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TRUNCATION OF NONLINEAR SYSTEM EXPANSIONS
IN THE FREQUENCY DOMAIN

S. A. Billings and Zi-Qiang Lang
Department of Automatic Control and Systems Engineering
The University of Sheffield, Mappin Street
Sheffield, S1 3JD, UK

Abstract: The truncation of Volterra series expansions is studied using the output frequency
characteristics of nonlinear systems to develop a new algorithm for determining the terms to
include in a Volterra series expansion. The results show the influence of both the generalised
frequency response functions and properties of the input spectra on the significance of
individual terms in the series. The effectiveness of the proposed method is demonstrated using
simulation studies including the analysis of a single degree mechanical oscillator. Because
nonlinear system analysis using Volterra series theory must always be based on a truncated
Volterra series description the present study provides an effective strategy for determining
which terms to include in the analysis of practical nonlinear systems based on Volterra series
models.

1. INTRODUCTION

Many systems can be approximated by linear models when the input varies within a small
neighbourhood of the operating point. This is a well-known concept that has been widely
applied in engineering. A natural extension of this to practical systems which cannot be
described by linear models is to allow the maximum order of the dominant nonlinearities of
the system to be different for inputs with different amplitude levels. This extended concept
justifies the application of the truncated Volterra series expansion for nonlinear system models
in both the time and frequency domain.

The Volterra series was proposed in the 1940s and it has been proved that a wide class of
nonlinear systems can be approximated by convergent Volterra series expansions (Boyd and
Chua 1985). But there are only limited methods available (Rugh 1981, Thapar and Leon
1984) which can be applied to practically truncate the Volterra series expansion of nonlinear
systems to yield a time domain description with a finite number of Volterra kernels. There
appears to be no results concerning the truncation of the frequency domain Volterra series
expansion, which involves the summation of the association of variables (Rugh 1981) up to an
infinite order of the system nonlinearities. But frequency domain descriptions are often
important for mechanical, electrical and electronic engineering systems because many physical
phenomena associated with these systems are directly related to the system frequency domain
properties. The truncation of Volterra series expansions in the frequency domain involves
expressing the system output spectrum as a function of the input spectrum and a finite number
of Generalised Frequency Response Functions (GFRFs). This is associated with the output
frequency characteristics of nonlinear systems. In the linear case this concept is
straightforward and leads to the classical relationship between the input spectrum, the system
frequency response and the output spectrum. The frequency range of the output is therefore
exactly the same as that of the input. But nonlinear system frequency domain outputs depend
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on the association of variables of each order of the system nonlinearities (Mitzel, et al. 1979,
Peyton Jones and Billings 1990). This induces mixing and intermodulation effects of the input
frequencies to produce outputs at new frequency modes which were regarded by Atherton
(1982) as typical of nonlinear behaviour. These conclusions are supported by recent
theoretical studies by Lang and Billings (1994,1995) who derived physically meaningful
expressions for the nonlinear system output frequency responses and algorithms for
computing the system output frequency ranges for both the multiple and general input cases.
Billings and Lang (1995 (a) and (b)) also studied the bound on the output frequency responses
of nonlinear systems to provide a simplified analysis of nonlinear systems.

In the present paper, the truncation of nonlinear system Volterra series expansions in the
frequency domain is studied. A general method for determining the terms that need to be
included in truncated frequency domain Volterra series expansions of nonlinear systems is
derived. This provides valuable practical insight into the analysis of nonlinear systems based
on frequency domain Volterra series models. In addition it has been shown that based on the
frequency domain results, the truncation of Volterra series expansions in the time domain can
be directly implemented. This is important since it is impossible to obtain the frequency

. domain results from the time domain because the Fourier transform of a time domain bound is
zero except at zero frequency. Applications of the method are illustrated using examples
including a single degree of freedom mechanical oscillator and are shown to provide
significant insight into the behaviour of typical engineering systems.

2. OUTPUT FREQUENCY CHARACTERISTICS OF
NONLINEAR SYSTEMS

In this section, results on the output frequency characteristics of nonlinear systems
developed by Lang and Billings (1994, 1995) and Billings and Lang (1995 (a) and (b)) are
briefly summarised to provide a basis for investigating the truncation of nonlinear system
expansions in the frequency domain.

Consider a nonlinear system which is stable at the zero equilibrium point and which can be
described in the neighbourhood of the equilibrium point by the Volterra series

N " n
® YOy =3 [ bt [ue-1)dr, 2.1)
n=l i=1

where y(f) and u(t) are the system output and input, respectively, A(t,,...,T,) is the nth-
order Volterra kernel, and N denotes the maximum order of the system nonlinearities. |

When the system (2.1) is excited by the general input

u(t) = Jox | " 2|U )| coslt + LU (jo)ldw = Yo [~ U(je™ deo (2.2)
It can be shown (Lang and Billings 1994) that the output frequency response can be expressed
as )
Y(jo)=Y Y, (jo) forVe (2.3)
=
where
Y”(jm):éét% | H”(jml,...,ja)n)l;[U(j(o‘.)dcm (24)

O+, W, =0




Y(jw) and U(jw) represent the Fourier transforms of the system output and input, and

[ HGo,..je)[[Ue,ys,
i=l

W)+, + @, =0

denotes the integration of H,,'( {72 e jan)H U(jw;) over the n-dimensional hyperplane
1 i=l

0=+ +0,, H (jo,..,jo,) is called the nth-order Generalised Frequency Response

Function or GFRF (George 1959).

Under a general but realistic assumption for the input spectrum defined by

Uiy = {U(j(n) when |o| € [a,b]

. . (2.5)
0 otherwise

the nonnegative frequency range produced by the nth-order nonlinear system output denoted
by f; can be determined by using the following formula (Lang and Billings 1995)

i=l

UR  when —2—v7| 2 |<
P = (a+b) (a+b)

Y,

=4 b (2.6)
n na
—INT
L.L:J,Rk when (a+b) |: (a+b) :l

v

1

na
(a+b)
R. = [O,nb— i (a +b)] and INT[.] denotes to take the integer part of [.]. It has also been
shown that the relationship between f, and the nonnegative system output frequency range
denoted by f, is given by

Iy :fYNUfY

N~2p"-1)

where i’=INT|: :|+1, R, =[na—k(a+b),nb—k(a+b)], fork=0,...,i" -1,

2.7)

where p” depends upon the orders of the existing system nonlinearities and can be determined
such that if the system GFRFs satisfy

HN-«(ZE—])(-)=0: fori=1,2,....,q-1
but Hy_,,,(.)#0 then p" =gq.

Equations (2.3), (2.4) and (2.7), (2.6) can be regarded as a natural extension of the
concept of the output frequency characteristics of linear systems to the nonlinear case.
Although the extension is introduced here based on continuous time nonlinear systems, the
results are the same for discrete time systems.

The magnitude of Y(jw) provides valuable information and Billings and Lang (1995a)
proposed the concept of a bound for |Y(jw)| to simplify the analysis of nonlinear systems and
showed that the bound can be expressed as

N
Yo (@)= Y} (w) (2.8)

L2




where

n

Y2 (@)= UG- HU (o) 2.9)

1 y i
e H 0 02

{ M., 0! { represents the co-ordinate of a point on the n-dimensional hyperplane

n
A

®,+,---,+0, = 0, and |U(jo)[*--*U( jm)] denotes the n-dimensional convolution integration
for |U(jo)|.

Billings and Lang (1995a) also suggested the following general procedures for the practical
computation of this bound.

First compute

z, a bound for H,(j®,,..., j®,) with ®,,...,®, satisfying

L(J@,,..., jO,
the constraint @, +,-,+®, = ®.
n

Then calculate [U (jo)|*---*U( jm)] using the algorithm

e R G

] (2.10)

’U(J i)

U(i) =

[]E(l"ﬂ-F!]:{ i=0,1,...M-1
M\ 2

where U,(.) is the discrete time Fourier transform of a sampled sequence of u(t) with
sampling period T, M is a sufficiently large even number and is the length of the sampled

U [JZ—EIJ J= —(ﬁq),...,o,...,ﬂ{. If the system is a discrete
M 2 2

time system then U, (j®) = U(jw) and T in the algorithm is taken as 1.

sequence used to compute

Finally evaluate

N
Y2 (@)=Y Y} (o) (2.11)
where -
8 L* 3l 12
Y ()= i ),,,I (o, ,.. U(jw)| (2.12)

to yield an approximation Y”(w) that possesses the same properties as Y?(w).

3. FREQUENCY DOMAIN CRITERIA FOR THE TRUNCATION OF
NONLINEAR SYSTEM EXPANSIONS

The output spectrum of a nonlinear system is given by

Y(jo) =Y Y, (jo) 3.1)

n=|




and the truncation of nonlinear system expansions in the frequency domain involves
determining a truncated expression

N
Y(jo)=>Y,(jo)

such that the effects of the system nonlinearities above the Nth-order can be neglected.
Obviously this truncated expression depends upon the contribution of each Y (jo), 1Sn<es,

to the output spectrum. \

If the contribution of Y, (jw) to Y(jw) has been evaluated by obtaining a bound B, (n) on
Y, (jo) such that

Y, (jo)|<B,(n) foroe B (3.2)
the effect of the nth-order time domain nonlinear output y,(t) on the output y(z) can

immediately be evaluated based on the following relationship between the nth-order outputs in
the time and frequency domain

(0] =|]2
I,

Y, (jo)|cos| ot + £Y, (jo)|do| < [2]Y,(jo)do < 2B (n) [do=B,m) (3.3)
I, Tra

where J ()dw denotes the integration for (.) over the nth-order output frequency range f, .
fr,

Notice that it is impossible to obtain the frequency domain bound from the time domain
result because the Fourier transform of the time domain bound is zero except at zero
frequency. It is also difficult to determine the time domain bound from the frequency domain
result using the inverse Fourier transform because no phase information is available.

Determination of the contribution of each Y, (jw), 1<n <ee, to the output spectrum for
the frequency domain truncation requires a criterion similar to B,(n) in (3.2) to evaluate the
effect of Y, (jw) on Y(jw). Such criteria will be analysed below using the results presented

in Section 2 concerning the output frequency characteristics of nonlinear systems. Based on
this analysis, a general method for the truncation of nonlinear system Volterra series
expansions in the frequency domain will be proposed in the next section.

Beyond the frequency range produced by the nth-order system nonlinearity fr.s
Y, (jo)|=0
Y, (jw)| with @ € f, represents the contribution of the nth-order system nonlinearity to

the output spectrum at the frequency @. The contribution of the nth-order system nonlinearity
to the output spectrum can therefore be evaluated using the criterion

and

J(n) = max Y, (jo)| (3.4)

However, if the expression for Y, (jw) given by (2.4) is substituted |Yn( jm)| is too complex
to calculate and therefore J,(n) is difficult to apply in practice.

To circumvent this difficulty, consider the relationship (Billings and Lang 1995(a))

Y, (jo)| £ Y} (@) < ¥ (w)




and consider the evaluation of Y°(w) using the procedures in Section 2 to define another
criterion based on Y () as

J,(n)= max Y (o) (3.5)

J,(n) can be used in practice to,determine the contribution of the nth-order system
nonlinearity to the output spectrum.

Notice that evaluating J,(n) requires exact knowledge of the system input spectrum. This
implies that J,(n) can only represent the effect on the output spectrum of the nth-order
system nonlinearity for a particular input. However, from a practical viewpoint, it is more
important to discuss the truncation of nonlinear system expressions for a class of inputs rather

than for just one particular input. Consider therefore a class of inputs where the frequency
spectra are defined by

_ U(jo) with [U(jo)<M, |o|e[a,b]
U(jo)= | | | I (3.6)
0 otherwise
and denote
1 o b
U“(m):{ ol lab] G.7)
0 otherwise
to give from (3.6)
U(jw)| < M U* (o) (3.8)
Substituting (3.8) and
](U(jm)l*-" *|U(joo)] = J’ J'|U(jm] ) "|U(jmn_1 UG-, ~0,_)|do,-do,_, (3.9)

—co —en

into the expression of Y” (w)_ given by (2.12) yields

— 1 . . o o ' -
Y= @)™ [H, (0, 00,0, [ UG} {ULH@ =0, ~0,_)]do,+do, ,
M’ , T
£ (270“”_] HR(JGJ,,...,Ja)n)z J.---_[U”(Cﬂl)---U“(m“CD;—,---,-UJ”_])d(n,---du)n_]

—co

n
n

M . .
- (M)u”_] |H, (jo,,..., jo,)

Zb#(m)*-i*U”(mj =Y *{aw) (3.10)

Then define a criterion based on Y * () as

n
n

M - 2z —
Jy(n) = ———max|H, (jo,...., jo,)|" maxU* (@)**U" (@) (3.11)
(2 n) wefy ® wefy,

The significance of the nth-order system nonlinearity to the output spectrum under the class of
inputs defined by (3.7) and (3.8) can then be determined based on the principle that if the
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value of Jy(n) is negligible then the nth-order nonlinearity need not be considered in the
expression of the output spectrum.

The above analysis indicates that J,(n) can be used in practice to decide on the orders of

significant system nonlinearities in the system frequency domain description for a specific
input. While J,(n) can be taken as a relatively general criterion for the truncation of nonlinear

system frequency domain Volterra series expansions.

It is observed from (3.11) that J;(n) depends on both the system characteristics and
properties of the input. The system characteristics are represented by

m?x|Hn(jc0,,... ®, (3.12)
and the input properties are given by
o M; g
- maxU (@)*--*U (m) (3.13)

(27‘[) -l e fy,
where the latter mainly depend on M, a bound on the input spectrum, and the n-dimensional
convolution integration for U (w).

Based on properties of the Fourier transform it can be shown that the n-dimensional
convolution integration for U* () can be written as

ﬂ

ot ()*--*U* (0)=F" [b”(m)*---*U”(mﬁl =F“‘{F"[U#(m)]} (3.14)

n

where F(.)and F'(.) denote the Fourier and inverse Fourier transform operator,
respectively. According to the definition of the Fourier transform,

FlU* ()] = [_U" (@)X do (3.15)
. where ® denotes the argument. Substituting (3.7) into (3.15) yields
g8 4. g~jud 4 o(a+b) i o(b—a)

F[U” ((D)] ‘[_ e dw +J s j ’J—Z—dm _[:’2 cos W4 =5COS 5 .

(3.16)
Moreover, substituting (3.16) into (3.14) and replacing F~'(.) with the definition of the
inverse Fourier transform gives

n
A

b”(m)*---*U”(aaj: F"{

4 o Blath) ., o)(b—a)}

" 2 2
,[ 4 m(a+b) w(b_a)e’mda=——2—- =_4_—c05" m(a+b)sin" m(b_a)cos(ma)dﬁ
ww" 2 20 @" 2 2

(3.17)

Thus from (3  11) and (3.17) J,(n) can be written as




)= 2[2M“ } max|H, (jo,,...,jo, ) ? max_lm-_i—cos" Gl)(a-i-b)sin" Blr-a) cos(wm)dwm
i wefy, @ wefy, J0 " 2 2
(3.18)
Notice that when n is an even number
- bY  T(h—
_Lcos” Dlat )sm" oLl a) 20 forVo : (3.19)
" 2 2

In this case using cos(®m) <1 gives

1 w(a+b) . ,0O(b—a — 1 w(a+b) . ®(b-a
=—=gos" ( )sm'= ( )cos(mm)S:-cos" ( )sm" ( ) (3.20)
) " 2

and therefore

szl—cos” i) sin” Bipa) cos(wm)dm < r_Lcos" B(a+b) sin” m(b_a)a"(.ﬁ

ge g 2 " 2 2
=( m:_I—cos" m(a+b)sin" D(b—a) cos(mﬁ)cﬁﬁ] = max J‘__Lcos" m(a+b)sin" Bie—a) cos(0®)do

v " 2 2 weg WS, 0 " 2

(3.21)

since w=0¢€ fy, whennis even. Inview of this J,(n) can eventually be expressed as

8 W(a+b) . wW(b—a
max s" ( )sm" ( )
9 wefy 40

cos(w®)dw  foroddn

et |}

wlh @n

2[2M"J max[H,i(jm, ..... j(o,,)|3 Lr:os" m(a-HJ)sin" ‘”(b"“)da for evenn
b1 wefy, 2 2
(3.22)

Equation (3.22) gives a complete analytical description of the criterion J,(n) and reveals
how J,(n) depends on the system frequency domain properties and the class of input spectra

defined by (3.7) and (3.8). This provides an important foundation for theoretically examining
the effects of using J,(n) to truncate nonlinear system expansions in the frequency domain. In

addition, (3.22) also provides insight into how to evaluate J,(n) in practice.

It can be shown from (3.22) and (3.17) that for even n

n

M . ;
J,(n) = u m§x|H,,(Jml,...,;mn)

. 0(a+b) . ,O(b-a)
sin
(2m)"" we

8.2 =4"
—| ——cos dm’
“’[Zn-‘.o o" ]

n

U (@)% U (@) oo (3.23)

n

M ) y
= (2n)u"_' m?x|Hn(jml,...,Jm,,)
e fy,

which indicates that J;(n) can in this case be calculated directly using the n-dimensional
convolution integration result for U* (@) evaluated at @ = 0.

In the case of odd n it can be observed from (3.22) that for different a, b, and n the
frequency at which the integration in the expression of Jy(n) reaches a maximum will be

different. For n odd therefore evaluation of J,(n) has to be performed based on the original
expression given by (3.11).




4. GENERAL METHOD FOR THE TRUNCATION OF VOLTERRA
SERIES EXPANSIONS IN THE FREQUENCY DOMAIN

4.1 The Method

According to the analysis in the last section, the criterion Jy(n) provides a significant
indication of the effect of both the system properties and characteristics of a wide class of
inputs on the nth-order nonlinear system output frequency response functions. A general
method for determining the terms that need to be included in truncated frequency domain
Volterra series expansions of nonlinear systems can now be proposed based on this criterion.
The method requires that the system GFRFs or a time domain model and the input spectrum
defined by equations (3.7) and (3.8) are known a priori. The method can be summarised as
follows.

(1) If the system GFRFs are known then go to step (ii). Otherwise calculate the GFRFs
from the time domain model using the harmonic probing method (Billings and Tsang 1989) or
use a recursive computation algorithm (Peyton Jones and Billings 1989, Billings and Peyton
Jones 1990, Zhang, Billings and Zhu 1995).

(ii) Determine fy, from equation (2.6) based on the input frequency range [a, b] and
z for n=1,2,... from the GFRFs.

n

evaluate max'Hn (jo,,...,jo,)
e fy,

’—-_.._J\._‘ M .
(iii) Compute U'(w)=U"(w)*---*U*(0) foroa:O,...,n—z- using a revised version of

(2.10) such that

)33 o)

- - } 4.1)

u; 2_75[1._1_1{_‘_1) ,
M 2

0G) = i=0,1,...,M-1
where
12 |o|e[aT,bT
Ut (@)= Y lolel - 4.2)
0 otherwise
(iv) Evaluate J,(n) for n=1,2,...using the formula
. . \|B of 2T
s max|H, (jo,,..., jo,)| —max U, (a—) for odd n
J}(n): (211;) WEfy, i€(0,...Mn/2) MT (4‘3)
- “—max|H_(jo,,..., j(ﬂn)ZU:(O) for even n

(2m)"" wes,
where the computations for even n are based on equation (3.23).

(v) Based on the results of J,(n) n=1,2,... determine n" such that




J;(n) < a priori given small number € forall n>n"

then take N=n" and the system can then be expressed by a truncated description in the
frequency domain by including up to the Nth-order generalised frequency response functions
provided that the input spectra satisfy the constraint given by (3.7).and (3.8).

Generally the result m?x|Hn( jo,,..., jmn)li in Step (ii) will depend upon the specific

expressions of the system generalised frequency response functions and therefore it is not
possible to develop a special algorithm for this. But for nonlinear systems which can be

described by the NARX (Nonlinear AutoRegressive with eXogenous) model (Chen and
Billings 1989)

. ,
(k)= 3 ¥, (k) (4.4)
m=1
where y, (k), the NARX mth-order output' of the system, is given by
m K I ptq
=2, 3 sl M [ yhe=1) [Tutk-1) (4.5)
p=0 11, =1 i=l i=p+l
with _
o E K K
ptg=m, L =1..K, i=l.,p+q,and Y =3 (4.6)
hlpg=l b=l L,=1
it has been shown by Billings and Lang (1995b) that
mz}x[Hn(jo)l,...,j{Dn)z =H’ (4.7)
wefy,

and H, can be obtained using the following recursive algorithm

H: = Ll']zolx(g-uzcuwch ¥ Zczugml ----- ZC:-I + anugu ][Huaﬂ ‘HIB.""’H:-.I ]T’

H:' =[0!x1n4n1]s H:I' =[§nfk([?rkﬂ:zl )Tv H:” L k=12, n-12, Hil :[}7}{[—!:_'5' )T]-

1

(4.8)
with

K
L, =min I—Zcm(ll)exp(—jmll) 4.9

mEfy" =1

Thus for nonlinear systems of the NARX model, Steps (i) and (i) can readily be determined
using equations (4.7) and (4.8) and the parameters of the system time domain model directly.

4.2 Illustration of the Method

To illustrate the application of the general method consider an example where the

nonlinear system to be examined is described by the continuous time general model illustrated
in Fig.1 where

10




e |

5.0625
0.0001s* +0.0039s° +0.0176852 +0.88195+5.0625

H, (s)=

Hﬁ(s) =

0.0001s* +0.0026s +0.03415* +0.2613s +1

and

. ‘
Plu, ()= Y p,uf (£)=—0.0745u,(£) - 0.00585 (1) +0.9227% (1) + 0.0233u (1) - 0.37014u’ (1)

n=1

—0.0208 L} (1) +0.04428u/ () +0.0039u’ (1)

is a polynomial approximation to a dead zone plus saturation nonlinear characteristic from
Lang (1994).

u(t) u, () 5,00 y(t)
> ae 5 g 3 e |

Figurel A nonlinear continuous time general model.
It is easy to show that in this case the GFRF's of the system are given by

H,(jo,,...,j®,) = p, [ [ HeGo)Hylj(@,+,,+0,)], n=12,..8
i=1

This implies that the result of the second step can be determined based on the relationship

B
max|H, (ja,.... jo,), = P, g@leﬂcjco)l{HJHa(jco.al} <p,
Yo & i=1 ®

which is obtained by observing from Fig.2 that
I'ﬂax|HB (j(n)‘ = maleﬂl (j(o)1 =]
Thus J,(n) for this situation can be evaluated as follows

M,
(2,”:)11—]

n

Mﬂ

u

(2n)nkl

max
i€(0,....Mn/2)

U:(i%) for n=1,3,5
Jy(n)=

p,[Uf(0) for n=2,4,6,8

where U} (.) is the results calculated in the third step using equations (4.1) and (4.2).

Consider three situations in which the input spectra satisfy (3.7) and (3.8) with

(1)a=1,b=33,M, =1

(2)a=1b=33,M =16
and

B)a=1,b=33,M =18

11



respectively. The results obtained using 7= 0.01 and M = 2000 are shown in Tables 1,2 and
3.

These results show that for higher input amplitudes higher orders of nonlinearities will
exist in the truncated frequency domain Volterra series expansion. Table 1 indicates that if we
take € =0.05 then since J;(2), J,(4), and J5(5),...,J5(8) are all less than € the truncated
Volterra series expansion of the system will only involve terms of order 1 and 3. Similarly in
the case of M, =1.6 and M, =1.8 , it can be observed from Tables 2 and 3 that with & = 0.05,
the truncated frequency domain Volterra series model will only contain nonlinear terms of
order 1,3,5 and 1,3,5,7, respectively.

Notice that in all three cases the even order nonlinearity terms are all negligible. This is
reasonable because P[] in Fig.1 is an approximation to a dead zone plus saturation nonlinear
characteristic which is an odd function.

In order to confirm the above conclusions which were obtained based on the new method,
two simulation studies were performed. The first was on the system in Fig.1 and the second
on a similar system but with P[.] replaced by

plu, (£)]=-0.0745u, (1) +0.92279 () — 0.37014] (1)
In both cases the input excitation was

u(t)= #[2 cos(a—%t) —cos bt —cos at} t=-20 Sec --—20 Sec
n(b—a)t 2

where a=1, b=3.3, M, =1.6. The spectrum of the input excitation is shown in Fig.3. This

input satisfies condition (2) and the results should therefore correspond to those in Table 2.
Fig.4 shows the output frequency response of the original and the truncated (up to fifth order
nonlinearity as indicated in Table 2) and the difference between the two, and clearly verifies
the effectiveness of the proposed method.

Table 1 Results for the general model (a=1,b=3.3,M, =1)

n 1 2 3 4 5 6 7 8

13(:1) 0.0745| 0.0041| 0.2561| 0.0041( 0.0337| 0.0012] 0.0015 0.0001

Table 2 Results for the general model (a=1,b=3.3,M, =1.6)

n 1 2 3 4 5 6 7 8

.T.J,(n) 0.1192] 0.0105| 1.0489| 0.0265| 0.3538| 0.0208| 0.0412| 0.0040

12




'———~

Table 3 Results for the general model (a=1,b=3.3,M,=1.8)

n 1 2 3 4 5 6 7 8

13(r1) 0.1341) 0.0133| 1.4934| 0.0425| 0.6376| 0.0421| 0.0940| 0.0102

S. APPLICATION TO‘SINGLE DEGREE MECHANICAL
OSCILLATORS

The single degree mechanical oscillator shown in Fig.5 is a mechanical structure widely
used in engineering where y(t) denotes the displacement of mass m, u(t) is the force imposed

/

= y(th

2 Kyl J

A

/

-~ u(t
o 1 n

/

/

/

,//

/

f

Figure 5 Single degree mechanical oscillator

on the mass , K(.) is the characteristic function of the spring and c is the parameter of the
damper.
The equation of motion of the mechanical system can readily be obtained as

my(1) +cy(1)+ K[y(2)]= u(t) (5.1)
When the nonlinearity of the spring characteristic is taken into account,
K[y()]=K,y(1)+K,y* (1) (5.2)
) equation (5.1) becomes
my(t) +cy(t) + K y(1)+ K,y (1) = u(r) (5.3)

Discretising using a backward difference method such that

_ YKL —y[(k-DT] _ y(k)=y(k-1)

y(1) T T (5.4)
ey Y(k+ DT ]- Qy(iT:H Yk-DT] _ y(k+1)- 2)/(;’6) +y(k=1) (5.5)
T, T,
gives, after substituting (5.4) and (5.5) into (5.3), a NARX model
Y(k) = ¢,o(Dy(k=1)+ ¢4 (2)¥(k = 2) + c30(1)y’ (k= 1) + ¢, (Du(k - 1) (5.6)

where



( 2
c,0(1)=—[i7; +%K]-2)

610(2)=(£1: —1)
) m

(20)
T*K
C30(1) - —_jm_B
T2
Cor(D) =_n§1_

and T is the sampling interval. As long as T, is selected appropriately (5.6) will reproduce the
dynamics of the original continuous time system (5.1).

Because there is a cubic nonlinear term in y(.) in the model the number of terms in the
Volterra series expansion could be infinite. However it is well-known that in most practical
cases the nonlinear effects of the single degree mechanical oscillator can be ignored. By
applying the new method for truncating nonlinear system expansions in the frequency domain,
this can be explained, and it can be shown that even if the effects of the nonlinearity have to be
considered a truncated Volterra series expansion of the system can also be found, under
certain conditions on the input spectrum, so that the system can be regarded as a weakly
nonlinear plant. In addition the new method can also be used to predict those situations where
the input spectrum of the oscillator will induce significant nonlinear effects which will generate
considerable oscillations beyond the input frequency band.

Because the mechanical oscillator can be described by the NARX model (5.6), the
truncation of the Volterra series expansion of this system can be realised by performing the
calculation of J,(n) using

M,

2 )n—l HnB : {gna’f{{y} U: [li_j;'] f()r Odd n
Jy(n) = (2n = MY a5
—=—H’U'(0) forevenn
En)

where U (.) is obtained from (4.1) and (4.2) with T=1 and H? is determined from (4.8) and
(4.9) using the parameters given in (5.6). Because (5.6) represents a class of specific NARX
model systems, the computation procedures for H” in (5.8) can be further simplified.

From (4.8) it is known that for the NARX model given by (5.6)

ng . Zcm ,
2 (5.9)

HE =i[0]x!,2‘cm,2€f +Y el 0L HET =i[o,o,o}[0,1,H,“=]T =0
and for n>3,

Hf =‘L1—[0;x<,,4).zf—‘un,ch‘ +2C20ﬁu-l‘zcz +2£30E.-1,EC; +zc4oﬁu-3= """ 2‘3::—1 +2Cnﬂﬁl}

[Hr(;sH ,H,B‘.H-_.B",Hf" R ,Hf_',]r
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1 e — = —
=_[le{n—l)’0’olxtn-l) + OX Hn—l ’leln-Z) * EC:’.{)Hn-z-o]x(,‘_n +0 XH,,_.3 i ,0+0X Hl]

n

[Hy H B H e HE

) Li (S e JHT (5.10)
where H- =[Fnu2(HzB"')T»HfH]'

Moreover notice that

<[ (e |= | B[R V] |=[RAT)=(80) = (T (5.11)

where H = [H ]

Hza‘ =[E1(H13!)Tszﬂj]=I:ﬁz{ﬁz(Hufj)TsHlsl]Tn(HIB)I:l=[ﬁz[Hzglea]T!(H ) ] [HH‘LIB"'HBI'Iﬂ ( ) ]=[_z( 2')T’EI(EI')T]

(5.12)

and H) [H o iy ] It can be shown by extending the results of (5.11) and (5.12) into the
general case of H," that

H} =[H, ,(H )" H, (B, HH)] (5.13)
where
B=|8 1y B =l

i ]

.,n-2 (5.14)

Thus substituting (5.13) into (5.10) gives
B Th wT TF TFH LT 7 i T
ZC‘O[Hl - r= ’][ n-l(Hn—z) ’Hn—3(Hn—3) ’“'7H1(H1 ) ]

[263"J2H( T owmH .., ) forn=3 (5.15)

Therefore evaluation of J,(n) for the single degree mechanical oscillator can be
implemented by the procedure below

c
(i) Evaluate H? using (5.15) and (4.9) with the initial values B —Zl—qﬂ and H? =0.

(ii) Calculate U’(.).
(iii) Compute J,(n) from (5.8).

Consider a practical single degree mechanical oscillator where the parameters are given by
(Chen and Tomlinson 1994)

m=39.2Kg, ¢=239.2N Sec/meter
K, =4.9x10°N I meter, K,=4.9%10"°N /meter’, T, = Y Sec
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Substituting these parameters into (5.7) gives the NARX model (5.6) of the oscillator as
¢10(1) =1.438334, ¢,,(2) =-0.9933334, ¢;,(1) =-55555.553, c,,(1)=1.1x10"°

Consider four cases of this system in which the input spectra of the oscillator satisfy (3.7)
and (3.8) with

(1) a=0.1, b=0.4, M,=100

(2) a=0.1, b=0.4, M =500

(3) a=0.1, b=0.4, M =1000
and

(4) a=0.1, b=0.4, M, =10000

respectively. The results of J,(n), n=1,...,8, using the procedure in steps (i)-(iii) above with
M=1000 are shown in Tables 4,5,6, and 7.

Table 4 Results for the mechanical oscillator (a=0.1, b=0.4,M, =100)

n 1 2 3 4 5 6 7 8
2.7659 1.3204 2.3690 6.6955
Ko | aed O | x100] O |xi08| O |x10710] O
Table 5 Results for the mechanical oscillator (a=0.1, b=0.4, M, = 500)
n 1 2 3 4 5 6 7 8
1.6505 7.4030 5.2309
IL(n) | 0.0014| © w0 |0 0 e | ©

Table 6 Results for the mechanical oscillator (a=0.1, b=0.4,M, =1000)

n 1 2 3 4 5 6 7 8

J3(n) 0.0028 0 0.0013f o0 0.0024f O 0.0067| O

Table 7 Results for the mechanical oscillator (a=0.1, b=0.4, M, = 10000)

n 1 2 3 4 5 6 7 8
6.6955
2 2
J3(n) 0.0277| 0 1.3204| 0O 236.8971 0 104 0

Table 4 with M, =100 indicates that for e =107 all J,(2),---,J,(8) are less than € and

are therefore negligible so that the truncated frequency domain Volterra series expansion of
the system has only a linear term. That is the mechanical oscillator can be adequately
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represented by a linear model. To confirm this analysis the behaviour of the oscillator was
simulated using the NARX model representation with the excitation

in(0.4k)—sin(0.
u(k):%_sm(o )k sin(0 Ik), F e S8 (5.16)
T

and M, =100 which satisfies condition (1) above. The simulation results are illustrated in Fig
6 and show that the output spectrum is negligible outside the input frequency band [0.1,0.4]
and demonstrates that the effects of nonlinearities on the system output can be ignored.

The results in Table 5 indicate that when M, is increased from 100 to 500, to
accommodate a larger class of inputs, the third order nonlinearity must be included in the
truncated frequency domain Volterra series expansion of the system if € is taken as 10™. The
simulation results for this case are shown in Fig. 7 and indicate that compared to Fig.6 more
response beyond the input frequency band [0.1,0.4] can be observed.

Table 6 shows that for the case when M, =1000 the effects of the system nonlinearities on
the output have become comparable to the linear effects and nonlinear terms involving the
3rd, 5th, 7th, and even higher order nonlinearities need to be included in the truncated
Volterra series expansion of the system since all these are larger than £ = 107, Fig 8 illustrates
the simulation results for this case and shows that compared to the case when M, =500 there
are more considerable effects around @ = 0.7 7 beyond the input frequency band [0.1,0.4].

The results in Table 7 indicate that in the fourth case when M, =10000 the effects of the

system nonlinearity dominate the output response because J, (n) increases up to 6.6955x 10*

for n=7 and it will generally be impossible to find a truncated Volterra series expansion of this
system. The simulation results for this situation are shown in Fig.8 which clearly demonstrate
the dominant nonlinear effects outside the input frequency band .

The oscillations at ® =0.77 in [Y(jo)| must be due to the nonlinear effects in the system

because @ = 0.77 is outside the input frequency band [0.1,0.4]. These oscillations are in fact
caused by the resonance of the system since the maximum value of

1
1—c,p(e™ ¢ g(2)e |
where ¢,,(1)=1.438334, ¢,,(2)=-0.9933334, is at @ =0.77. This observation implies that

when the intrinsic resonance frequencies of a single degree mechanical oscillator are beyond
the frequency range of the input excitation, which is often the case in practical situations, the
extent of oscillations due to the resonance modes can be predicted by examining J,(n) for
n>1 at different input amplitudes using the algorithm developed. This type of analysis might

also be of significance for more complicated engineering systems and will be investigated
further in later studies.

6. CONCLUSIONS
Although most practical systems are intrinsically nonlinear, linear models can usually be
used to approximate the systems quite well provided the system input varies within a small
neighbourhood of the operating point. But when the system input deviates far from the
operating point the system nonlinearities will begin to influence the system output. In these
circumstances the Volterra series theory of nonlinear systems can be applied to analyse the
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system based on a truncated Volterra series description. Truncation of nonlinear Volterra
series expansions based on both the properties of the system and the input excitation is
therefore an important area of analysis.

In the present study recently developed results on the output frequency characteristics of
nonlinear systems have been used to investigate the Volterra series expansions and a new
algorithm has been introduced to determine which frequency terms are significant. The
effectiveness of the new method has been verified using simulation studies including a single
degree mechanical oscillator. The new procedure can only be implemented if the system
GFRFs or a time domain model and the properties of the input are known. These are
reasonable and realistic requirements because the effects of truncating a nonlinear Volterra
series expansion is usually investigated based on this information (Rugh 1981, Thapar and
Leon 1984) and the main problem is to decide which terms should be included in the truncated
Volterra series expansion.
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Figure 4 Simulation results for the example in Section 4.2
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Figure 9 Simulation results for the mechanical oscillator with the
input given by equation (5.16) and M, =10000




