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ABSTRACT

The structure theory of Lie algebras is used to classify nonlinear systems according to a
Levi decomposition and the solvable and semisimple parts of a certain Lie algebra associated
with the system. An approximation theory is developed and a new class of chaotic systems is
introduced.

1. Introduction

The use of linear eigenstructure theory for linear systems is well-known and enables one to
write a linear system

= Ar
in the form
y=A\y

where y = P!z and A = P~' AP is the Jordan form of A. The phase-space theory of nonlinear
systems uses this structure locally, in a neighbourhood of each equilibrium point. In this paper
we shall consider a large scale structure theory for systems of the form

= A(l‘)r .

We shall define the Lie algebra associated with this system to be the Lie subalgebra of g¢(n, C)
generated by all the matrices A(z), =z € R", and we shall denote it by £4. Using the structure
theory of Lie algebras (see [1,2]), we can write the system in the form

&= 8S(z)r+X(z)z
where S(z) is in a solvable subalgebra of £ 4 and X(z) is in a semisimple subalgebra (this is the

Levi decomposition). Using the theory of semisimple Lie algebras, we can further decompose
the system in the form

=S+ H(z)z+ ) eslx)
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where A is the set of nonzero roots and H(z) belongs to a Cartan subalgebra, so that all the
matrices H(z), z € R", are simultaneously diagonalisable.

A preliminary study of these systems was made in [3] and applications to stability in [4]. Here
we shall give a more detailed study of solvable and simple systems and give an approximation
technique which leads to a new stability result. The ideas will be illustrated by a number of
examples generated by simple systems and similar systems with a solvable perturbation. This
will lead to a class of chaotic systems similar to the Lorentz attractor.

2. The Lie Algebra of a Differential Equation

Consider a semilinear equation of the form

&= A(z)z (2.1)
where A(z) is analytic. We can write
Alz) = Y Al (2.2]
i[>0
where i = (i1,---,in), 2' = aiy 1.'52-- ..2'" and A;j is a constant n x n matrix. It is possible to

associate two natural Lie algebras with (1.1), namely

Liawy = Liesubalgebra of gf(n,C) generated by A(z), » € R"
Li4y = Liesubalgebra of gf(n,C) generated by A;, [i] > 0

The first result shows that these are, in fact, identical:
Lemma (2.1) E{A(w)} = E{Ai}- g,
Proof Let {E;}i<i<m be a basis of L;4;;. By (2.2) we can write

Alz) = i[);(i")Eﬁ
i=1

where p;(z) exists for all € R" by the analyticity of A(z). Hence, A(z) € L4, and so
Liaey & Lray-

Conversely, we shall show that A; € Ly for each i. Clearly Ag = A(0) so it is certainly
true for i = 0. We shall prove that A;g..0 € L{4(z)}, the others being similar. Now,

9 A(he;) — A(0)

A0 = c“)T'lA(I) lz=0 = }LI_I_I% =

If {E}lgiﬁm’ is a basis of E{A(z)}s then

A0 = ,{E.% > a(h)F
i=1

for some functions g;(h). Since the F;’s are linearly independent each limit lim,_q q;(k) must
exist, so Al,o,---,ﬂ = C{A(x}}.lﬂ
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In view of this lemma we shall use whichever formulation of the Lie algebras is most appro-
priate, and without loss of generality, we may write

La=Liamy = Liay

and call £ 4 the Lie algebra generated by the nonlinear equation (2.1).
Theorem (2.2) Any nolinear system of the form (2.1) may be written in the form (with respect
to a suitable basis)

= Slr)z+ o . - | (2.3)
I\(2)

where (S(z),S(z)) = 0 , with S(z) = [S(z), S(z)], and T; belongs to one of the simple Lie
algebras A, By, Cry D, G2, Fy, Eg, E7, E5 where (, ) denotes the Killing form on L.
Proof Let £, = v+ m be a Levi decomposition of £4 (see [5]), where r is the radical of £,
and m is a semisimple subalgebra. (Note that this is not a direct sum so this decomposition is
not unique.) Any semisimple algebra m may be written as a direct sum of simple ideals:

m:mie...emr

for some r and since the sum is direct and A(z) € v+ m we may choose coordinates so that
(2.1} can be written in the form (2.3). Since v is solvable the condition (5(z), S(z)) = 0 follows
from Cartan’s criterion for semi-simplicity.C

Corollary (2.3) If L4 is solvable we may write (2.1) in the form

811(‘1") DR P 'Sln(l.)
5= su(®) - osml2) |, (2.4)
B (2)
Proof This follows since any solvable linear Lie algebra may be written in upper triangular
form with respect to a suitable basis.O
Corollary (2.4) If L, is semisimple we may write (2.1) in the form

Iy(z)

O

Next we would like a condition on the matrices 4; , |i| > 0, so that the Lie algebra
L, is semisimple. By Cartan’s criterion this holds if and only if the Killing form of L4 is
nondegenerate. Let E;,---, E,, be a basis of £4 which can clearly be taken to consist of real
matrices (since the A; are real). Hence the quadratic form (X, .X) is real on this basis and so
we can define the norm




| Bi|| = (B B2,

By the Gram-Schmidt orthogonalisation procedure, we define

L = E/|E]

By = Boa=) Fi(Bi-i, B) (2.6)
j=1

P = Fis/|E

for 1 <1 < m. Then (-,-) is nondegenerate if and onlt if uﬁ; # 0 for each i € {1,---,m}.
Hence we have \

Lemma (2.5) L, is semisimple if and only if, for any (real) basis E = {E1,---,En} of La
the matrices F),- -+, EFy, associated with E by (2.6) satisfy

Z Gk

k=1
where ‘Mg, 1 < k < m are the eigenvalues of the operator ad ﬁ,
Proof This follows directly from

J.ﬁ;ii ="l ¥ (ad Fj)Q

and the invariance of Tr.O

3. The Solvable Case

We consider in this section the case where L4 is solvable. It follows from Lie’s theorem that
L 4 is solvable if and only if ®,, = [L£4,L4] ( the derived algebra of £,) is nilpotent. Morever,
by Engel’s theorem, a Lie algebra g is nilpotent if and only if ad X is nilpotent for each X € g.
Hence L4 is solvable if and only if ad X is nilpotent for each X € D,,. Since the sum of
nilpotent operators is nilpotent, we can test this condition on a basis of D.,. Hence we have
Lemma (3.1) L4 is solvable if and only if all the eigenvalues of the operators ad [E;, E;], 1 <
t,j < m are zero, where {Ey,---,En} is a mazimal linearly independent set of L 4.0

If £4 is solvable, then by Lie’s theorem we can choose a basis so that the equation (2.1)
takes the form

A(z) wip(z) - vin(z)
&= Ao () . o) z = A(2)z+ N(2)z (3.1)
Anla)
0 wva(z) -+ wvn(z)
where A(z) =diag (A(2), -, \a(2)) and N(z) = ’ (2)
Un—inlZ
0




.

We shall first prove a stability result from this (see also [6]).
Theorem (3.2) Suppose that |[N(z)| < v for ||z]| < K for some v > 0,K > 0 and that
N(z) < —p for 1 <i<nand ||z £ K with g > 0. Then the system (3.1) is asymptotically
stable in the open ball B = {z : ||z| < K}, if p>v.
Proof We have

2(t) = MV + [ NN (2(s)) — Alo) + N(a(s)(s)ds
where z(0) = zp. Let o € B and put v = K — ||zg||. Since A and N are continuous and B is
compact, we have
IN@)I| < v—e/2, for ||z] < K
and
[A(z) — Alzo)l| < /2

for ||z — zo|| < /2, say. By continuity of solutions, we have ||z(t) — zq|| < 7/2 when t € [0, 7]
for some 7 > 0. Then z(t) € B and so

g O < oot [[eHIIAER) - Aol +

IN(z(s)]]) flz(s) ds
< e Mol + ]Bt e M=%y |lx(s)||ds , fort e [0,7]
By Gronwall’s inequality we have
l2(®)]] < €5 g

and so z(t) is strictly decreasing in B.O
Remark (3.3) We can clearly refine this result and require only that A;(z) < —u(z), where
p(z) > 0 and ||N(z)] < v(z) with p(z) > v(2) for 2 € B.O

The next result shows that, in certain cases, it is easy to prove complete integrability of
solvable systems. Suppose that such a system is written in the form

Ar(z)
i = {z) + N(z)z (3.2)

' ) An(2)

where N(z) is nilpotent and upper triangular. Assume that A\;(z) is a function only of
Tit1,* -+, T (s0 that A, is constant) and v;;(z) is a function only of z;_1, - - -, 2, where N = ().
Then we have a system of the form

Tn = AT
Tpn1 = AJr1~1 (:L‘n)l‘n—l =+ Vn—l,'rz(-l‘n)-rn
i‘n—2 = /\n—z(iﬂn, In—l)-l'-n——Q + Vn—?,n (:Cna Lp—1 )In eix Vn—2,n—l(wn1 l‘n—i)l'n—l
n
o= Mz za)z+ > v (@2, 20)2y
j=2

5




These equations may be integrated recursively:

2s(t) = & map
-l'n—i(f) — 6'}; /\n"l(IH(T)’.“'IH_1+I(T))d’—.l'n*,‘o+
t t—s n
Aefe An—e(@alr)iBa—spr(r)dr Z Un—ij(Zn(8), - -, Tnoi—1(8))z;(5)ds

j=n—1-i

Given a general solvable system we can check if it is completely integrable in the following
way: '
Lemma(3.4) Given a system of the form y = A(y)y where L4 is solvable the system is
completely integrable if there exists a basis fi,---, fn of R™ such that sp{fi, -+, fa} is invariant -
under A and Algpif,...5.) 15 independent of x :\Zp]jyj, oy Tp i = 2 Pnoi ¥, 0€i<n—2,
where x = Py and P is the matriz of the change of basis from the standard basis ey, -, e, to

fla T fn- »
Proof Let AW : R"/{fn. . faci} = R"/{fa. . fai} be the induced map.0 < i < n — 2.
Since sp{fn} is invariant under A(x) = A(f(y)) and Alspisay is independent of zy, -+, z,, we

have A(z)f, = A fn for some constant A,.If the result is true for 7. then

A=, RY{fneo o facica} = R/ {fa, -+, faica}

is independent of 2;.---.2,_;_; and so
fi(iml).fn—r’—Q = /\n—i—an—r'-'Z
where A,_;_ is independent of 2.+, 2, ;5 and f; is the image of fi in R*/{fa, -, fi=1}

under the canonical map. The result follows now by expressing the equation in the form (3.2).0
Example (3.5) Consider the system

no= —ppty (3.3)
U2 = =Yty —
i.e.
n\_(0 -+ n
2 I =i+, —1 Yo
so that

. A0 =t
A(y)_(l _9'1'%'9'2‘1).

E'A is generated by El =5 ((;: Pl ).E-z = ( 8 1 ) so has basis El,Eg,Eg = [El,Eg] =

= :
( 11 ) It is easy to check that the eigenvalues of ad[E;, E;] are all zero for 1 < 4,5 < 3
6




and so by lemma (3.1), L4 is solvable. Consider the basis elements E,, By, E3. These have a
common eigenvector fi = (1, 1)T. We then seek another vector f; such that E; fo = Ao (E;) fa
for 1 <i < 3, ie (E — X(E))fa = aifi for some a;,as,a3. A solution is easily found as

b = ) Then we obtain

fa = (1,—-1)7. Consider the transformation z = P~y where P = ( 1 1

. —x o+ 1 )
l_( = )

the system

This equation has solution

To (f) = e_tl'?O

—t 8 —t — 8 o ae -
ity = g e 1 f gle e )“"(e ‘10 + 1)e *xg0ds
0
and using z = P~y we can write the integral of equation (3.3) as

—t ell-e™)
yi(t) = T(?fm — Yoo) + 9
/Ot (e =T Nwo—¥20)/2 (o=3 (30 — ag) /2 + 1)6_—;(1/10 — Y20)ds
et ell—e™")

y(t) = _T(ylo — yp0) + 5

t
/ e(e“—e“‘)(y1o~yzo)/2(E—S(yw —y20)/2 + 1)
0

(y10 + y20) +

(Y10 + Y20) +

e
9 (y10 — Y20)ds

4. The Semisimple Case

We first discuss the decomposition of a system into simple components. Let Ey,---, En be a
basis of £4 and let Fy,-- -, F,, be the orthogonalisation of this basis with respect to the Killing
form as in section 2. We have

Lemma (4.1) If E = {E;,---,En} is a basis of L4 and Vi, -, V. C R" are minimal
(nontrivial) invariant subspaces of R" under E (i.e. E;V; CV; for all i, j) then we may write
the system (2.1) in the form '

where L,z ts simple, 1 <i < 7.

Proof Since E is a basis of L4, each V; is invariant under £, and so we choose a basis
e1, -+ en of R" such that ep,,-+-,ep,,-1 is a basis of V;, 1 < i < r. Now each subspace
00---6Lp, 006 --80is an ideal in L4, although it may not be minimal, of course. However,

7




every simple matrix Lie algebra is a subalgebra of Ay (the Lie algebra of trace zero matrices)
for some k and so Lr, (s is certainly in a minimal simple Lie algebra and the result follows.O

Of course, the main problem here is finding the minimal invariant subspaces of a number
of (noncommuting) operators. Consider the case of two-dimensional invariant subspaces of two
linear operators E, F' acting on R™; the general case of several operators and higher-dimensional
invariant subspaces is similar, but much more computationally involved. If £, F' have a common
two-dimensional invariant subspace spanned by wy, w,, then

2 2
Fuw, = Z(x?-jwj , Fw, = Z,S,-jwj =12

j=1 =1

for some 2 x 2 matrices a = (ay;), 3 = (,3;). It is easy to see that we have

A ( (E-anl) —apf wy _

VE B ( _O“QII (E “QQQI) ) ( Wo ) = (41)
A (F - .‘3111) = 3121 U B

VF—( — 3o d (F -, 9221)>( 2) = 0

Hence « and ;3 satisfy

(E — ayl) —amI | _ —3ul) =3l | _
—anl —anl) | ' =3l (F = 3»l) '
The simplest way to solve (4.1) is to minimise numerically the objective function

IVel® + Ve

subject to the constraint [w:||* + |[wa|* = 1.
Example (4.2) Consider the differential equation

-i'l 2+ 21’1 -3 — 3.1'1 3 + 3.1'1 ¥ i
I —; —21 142, =& ]
.13 —1—23‘1 3+31‘1 —2—3.1‘1 34
2 -3 3 2 -3 3
Then L4 is generated by the matrices Agg = 0 1 0 and Ag=1{ -2 1 -1
-1 3 -2 -2 3 -3
It can be seen (using MAPLE, for example) that these matrices are put into block diagonal
1 1 0
fomby P=| -1 0 1 | so that the equation becomes
-1 -1 1
% L2 Ty 0 7
Y2 | = 1 ~1—23, 0 Y
3]3 0 0 1 U3




1+ 2.1,'1 Iy
1 —1 =21
Using lemma (4.1) we can classify semisimple systems in terms of the classical simple Lie
algebras:
Theorem (4.3) Every system

where y = P~ 1z, giving a system with ) generating a C-type system.

= A(z)z

where L4 generates a simple Lie algebra can be written in one of the following forms:

i = btz ())—O(typeA)
(z)  w(z)
L = ( T(z) An (z)  Ap(z) ) r, AL(z) = —As(z), AT (2) = —As (z) (type B)
T(z) An(z) —Afi(2)

s = (A A Ve ARG = An() A@) = Au) (iype ©)

£E ( j;igj:% A]TS(J?) )I ’ AETQ(I) = —Ap(z), 47, (z) = —An(z) (type D)

0 —/2bi(z) —v/2bs(2) —/2by(x) V2ai(z) V2ay(z) V2az(z)
—/2a;(z) Ai(2) eile) cs(z) 0 bs(z) —ba(z)
—V2a5(2)  ex(2) A2 (2) es(2) —bs(2) 0 by(xz)

& = —v/2a3(z) cq(z) cg(2) —(A1(z) + Xa(z))  ba(z) —by(2) 0
V2by(2) 0 —a3(x) as(x) —A(z)  —cy(2) —ca(2)
v/2by () az(x) 0 —a;(2) —cy(z)  —Mafz) —cg(2)
V() —a(n) ) 0 eo(n) o) (@) + da()

(type Ga)
r = ( F ai(zr)X, +zb:b(l) )l (t\peb F; Eﬁ E7 Eg)
where X;,Y; satisfy
(X, Y;] = ix;;jyp, 1<i<nl<j<s (4.2)

[Y07Y3} = Zl::;j){i ) 1 S Cl’,jg S S

i=1

where X; = (213) and X;,Y; can be realized on a 16-dimensional space for type Fy (with
r = 36,5 = 16) or a 27-dimensional space for types Eg, E7, Es. For Eg, r = 120,s = 128 and
Eg, E; are subalgebras of dimension 78 and 133, respectively.
Proof The proof follows directly from the classification theorem of simple Lie algebras (see [7])
and the following lemma of Witt [8]. (In applying the lemma we have simply taken the identty
representation.)D

9




Lemma (4.4) (E.Witt) Let g be an r-dimenstonal simple Lie algebra with basis {X1, -+, X}
and p an irreducible matriz representation of g on a vector space V of dimension s which
is nontrivial and not the regular representation of g. Let {Yi,---,Y,} be a basis of V. If

D; A p(X;) is real and skew symmetric, TrD;D; = —sb; and Trzi’k(Dka)'z — %1’32, then
h=g6V is a simple Lie algebra with the commutation relations

X, Y] = Y. diY,,1<i<r1<j<s
p=1
[YQ?YJ} = Z(FQ.BX’L ’ l— S O{.‘:{3 S S
i1
where D; = (d},3).0

5. Inhomogeneous Equations and the Variation of Constants Formula

Before proceeding with the theory of semisimple systems, we must first obtain some general
results on linear approximations of differential equations of the form

a(t) = A(z(t))z(t) + f(t) . x(to) = 20 (5.1)

We shall consider the following approximating sequence of linear differential equations:

B() = Alzo)zt () +F(#). 2" (to) = 2o (52)
ET(t) = ATV () + F(#), 2 () = 20

Let ®i~1.(t,to) denote the transition matrix generated by Az (t)). Tt is well-known (Brauer
[9]) that

H@:"'_l'(t. to)H < exp

[ At (rar

where p(A) is the logarithmic norm of A. We next require an estimate for &/~ — PE,
Lemma (5.1) Suppose that u(A(z)) < p for some constant y and for all x and that

|A(z) — Ay)| L ellz -yl , Vz.y €R”
Then

@5t to) — @72 (1. o) < @)t ~ to) sup [+ (5) = 7% (s)

s€tot

Proof &1, ®%2 are solutions of the respective equations
;= AlTN)z, 2(t) =1

i = Al TE(t)w, wlt) =1
10




Hence, {
%(7 —w) = A (B)(z - w) + [AlTH0) - AT ()] w
and so
— t: &1 (2, 5) [A(27(s)) — A@@2(s))] w(s)ds
i.e.

Iz —w| < [:exp(/:,«J(A(rif-li(r)_\))dﬁr)exp([:ﬂm(m**(r)))dr)

X N:c:i'lf(s) -2 (S)H a_ls

< exp(u(t —to))a(t —to) s?:p; ||l.ﬁi—1}(5) _ Iﬁi—?ﬁ(s)l‘ o

From (5.2) we have

2 () = BV (¢, t0)z0 + / O (¢, 5) f(s)ds. e

Let

£%(t) = sup ﬁlﬂ’*(s) - 1'7"_1'(3)1%'

SE:f.o_l

Then from (5.3),

€(t) < aexp(u(t—to))(t — )& (1) |20l
+a jto exp(p(t — 5))a(t — )€ (s) 1 £ ()]l ds

A

aexp(u(t — to))(t — to)€ (1) [IeroH ¥ f:: exp(—pu(s — to)) [1F(3)]] dé]
Suppose that, for some T > tq (possibly oc), exp(—u(t — to)) || ()|l € L'[to, T] and define

K= f exp(—ps — to)) 1 F(s)}] ds.

Then,

£4(t) < o (Jlzoll + K) (T — to) exp(u(t — t0))6" " (t)

for t € [ty,T]. Suppose that

v 2 a (||zoll + K) (T — to) exp(u(t — to)) < 1.
11




Then
E5(t) SvETHI) , t € [to, T]
and so
£ (1) < A1) (5.4)

Hence we have
Theorem (5.2) Let A(x) satisfy

(A1) p(A(x) <p
(A2) [A(z)-A@)| <llz—yll Yz.yeR"

and suppose that

o (“JL‘OH . f{T exp(—u(s — to)) ”f(b)“db) (T — to) exp(p(T —tp)) < 1.

Then the equation (4.1) has a unique solution on [to.T| which is given by the limit of the
solutions of the approrimating equations (4.2) on C([to.T].R").

Proof The proof follows directly from (4.4) since this implies that 27 (t) is a Cauchy sequence
in the Banach space C([to.T].R").0

Corollary(5.3) If p <0 and

a (!IIO(' + /Texp(—u(s = By} Iff(b‘)ha’b') (—l) e”l <1
to i

then the solution exists for all T > 0.0 _
We can find a bound on sup,¢, 7 ||2(t)]] where z(-) = lim;_« 24 (-), and the limit is taken
in C([te,T],R") as follows:

sup H:L’(:‘)“ = sup ;;a:-i:(t) — 3L 4 L) —e — (D)2 (t)”
te to, T teto, T
< Y@+ suwp 2t
j=2 te to, T
< STV (t) + sup HSL‘:]‘- (t){‘
i=2 teto,T '
= O Vi_lf:'z (t)+ sup Hs,l(t)“ g
1L=9 teto, T
Hence, as i — oc,
sup [l2(t)]| € T=—€2(0)+ sup [+ (8)]. (5.5)
te'to, T -V te'to,T

We can bound z-! and €2 in a similar way to that used in lemma 5.1; we obtain
12




Lemma (5.4) Bounds on 21 and €% are given by

Jup [ =) < Ly gt (u(ioHJrf Le==endie ) £ )!la’b’)

where @ = p(A(xo)) and

T )
£2(t) <a sup o ()| {r+ sup elt~to) f e~ (s=10)A | f(s)”d.s}
teto,T. te'to, T to
where
1
'= sup |— (1 = e’““*t“)) gAlTo)(t—to) _ I” Nlzol| - O (5.6)
te 1o, T | M e

From theorem (5.2) and lemma (5.4) we obtain results for the unforced system

#(t) = Alz())z(t) ; z(ta) = =g - (5.7)
In fact, setting f = 0, we obtain
Corollary (5.5) If A(z) satisfies the conditions (A1).(A2) in theorem (5.2) and xo is suffi-
ciently small, so that

o]l < =m0 (5.8)

a(T — to)
then the matrixz function A(x(t )) generates a nonlinear (semi-) group S(t,20) which erists on
[to, T) and S(t,z0) = limg—co 2= (t) (in C([te.T).R") ) where

) = AR @)z R @), ¥ (ko) = 20 -

Moreover, we have

sup [}5(t,20)| < (1+ 7

1 i
aF) sup ' ||z
teto, T -V

te'to, T
where v = a ||zo|| (T — to)e? ~0».0

The stability of the semigroup S(t¢.zp) can now be proved in the case where pu < 0.
Theorem (5.6) Under the conditions of comllary (5.5), if u <0, then the semigroup S(t,zq)

s stable. B
Proof We know that the sequence of functions z* defined by

2(t) = A(z(t))2(t) , z(to) = 2o - (5.9)
converges to the solution of (5.7) if zy satisfies (5.8). The solution of (5.9) satisfies

[0 < eo|[ (At 6))dsl

0
0 2o
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and the result follows.O
Next we consider the perturbed nonlinear system

#(t) = Az(t)2(t) + B(z(t))x(t) . 2(0) = zo

and the corresponding approximating sequence

IO (t) = A(IP)IEU: (t) + B(xzo)z? (t) ; z? (O) =20
Bi(t) = ATHE)at () + BT ) (), 2 (0) =2, 121 (5.10)

Then we have

i) —z L) = /Ot &1 (¢, 8) Bz () (27 (s) — 27 (s))ds
+ ./Ot ® (¢, 5) (B(mrii_l.(¢s)) - B(z::i_'z-(s-))) "1 (s)ds
-f-fof (@:?’1'(2‘, 5) — G2 5)) Bzt 2 (s))z '™ l(s)ds

and so, by lemma (5.1), if

(A1) p(A(@) < p

(42) [[A@@) -Al <alz-yl| V2z.yeR”
(43) 1B(z) - Byl < 3z -yl Vz.yeR"
(44) IB(2)ff <~ VzeR"

then we have

gf‘iﬁ(t) < /c:'”i >)-§? 1 )ds-l—/ eHt= s);cv 1( ) (h=1)34 ¢
+/ ae#f B)Cl ] ) —'.‘)sdls

since

2 ()] < e o

from (5.10). Hence,

& ) i t t
f'l’(t) < §~"1'(t) {/ e“(t‘s)“fds-f—/ e“(t_s)ﬂe(“““")sds—l-f ae“(t_s)}-e(“_'”sds}
0 0 0
= ABETL(?)
where

14




3
)\(f) = l(e,ut _ 1) 4 (_ +(l) (6(“""-'")f‘ B e‘uf')
H 9

and so, if |A(t)| < 1 for t € [0,T] we have
zi(t) — z(t) on C([te, T), R™).

As in (5.5), we have

1 . B .
sup [|=()l] < €% () + sup [+ (1) (5.11)
te 0,T -V te0,T
where
v= sup |A(t)].
te0,T.

Lemma (5.7) Under the assumptions (A1) — (A4) we have
[ @] < e flxol

and

!}12 (t) — ;LI(I‘)“ < (e(*‘_."’}t + e“"“’”) o]l
< 2e¥7! |z

(since o < p).
Proof This follows from Gronwall’s lemuma and the inequality

lo® @) < 4" fjzoll B

Corollary (4.8) Under the assumptions (A1) — (A1) we have

sup (o)) < (725 +1) ¢

Proof This follows from lemma (4.7) and (4.11).0
Remark (5.9) If u ++ < 0, then from corollary (5.8) we have

sup [lz(t)|| < (E—E—V + 1) llzoll -

te 0T

Hence, although we have assumed conditions (A1) — (A4) for all 2 € R7, it is clear that we
only require these conditions to hold in the ball

Boy= {2l < 1(5-1—3— +1) 1ol .




T e

This means that the results apply to polynomial systems which, of course, do not satisfy
(A1) — (A4) on the whole of R".0

We now return to the study of semisimple systems, so we assume that £, is a semisimple
Lie algebra and we can then write the system in the form

&= H(z)z+ (Z eo(x)Ep) z (5.12)

oEA

where H(z) € b (a Cartan subalgebra of £4) and A is the set of (nonzero) roots of L.
Since b is commutative we can always choose a basis so that H(z) is diagonal. Moreover, by
semisimplicity we can write z = z' © - - © z* where 2* belongs to a simple component of L,
so we consider a simple system of the form (dropping the superscript i on z°):

A1)

B e o (Z eo(m)E¢> z.
Ar(l') 0EA

In order to apply the above results we assume that

(i) max; |A;(2)] < p for all z € R®

(i) maxigicr [Aj(2) — A (@)| L allz—y| forallz,yeR"
| 3’0 |z — vl forall z,y € R®
|

(1ii) les(2) — €o(y)
(iv) teo( )

l/\ I/\

for all z e R®

Let

3= Z Ao HEOH = Z Yo “EOH

0EA oEA

Then by corollary (5.8) and the discussion before it we have
Theorem (5.10) The system (5.12) may be approximated by the sequence of equations

(1) = S CCF (z colo? <t))E¢) =0
A (1)

0EA

if the conditions (A1) — (A4) hold for the constants y, &, 3 and « defined in (i)-(iv) above and,
moreover, z° (t) — 2(t) in C([0,T],R™) where T is such that

()| = \ (e*t —1) + (é +a) (elH=1t _ gty < 1.
v
In this case we have
2
sup (lz(t)] < +1]e® Mzl .O
tELO%‘, =)l < (1 — sup;e o1 |A(t) ) ol

16




Note that we cannot apply the result in remark (5.9) to semisimple systems, since tr H(z) =
0 and so if some real parts of the eigenvales are negative, some must be positive. However,
suppose the system has a Levi decomposition in the form

= S(z)z+ H(z)z + (Z EO(I)EO) &
oEA

where S(z) is the solvable part of £4. Suppose that the nonsingular matrix P upper triangu-
larises S(z); then we have

G(P'y)
y(t) = y(t) + N(P~'y)y(t) + P H(P™'y) Py(t) +
CT(P_]?J)
(Z EO(P_Iy)P“IEoP) y(t) (5.13)
0EA

where P~1S(z)P =diag (i(z), - -.¢(2)) + N(z) and N(z) is nilpotent.To prove a stability
theorem for this system we need the following simple result:
Lemma (5.11) Consider the system

Ai(x)
T = r+ H(zx)x , 2(0) = o
An(z)

where all the matrices H(z) commute and max )\ (2) < =X < 0 for some A > 0. Then if Q

diagonalises H(z) (independently of x) and

1<iLr

A= 1010 (sup s o o)

where py(z), -, pr(x) are the eigenvalues of H(x), then the system is asymptotically stable
and ||z(t)|| < e 2K |20, where

u=Ql- Q7 (f&fﬁ max fuf(l-')f) -

Proof Simply multiply the equation by z, i.e.

—— |z = 2Ti== z + ol H(z)z
)\r
=jz))* + Jlzl* | H (z)]].. O

IA
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(Of course, if @ = I and so H(z) is already diagonal, then we simply require sup max (\;(z) +

(@) < 0)
Now we return to equation (5.13). Suppose that
() mex IN(P~12) ~ APl <allP2] -z~ o)
(i) |N(P~z) = N(P'y)l| < my [P7H - [z = yl| , IN(z)l] < np for all z,y € R”
(iii) leo(P712) — eo(PT'Y) < B llz =yl | leo(2)] < 7o for all 2,y € R

and set

B=3 B |PTEP|+m||P7Y| . v= X %||PT E.P| + o
deA oEA

Moreover, suppose that @ diagonalises P~ H(2) P!, for all z € R" and that

(iv) max G(z) < —¢ < 0 and

(¢l |7 (f:_g max !uf(l‘)f) >0

where p(x),- -, u-(z) are the eigenvalues of H(z).Then we have
Theorem (5.12) Under the conditions (i)-(iv), if { > v and 24 i’ +a||P7Y| < 1, then the
equation (4.1) is asymptotically stable.O

6. Example Systems

In this section we shall consider a number of simple examples and study their dynamical
behaviour.
First we shall examine systems with Lie algebra so(3, R).These are of the form

Z 0 —filz) fulz) 2y
Iy | = fi(z) 0 —f3(z) I3
Zy —f@) filz) 0 23

and have generators
00 O 0 01 0 -1 0
Mi={00 -1 1|,M= 0 00|, ,Ms=(1 0 0.
01 0 -1 00 0 0 0

d
d_t(z'% +zi+15) = 2z1(—fi(@)zy + fo(x)as) + 220 (fi(z)z) — fa(z)zs) + 2z3(— fol@)z1 + fi()20)
=

1]

Rizl= (6.1)

Note that

so these systems have invariant ‘energy’ 2 + z2 + 22. The equilibrium points are given by the
solutions of the equations

18




f(z)zs = fi(z)z:
H@)zy = fa(z)zs

(The third equation f3(z)x2 = fa(x)z; is dependent on the first two.) Generically, this will be
a (union) of lines although it may degenerate to a plane (or trivially a version of R?). Hence,
generically, the intersection of the equilibrium curve with an invariant sphere will be a finite
number of equilibria. For example, if

fi(z) = 21, fo(z) = falz) = 1,
then the equilibria are given by
J’I% = I3 :..1'1.'1,‘2

i.e. by the parabola (z;,z;,2?%). This intersects each invariant sphere in two points, one of
which is stable and one of which is unstable. The fact that [|z* = 22 + 22 + 22 is invariant
leads to the following:

Lemma (6.2) Suppose the three-dimensional system i = A(z)x can be written in the form

i=A(z)z + R(z)z

where A(z) + R(z) belongs to a Levi decomposition of L4 and R(z) is as in equation (6.1);
then the origin is asymptotically stable if xT,4(1')1' < 0 for all  # 0.
Proof Consider the Lyapunov function V = ||z|>. Then

V =2:T% = 22T(A(z)z + R(z)z) < 0

since 2T R(z)z = 0.0
For example, the system

g} —ex]  —fi(z) fo(2) z
iy | =1 f@) -—ef -f(2) 2
I3 —f(z) Jfalz) —eab 3
is stable for any e > 0. any positive integer p and any functions fi, fs, f3, since in this case
gTA(z)x = —e(2f 72 4 2572 + 2572). Similarly, the system
T a a2 — fi(z) @i+ fo(2) x)
ty | = an+ fi(x) a2 ags — f3(z) Ty
I3 as — f2(z) as2 + fa(2) {33 T3

is stable for any negative definite matrix A = (a;;).
More generally, note that if the system can be written in the form

5V ’
O _ 8y av

brz B
| v o7 & |,
&= azr ar; &
o av g
dzxa ar

19




then the system has invariant sets V' = const., since
av ) ov (8V av )
; — —a3 )+

Ozy \0z3 ' Oz

ov . oV ( oV
. - +

¥ o= 5:;1:31?1 -8.1‘.312 3.1.-23'3

OV( oV A% )
r; + T2

Jxs - dxy 0z
= 1. ‘
Hence the system
8V av
= A(.’L).’L‘ + B?i’ 2 3(::' T X
o) KedS 0

5;; dzxy

is stable if V' > 0,2 # 0 and g7 (z)A(z)z < 0, where g(z) = grad V, since then V is a Lyapunov
function. Conversely, it is easy to see that any stable three-dimensional system may be written
in this form (since, by Lyapunov’s theorem, any stable system has a Lyapunov function). Hence

we have proved
Lemma (6.3) Any three-dimensional system is stable if and only if it may be written in the

form
z = (A(z) + B(z))z
where
Bz)=| & 0 -5
BGOSR
dza dr,

for some positive function V', and <grad v, 51(1)> < 0. The set {A(z)+ B(z) : z € R®} induces

a Levi decomposition of L4 in an obvious way.O
Lemma (6.3) can be generalised to higher-dimensional systems by considering equations of

’Q the form
I
i = A(z)xr + R(z)z
although we must now take R(z) in the form
BY . B8V .. 8V _ av .
0 Bzz L1 6::;‘11 oz *1 Bz, L1 \
_av. p o, o, WV
az; 2 dz3~? Bzs™? Bz, 2
8V .
—-5~‘l3 0
T
Rix) = ;
: BV
: : Bz, L1
a"r - Y . a . e —_— 81’ i
Pz ¥n S 0

As a further interesting example, consider the Lorentz attractor dynamics
20




I -0 0 T1
i'-z = 1+ A =1 —I1 X9
i','; 0 o) —b I3

This has the Levi decomposition

i -0 o+(1+2) 0 By 0 —(14+XA 0 T
o = 0 -1 0 o |+ 14+ A 0 —I fid)

i3 0 0 -b I3 0 Iy 0 I3

The semisimple part

ig = 1+ A 0 —I T2
.1;:3 0 I 0 I3

produces invariant dynamics on any sphere. For stability, lemma (6.1) gives the condition

2
(a+(;+)\)) ey

which is fairly conservative. Finding V' to apply lemma (6.2) is more difficult!
Using a similar Levi decomposition approach, it is easy to find new chaotic systems; for
example, the system

i’fl -3 228 -10 0 Iy 0 -3 3.1'3 0 |
i‘g . 0 -1 6 0 i) + 3 0 X9 — &1 Iy
i‘g 0 0 -3 0 I3 —3.1‘3 —Iy 0 Ty I3
.1..'4 0 0 0 -2 T4 0 5 | —X4 0 Iy

has a chaotic attractor shown in various projections in figures 9.1-9.6. The semisimple part

.i,‘l 0 -3 33)3 0 I
g | 3 0 Ty —I I
i‘3 o —3.173 — Iy 0 L4 Iy
i’4 0 I —24 0 Ty

has invariant spheres of the form 27 + 22 + 22 + 2} = const.
We next consider the case of C, systems. Since C, is equal to the space of symplectic
matrices, it is natural to ask which systems of the form

z=A(z)r, z€R", neven
where A(z) € C,/ are Hamiltonian systems. Of course, if A(z) = A is constant then the
system is trivially Hamiltonian. However, a general Hamiltonian system cannot be written in

this form. For example, if n = 2, then we have
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oH

= 6.2
5= (62)
_ _oH
4 = or

for some Hamiltonian H(z,y). If H is analytic, then we can write

H(z,y) = i hijz'y’

1,7=0
and so
OH = L x OR o .
- = hi'l"lfr_]yj 3 — = hi'_]..l'lyjul.
a.’L‘ ‘i—%—ﬂ ’ ay i:(;,j:l ’

Thus, equation (6.2) can be written in the form

()= (0 2o (3) 9

if and only if the term in %—Z{ with no y term

2o "
Zhill‘l
i=0

has an z factor, i.e. hg; = 0 and similarly, h;p = 0. Hence, it can be written in the form (6.3)
if and only if H has no linear term. In general, the system

(3)-{48 S200) o)

where z,y € R® and BT = B,CT = C, can be written in the form

o
= 5
_ o
¥ = &
if and only if

2 (A y)e+ By, = — (Aw )+ By)y)
e Wl T Py YRR z,Y)y);
19, B o .
aTﬁ(A(lay)I-f-B(Iay)y)i = mé)a:i (C(r,y)x-—A (:r:,y)y)j
9 . s — AT (2. s i . . AT
a—%(C(zLay)l A (a,,y)y)r__ = B (C(-l,y)l A (J,,y)y)j
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e Pl L e = e e

for all i, j € {1,---,n}, by Poincaré’s lemma. Hence, if we write
o0 0] oo oo
Alz,y) = Z Z APPya  B(z,y) = z Z BPPyt | C(z,y) z Z CPazPy
[p[=0 [q/=0 [pl=01(q|=0 |=0 |q|=0

then we obtain
Lemma (6.4) The system (6.4) is Hamiltonian if and only if the soefficient matrices AP9, BP9
and CP9 satisfy the relations

A g it "
> (AR, + ps Bie BT p AR = S (AR + pi BT AR )
k

k
Z(B 96, _'_QJAP lk,q-1; +q qu 1,-1 ) _ _Z(kaqékl P; Ap Loa-1le 4 Cp—-—ln lk,q)
k v
Z( AA:: 6;:3 + Q]Cp 1k,g—1; quEqu*lj—lk) sy Z (_Agthski + qsz_lk .q~1; Ap .q-1; +.1k)
% k

. where 1; = (0,0, -- ,0,\1/30, -+-.0). Moreover, the Hamiltonian is given by

H(z,y) = jg (A(z,y)z + B(z.y)y) dy —I—j{L (—C‘(J:.y):u + AT(:L', y)y) dx

where the integral is taken over any path L in (x,y)-space.0)
For example, the conditions of lemma (6.4) can easily be checked (using MAPLE) to hold

for the system
£y y  x+ 4y >
y) \~2 -y y

with Hamiltonian H(z,y) = 2% + 2y + v
Finally we consider the G5 svstem

3.31 -3 28 =10 1
. I -1 6 )
i‘g -3 Ty
24 = —2 zg | +
Z5 0 T3
j‘-ﬁ 0 Lg
\ Zq \ 0 \ Z7
g BB 3.3-113 0 —3 3.1'3 30 Ty \
i -5 0 0 ﬁ.rg 2
—83x5 —Z 0 T 0 0 -\j—ﬁ 5
O I —Xy4 —2 —%.’L‘g —% O T4
3 0 %13 0 0 0 x5
—3r3 0 0 % 0 0 0 g
0 —%.173 *% 0 0 0 0 T




(This is inspired by the four dimensional chaotic system above; clearly many more systems of
this form are possible.) The dynamics are again chaotic with two views shown in figures 9.7
and 9.8.(A more detailed analysis and a proof of the chaotic behaviour of these systems will be
given in a further paper [10].)

7. Conculsions

A new classification theory of nonlinear differential equations is presented, based on a Lie
algebra associated with the system. Moreover, an approximation technique for the solution
of the equations is introduced, which leads to time-varying linear approximations which are
arbitrarily close to the true system. The semisimple part of the Lie algebra generated by the
equations gives rise to invariant dynamics and the remaining solvable part can be used to create
chaotic motion. A number of examples based on.simple Lie algebras is given, showing that a
more detailed analysis of Fy, Eg, E7 and Ej systems would be interesting. This will be done in
a future paper.
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Figure 9.1: Chaotic Attractor in x1-x2
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Figure 9.2: Chaotic Attractor in x1-x3
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Figure 9.3: Chaotic Attractor in x1-x4
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Figure 9.4: Chaotic Attractor in x2-x4
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Figure 9.5: Chaotic Attractor in x3-x4
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Figure 9.6: Chaotic Attractor in x1-x3-x4

30




46.

x1

x3

Figure 9.7: Chaotic Attractor for a G2 System
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Figure 9.8: View in x1-x4
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