a näıve worker to perform
those activities in an industrial scenario (thus, those subjects used for training
and those used for testing are distinct from one another).

In order to compare our approach with the state of the art, we have im-
plemented a baseline ‘bag-of-features’ (BoF) method using STIP (Space-Time
Interest Points) descriptors as described in [1]. In this, a visual vocabulary is
generated by randomly sampling a subset of 100,000 STIP descriptors from the
training set and using K-means clustering to generate 4000 visual words. De-
scriptors are assigned to their closest visual word using the Euclidean distance
and the histogram hstip of visual word occurrences is computed over each sliding
window wi ∈ w. Results for both approaches are achieved using a χ2 kernel and
multi-class classifications using the ‘one-vs-one’ approach. We fix the histogram
normalization to the L1-norm and optimize the parameters of SVM classifier
using 10-fold cross-validations on training set.

We evaluated three variations of our proposed bag-of-relations (BoR) method.
The first is as described above. In the second, we ignore object categories and
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Fig. 4. Average performance with varying relational codebook size for ‘one-vs-all-
subjects’ experiments using only hvision (left) and himu (right).

simply accumulate codewords, ignoring the categories of the objects involved.
The second kind is a category-specific BoR with a global codebook (category-
global). The third variation is like the first, except that the codebook is specific
to each category pairs (category-local). Therefore, there are |P | relational code-
books and each codebook is attached to a particular category-pair.

In a similar fashion, we generate the histogram himu for each window wi ∈ w
by considering the relational codebook created from IMU data. There are six
different codebooks (3 each for elbow-shoulder and shoulder-torso relations) for
IMU data. The 3 codebooks for each relation representing a pair of body parts
e.g. shoulder-torso correspond to the respective Euler angles θ, Euler rates R

and Euler accelerations A. In total, we have 6 category-specific-codebook repre-
senting elbow-shoulder and shoulder-torso relations for both left and right hand.
We have also evaluated all possible combinations (e.g. [hvisionhimu], [hvision

hstip], [himuhstip], and [hvisionhimuhstip]) of the different modalities/approaches
by concatenating the generated histograms.

4.3 Results and Discussion

We first compared the performance of our proposed method (BoR) with a vary-
ing size of relational codebook for both the above-mentioned datasets. In this
experiment, we selected K = {1, 2, 4, 8, 16, 32, 64}. The mean performance over
all subjects (one-vs-all-subject) is shown in Fig. 4. All of our results are pre-
sented as the classification accuracy over all windows. For K = 1, it just implies
the presence or absence of one or more objects for the global codebook and
object-pairs for both the category-specific codebooks (local and global). The
performance using category-specific BoR is better than the generic one for all
values of K (except in packaging dataset for K = 64). This justifies our represen-
tation of activities by considering object-object and object-wrists interactions.
From Fig. 4, it is evident that most often the performance using a category-
specific codebook (category-local) is better than the other two representations.
This suggests the kinematic variations in the way we use different objects, are
important. The optimal category-specific relational codebook size is 32 and 16
for ‘labelling and packaging’ and ‘nails and screws’ datasets respectively. This
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Table 1. Performance comparison for the experiment one-vs-rest-subject (bold text
represents the best performance out of the individual modalities).

Hammering nails and driving screws Labelling and packaging bottles

vis-
ion

IMU STIP
vis-
ion
IMU

vis-
ion

STIP

IMU
STIP

vis-
ion
IMU
STIP

vis-
ion

IMU STIP
vis-
ion
IMU

vis-
ion

STIP

IMU
STIP

vis-
ion
IMU
STIP

s1 65.7 65.2 65.9 73.4 78.1 70.7 75.4 61.3 38.2 31.4 62.4 64.5 36.3 65.4

s2 64.5 67.5 67.2 72.3 73.4 77.5 77.2 53.5 71.2 50.5 67.7 64.5 75.4 78.3

s3 61.7 53.5 73.1 62.0 72.2 64.9 68.4 63.0 59.9 61.9 80.8 66.6 69.4 82.1

s4 38.0 10.3 9.2 25.9 35.6 11.0 18.7 76.1 74.8 56.0 85.6 84.5 71.3 89.4

s5 72.5 74.0 77.4 80.3 82.1 84.7 86.6 56.5 51.3 56.5 70.4 65.3 66.6 70.4

Avg 60.5 49.8 58.6 62.8 68.3 61.7 65.3 62.1 59.1 51.3 73.4 69.1 63.8 77.1

is due to the fact that there are different degrees of variation in the interactions
between different categories of object. Whereas for inertial sensor data himu, the
optimal codebook size for both the datasets is 16 which conveys the use of the
same elbow-shoulder and shoulder-torso relations in both the datasets.

We present the complete evaluation of our framework using individual his-
tograms i.e. hvision, himu and hstip, and their possible combinations in Table 1.
The last row of Table 1 presents the mean performance over all subjects s1 . . . s5.
In this evaluation, we used the optimal size category-specific codebook as com-
puted above. For both the datasets, vision (60.5%, 62.1%) performs better than
the other two individual representations IMU (49.8%, 59.1%) and STIP (58.6%,
51.3%). However, the combined performance using IMU and vision (our pro-
posed framework) is better for all individuals except subject s4 in the ‘nails
and screws’ dataset. In this dataset, subject s4 alone is left-handed. Thus, the
system has not seen a left-handed performer during training. However, the per-
formance using vision (38.0%) is far better than using only STIP (9.2%), which
demonstrates an invariance property of our BoR representation. Furthermore,
the combined performance of vision and STIP (68.3%, 69.1%) is better than
STIP (58.6%, 51.3%). Therefore, our pairwise relational approach can be used
with existing bag-of-features approaches for further improvements.

We show the confusion matrix for both the datasets in Fig. 5. From both these
matrices, it is evident that atomic events are often confused with the previous and
next events. This is a typical synchronization error for sequential data. It is partly
due to the manual assignment of labels while preparing ground-truth, since it
is difficult for humans to assign boundaries consistently between consecutive
events. Lets consider the atomic ‘driving screw’ (Fig. 5a). This is mostly confused
with event 4 (take nail/screw) which comes before event 8. Similarly, event 4 is
mostly confused with events 8 ‘driving screw’ and 5 ‘hammering nail’. This is
due to the fact that one should pick up the nails or screws, i.e. event 4, before
hammering or driving it.

In the confusion matrix of the ‘labelling and packaging’ dataset (Fig. 5b),
the atomic event 7 ‘write address’ is mostly confused with event 9 ‘seal box with
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Fig. 5. Confusion matrix using hvision+imu for a) ‘hammering nails and driving screws’
(left) and b) ‘labelling bottles and packaging’ (right) dataset.

tape’. This is due to the fact that often the pen is not detected due to its size.
Moreover, while writing on the box there is little kinematic variation between
involved objects, which are wrist, pen and box. The system only observes the
close proximity of these objects. In the case of event 9, the wrist takes a piece
of tape (a deformable object, not detected by detector) from the sticky tape
dispenser and attaches it to the box. While sticking the tape, the wrist is close
to the box and stays there for sometime. Therefore, the system is unable to
differentiate between writing and ‘sticking tape’ if the pen is not detected. The
next most confused event is ‘take and put sticky tape dispenser’. This is due
to the same reason as while taking a piece of tape: the wrist comes closer to
the dispenser stays for a while and then moves away. Similarly, while bringing
the dispenser to the workbench, the wrist and the dispenser stay together for a
while and then the wrist moves away. All three of these events exhibit similar
spatiotemporal relations and therefore the model is unable to discriminate. The
performance of event 2 ‘stick label’ is very good given the fact that the model
does not detect the label. However, while sticking the label both wrists come
closer to the bottle and stay for a while. This information is discriminative
enough to differentiate from the event 1 ‘pick and put bottle’ in which one wrist
is involved. This validates our category-specific representation of BoR.

In our model, the performance of the object detector has an effect on overall
accuracy of activity recognition. The more accurate object detection and track-
ing, the better the accuracy. However, given the egocentric setup with a wearable
camera, it is a difficult task. The object detector used [15] is evaluated on a sub-
set of the above-mentioned datasets. It is a huge task to annotate the complete
dataset of 50 sequences. Therefore 5 sequences from each dataset are selected and
evaluated. The average performance for the ‘nails and screw’ dataset is 62.52%
(recall) and 94.91% (precision). For the other dataset, the respective average
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is 69.31% and 80.14%. Given these accuracies, the performance of our activity
monitoring framework is good.

5 Conclusion

We present a novel approach for real-time monitoring of activities using on-body
sensors in a egocentric environment. Our approach represents activity as a set
of temporally-consistent atomic events within a hierarchical framework in which
bottom-up propagation of evidence for atomic events is used to predict activ-
ity. This evidence is represented using a novel category-specific bag-of-relations

(BoR) representation. The BoR is extracted using object-object and object-wrist
interactions. We evaluated our approach on two new challenging datasets: ‘ham-
mering nails and driving screws’ and ‘labelling and packaging of bottles’, which
are captured in a egocentric setup with on-body sensors of camera and IMU in an
industrial context. On these datasets, we demonstrate that the performance of
our approach is superior to the existing ‘bag-of-features’ for activity monitoring.

In the near future, we hope to improve the performance by exploring the
temporal structure in our bag-of-relations and feature selection method to select
the most useful relations to represent activities.
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