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Abstract— A simple linear optimal control problem iz interpreted as that of finding Jacobi
fields along a geodesic on a Riemannian manifold. In this context. stability can be interpreted
as a Morse index condition on the initial manifold for the geodesic probtem. It is indicated
how this stability condition can be generalised to non-linear problems via the Maslov index.
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1 Introduction

Consider the following simple linear optimal control problem: minimise

1
S = % / f(xTQ{i)x+ u? R(t)u)dt + %x()‘._;)TFx(i_,e)
Jin

subject to

x = B(t)u
where Q()eR" " R(1)eR"™*™  B({)eR"™*™ FeR" " xeR" and ueR™. We shall assume through-
out that Q. R and F are symmetric and that B and R have full rank.

Following the method of Lagrange multipliers we introduce a vector yeR” and a Lagrangian

— . 1 5 1
L=yT(x—Bu)+ §xTQx + §uTRu.




This gives the associated Hamiltonian
T. T T 1 1 p
H=y'x— L=y Bu- Ex Qx — 511 Ru.
Pontryagin’s maximum principle then says that the optimal control is that which maximises /1.

Since H has a unique critical point with respect to u. the optimal control is given by

0H
(,.— =0<u=R!'Bly.
dua

VWe are therefore led to maximising the following Ha.m,i‘l-t.onian
1 N 1
H = 5yT BU)R™'(1)BT (1)y — 5x Q(1)x. (1)

The standard approach is to look for a solution of this Hamilton-Jacobi (or Bellman's) equation as
a symmitric quadratic form in x

S(x.t) = %XTPU)X

where y = d5/dx = P(t)x and H = —35/d = —1xT (8 P/dt)x. Substituting into equation (1) and
equating coefficients in x then gives the Riccati equation for the matrix P

—%f = PBWR™'(H)BT(H)P - Q(1)
Plly) = E

Essentially one is solving for the n-plane P(t) in phase space which meets F at time {;. Given a
state x(t). the plane y = P(?)x determines which phase trajectory above x(f) meets I at time ¢;.
The subsequent evolution of (x(t).y(f)) coincides with that of P(?).

Generally in a control problem one takes R to be positive definite and @ and I to be positive
semi-definite. The larger ||F||. the better the resulting stabilization in time ¢;.

For stabilization over an infinite time period subject to time invariant dynamics x = Bu. one takes

fa )

8= E/ (xTQx + uT Ru)dt.
0

If @ and R are positive definite, then an asyvmptotically stabilizing controller exists such that S

converges. All the above can he found for instance in [2] or [5].

In this paper we will show that the above control problem can be interpreted as a variational problem
along a geodesic on a Riemannian manifold. In this context. the stability condition for the infinite
time problem can be interpreted as a Morse index condition on the initial manifold of the geodesic
problem. In particular the stable solution can be associated with a particular initial manifold. We
will then indicate how this can be generalised to give an index condition for the stability of non-linear
Hamiltonian problems: in particular for optimal control problems.
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2 Manifolds, Geodesics and Jacobi’s Equation

Much of the following can be found in any book on differential geometry. for example [6] or Chapter
2 of [1]. However. no one reference seems to cover all that we require. in particular the connection
between distance spheres on a manifold and initial conditions for Jacobi's equation. so we give a
brief description here. Details of Morse theory can be found in [4].

Let A be a Riemannian manifold with metric g and local coordinates x!.... .. " i an open set
["C AL Then 8/d1..... d/d2" form a basis for the tangent space T,(Al) at pel’.
%

A connection on the tangent bundle T(Af) 15 a rule for differentiating vector fields, It is defined by
specifving the covariant derivatives of basis vectors with respect to one another

N ofar ((;)/a-?'j )= rf};ia/f)-*'kl

[or some functions 1" IfXN =Na/ow and Y =Y7a/d2" ave vector fields on [ then the covariant
derivative of Y with wapect to X 18

Tx(Y) = (d/dt(Y )+ THEX Y DHajaet

where d/dt denotes differentiation along Y.

A vector field is parallel along a curve if its covariant derivative is zero along the curve. The parallel
translation of a vector:along a curve is the parallel vector field along the curve which coincides
with the given vector initially. There is a unique symmetric (i.e. '\—E-..,,ua_,‘.(("}/(’).rf} = '\_(-;/(-1,.,,,(5)/("}.:'-5 ]
connection on M which preserves the Riemann metric under parallel translation.

Geodesics are extremals of the energy of the Riemann metric. They satisfy Y./ = 0 where ¢ is
the field of tangent vectors to the curve ¢(f) on A/, The linearisation of this equation along ¢ gives
Jacobi's equation

Vo(Sad)+ R(J. ) =0

where R is the curvature tensor associated with the connection . A vector field .J along ¢(f) satisfving
this equation is called a Jacohi field. It describes how variations of the initial conditions for the
geodesic problem evolve under the geodesic flow. It can be shown ([6]. Chapter IV) that the curves
J(t) in T(M) are themselves extremals of the integral of a function on T(Af) which is quadratic on
each fibre.

The geodesic ¢=quat10n 1s a second order differential equation on U Initial conditions are given by
specifving an n- dm‘len-1011al initial submanifold T of T(Af). Tf 2l. ... .. v are local coordinates on
Af then we can take #'. ... .. XL o \" to be coordinates on T(A/) where a tangent vector at a
point p= (@t ..... v") has components Nlajaat 4. .+ X"a/ax". The two most common examples

of initial manifolds are then:

i) T" = T,(M) i.e. all geodesics emanating from p in any direction. Coordinates on T" are given
AL wo ol 7 or. alternatively, by t.s!.. ... "1 where 7 is the length of a vector in T,.(A) and
£ o &
st . s"71 parameterise its direction.
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i) T" = TH(R) = {veT, (M) : pcK and g(v.w) = 0V weT (L)} where K is a submanifold of /.
This corresponds to geodesics starting on /v in directions perpendicular to i'. If local coordinates

are chosen so that I is given by +**1 = L = »" = ( and the vectors d/dxF+L, . ajae" are
orthogonal to I and to one another at points of L. then T is given by ol = = =
Xl = ... = X* = 0. Coordinates on T" are given by r'. ... . o IR " or. alternatively.
[ LA i 1 s k=1 where { is the length of a vector at a point on i and st... . s"—F-1

parameterise its direction perpendicular to .

An infinitesimal variation of the above initial conditions will form the mitial conditions for Ja-
cobi's equation on T(T(M)). For example. taking a variation of the initial conditions to he a

curve wl(w). ... 2R (u) N (). Y7 (u)in T° = TH(RK) and taking &1.... . L A
coordinates on T(T°(Af)). an infinitesimal variation is given hy

21 ar! Wk ark 17 K s G o g

o = gy ot ewEd I — du g .2' - q—H """ 1 - U.

G U S ; g o R ; . eno 8x"

AL = B smems A — . X = B e A" = Ee

Strictly speaking. a Jacobi field and its covariant derivatives (and hence the initial conditions above)
belong to T(Af). The connection defines a decomposition T(T(A)) >~ T(M) + T (M) and so the
rovariant derivative can be projected onto T(M).

C'hoosing geodesic or normal coordinates simplifies many of the above caleulations. Define the
exponential map

exp : TV — M
by

exp(p.v) = (1)
where ¢ is the geodesic with ¢(0) = p and ¢/(0) = v. In a neighbourhood of the origin in T =
To(M) or of K in TY = TL(R). exp is a diffeomorphism. So choosing coordinates 1.s1... . .s"~1
on T" = T,(A) or 2. .2ftst . s""F=Ton T° = TH(N). exp~! gives a coordinate map on a
neighbourhood of p or A" 1n A/, In these coordinates. f gives the arc-length along any geodesic
starting on T". while the remaining coordinates determine which geodesic we are on.

A solution J{t) to Jacobi's equation along a geodesic ¢() 15 expressed in terms of a frame for T( /)
along the geodesic. If ¢ is the arc-length parameter described above then ¢/(¢) = d/dt. Suppose we
take one of the frame vectors to he @/dt and examine the component of J(t) = f({)@/d( in this
direction. Since { = 0 determines the initial point p or the initial manifold Iv'. a variation of the
initial conditions in this direction can only consist of a variation of the magnitude of ¢/. So the
initial conditions for f are f(0) = 0 and f'(0) = a for some constant a. Now the curvature tensor is
skew-symmetric. 20 R(J.¢')e' = fR(c'. ¢')e’ = 0. Also. since ¢ is a geodesic, V¢! = (0 and so

df df

Nl = ;ﬁc + [N e = E(‘ .

Thus Jacobi’s equation reduces to d” f/dt” = 0 with solution J({) = afd/dl.

We can thus restrict attention to the (n—1)-dimensional space of variations orthogonal to ¢(). If we

choose these remaining (n—1) frame vector fields (say Pp... .. P, _1) to be orthonormal and parallel
along ¢(t) then. denoting J(¢) = > f'(1)F;(1).
df’ 5 dff
T,,t. = _— i IT‘\JP,' = 7P,
T dt Fit Z / Z di




Jacobi's equation then hecomes

d? :
di—ﬁj\-i-h(i)J_O (2)

where Kj = g(.R{Pj. ¢ )e". Py). \ ;

The final topic we wish to discuss is the Morse index. The above geodesic coordinates (and the
distance minimising property of geodesics) are defined up to the first focal point (or conjugate point
in the case T = T,(M)). A focal point is a point along a geodesic at which the differential of
the exponential map becomes singular. Since the Jacobi equation describes the evolution of this
differential. a focal point corresponds to a zero of a non-trivial Jacobi field. Intuitively. it is a point
at which nearby geodesics starting on T meet.

The Morse index of a geodesic ¢ starting on T of length ¢ is the number of focal points. counted
with multiplicity. to 7" along the geodesic from ¢(0) to c(f). In the case of fixed initial and end
points. there is an equivalent definition mnvolving the mdex of inertia of the second variation of the
energy of the seodesic considered as a quadratic form on the space of tangent vector fields along
the geodesic which vanish at the endpoints. Up to the first conjugate point. the geodesic minimises
enerey and so the second variation is positive definite and has index zero. At the first conjugate
point. the second variation 1s degenerate and has a null space of dimension equal to the multiplicity
of the conjugate point. After the conjugate point. the second variation has a maximal subspace
on which it is negative definite of dimension equal to the multiplicity of the conjugate point. This
pattern is repeated at subsequent conjugate points with the dimension of the maximal subspace on
which the second variation is negative definite equal to the sum of the multiplicities of the preceeding
conjugate points.

The Morse index is a special case of a topological invariant of 7" and 1/ called the Maslov index.
We will return to this later.

2.1 Example

Consider the sphere 2 + y* + z* = 1 in R?. This has Gaussian curvature 1 and coordinates u;
measuring the angle of latitude from the North Pole and us measuring the angle of longitude. The
Riemann metric pulled back from R3 is

a9 . 0 )
g = duj + sin” (uq )dus.

wy and ua are normal coordinates with respect to geodesics starting from the North Pole. So.
parameterising the geodesics by wq. d/du; is tangent to the geodesic curves while d/dus spans the
infinitesimal variations of the initial conditions i.e. changes in direction. Taking an orthonormal
frame ¢; = @/duy and €5 = (1/sinw)d/dus. the variational vector field becomes J = ('d/dus =
C'sinupes for some constant (. In this frame the covariant derivative can be shown to he

\_r'lrl — U v"1'(3 = U
_ cosuy . cfn = —S9EULy
Vb1 = TR Nyt sy ©

Hence J satisfies
J=0 J' =%, (Csinuges)=Creosupes =C

iy




at uy = 0 and

J' =Y (Ccosuyea) = —C'sin uyeq
Jh+ T =0.

Note the initial conditions for the geodesic problem correspond to the axis J = 0 in the (J. J) phase
plane. If we take a circle of equal distance uy = o from the North Pole as an initial manifold and
consider normal coordinates Wy, Ws with respect to geodesies orthogonal to 1y = a then g hecomes

g =du; +sin" (T ¥ a )(fﬁ%

and .J becomes J = ("sin(W; + «)es. Now

i
. _ cos(Wy; + a
J' = Ceos(ty +a)es = ui]f
sin(w; + )
So J satisfies the same differential equation but the intial conditions now correspond to the line
J' = P{0).J in phase space where

cos(uy; +n
P e (_1 )_
sin(T +a)
P. in fact. satisfies the Riccati equation P’ = —1 — P~ and is the second fundamental form of the

initial manifold u; = n on the sphere. Its evolution with respect to 7; describes the evolution of the
initial manifold along the geodesics. Focal points to the initial manifold occur at values of 7; where
the Iine defined by P in phase space becomes vertical.

We can repeat the above calculation for one sheet of the two sheeted hyperboloid 2 4+ y* — 2% = —1
of Gaussian curvature —1 in R? equiped with the Minkowski metric. In this case Jacohi's equation
is J” —J = 0 and the corresponding Riccati equation is P’ = 1 — P? where

cosh(u; +n)

Pl = sinh(u; +a)

Tn the case of the sphere. the solutions to Jacobi’s equation define concentric circles in phase space.
The lines of initial values P(0) = 0 and P/(0) = 0 are in a degenerate position having singular
projection onto one of the coordinate axes. All other lines of initial values have a focal point within
distance 7 and another one for each increase of 7 in distance. The Morse index of every initial circle
on the sphere therefore increases towards ~c as the length of the geodesic tends to x.

In the case of the hyperboloid. the solutions define hyvperbolas in phase space. Solutions starting
on P(0) < =1 or P(0) > 1 correspond to closed initial manifolds with one focal point in one
direction and none in the other. Solutions starting on —1 < P(0) < 1 correspond to open initial
manifolds. These have one focal point in one direction and none in the other in the sense that there
is one manifold equidistant from the initial manifold along which all the geodesics are parallel (i.e.
J" = 0). Alternatively. write X' = J.Y = J" and apply the change of variables ¥ = ix. X = iy to
see that this case is the same as the first one. In both cases. the Morse index of the initial manifold
(away from degenerate positions) along any geodesic is at most one.

§




Solutions starting on P(0) = £1. the separatrices of the hyperbolas. correspond to the limiting case
where the initial manifold is tangent to the circle at infinity. This initial manifold has no focal points
and so Morse index zero with respect to geddesics of any length. In this case P is invariant and
satisfies P/ = 0 = 1 — P*. On one separatrix the J and J' trajectories are stable. on the other
unstahle.

All this 1s summarised in Figure 1 where the hyperboloid is represented on the conformal disk.

3 Linear Quadratic Regulator ‘and Jacobi’s Equation on
Manifolds

We now return to the linear quadratic regulator problem outlined in the introduction. The dynamics
associated with the Hamiltonian (1) are

B(t)R™!(1)BT (1)y
y = Q)x
VWe assume that all the matrices involved are in R7*" and R(?) 1s positive definite. In addition. in the
time varying case. we assume that B(f) 1s svmmetric and that B(t). R=3(f) and ('?i/(”lf(R%{f)B_l(f])
all commute. Then we can change variables to
X = RIH)B '(t)x
Y R=¥()BT (1)y + O/ RE(1)B~(1))x

to get the following system

X = Y
Y = [RTYBTQBR™*+d*/0(R*B~)BR™}| X
or ) 1 .
3 — [R‘%BTQBR‘i +e‘f—’/azi'(R%B-1)BR-%] X=0. (3)

Thus we can interpret our control problem as that of finding Jacobi fields along a geodesic on a
Riemann manifold A/ where the curvature tensor evaluated on pairs of frame vectors in equation
(2) 15
= T -1 Rl Pl Lo =
Amzﬁ[ﬁ tBTQBR™Y + 0%/t (R*B~1)BR :-}(1). (4)

If we let F = R_%BTFBR_%H,{)- then instead of initial conditions we have terminal conditions
specified by £X (1) T FX(14). ie. Y(1;) = FX(1;). This plane corresponds to a terminal manifold
for the geodesic problem on M. The solution P to the Riceati equation describes the evolution of
the distance sphere on 1/ which arrives at F at time {;. For any state X at time {. the feedback
required to reach F at time 7 is Y = P(#)X. This is equivalent in our interpretation to specifying
any infintesimal orthogonal variation X of the point ¢ on the geodesic and taking the corresponding
variation of the rangent vector to he ¥ = P(£)X in order to guarantee that on all the neighbouring
geodesics so defined the terminal manifold is reached at distance 7.




4 Implications for Optimal Riccati Controllability

Interpreting system (3) as a Jacobi equation with matrix of curvatures (1) defined by (4) allows one
to apply Rauch’'s comparison theorem from differential geometry (see [3]). This is a generalisation
of Sturm s result on scalar equations of type (2). We will use it in the following form.

If v is a unit vector orthogonal to a geodesic c(f) at a point p on the geodesic then g(R(v.c' ). v)
is called the sectional curvature of the plane spanued by v and ¢/. In the frame used for equation
(2). g(R(v.c')e'.v) = vI K(t)v. Let |.| denote the norm of a vector, which in this frame is just the
Euclidean norm. Now suppose N

(A) vIK(t)v> A7 >0

or _
(B) vIK(t)v € =% <0

for all 1eR. for all unit vectors veR and for some constant + > 0. Then if
i) X is an orthogonal Jacohi field along e(?) which vanishes at 1 = 0.
11) Y is an orthogonal Jacobi field along a geodesic on (A) the (n + L)-sphere or (B) the (n 4+ 1)-
hyperboloid of radius 5~ ! which vanishes at 1 = 0.
i) [X(0)] = [Y'(0)].
iv) neither geodesic has a conjugate point i the mterval (0.5).
then
(A) |X(0)] < [Y(h)]

or

(B) 1X(0)] = [Y(b)].

Comparing with Example 2.1. we see that in case (A) Y has a zero every 7/4 while in case (B) Y
lias no zeros other than at t = 0.

Now suppose we wish to contrel system (3) optimally to the point X = 0 at time 17 using a Riccati
derived controller Y = PX. Since in 2n-dimensional phase space the n-plane determining the control
1z vertical in all n-directions at this point, the corresponding Riccati matrix P(¢y) is undefined. So
we take the final position F = P(t;) to be arbitrarily close to the vertical on the side of decreasing
time. Running the solution to the Riccati equation backwards in time. the optimal control is defined
to the first time the plane P(#)X meets one of the hyperplanes \; = 0. At this time the plane is
again vertical in the Y; direction and P(?) is undefined. This is the first conjugate point back along
the geodesic and corresponds to some non-trivial Jacobi field J starting on F' being zero at this
point. Its position is therefore determined by Rauch's theorem. In case (A) the first zero of any J
starting on F has to occur before ¢ = 7/+. In case (B) J has no zeros for all non-zero . So we have
the following:

Theorem 4.1 [17ih the hypotheses stated at the beginning of Section 3. if K (1) satisfies (A) then
a solution 1o the Ricealt equation with final condition P({;) = F exists backwards for a time period
af al most =/~ If (1) satisfics (B) then a solution cvists backwards for all 4ime. Notc that in 1he
casc of fome mvariant dynamics. (4) occurs when Q) s negative definite and (B) when Q) 15 posidive
definitc. I
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5 Implications for Stability

We now come to the main point of this paper which is to characterise the stability of time invariant
svstems of the form (3) in terms of the Morse index of the initial manifold associated with the Riccati
matrix P.

In the time invariant case the linear quadratic regulator (3) hecomes

X - R *BTQBR *X = 0. . (5

%

We can assume without loss of generality that R'%BTQBR*% has heen orthogonally diagonalised.
Then the system can be decomposed into n one dimensional equations which look like the harmonic
or hyperholic oscillators of Example 2.1 or Xi=0 depending on whether the respective eigenvalue
is negative. positive or zero. In the first case the phase trajectories are circles which project down to
give oscillatory solutions round the origin on the r-axis. In the last case we get motion at a constant
speed on the r-axis. So for asymptotic stability we need only consider the case where () is positive
definite and all the eigenvalues of R=3*BTQBR~* are positive.

In each (\;.Y;) subspace of 2n-dimensional phase space we get a lvperbolic oscillator phase portrait
as in Example 2.1. The n-plane Y = PX spanned by the stable separatrix from each ((\7.17)
subspace is the asvmptotically stabilizing feedback controller. Tt 15 one of the solutions ta the
Riccati equation

P*=R-*BTQBR }=0.

Generalising Example 2.1 we can say that the plane P corresponds to an mitial manifold on the
(n+1)-hyperboloid X7 +...+ N7, =X, . = —1 with Morse index 0 with respect to geodesics of any
length. All other n-planes in non-degenerate positions in phase space correspond to initial manifolds
with Morse index one along some geodesic. In the case above where some of the eigenvalues are
negative we see that all n-planes in non-degenerate position have arbitrarily large Morse index along
some geodesic. while in the case where some eigenvalues are zero. all non-degenerate n-planes have
AMorse index one along some geodesic. Hence we have the following characterisation of stability.

Theorem 5.1 The system (3) s asymptotically stabilizable if and only if there exisis a non-degenerate

n-plane P in phasc space corvesponding 1o an mitial manifold on A with Morse inder zero along any
. . . . . . - )

geodesic. where M is the Riemannian manifold with constant curvature mairir K = —R~*BTQBR™*.

Note, if there exists such a P then there exist 27 such planes. One of them gives the stabilizing
feedback.

6 Conclusions and Generalisations

We have shown that the stability of a simple linear system can he characterised by the vanishing
of a certain topological index associated with the geodesic flow on a manifold or. equivalently. by

4]




the vanishing of an index associated with the projection of the phase flow onto the n-dimensional
coordinate plane in phase space. This index. the Morse index, is a special case of one of the Maslov
characteristic classes which can be defined for any Lagrangian submanifold of a symplectic manifold
without reference to a phase flow. For a non:linear Hamiltonian problem. necessary conditions for
stability are given by the vanishing of the Maslov classes of suitable Lagrangian manifolds passing
through the origin. In particular this applies to non-linear optimal control problems. We will give
the details in a forthcoming paper.
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