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Multi-directional Model Validity Tests for
Nonlinear System Identification

K.Z.Mao S.A.Billings
Department of Automatic Control and Systems Engineering
University of Sheffield
Sheffield S1 3JD, UK

Abstract

New multi-directional model validation tests are derived to provide improved
statistical validation test procedures for a wide class of nonlinear modelling methods.

1 Introduction

Model validation is an important procedure in any system identification study. If the
model structure is correct and the estimated parameters are unbiased the residuals should
form an independent random sequence and should be unpredictable from all past inputs,
outputs and residuals. Based on this principle correlation test procedures consisting of
tests using the autocorrelation function of the residuals and the cross-correlation func-
tion between the residuals and the inputs were developed (e.g. Box 1976, Bohlin 1978,
Soderstrom and Stoica 1990). But these tests, which were originally developed for linear
system model validation, are not sufficient to detect unmodelled nonlinear terms. To solve
this problem nonlinear system model validation algorithms which include both classical
: ‘and higher order correlation tests were developed (e.g. Billings and Voon 1983, 1986,
A Billings and Zhu 1994, 1995). These nonlinear model validation algorithms have been
Y successfully appliedin practical system identification including model validation of a tur-
bocharged automotive diesel engine (Billings et al 1991), a distillation column (Sriniwas
et al 1995), a parallel-tube heat exchanger (Thomson et al 1996) and others. But there
are certain situations where these algorithms do not perform adequately. This means
that even if predictable components remain in the residuals the correlation functions can,
under certain conditions, still fall inside the 95% confidence bands. This problem has
been previously observed in the higher order correlation tests and was referred to as the
small value problem in Billings and Voon (1986). But no solution was proposed.

, In this study several contrived examples are used to induce these problems and to study
why they occur. The causes of the problem are then analysed and two multi-directional
test algorithms are developed as solutions. The multi-directional test algorithms are
shown to provide more reliable results than previously developed algorithms and simu-
lated examples are used to demonstrate the application of the new tests.




2 An analysis of previously developed algorithms

2.1 Preliminaries

Consider a SISO dynamic nonlinear model
y(k) = Fly(k=1),...,y(k—ny),u(k—1),...,u(k—n.), e(k=1),... e(k—n,)]+e(k) (1)
where y(k), u(k) and €(k) denote the output, input and residual at time instant &, F is

the estimated nonlinear function. Two algorithms are available to test the validity of this
model.

Test (I) (Billings and Voon 1986)

() = 6(7) for any 7
Su(r) = 0 for any 7
Quzy{r) = 0 for any 7 (2)
Pru2ye(r) = 0 for any 7
@e(su)(’n") = for any 7 > 1
Test (II) (Billings and Zhu 1994)
S(aywey(T) = w6(r) for any 7 -
Quyey() = 0 for any 7

where 0 < x < 1. The dash ' in tests (2) and (3) denotes that the mean level has been
_removed from the corresponding signal.

Test (II) checks the correlation between the output and the residuals. This enhances
the tests based on the residuals and inputs only, and only two tests are needed, even for
multi-input and/or multi-output systems (Billings and Zhu 1995)

For all the tests above the normalised correlation functions & are computed based on the
formula

Ty v(k)w(k + 1)
(4 v2(h)) (2 w2(k))] ™

®uu(7) = (4)

Throughout the 95% confidence bands will be computed using the approximate formula
1.96/v/N where N is the data length.




2.2 An example where Tests (I) and (II) can fail to detect
unmodelled terms

Tests (I) and (II) are independent of the nonlinear system identification algorithm and
the form of the model that is estimated. They have therefore been used by many authors
over a wide range of model types including the nonlinear polynomial model, nonlinear
rational model and neural networks, and they work well under most circumstances. Some
typical successful examples include model validation of a turbocharged automotive diesel
engine (Billings et al 1991), a distillation column (Sriniwas et al 1995), a parallel-tube heat
exchanger (Thomson et al 1996) and others. However there are certain situations where
the two tests can fail to adequately detect unmodelled terms. This is best illustrated by
an example which has been designed to exagerate this deficiency.

Example 1
z(k) = sinfu(k — 1)x] + cos[u(k — 2)7] i
()

where z(k) and y(k) denote the noise free output and the output measurement at time
k(k=1,2,...,N). The input {u(k)} is a uniformly distributed random sequence with
amplititute £1. {e(k)} is a normally distributed white noise sequence with zero mean and
variance 0.25. A total of 400 data samples were generated and used in this identification
study.

Nonlinear polynomial models were employed to fit the data. Initially, the degree of non-
linearity of the polynomial model was deliberately incorrectly set to 2, and the maximum
lag of the input was set to 2. Estimation produced the following model

y(k) = 0.7651 + 0.8887u(k — 1) + 0.1169u(k — 2) + 0.1017u?(k — 1)
—2.2053u%(k — 2) + €(k) (6)

The results of tests (I) and (II) illustrated in Fig.1 suggest that the model in eqn (6) is
valid. However maps constructed from the true model in eqn (5) and the identified model
in eqn (6), illustrated in Fig.2, clearly show that the model eqn (6) does not capture the
function underlying the data at all. Tests (I) and (II) therefore do not perform adequately
to detect missing model terms in this example.

2.3 Why do tests (I) and (II) perform inadequately?

Consider the following nonlinear system

y(k) = f[u(k - 1)»u(k - 2)1 AR :u(k - nu)] o+ e(’z‘)




where the disturbance {e(k)} is an independently and identically distributed random
sequence with zero mean and finite variance. Assuming that the identified model is

y(k) = Fluk = yulk = 2), ., u(k = my)] + e(k)
The residual e(k) is
e(k) = flo] — fo] + e(k) = flu(k — 1), u(k - 2),...,u(k - d)] + e(k)

where d = max {n,,m.}. If f, f and f are in the commonly used nonlinear polynomial
form, e(k) can be interpreted as

e(k) =3 i (k- Dub2(k - 2).. wR4(k - d) (7)
e |
where a; is the parameter estimation bias of the +** term, B2 0,9=12,....4

Consider the cross correlation function ®,.(7), 1 < 7 < d.

Pue(r) = N [u(k)e(k + 7)]

[(Zh w(h)) (2 (k)]

(k) T G 47— 1kt 7 —2) . ube(k 4+ 7 — d)

(X)) (S )]
b (D Gt (k47— Djue(k 47— 2) . usi(k + 7 — d)]
(i w2(®) (2l )]

If the input is an independent random sequence whose odd order moments are zero, eqn
(8) is approximately equal to

(8)

B () e Th [Dign, at (k47— Wrs(k+7 = 2). . us(k + 7 — d)]

— (= w(w) (2 er)] ™

where (), is a set of integers

(9)

Q1 = {2, where ¢i1,qi2,...,ia are all even numbers}

For a linear stable system the residual can be interpreted as (k) = Y, au(k — 1),
and the cross correlation function ®,,(7) will depend on the term a,u(k — 7) only. If
this term is important the cross correlation function will have a relatively large value.
Consequently the cross correlation test works in detecting unmodelled process terms like
u(k—7)in linear system model validation. But when the cross correlation test is extended
to nonlinear systems the situation can be quite different because the size of ®.e(7) can be
determined by more than one term as shown in eqn (9). Even if some important model
terms are unmodelled ®,,(7) can be very small if




(i) @; is small, 2 € Q, or

(i) @Gu® (k+7—1)u®(k+7-2)...u*¢(k+7—d) terms cancel with each other, 1 € Q;.

If the size of ®,.(7) is smaller than the confidence band some missed terms, which should
be detected in theory, cannot be detected in practice. This is largely due to the higher
order moments that contribute to the test and which are known to be data sensitive under
certain conditions.

Consider the autocorrelation function ®.(7), 1 < 7 < d.

iy [e(k)e(k + 7))
They €2(k)
SNTIER auf (k= 1), vk - d) T gauks (k47— 1), . uke(k 4+ 7 = d)]
L= €(k)
Sy (S bt (k7 — 1wl (k+ 7= 2) . w0 (k — d)] (10)
T €2(k) |

®,.(7)

where M is the number of terms contained in e(k)e(k + 7), b; is the product of any two
d;and é;,7=1,2,...,mand [ =1,2,...,m.

If the input is an independent random sequence with zero odd moments eqn (10) is
approximately equal to

TN [Tieq, biuPi(k + 7 — D2 (k + 7 — 2)...uPe+)(k — d)]
QE‘(T) = = = N-71 Ez(k) (11)

k=1

where Q5 is a set of integers

Bk

Q, = {i,where Dty Pidy - - y Pildir) 8T€ all even numbers}

Similar to the cress correlation function case the size of autocorrelation function can
be smaller than the 95% confidence band even if predictable components remain in the
residual if one or both of the following two cases occur(s)

(i) b is small, where i € Q, or

(ii) buPe (k+7—1uP2(k+7—2)...uP¢"(k — d) terms cancel with each other, where
1 € Q,.

The above analysis reveals that cancellation or small values of @; (1 € &) or b (i€ Q)
are potential factors that can cause incorrect results in both the autocorrelation and cross
correlation tests. Whether these situations which can cause failure will occur in practice is

system and input signal dependent but the possibility does exist. Consider an evaluation
of Example 1.




In fact the model eqn (5) can be adequately approximated by a polynomial model of
nonlinearity degree 4

y(k) = 1.0653 +2.7084u(k — 1) — 4.8774u’(k — 2) — 2.8793u3(k — 1)
+2.9414u*(k — 2) + e(k) (12)

Comparing eqn (6) and eqn (12) yields

e(k) = 0.3+1.8197u(k —1)—0.1169u(k — 2) — 0.1017u?(k — 1) — 2.672u*(k — 2)
' —2.8793u3(k — 1) + 2.9414u*(k — 2) + e(k)
= &+ dru(k — 1) + au(k — 2) + dsu’(k — 1) + agu®(k — 2) + asu’(k — 1)
+agui(k —2) + e(k) (13)

Consider initially the cross correlation function &,.(1)

BJ] = i AN, TR + ST )
[(Zi we(e) (S5 )] (S weh)) (2250 ew)] ™
__237.5122 — 224,95 . »

/130.5227 x 201.5874

In this example the size of ®,.(1) is determined by two terms a;u(k) and asu®(k) in the
residual e(k + 1). Correlations between these two terms and u(k) have large values, i.e.
237.5122 and 224.925 respectively, but these two large values cancel as shown in eqn (14).
The overall value falls inside the 95% confidence band +0.098, and the severe bias of a,
and the missing term azu®(k — 1) were therefore not detected.

Consider the cross correlation function &,.(2)

~ 8.2 iv 12 u(k)e(k +2) . az Ziv 12 u’(k)

T [Eem) S5 em)” [(Ehe®) @8 @)

_ ——0.1169 x 130.2011 e
T /=130.5227 x 201.5874

Although no cancellation is involved ®,,(2) is small because of the small value of &,.

Consider the autocorrelation of the residual ®.(1)

_ T e(R)e(k+1)
#,l) = D)
. (G182 + 2083 + 28084) S0 ©3(k) + (8384 + dqds + 2808s) Tpy ui(k)
ST
+(— +a3) Tisy wi(k)u (h+1)+ a8 Th u U»)*asaq'& - u?(k)ul(k +2)
T (k)




| Gade Ty wA(k)ut(k + 1) + ads Ty ui(k + 2)uf(k)

+
Yooy (k)
a4asz§“;11 u?(k + Du(k) + a2 Zk L ut(k)ui(k + 1) +ai(N —1)
T V=T e(k)
_ —244 9838 + 185.62 + 302.0358 — 16.7268 + 11.1954 — 200.6318 — 7.4647
- 199.291

—194.5591 + 127.6718 + 35.91
* 169.201

= —0.0097

®..(1) is small and falls inside the 95% confidence band for the same reason as ®,.(1).

In theory if important terms are unmodelled correlation functions in tests (I) or (II) can
have nonzero values. This is true. But the problem is that the size of these nonzero values
are system and input signal dependent and can be smaller than the confidence bands. The
results above for a contrived example reveal that the cancellation and small value of bias
of some estimated parameters are the two factors that lead to incorrect results in the lower
order correlation functions. In a similar manner these two factors can lead to incorrect
results in higher order correlation tests as well. If all the five correlation tests in test (I)
or both tests in test (II) provide incorrect results unmodelled terms will not be detected.
Example 1 is just a simple instance of this but the causes summarised here are general
and can happen in more complex systems.

3 Multi-directional model validity tests

3.1 The basic principle

In the previous section it was shown that the correlation function values can be model and
input signal dependent and can be smaller than the confidence values even if predictable
components are contained in the residuals. This conclusion is based on the assumption
that the input sequence is random and independent. Consider what happens to the

correlation functions if the input signal is deterministic and correlated. Assume that the
residual is

(k) = capr(k) + capa(k) + ... + cniom (k) + e(k) (15)
where ;(k) ( = 1,2,...,m) are linear or nonlinear functions of the regression variables
u(k=1), .., u(k - d). Consider the autocorrelation function of the residuals

S le(k)e(k + 7
@eg(‘T) = Zk f\d(—"‘) § )}
L= €(k)
NG )901“ +7)+ o+ G om(R)pm(k + 7) + crcmpr (B)pm(k + 7)]

oy (3o (B) + .+ 202 (k) + crempr(k)pm (k)]

|




If the input signal is deterministic and correlated, the regressors ¢, (i = 1,2,...,m) will
be as well. For small 7 we have

i [ea(R)ea(k+ 7)) = TR (k)]

SR pm(k+ )] % TN los(k)om(E)]
S em(B)em(k+7) & TN (k)]

®..(7) should therefore have a relatively large value. Similarly the other tests in tests (I)
and (II) can be enhanced as well. However random and uncorrelated input are often used
by many authors in the literature, and once data samples are provided the input signal
can not be changed at the model identification stage.

Assume that a predictable component, for example u?(k — 7), is contained in the residual
e(k). The plot of e(k) versus uw(k—7) will be a quadratic curve. This provides a clue. If the
input sequence {u(k — 7)} is first sorted in terms of size rather than time of occurrence
and the residual sequence is also sorted to correspond and to maintain time alignment
the newly generated residual sequence will be deterministic and correlated if a linear or
a nonlinear term g[u(k — 7)] is contained in the residual. Thus correlation tests based
on the resorted sequences should be enhanced. Alternatively, if the identified model
represents the system adequately the residual time series will approximately converge to an
independent and identically distributed noise sequence whose statistical properties should
not be affected by the sorting operation because the sorting order has no relationship
with the noise itself. The correlation functions based on the resorted sequences should
therefore meet tests (I) and (II). The above consideration motivates the development of
multi-directional model validity tests.

3.2 Signal Resorting

For convenience in the following sections, regression variables u(k —1), ..., u(k —n,) will
be denoted as ml(k) ooy T R)-

Discrete-time signals are usually sorted in terms of the time of occurrence. If the output
{y(k),k=1,2,...,N} and the residual {e(k),k=1,2,..., N} are sorted in a new order
rather than the t1me of occurrence, but maintaining alignment, new sequences will be
produced. For example resorting the output sequence {y(k)} in an order in which variable
1 is ascending, yields a new output sequence

{ym(k)a k= 1121 TR N} == {y(kn),y(klg), wine !y(k”\"’)}
where the positive integers ky, € {1,2,...,N} (1 =1,2,.: . ; V) makisly

5'31(11311) < El(klﬁ) LIy $1(k1N)




Because this new sequence is produced by sorting the output in the ascending order
of z1, {y=, (k)} will be referred to as the output distribution along the direction of z.
In the same way the output distribution along the direction z; (+ = 2,3,...,n,) and
the residual distribution along the direction z; (¢ = 1,2,...,n,) can be obtained and
are denoted by {yz,(k)} and {e; (k)} respectively. Similarly the distribution of a signal
{a(k) k=125 .. , N} along its own direction is defined as

{zo, (k). k = 1,2,..., N} = {zi(ka), zi(ksa), ..., 2i(kin )}

where
zi(ki) < zi(ki2) <. oL < zy(kin)

3.3 Multi-directional model validity tests

In §3.1 it was shown that if a model adequately represents the true system the residual
should be reduced to an independently and identically distributed random sequence whose
statistical properties are not affected by the sorting operation. Consequently the resorted
residual and input sequences should meet the following tests

Multi-directional test (I)

) = §(7) for any 7
Boelr) = 0 for any 7
Buzye,(r) = 0 for any 7 (16)
é(u%)fegr('r) = | for any 7
Peue)(7) = 0 for any 7 > 1
Multi-directional test (II)
) D(2)(yse,)(T) = 6(r) for any 7 (17)
- P2y (yyery(T) = 0 for any 7

where 0 < k < 1, v can be z1,23,...,Z,, in tests (16) and (17).

The procedure of applying the above two tests is summarised as follows.

(1) Check if the conditions in eqn (2) or eqn (3) hold. If the conditions are not satisfied
the model is invalid. Otherwise set : = 1.

(1) Generate a new sequence by sorting the sequence {z,(k)} in an ascending order

{o (B k=1,2,..., N} = {mi(ka), 2i(kia), - . ., 2il i)}




where
zi(ki) € zi(k) < ... < zi(kiy)

(iii) Generate a new residual sequence by resorting the sequence {e(k),k=1,2,...,N}
to correspond to the order in {ziz’(k)} in step (i1)

{éz‘(k), k= 1,2, i ,N} = {E(kﬂ),e(k.;z), - .,E(ng)}

and a new output sequence by resorting {y(k),k = 1,2,..., N} in the same way as

{Ezt(k),k =12,... ,N}.
{ym(k): k=1,2,..., N} = {y(kﬂ)sy(kﬁ): v :y(kiN)}

(iv) Check if the conditions in eqn (16) or (17) hold. Set 7 = 7+ 1 and repeat steps
(i1)-(iv) until 2 = n,, the value of the maximum lag in the input.

(v) If conditions in egns (2) or (3) and (16) or (17) are satisfied for all z; the fnodel is
considered to be statistically valid, otherwise the model is not valid.

Consider the validity of model eqn (6) again. The results of the u(k—1) sorted directional
tests (I) and (II) are illustrated in Fig.3 and now clearly show that the model is not valid.

3.4 Compound multi-directional model validity tests

The multi-directional model validity tests in eqns (16) and (17) include tests in all possible
directions. This may involve a large number of correlations which have to be inspected.
Recently new nonlinear model validity test procedures, which significantly simplify and
reduce the tests for multivariable systems were introduced by Billings and Zhu (1995).
“The basic idea of this algorithm is to put the residual and input sequences of different
subsystems in a “condensed” residual and input sequence respectively, and then to check
for correlations using the two “condensed” signals. This idea can be employed here to
simplify the multi-directional validity tests.

Define following variables
E(k) = ez, (k) + ... + e, (K)
gk)=e, (k) +...+ € (k)
v(k) = @y, (k) + v F B, (k)
vi(k) = Ef,l(k) +... + 22, (k)
pk) = €, (R)z1. (F) + .+ €apy (k) Znuzn, (F)
(k) = Yz, (R)ex, (B) + . + Yoo (R)ez,, (K)

10




The compound multi-directional tests can then be defined as

Compound multi-directional test (I)

See(r) = 6(7) for any 7

Sue(r) = 0 for any T
Praye(r) = 0 for any T (18)
Sayez(t) = 0 for any 7

S.u(r) = 0 for any 7 > 1

Compound multi-directional test (II)
Se2ym(T) = ké(7) for any 7 19
S2yn(t) = 0 for any T (19)

where 0 < & < 1.

The application of the compound multi-directional tests (I) and (II) is summarised as
follows.

(i) Check if the conditions in eqn (2) or (3) hold. If the conditions are not met the
model is invalid. Otherwise set + = 1.

(11) Generate a new sequence by sorting the sequence {z;(k)} in an ascending order

{ee (k). =1,2,..., N} = {zi(ka), z:(ka), . .., zil i)}

where '
zi( ki) < zi(ki2) € ... < zi(kin)

-—(iii) Generate a new residual sequence by resorting the sequence {e(k),k=1,2,..., N}
to correspond to the order in step (ii)

T {en (k) k=1,2,..., N} = {e(ka), e(kiz), . .., e(kin)}

and a new output sequence by sorting the sequence {y(k),k=1,2,...,N} in the
same way as {¢; (k),k=1,2,...,N}

{yﬂ:-(k)w k= 1321 it vy N} = {y(kil)!y(kiz)a wone =y(‘l‘:iN)}

(iv) Set ¢ =i + 1 and repeat steps (ii)-(iii) until ¢ = n,, where n, is the maximum lag
in the input.

(v) Generate new sequences {£(k)}, {€2(k)}, {v(K)}, {v3(k)}, {x(k)}, {n(k)} and check
if the conditions in (18) or (19) hold. If the conditions in tests (2) or (3) and (18)

or (19) hold the model is considered to be statistically valid otherwise the model is
not valid.

1l




4 Examples

To illustrate the efficiency of new multi-directional model validity tests two examples were
selected as demonstrations.

Example 2

Consider the following nonlinear system

z(k) = exp(—|u(k — 1))+ 1.2tanh[u(k — 2)7]

(20)
y(k) = z(k) +e(k)
where z(k).and y(k) denote the noise free output and the output measurement at time
k. The input {u(k)} was a uniformly distributed random sequence with zero mean and
amplititute +1, the disturbance {e(k)} is a normally distributed white noise sequence
with zero mean and variance 0.01. A total of 400 data samples were generated.

Nonlinear polynomial models were employed to approximate the system in eqn (20).
Initially the nonlinear degree of a polynomial model was deliberately incorrectly set to 3,
and the maximum lag of the input was set to 2. Identifying the system using a forward
regression orthogonal algorithm (Billings and Chen 1989) yielded the following model

y(k) = 0.826+2.645u(k—2)—0.567u®(k—1)—1.6037u’(k—2)—1.1124u’(k—1)u(k—2)+¢(k)
(21)
The results of both tests (I) and (II) indicated that the model in eqn (21) is valid. However
maps constructed from the true model in eqn (20) and the identified model in eqn (21),
illustrated in Fig.4, clear show that the model in eqn (21) is not valid. The model
deficiency was successfully detected by the u(k — 2) directional tests (I) and (II) and the
compound multi-directional tests (I) and (II). Both results were almost identical and only
~the compound tests are shown in Fig.5.

The nonlinearity degree was then increased to 5 to yield the following model

y(k) = 0.891 + 3.1511u(k — 2) — 1.2552u%(k — 1) — 4.1103u%(k — 2)
+0.8225u*(k — 1) + 2.2538u°(k — 2) + ¢(k) (22)

The u(k — 2) directional test and the compound multi-directional test were now all inside
the confidence bands indicating that the model is statistically valid. This is confirmed by
the map constructed from model eqn (22) shown in Fig.6.

Example 3

Consider the following nonlinear system

y(k) =02y(k = 1)+ 1.50%(k = 1)+ u(k —2) + 23k —3) + e(k — 1) +e(k)  (23)

12




where the input {u(k)} was a uniformly distributed random sequence with amplititute
+1, {e(k)} is a normally distributed white noise sequence with zero mean and variance
0.04. A total of 400 data samples were generated and used.

Initially the nonlinearity degree, the maximum lags of the input, output and noise were
deliberately incorrectly set to 2, 2, 1, and 1 respectively. These parameters produced
a polynomial model with 15 candidate terms. Identifying the system using a forward
regression orthogonal algorithm (Billings and Chen 1989) produced the following model

y(k) = 0.2566y(k — 1)+ 1.5143u*(k — 1) + 0.8916u’(k — 2)
+0.1282u(k — 1)u(k — 2) + 0.1233¢(k — 1) + €(k) (24)

The model in eqn (24) is not valid because term u*(k — 3) was unmodelled. This was
detected by tests (I) and (II), and also by the u(k — 3)-directional tests (I) and (II), and
by the compound multi-directional tests (I) and (II) shown in Fig.7.

The nonlinearity degree, the maximum lags in the input, output and noise were then set
to 3, 3, 1 and 1 respectively. Reidentifying the system in eqn (23) yielded the following
model

y(k) = 0.2129y(k — 1)+ 1.4932u*(k — 1) + 1.0083u*(k — 2) + 0.989x°(k — 3)
+0.8303¢e(k — 1) + (k) (25)

The u(k — 3)-directional test and the compound multi-directional test were all inside the
confidence bands indicating that the model is statistically valid. These coincide with the
fact that model eqn (25) has correct model structure and accurate parameter estimates.

| 5 Conclusion

—_

Model validationfi,s_ an important procedure in system identification. In this study new
multi-directional model validity test algorithms have been developed. The basic princi-
ple of these tests is to resort the residual sequence according to the amplititute of the
corresponding input variable so that any predictable components in the resorted residu-
als can be more readily detected. The simulated examples show that the tests based on

the resorted input and residual provide more reliable results than previously developed
algorithms.

6 Acknowledgement

SAB gratefully acknowledges that part of this work was supported by EPSRC.

13




References

[1]

2]

3]

[5]

6]

Billings, S.A. and W.5.F.Voon, 1983, Structure detection and model validity tests in
the identification of nonlinear systems, IEE Proceedings Control Theory and Applica-
tions, 130 (4), pp193-199.

Billings, S.A. and W.5.F .Voon, 1986, Correlation based model validity tests for non-
linear models, International Journal of Control, 44 (1), pp235-244.

Billings, S.A., S5.Chen and R.J.Backhouse, 1989, The identification of linear and non-
linear models of a turbocharged automotive diesel engine, Mechanical Systems and
Signal Processing, 3 (2), ppl23-142.

Billings, S.A. and S5.Chen, 1989, Extended model set, global data and threshold model
identification of severely nonlinear systems International Journal of Control, 50 (5),
ppl1897-1923.

Billings, S.A. and Q.M.Zhu, 1994, Nonlinear model validation using correlation tests,
International Journal of Control, 60 (6), pp1107-1120.

Billings, S.A. and Q.M.Zhu, 1995, Model Validation Tests for Multivariable Nonlinear
Models Including Neural Networks, International Journal of Control, 62 (4), pp749-
766.

Bohlin, T\, 1978, Maximum power validation of models without higher order fitting,
Automatica, 7 (2), ppl37-146.

Box, G.E.P. and G.M.Jenjins, 1976, Time series analysis forcasting and control (San
Francisco: Holden-Day).

Soderstrom, T and P.Stoica, 1990, On covariance function test used in system identi-
fication, Automatica, 26 (2), ppl25-133.

[10] Sriniwas, G.R., Y.Arkun, I.Chien and B.A.Ogunnaike, 1995, Nonlinear identification

and control of a high-purity distillation column: a case study, Journal of Process
Control, 5, 149-162.

[11] Thomson, M., S.P.Schooling and M.Soufian, 1996, The practical application of a

nonlinear identification methodology, Control Engineering Practice, 4 (3), 295-306.

14




o ST PR A I

o008

oAk

Figure 1: Results of tests (I) and (II) for model eqn (6) of Example 1 (a) &.., (b)
®ﬂ€) (C) é(uz)’sa (d) (p(uz)’ezv (6) @E(Eu)’ (f) @(62)'('&'5)" (g) é(uz)’(‘ﬁ)’

—_

Figure 2: Maps constructed from the true model eqn (5) and the identified
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Figure 4: Maps constructed from the true model eqn (20) and the identified
model-eqn (21) for Example 2 ((a)-true (b)-identified)
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Figure 6: Maps constructed from the true model eqn (20) and the identified
model-eqn (22) for Example 2 ((a)-true (b)-identified)

=a ~5060 =65 a7 3 o5 a60 EL=T Too =d EETET — 50 oo o oo Too S50 =oo

Sdos =Ty =TT =55 = oo Too 565 oo ZisT ~=oo 1y —ur = OO e T =oo

=T = 5 355 === Too s1dz ) —waE -t = o= T won Tt

Figure 7: Results of the compound multi-directional tests (I) and (II) for model eqn (24)
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