The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Explanation by General Rules Extracted From trained
Multi-Layer Perceptrons.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/80890/

Monograph:

Zhe , Ma., Harrison, R.F. and Cross, S. (1996) Explanation by General Rules Extracted
From trained Multi-Layer Perceptrons. Research Report. ACSE Research Report 650 .
Department of Automatic Control and Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Explanation By General Rules Extracted From Trained

Multi-Layer Perceptrons
Zhe Ma and Robert F Harrison, The University of Sheffield, Department of Automatic
Control and Systems Engineering, Sheffield, S1 3JD, UK
Simon S Cross, The University of Sheffield Medical School, Department of Pathology,
Sheffield, S10 2RX, UK
9 November 1996
ACA&SE Research Report 650
Key Words: Explanation, Rule Extraction, Hybrid System, Multi-layer Perceptron

Abstract

GR?2 is a hybrid knowledge-based system where the knowledge acquired
in a trained Multi-layer Perceptron is translated into a symbolic and
abstract form, called general rules. This is based on both white-box and
black-box criteria. The extracted rules can be used for inference on a
case-by-case basis, explaining how a decision is made. The extracted
rules possess both qualitative and quantitative properties of the domain
knowledge, thus enhancing the reasoning capability of the system.

The methodology for extracting rules from a trained MLP via two
heuristics — the Potential Default Set and the Feature Salient Degree — is
outlined, and the use of the resulting domain rules in case-by-case
explanation is described. A number of examples from synthetic domains
is considered and the problem of diagnosing malignancy in breast lesions
from observed cytopathological features is presented. Here the case
explanations are commented upon by a senior pathologist and favourable
agreement is found.

1. Introduction

There are three essential functions for an ideal knowledge-based system, a convenient
support for knowledge acquisition, an accurate and reliable reasoning facility for
decision making and a user friendly interface to explain what the system has acquired,
how it has come to a conclusion and which therefore enables the user to interact with
the system. Most successful traditional Al systems, such as expert systems, fulfil
functions 2 and 3, whilst most artificial neural networks possess functions 1 and 2. Can a
hybrid knowledge-based system capable of symbolic reasoning and neural computation
archive all of the three functions above? This paper describes a hybrid Al system GR2
which supports this conjecture. GR2 consists of a Multi-layer Perceptron (MLP) neural
network, a rule-based inference system and an interface that translates the knowledge
encoded in the trained MLP into general (production) rules. It also addresses how the
explanation by extracted rules helps the comprehension of the behaviour of the system.

Neural networks are capable of learning domain knowledge by example (inductively).
They, especially the MLP, can classify or reason on a set of training instances more
accurately than other machine learning approaches such as decision trees [10,17,23].
Neural networks are widely used and reliable systems in data rich, noisy application
environments. It is natural to attempt to include neural networks within knowledge-
based system. This nevertheless causes a new problem for IKBS “alleged to be capable
of providing the explanations that users need to be able to make their own judgements
about the program’s recommendations” [6]. Most feedforward neural networks are used
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Explaining Neural Networks

as black-box devices. Neither the knowledge encoded in the trained network nor the
reasoning (recall) process is easily understood.

Explicit explanation is an important capability for a knowledge-based system. First,
rational users, especially experts in the application domain do not simply accept a
conclusion given by the system. They instead expect more information about what
knowledge the system has acquired, and about how a conclusion is reached by the
system. They may require further information to justify or confirm what action they
should take. 1y Bl

Second, the explanation function is particularly important in safety critical systems such
as air traffic control, or in knowledge-rich disciplines such as medical diagnosis, where
human verification is necessary. Without a comprehensible form of knowledge
representation, it is impossible for the expert to inspect the knowledge possessed or
acquired by the system. Therefore there is no way to answer such questions as “what if”
or “how” in an easily understood way.

Third, the assistance of a computerised knowledge-based system is especially useful
when human experts are unsure of what should be concluded, based on their knowledge
in certain instances, or when the system gives solutions that are different from the
expert’s expectation. Then the system must be able to explain why it concludes so, and
to what extent it can support its conclusion.

In GR2, a conventional MLP is first invoked via the training process to learn the
knowledge embedded in the training set into the network in the form of a set of weights.
The weights, together with the training set, are used by a rule extraction component to
generate a set of general rules. A general rule is a production rule extended with some
quantitative descriptors. The general rules with these quantitative descriptors represent
both qualitative and quantitative knowledge, and thus convey richer information than
either the numerical connections in the MLP or the traditional production rules. This not
only makes reasoning more reliable and explanation more relevant, but also enables
users directly to monitor the knowledge-based system. In terms of the answer types
defined by Nilbert [6], GR2 explains knowledge at both the domain level and at the case
level.

The paper is organised as follows. Section 2 presents existing techniques of rule
extraction from neural networks. Section 3 introduces a method of rule extraction from
a trained MLP, which employs feature evaluation criteria using both “white-box” and
the “black-box” approaches. The extracted rules are used in reasoning and explanation
on a case-by-case basis in Section 4. Three examples are discussed in Section 5, two are
artificial and the other involves a medical decision task. The final section summarises and
discusses the explanation capability of GR2.

2. Review of rule extraction techniques

2.1 Rule extraction strategies

There are three strategies for extracting rules from a neural network, according to how
the neural network is observed. The first two have been addressed in [22,27]. Here we
specifically explore the third type. The three approaches are outlined below.
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(i) The “white” or “open’-box strategy, as presented in [19,21,29]. The internal
structure of the neural network, including the weights, the hidden units and the output
units. is translated into rules directly. This strategy is also called “decompositional” [22].
Briefly, a hidden or output unit is converted into a rule while the weights to the unit are
converted into its premises. The unit activation is taken as the consequence of the rule.

(ii) The “black” or “closed”-box approach, called “pedagogical” [22]. The neural
network is treated as a black-box in which only the input/output mapping relationship of
the trained neural network is considered; the internal structure is [5,7,20]. The
input/output mapping is captured as the activation of the output unit changes in
response to changes in the activations of the input units. Since enumeration of all
possible changes of the input units is combinatorial, some restrictions must be enforced
to reduce computational workload.

(iii) The third strategy is a combination of the previous two [18,27]. Although the final
target is to extract rules that map the inputs to the outputs of the network, the internal
structure of the network is closely analysed for heuristic clues. Thrun [18] develops the

. Validity Interval Analysis (VIA) as the white-box criterion. A validity interval is defined
as the maximal activation range of a unit in the trained network. The validity interval of
a unit is constrained by the values and the validity intervals of other units in the
networks, either directly or indirectly connected to it, according to the forward or the
backward propagation mechanisms in the MLP. This is used to verify the hypothesis that
a set of initial values exists at the input/output units. From the black-box viewpoint,
Thrun identifies the input/output relationship by a search in the input space from the
most general part (i.e. the whole space) to the most specific parts (i.e. the individual
instances) gradually, because the VIA can verify the hypotheses of the inputs that are
partially (or even not) initialised. This search style not only significantly reduces the
necessary number of tests, but also generates non-redundant rules which are quite
general.

GR2 [27] shares some common features with Thrun’s method. It generates rules
including only input/output (instantiated) variables. The analysis of the input/output
relationship includes the cascading effects via the internal connections in the network.
The rules are quite general. The method is relatively independent of the network and is

. easy to realise for most feedforward neural networks. The neural network is not
constructed and trained with the intention of easing analysis, thus giving general
applicability.

In GR2, rules are extracted from training instances by identifying the most relevant
subsets of the input variables dependent on two criteria. The white-box criterion we call
the Potential Default Set (PDS) that indicates those input variables which possibly do
not directly contribute to the output for a given training instance. The black-box
criterion we call the Feature Salient Degree (FSD) indicating the degree of influence
each input variable has on the output for a given training instance. This is calculated
over the whole training data set which has itself been modified by passing it through the
MLP. This stage removes any conflicts from the training data. The PDS is a qualitative
feature of the input/output relationship, and the FSD is a quantitative descriptor of the
input/output relationship.

The extracted rules are called general rules for two reasons.
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(i) The rules are generated to be as general as possible, representing the domain
knowledge at an abstract level.

(ii) A production rule consists of a premise (antecedent) part and a consequence
(consequent) part, possessing only qualitative properties. A general rule in addition
contains a real number for every rule element. The number attached to a premise is
called its contribution factor, representing a causal relationship between the premise
and the consequence of the rule. The number attached to the consequence of the rule
is the certainty factor [1].

2.2 The Quality of the extracted rules

An essential issue for explaining what knowledge the neural network has acquired is
how to assess the quality of the extracted rules. Andrew et al point out four criteria:

(a) accuracy;

(b) fidelity;

(c) consistency;

(d) comprehensibility [22].

Here we add another criterion: generality or abstractness, which is closely related to all
the other quality criteria.

Generality is a property that distinguishes knowledge from data [9]. A knowledge
representation having good generality must be able to represent qualitative information.
Generalisation is a basic step of learning that enables the generalised knowledge to
classify unseen examples correctly. Generality is a quality of properly trained neural
networks. So it should be a quality of any rules extracted from such neural networks.

2.3 Difficulties in extracting rules

The central task and the complexity of rule extraction is how efficiently to compile rules
to represent the context relevance among the input variables (attributes) as well as the
input/output correspondence.

The KBANN system by Towell and Shavlik [19] requires that unit activations in the
networks are near to either O or 1. This is quite restrictive in practice. It is commonly the
case that the network may become over-trained instead of improved in terms of
generality after as backpropagation proceeds, before most non-input units have
activations near to either O or 1 [8,13,14]. For maximum generality we wish to avoid
this restriction in this work.

In addition, the explanatory capacity of a knowledge representation relies on whether or
not it can represent the qualitative properties of the domain knowledge, reflecting its
quality of generality. From this viewpoint, the extracted rules should omit certain details
of the internal structure of the network. If there are networks that have different
structures but represent the same domain knowledge, the rule sets extracted from these
networks should be the same or very similar. This can be illustrated by some simple
networks for the two bit AND and XOR problems. The networks are conventional
Multi-layer Perceptrons with one hidden layer, sigmoidal activation functions and the
generalised Delta learning rule for the backpropagation training process [2]. Although it
is well known that hidden units are not necessary for the network to solve such a simple
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domain as the two-bit AND problem, we use them for the purpose of demonstration. As
mentioned above, the unnecessary hidden unit should not cause a qualitative difference
between these and those derived from the network with the minimal structure.

The two bit AND problem is represented in Tablel where A and B are Boolean input
variables and C is a Boolean output variable. Column C is the result of the AND
operation on the values of A and B. Setting the error tolerance' 8 =0.5, the MLP (see
Figure 1) correctly classifies all instances as presented in the last column.

A B C MLP output
0 0 0 0.0

0 1 0 0.02

1 0 0 0.02

1 1 1 0.94

Table 1. The two-bit AND problem, its truth value table and the outputs of
the MLP in Figure 1.

Figure 1. The trained MLP for the two-bit AND problem

The outputs of the MLP can be changed if a part of the network, Bias] say, is changed.
Table 2 records the results as the bias, Biasl, is given different values.

A [B |c (Biasi=-1) |C(Bias1=-0.7) |C (Bias1=4.3) |C (Bias1=9.3) |C (Bias1=9.9)
0 0 o064 0.5 0.0 0.0 0.04
0 |l |oos 0.95 0.5 0.0 0.11
I 0 095 0.95 0.5 0.0 0.11
|1 10,95 0.95 0.95 0.5 0.26

Table 2. The outputs of the MLP in Figure 1 as Biasl is changed

The network only represents the two-bit AND problem when Biasl is in the range (4.3,
9.3). If Bias|1 is in the range (-0.7, 4.3), the network represents the two-bit OR problem.
It fails to implement either the AND or the OR problems when Bias1>9.3 or Bias1<-0.7.
Ideally, the rules extracted from the network should be uniform corresponding to the
domain knowledge for each of these ranges. Furthermore, the rule set should be
completely general. For example, from the networks that are the same as the one in

' Here “error tolerance” denotes the absolute distance from zero or one within which the MLP output
must fall.
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Figure 1, except that Bias| is in the range (4.3, 9.3), the following rule set is the ideal
solution:

IF(~A) THEN (~C);
[F(~B) THEN (~C);
IF(A, B) THEN (C),
where the tilde indicates NOT and the comma indicates AND in the rules.

For some white-box rule extraction methods, an intermediate variable H corresponding
to the hidden unit is included in the extracted rules. Introducing hidden units as
intermediate variables has both a good and a bad effect on the expressive capability; this
will be discussed later. The major problem is that the rule set obtained from the white-
box methods fail correctly to explain some networks. For example, in setting Bias in
the range (9.3, 9.9), the rule set may be

IF(~A) THEN (~H);
IF(~B) THEN (~H):
IF(A, B) THEN (H);
IF(~H) THEN (~C):
IF(H) THEN (C);

which is an explanation for the two-bit AND problem. This is incorrect because the
network in that situation cannot recognise any two-bit Boolean problem. Again, the rule
set for Bias! in the range (4.3, 4.9) using the white-box method alone may explain the
two-bit OR problem, but the network in this case corresponds to the two-bit AND
problem instead.

There is a number of reasons for such failures.

(i) The white-box methods usually select the input variables via a linear comparison of
the subsets of the weights to a hidden unit with the bias to this unit. This does not

match the activation function of the network F(net) = T2g

(i1) Including the hidden units as atoms in the rules represents them in Boolean form,
while the difference between the real values of the hidden units and the Boolean
values may give a very different overall representation of the rule set from the
network.

(iii) The weights in a layer of the network affect processing in parallel whilst in the
symbolic rules this property is only reflected within those rules whose premises
correspond to subsets of the weights. Lack of representation of the parallelism among
the rules may substantially change the domain knowledge from that represented by
the trained MLP.

The representation of qualitative knowledge via white-box methods alone remains a
challenge.

The challenge becomes harder still if we require that the rule extraction method
generates a set of rules from another network in Figure 2 which is similar to the rule set
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from the network in Figure 1. The network in Figure 2 is for the two-bit AND problem
too, but it contains two hidden units.

Figure 2. A network for the two-bit AND domain with two hidden units

For the same reasons, the white-box methods find it difficult to handle the following
problem. In Figure 3, we display two networks. The bias for a hidden unit is included in
the circle for each unit. Figure 3a is the network for the XOR problem. In Figure 3b,
every value is correspondingly half of that in Figure 3a. Most white-box methods will
extract the same rule sets for the two networks. But the network in Figure 3b can not
recognise any Boolean problem, as shown in Table 3, if we still assume the error
tolerance & =0.5.

Figure 3. (a) a network for the XOR problem. (b) a network without
distinct outputs

A B Output by the net in Fig. 3a Output by the net in Fig. 3b
0 0 0.04 0.25
0 1 0.89 0.46
1 0 0.89 0.46
1 1 0.04 0.25

Table 3. Outputs by the networks in Figure 3

There is value to the white-box approach yet. The white-box methods using intermediate
variables are capable of representing the knowledge of the network for some complex
domains which may not be able to be directly represented only by the input/output
variables.

7.
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For most black-box methods, a difficult and important task is to extract the most general
rules as possible. This requires a process to find the abstract features of the knowledge
domain. Without the abstraction process, understanding of the extracted rules is very
difficult, if it is possible at all. For example, an abstract statement for the two-bit AND
problem is that “any false value to an input variable is the deciding feature to give a false
output value, the other input variable is neglected”. For the two-bit OR problem, an
abstract statement is that “any true value at an input variable is the deciding feature to
give a true output value, the other input variable is neglected”. Without a direct
description of such abstractness, extracted rules hardly offer any advantage over the
original data set. Thrun’s rule extraction method [18] using a combined strategy appears
not to suffer from the above limitations, neither does GR2.

LY

3. Rule extraction in GR2

GR2 extracts rules that only include the input and output variables. The resultant rules
are independent of the internal structure of the neural network. The rules represent an
abstraction of the domain knowledge.

We use Boolean variables for the definitions given in this section in order to correspond
to the status of the units in the neural networks. A multiple-valued variable can be
represented by multiple units in the neural networks, so with multiple Boolean variables,
GR2 can handle most discrete problems.

A training instance comprises an input vector </;, [, ..., Iy> and an output value O. The
elements in the input vectors are a set of instantiated input variables. The output value is
an instantiated output variable obtained by recalling the MLP which represents the class
to which the instance belongs.

The training set is modified in two operations. The first operation is to replace the
outputs in the training set by the outputs after recalling the MLP. This presupposes that
the training process has attained a satisfactory level of performance. There will thus be
no conflict instances in the training set. The second operation is to select distinct
instances from the training set into a distinct training set after the first operation. In the
rest of the paper, the term “training set” indicates this distinct training set and a “training
instance” indicates a distinct training instance.

The central operation of rule extraction in GR2 is the selection of the subset of the input
vector from each training instance, presented in Section 3.3. The selection is based on
two criteria, being defined in Sections 3.1 and 3.2.

3.1 The Potential Default Set

The criterion derived from internal behaviour is called the Potential Default Set (PDS).
Observing the ith input unit /; relating to the output unit O via all hidden units and the
weights between them in the network, we can estimate if /; provides a positive or

negative contribution to the activation of the unit Oby L, = 2 w,h,w,, , where the

h
subscript & ranges over all hidden units in the network, #, is the Ath hidden unit
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activation®, wy, is the weight between the input unit /; and the hidden unit A, and wy, is
the weight between A, and the output unit O. The activation of 4, and the output unit O
are obtained as the input vector of a training instance is fed to the input units of the
network and the network is recalled. Now we consider the L;s together with the
activations of the input and output units. For example, if the activation of the input unit
I; is 0, and L;>0, switching /; from O to 1 tends to increase the activation of the output
unit O. But if the activation of O is already high, i.e. in the range [, 1], where 8 is the
error tolerance, this change on /; does not affect the status of Q. On the other hand, the
value of [, either 0 or 1, does not affect the status of O. The input variable
corresponding to /; is possibly redundant in this situation. There are 3 more situations
similar to the one above. All the 4 situations are listed in Table 4, among the total 8
possible combining situations of the input un}t activation /;, the output unit activation O,
and L;. The Potential Default Set is the set of those input variables corresponding to
these 4 situations. In order to make the measure more reliable, we set a threshold in

Table 4, T1(0) =|log —ol where O is the output activation but limited in the range

(0.0001 if 0 < 00001
[0.0001,0.9999],ie. O=109999  if 0> 09999

0 othernvise

L.

f(x) = log —

l
Flx) =

" Yo

is the inverse function of the activation function in the network

v ¢

The property of the functiont(x) is shown in Figure 4. T(x) has a minimal value 0 as

x=0.5, at which situation the classification result is not clear and is sensitive to the
change on the input variable, thus the Potential Default Set depends on the sign of L.
The closer the output activation to the extreme values, O or 1, the more confidently the
classification is made, the less influence the change of the input has on the output result,
and the higher the threshold t(x) is set.

2 We use I;, hy, and O to refer to the unit activations when a calculation is required. They also refer to
the units themselves when the network is discussed. The two uses can clearly be distinguished from the
context.

9.
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Figure 4. 1(x) function curve

In brief, an input variable is in the Potential Default Set in the following situations:
Liz27(x) and /; and O are of opposite status or Li=-1(x) and [; and O are of the same
status. The input variables in the Potential Default Set are possibly not important in
generating the output and may therefore be absent from the extracted rules.

i &) i
0 [1-8,1] >1(0)
! [0, 8] >1(0)
i (0811 <—1(0)
0 [0, 8] <-1(0)

Table 4. Situations where I, belongs to the Potential Default Set

The calculation of the Potential Default Set is suited to the MLP for any number of
hidden layers or to the simple continuous Perceptron network without the hidden layer.
In the latter case, the weights themselves are the L;s. In the former case, an L; is the

cascade product of the weights and the activations of the hidden units which are linked
via the weights in the network.

Taking the network for the two-bit AND problem in Figure 1 as an example, and
defining 8=0.1, the weight matrices after training are:

W {:ﬂ; W, =[-9].

For the first instance of the training set, the input vector /=<0 0>, and the output by the
MLP 0=0.00253 that is in the range [0, 8]. The hidden unit activation hoy=1.0 and
L=<45 45>. The PDS threshold 1=5.978. The Potential Default Set PDS, ={} because

L>7 and the input variables and the output variable are at the same status.
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For the second instance, input /=<0 1>, 0=0.02713, h;=0.9933, L=<44.7 44 7>,
1=3.58. Only the input B=1 has the opposite status from that of 0. Thus PDS,= {B}.
Similarly for the third instance, PDS;= {A}.

For the fourth instance, I=<1 1>, 0=0.9447, h;=10", L=<0.00045 0.00045>, 1=2.838.
Since [; and O have the same status and Li<t, PDSs={}.

Now deleting the PDS from the full set of input symbols, we obtain the following
remainder matrix, where ~ before a symbol indicates that the variable is instantiated with
value 0, and — indicates absence of any symbol which belongs to the PDS:

~A ~B
~A =
=
A B

Rows 2 and 3 represent the abstraction property that “any false value to an input
variable is the deciding feature to result in the false value to the output, the other input
variable is neglected”. In the first row, the redundant elements will lead to a redundant
rule (i.e. it can be subsumed by the other rules) if we do not consider the other selection
criterion, the Feature Salient Degree to be defined in next subsection. The PDS results
for the other networks for the two-bit AND problem in last subsection are the same as
above.

Similarly the PDS matrix for the two-bit OR problem is

~A -
- ~B
and the remainder matrix is
[~A ~B
- B
A -
- A B -

Rows 2 and 3 represent the abstraction property that “any true value at an input variable
is the deciding feature to give the true output value, the other input variable is
neglected”.

Although the Potential Default Set alone is not sufficient to describe all the properties
represented by a network, it partially reflects the statistical and qualitative input/output
relationship encoded in the trained network. It is also very simple to calculate.

3.2 The Feature Salient Degree

The criterion obtained from external behaviour is the Feature Salient Degree of an input
variable in a training instance, which measures the strength of influence of that input
variable on the output variable in the context of the whole training set. For the whole

-11-
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training set the feature salient degree comprises a PXN matrix, where P is the number of
the training instances and N the input dimension of the MLP. First we define the matrix
Jsd, whose jith element is given by following equation.

1

|5,-A]

fsdﬂ = R S
{k\(_x;:ek.of:o“ Jﬂ*"h)} IPJ i Pfc |2

and the matrix FSD is the normalisation of the matrix fsd:

fsd

FSD=—r—
max( fsd)

The explanation of the FSD is given in [25,26].

Pjand Py denote different instances in the training set and |P;, Pyl is the hamming
distance of their input vectors. L, is the number of times the jth distinct instance appears

in the original training set. If the input vectors are the same, so will the outputs be after
modification by the MLP.

A feature salient degree of the ith input variable in the jth training instance, FSDyg;
depends on how many other training instances whose output value and ith input value
are different3 from those in the jth distinct training instance. The FSDy; is also
exponentially inversely relatied to the Hamming distance of the input vectors of the
training instances, reflecting the context relevance among the input variables.

Taking the two-bit AND problem as an example, we have:

In the first instance (<0 0>, 0.0), for the input variable A=0), only instance 4, (<1 1>,
0.94), is counted since it is the only one in which the value of A and the output value C

are different from those in instance 1. The hamming distance |P1,P4 | 1s 2. Thus the fsd

elementis fsd,, = «2-;—2, =0125.

For the same reason fsd|»=fsd, .

For the second instance, (<0 1>, 0.02), only the fourth instance has a different output

from it and | P;,P,|=1. Thus fsd,, = TI—Z' =05 for the input variable A. For B=I,
X

fsd,,=0 because B=1 in the fourth instance as well.

Similarly for the instance (<1 0>,0.02), fsd, =0.0 and fsd,, = 0.5.

For instance four, (<1 1>, 0.94), the other three instances have an output variable
different from that in this instance so that whether they are counted for the fsd values for
this instance depends on whether their corresponding input variables are different from
those in this instance. On the input variable A, this instance differs from instance 1 and
2, and the Hamming distances of the input pairs are 2 and 1 respectively.

1 1 o
Therefore fsd,, = e + P =0.625. Similarly on the input variable B, instance 1
x2° 1x

and instance 3 differ from this instance thus fsd,, = fsd,, .

The fsd matrix and FSD matrix are respectively

* Here different output values means they belong to different ranges of [0, §] and [1-8, 1].
.12
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0125 0125 269 269
05 0 731 0
5d = =
£ 0 o5 |MESD=1 0 o4
0.625 0.625 1 1

The first row of the FSD matrix indicates that both input variables in instance 1 have
equal and little importance. In the second instance, the first input variable, ~A, is
important whilst the second input variable, B, is of no importance at all. Similarly for the
second input variable, ~B, in the third instance. Both input variables in the last instance
are important in generating the corresponding rule.

The FSD matrix for the network in Figure 2 is the same as above.

For the two-bit OR problem, the fsd and FSD matrices are

0.625 0625 1 i
0 05 0 731

Sdz -
k. 05 o |and FSD 1 0
(125 0125 269 269

The strength of the FSD just indicates the importance of the element in the
corresponding rules which matches the designed logic of the domain.

For the XOR problem, to each input variable in an training instance, there corresponds
just one other instance whose input and output variables are different, and the Hamming
distance of the input vectors involved is 1. Therefore

(05 05] 1 1
05 05 11
Jsd = 05 05| and FSD=| |
105 05 11

3.3 Rule generation

Rules are generated from the training instances using the black-box approach. The
central idea is to select the fewest elements in the input vector that can characterise the
necessary and sufficient input features to conclude the output result. Here the output
must be that of the MLP, so that there will be no conflicts in the training set even if there
are some before the MLP is applied. The selected input variables are converted into the
premises of the extracted rule, and the outputs are converted into its consequence. The
fewer the premises in the rule, the more general the rule. General rules represent the
general properties of the input/output relationship encoded in the trained MLP. If the
rules are general enough to cover larger ranges than the training set, other instances in
the problem space beyond the training set can be classified. This is the generalisation
ability the rule extraction process provides.

Once a rule is generated it is tested on the training set in the validation process. The
number of the training instances matching the rule is the marched cover range of the
rule, and the number of instances in conflict with the rule is the conflict cover range of
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the rule®. A certainty factor is given by the ratio of the matched cover range to the sum
of both of the cover ranges. This is also used to select valid rules. There is another
quantitative descriptor for each premise of the rule, called the contribution factor. It
represents the strength of the causal relationship between the input and the output
variables.

GR2 selects the subset of the input vector in the light of the two criteria aforementioned.
We present a simplified algorithm in this paper for easy understanding, although a more
complex one [25,27] gives more control facilities which has benefits for practical and
complicated or noisy data sets. Three sets of data are required for generating a rule: the
training instances (modified by the MLP), the Feature Salient Degree vector and the
Potential Default Set corresponding to the input vector. We have also changed the
general control strategy of the extraction algorithm in line with [20], i.e. maintaining a
rule set for each class and checking if a training instance has been covered by the rule set
in order to decide if the rule extraction operation takes place.

3.3.1 Rule extraction: general control:
1. For each class 4, initialise a rule set

Ri={}
2. For each training instance e; whose output indicates class ¢
if e, is not covered by R. then

R. =R. v Rule_extraction(e;)

3.3.2 Rule extraction: operation (Rule_extraction(e;))

Selection by FSD: collect all elements of the input vector whose feature salient degrees
are no less than T/N into a set 8. If the set is empty, stop, no rule is to be generated.
Here N is the dimension of the input vector and T is a FSD threshold to the class of this
instance. The FSD threshold T can be separately set for every class of the domain.
Adjusting T for each class can change the generality and the accuracy of the extracted
rules. T=1 is recommended as the default setting.

Selection by PDS: from the set 6, delete those elements which are in the Potential
Default Set and to which FSD < y/2. Here v is the maximal value in FSD vector.

Construction: the remainder elements in 6 are symbolised as the premises, the output
value is symbolised as the consequence. To symbolise an input or output value means to
give a symbolic name to the variable, and to add a ~ to represent “not™ if its value is O or
in the range of [0, 8].

Validation: apply the rule on the training set and find two numbers. v, the matched cover
range of the rule, and &, the conflict cover range of the rule. The rule is endowed with a

* A rule matching an instance means the premise part of the rule is correspondingly the subset of the
input vector of the instance, and the consequence of the rule is correspondingly the status of the output
value of the instance. A rule conflicting with an instance means the premise part of the rule is
correspondingly the subset of the input vector of the instance and the consequence of the rule is
correspondingly different from the status of the output value. There is no relationship between a rule
and an instance where the premise part of the rule is not correspondingly a subset of the input vector of
the instance.
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certainty degree , a=y /( y+€). If ot is less than an accuracy expectation, say 80%,
dispose of this rule.

Generalisation: this is an iterative but optional step. It can be taken by the user who has
found the previous generated rule set is not general enough. If the rule is quite long
compared with the input dimension size, find the input variable whose FSD is minimal in
the set 8. If the more general rule obtained by discarding this input variable is more
accurate than the previous rule in terms of the cover ranges, the new rule takes place of
the previous one. It is suggested that the length of the new rule should not to be less
than log(N) according to our experience.

Reserving FSDs: Each premise of the rule is attached with a contribution factor, which
are the normalised FSDs in the set 6,

__FsD,
' Y FsD,
1

In the rule validation step, the certainty factor is checked against the expected accuracy.
The value of the expected accuracy is decided according to the minimal accuracy with
which we expect the rule set to work on the training set. If the cover ranges are counted
on the training set modified by the output results of the MLP, it is quite right to set the
accuracy expectation 100%. However, if the cover ranges are counted on the original
training set itself, the training set may contain conflict instances. The accuracy
expectation should then be accordingly reduced. Otherwise some useful rules can be
missed.

Take the two-bit AND as an example and set the FSD threshold as the default T=1.
Here N=2.

For the first instance, (<0 0>, 0.0), no rule is generated because FSD,,= FSD,»=0.125,
that is less than 1/N, where 1/N=0.5. Indeed, this instance is less important than the
others.

B

For instance 2, (<0 1>, 0.02), a rule is generated in the Rule Extraction operation.

Selection by FSD: 8 ={A} because FSD,,=0.731>1/N corresponding to A=0, and
FSD,,=0<1/N corresponding to B=1.

Selection by PDS: nothing is done in this step.
Construction: IF(~A) THEN C;

Validation: the rule matches instance 1 and 2, thus y =2. It conflicts with no instance,
thus € =0. o=y /(y+€)=1. The rule is valid.

Reserving FSDs: 3,=1.0 for premise A since it is the only element selected.

The general rule is briefly presented as

IF(~A(1.0)) THEN ~C; (1.0
For instance 3, similar to instance 2, a rule is generated as
IF(~B(1.0)) THEN ~C; (1.0)

For instance 4, (<1 1>, 0.94), a rule is generated in the steps:
Selection by FSD: 6 = {A,B} because FSD4, = FSDy; =1>1/N.
-15-
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Selecrion by FSD: nothing is done since neither A nor B belongs to the PDS.
Construction: IF(A, B) THEN C;

Validation: the rule matches only instance 4 and conflicts with no instance. y =1 and
e=0. o=y /(y+€)=1. The rule is valid.

Reserving FSDs: B1=B ,=0.5 for premise A and B.
IF(A(0.5), B(0.5)) THEN C; (1.0)

This rule indicates that the condition A=1 and B=1 are equally necessary to conclude
C=1, consonant with our knowledge of the domain.

In this domain the FSD alone has given sufficient clues to extract the most general rule
set. The PDS, however, also correctly indicates the input variables to be eliminated from
the general rules at the appropriate stages. GR?2 generates the same rule set for both of
the networks shown in Figures 1 and 2.

Similarly the rule set for the two-bit OR problem is:

IF(~A(0.5), ~B(0.5)) THEN ~C; (1.0)
[F(B(1.0)) THEN C; (1.0)
[F(A(1.0)) THEN C; (1.0)

The XOR problem is studied as a challenging learning domain for the Perceptron
(including the MLP) networks. One hidden unit is required. The domain is easily handled
by GR2 however. Since each FSD element is 1, the resultant rules are the symbolic form
of the training instances themselves, with all certainty factors 1.0 and all contribution
factors equally 0.5. Indeed, the four rules with the full length can not be further
generalised, and every premise in the rules are equally necessary.

4. Explaining cases by general rules

Explanation within the field of symbolic Al refers to “an explicit structure which can be
used internally for reasoning and learning, and externally for the explanation of results to
a user” [22]. This provides important lessons in realisation of the explanation
functionality for a knowledge-based system involving neural networks, as well as raising
a challenging requirement to such realisation. This section looks at how the general rules
can be used in reasoning with and explaning individual instances.

Not as rigid as the format of the traditional production rules which only conveys
qualitative information, the rules extracted from the trained MLP can inherit the
numerical properties produced and used in the extraction process. The numerical
properties afford valuable quantitative information which is difficult to acquire from
human experts but is relatively easily understood by them. From the viewpoint of
knowledge discovery in some complex domain, the quantitative information can provide
further subtle insights of the domain knowledge which might be unknown to or may not
yet have been verbalised by the human experts.

Explanation at case level in GR2 is based on the proof trace concept in the reasoning
(inference) process [4]. Since the extracted rules only include the input and output
variables, rather than intermediate variables, the proof trace is trivial.
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GR2’s advantage arises from the its use of general rules to represent knowledge. The
symbolic part of a rule represents the qualitative knowledge and the numerical part
represents the quantitative knowledge and makes for explanation with more relevant
information. This can be explained in terms of the cover ranges. A rule with / premises
covers 2™ instances in the domain space, where N is the input dimension. A subspace of
the domain space can be a conjunction of the cover ranges of the rules, or a conjunction
of the rules for simplicity. If the subspace is a conjunction of the rules for one class, the
decision making for an instance in this subspace is easy and the qualitative knowledge
plays a major role. On the other hand, if the subspace is a conjunction of the rules for
different classes, the quantitative knowledge is more important for decision making.

The representation by general rules also makes reasoning by rules more reliable. For
example, if there is a case that could match the rules of different classes, the general
rules provide more information for conflict resolution than the traditional production
rules. “Failure” is a difficulty for explanation by proof trace, because the proof trace only
records those rules being fired [3]. GR2 provides some facilities to handle this situation.
First, some cases of “failure” in traditional rule-based systems can be identified and
concluded by exceptional reasoning. Second, GR2 can simply give the result from the
MLP, without any more information, of course. Finally, there is a more flexible

approach which is to invite the user’s interaction.

Explanation by rules in GR2 is closely relevant to the process of reasoning by rules, so
we introduce the reasoning process first.

4.1 Reasoning with extracted rules

Parallel to the recall process in the MLP, reasoning by rules is the process to decide the
conclusion based on the extracted rules when an input vector is given. Reasoning by
rules in GR2 uses two operations.

4.1.1 Matching

All rules covering the input vector are collected as voting candidates. Collection is
similar to being stored in the working memory in traditional expert systems. These rules
are called the matched rules to the input vector. There are four situations of rule
collection that may be encountered in this operation, which we call matching situations:

1. All matched rules are of one class — uniform matching,

(po

. the matched rules are of different classes — cross matching;

3 there is no matched rule but there are no extracted rules of one class at all —
exceptional matching,

4. there are extracted rules of every class but there is no matched rule to the input
vector — unmatched.

All other operations of reasoning and explanation in the rest of this section are
manipulated according to these four matching situations. Situation 1 is the most
common one which is easy to cope with. When situation 2 occurs, there is evidence that
the current input vector does not uniformly correspond to one class. Although not
occurring very often, this is a difficult situation in which some heuristic or expert
judgement is most needed. The third situation — exceptional matching - is needed if no
rule is extracted. This is possibly because the training set does not contain sufficient

T
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information to generate a reliable classification or because the FSD threshold, T, for the
class in the rule extraction process is set too high. Hence the current input vector is
assumed to correspond to the absent class in the extracted rule set, even if there are no
rules directly matching this input vector. Situation 4 is the only case where the extracted
rules are not able to be used directly for reasoning. There are extracted rules for every
class but no one covers the input vector. This is because either the input vector is an
exception, so that the training set does not represent this case’, or the extracted rules are
not general enough to cover the domain in the vicinity of the input vector. We will
discuss methods to deal with this situation in Section 4.3 even though the conclusion can
be gained simply from the MLP.

4.1.2 Concluding

This operation decides the class that the input vector corresponds to by application of
the matched rules. This is similar to conflict resolution in traditional expert systems.

In situation 1, direct decision, the class is that of the matched rule.

In situation 2, a vote is held among the classes by the matched rules. The confidence
degree of the matched rule is relevant to the vote. We also need to consider other
factors such as the lengths and the cover ranges of the rules. A short rule covers a larger
range than a longer rule does. It is thus more apt to tolerate exceptional instances in its
cover range and less certain to confirm an instance than a longer rule if they are in
conflict and both match the input vector. So we derive a value given by the following
equation. For the ith class, the value is:

6, = Y ox—p

N-h
1
Rule, is of clas, 2

where 0 is the certainty factor of the jth rule for the ith class, ¥; and A; are respectively
the matched cover range and the length of the rule. The conclusion is the class whose
value ¢ is the maximum.

In situation 3, exceptional reasoning is performed. The input vector corresponds to the
class for which there is no extracted rule.

In situation 4, the conclusion is given by the trained MLP.

4.2 Explanation by the factors in the matched rules

Explanation provides three kinds of information for how the conclusion is reached: the
certainty degree of the conclusion, the causal relationship between the attributes in the
input vector and the consequence, and the matched rules themselves.

4.2.1 Certainty degree

The conclusion of reasoning by a rule is given with a degree of certainty, ¢.
In situation 1, the certainty degree is related to the certainty factor of the matched rules.

¢ = max(a.,)

rule;

7 This does not mean that the input vector has to appear in the training set in order to be learnt.
-18-
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where rule; is a matched rule and «; is the certainty factor for the rule.

In situation 2, the certainty degree is:

where j is the winning class as the conclusion and the index k ranges over all classes.

In situations 3 and 4, the certainty degree can not be computed from the rules. However,
if the MLP is applied, the class conditional accuracy provides the degree of certainty.

4.2.2 Contribution degree

A contribution degree is given to an input variable in the input vector. It indicates the
contribution strength that an individual input variable has in supporting the conclusion,
or a quantitative causal relationship. Contribution degrees for an input vector are not
necessarily normalised which means that a part of the input vector may be sufficient to

' result in the conclusion. They can also be negative, indicating the contribution the input
variable makes in denying the conclusion. The contribution degree is defined according
to the four matching situations.

In situation I, the contribution degree of the ith input variable depends on the
contribution factors in the matched rules, and the certainty factors of the rules.

o, = max (B,a;)

matched ru(«.‘j

where 3, is the contribution factor of the premise in the jth rule corresponding to the ith
input variable, which is O if the premise does not exist in the rule.

In situation 2, the contribution degree is reduced because the same input variable may
support different classes in different matched rules.

= max CEREDY max (Beor,)

muatched rule inthe winning cluss, = mutched rule,, inanother class
k K ¢ j#i m J]

where the ith class is the winning one and j ranges over the other classes. The
. contribution degree can be negative, indicating that the ith input variable in the input
vector tends to counteract the conclusion.

In situations 3 and 4, no contribution degree can be computed.

4.2.3 Matched rules and cover ranges

The matched rules form the detailed qualitative content of the explanation. The rules are
self-explanatory. The cover ranges of the rules indicate the generality of each rule..

RFH

4.3 Simple examples

Reasoning and explanation on the simple two bit domains are trivial. Notice that all
possible instances have been included in the training sets without noise, so that
reasoning and explaining are performed only at matching situation 1.

-19-
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For the two bit AND problem, given an input vector <0 0>, there are two matched
rules:

Rule,: IF(~A(0.73)) THEN ~C; (1.0)
Rule,: IF(~B(0.73)) THEN ~C; (1.0)
What is the explanation?

First, the certainty degree ¢=max(].0,‘ 1.0)=1.0. Second, the contribution degrees to the
input variables A=0 and B=0 are 1.0, indicating that either of the input variables is
sufficient to conclude C=0. The explanation is

The input vector 1 is <0 0>; the result is 0,
with certainty degree 1
The contribution degrees of the conditions tosthe conclusion:
A=0: 1.0
B=0: 1.0
There are 2 rules matched:
IF (~B(1.0)) THEN (~C); (1.0)
Matched Cover Range=2; Conflict Cover Range=0
IF (~A(1.0)) THEN (~C); (1.0)
Matched Cover Range=2; Conflict Cover Range=0
The conclusion is C=0 by direct reasoning.
The input vector 2 is <0 1>; the result is 0,
with certainty degree |
The contribution degree of the conditions to the conclusion:
A=0: 1.0
There is 1 rule matched:
IF (~A(1.0)) THEN (~C); (1.0)
Matched Cover Range=2; Conflict Cover Range=0
The conclusion is C=0 by direct reasoning.

Similarly for the case when the input vector is <1 0>.

When the input vector is <1 1>, the explanation is:
The input vector 4 is <1 [>; the result isl,
with certainty degree 1
The contribution degrees of the conditions to the conclusion:
A=1: 0.5
B=l: 035
There is | rule matched:
IF (A(0.5), B(0.5)) THEN (C); (1.0)
Matched Cover Range=1; Conflict Cover Range=0

The conclusion is C=1 by direct reasoning.
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For the XOR problem, the explanations for the four instances are similar. We give only
one here:

The input vector 2 is <0 1>; the result is 0,
with a certainty degree |

The contribution degrees of the conditions to the conclusion:
A=0: 0.5
B=I: 05

3

There is 1 rule matched:
IF (A(0.50), ~B(0.50)) THEN (~C); (1.0)
Matched Cover Range=1; Conflict Cover Range=0

The conclusion is C=0 by direct reasoning.

The contribution degree of 0.5 for the two attributes indicates that to decide the
conclusion, both of the input variables are equally necessary.

We will see examples in Section 5 where explanation is more complex when instances
are absent from the training set, are in conflict or are unmatched by any rule.

4.4 How explanation enhances the reasoning capability

An additional advantage of explanation-based learning is that it is relatively easy to
enable the user to participate in the reasoning process. Explanation provides users with
knowledge in the form of symbolic rules. They are thus able to inspect the rules, to
judge if the rules agree with knowledge of the domain previously acquired in some other
way, and to modify the rules if necessary and the user is qualified to do so.

Modification of the rules is straightforward. Users can change the certainty factors and
contribution factors, add or remove premises, or simply delete the rule as desired. They
can also input rules either according to their own knowledge or for the purpose of
experimentation. In addition, GR2 provides a function in the rule extraction process that
allows users to construct a rule in consultation with the given PDS and FSD vectors, to
verifies the rule, and finally to confirm or discard the new rule.

So far, reasoning by rules is based on exact matching. To explain an input vector, only
those rules exactly covering the input vector are considerated. This restriction causes the
reasoning to fail in some cases, though these are very rare when an optimally extracted
rule set has been acquired. Why does this failure happen? It may be because the rules are
not properly general since many premises with low contribution factors may be present.
Another reason is that the input vector may be an outlier in the training set from which
the rules are generated. GR2 provides utilities to recover such failures.

The first utility is a process of rule generalisation. Given an extracted rule, the
following process is executed in an iteration:

|. From a rule r;, remove the premise with the minimal FSD. If there is more than one
premise with minimal FSD, remove any belonging to the PDS. A generalised rule 7 is

generated.

2. If the new rule 7, is better than the old rule r;, in terms of the certainty factor and the
matched cover range, replace r; with 7 and go to step 1). Otherwise go to step 3).

S
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3. The rule 7, is the final generalised rule. Terminate the process.

The second utility is called loose matching. In the first operation of the reasoning
process in subsection 4.1, “matching”, set a threshold for the contribution factors of
those premises that match in the input vector. Let’s call it the “Contribution Threshold”.
When a part of the premises of a rule has a sum of the contribution factors exceeding the
Contribution Threshold (in verification), the rule is accepted as matched and is collected.
Since the loose matching checks the rules by a part of their premises the unmatched
situation will be avoided depending on how low the Contribution Threshold is set.

5. Examples

5.1 “Go-to-beach?” example

We have constructed a simple example, called Go-to-beach?, to illustrate our method.
The scenario is to decide whether or not to go to the beach. In the example, there are
four binary attributes under consideration:

Attribute A: weekday: is it a weekday or not?

Attribute B: hot: is it hot or not?

Attribute C: dry: is it dry or not?

Attribute D: windy: is it windy or not?

The conclusion is represented as:

E: go to the beach; ~E: do not go to the beach.

The decision to go to the beach is made only under the following conditions.

a) If it is not a weekday (the weekend), and it is any of the following: not hot, dry and
windy (e.g. for sailing), hot and not windy (e.g. for swimming).

b) If it is a weekday, and it is at least hot and dry.

The complete training set (truth table) is listed in Table 5.

Case # | weekday | hot dry windy | go to beach
1 0 0 0 0 0
2 0 0 0 1 0
3 0 0 1 0 0
4 0 0 1 1 1
5 0 | 0 0 1
6 0 1 0 1 0
7 0 1 1 0 1
8 0 1 1 1 0
9 1 0 0 0 0
10 1 0 0 1 0
11 1 0 1 0 0
12 1 0 | 1 0
13 l l 0 0 0
14 1 1 0 | 0
15 l 1 1 0 1
16 | | 1 1 1

Table 5 The “Go-to-beach?” truth table

95,
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This scenario is designed to demonstrate some difficulty for a common MLP,
characterised with one layer of hidden units, generalised delta learning rule, and
sigmoidal activation functions. If the number of hidden units is two or fewer, the MLP
cannot learn the data with 100% accuracy. When the number of hidden units increases
to 3 or more, this problem is solved.

The weights and biases in the trained network are shown in Table 6 when the MLP has
only two hidden units,. This network cannot recognise instance 8 and its inability to do
so is explained during rule extraction.

hidden, hidden,
input, 0.96 1.72
input ; 4.43 -1.36
input ; -2.34 -3.72
input 4 4.65 2.30
Bias 0.18 -0.99
. [ output
hidden, 5.63
hidden, -13.3
Bias -2.96
Table 6. The weights of the MLP with 2 hidden units, for the go-to-beach
domain

As the input dimension N=4, the threshold to select FSD values is 1/N=0.25.

There are 8 rules generated. We omit the details in this example but highlight the case
that the reasoning by rules gives the wrong solution for instance 8, as does the MLP.
The rules are:

IF (-Hot(0.62), ~Dry(0.38)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0

IF (~Hot(0.60), ~Windy(0.40)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0

. IF (~Dry(0.60), Windy(0.40)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0

IF (Weekday(0.33), ~Hot(0.67)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0

IF (Weekday(0.45), ~Dry(0.55)) THEN (-Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0

IF (~Weekday(0.32), Hot(0.38), ~Windy(0.30)) THEN (Go-to-beach); (1.0)

Matched Cover Range=2; Conflict Cover Range=0
IF (Hot(0.47), Dry(0.53)) THEN (Go-to-beach); (1.0)

Matched Cover Range=4; Conflict Cover Range=0

Given the condition <0 1 1 1> at case 8, i.e. ~weekday, hot, dry and windy, the MLP
output is 0.76, but the definition in the training set is E=0, i.e. ~ Go-to-beach. The
explanation is:
Moy 8
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The input vector 8 is <0 I 1 1>, the defined output is 0,

The result of reasoning by rules is E=1

with certainty degree 1.0

The contribution degrees of the conditions to the conclusion:

weekday=0: 0.0

hot=1; 0.47
dry=1: 0.53
windy=1: 0.0

There is 1 rule matched:

IF (Hot(0.47), Dry(0.53)) THEN (Go-to-beach); (1.0
Matched Cover Range=4; Conflict Cover Range=0

The conclusion is Go-to-beach by direct reasoning.

The conclusion by the rules is in conflict with the domain definition because the matched
rule is over generalised according to the original domain definition.

Extending the hidden layer with three units, the MLP can correctly classify all 16
possible instances. The trained MLP weights are given in Table 7:

hidden; hidden; hidden ;3
input, -1.09 -5.59 6.16
input ; -5.82 -5.90 -6.27
input 1.10 -0.02 -6.57
input 4 5.39 6.09 -0.85
Bias -3.61 2.80 3.01
output
hidden -24.6
hidden , 88.0
hidden ; 99 4
Bias 6.16

Table 7. The weights of the MLP with 3 hidden units, for the go-to-beach

domain

This gives a total of 10 extracted rules which correctly recognise all of the input vectors.

Thes are given below.

wxxkrkki® Rules for positive class *# %%kt k

IF (~weekday(0.26), ~hot(0.20), dry(0.30), windy(0.24)) THEN (Go-to-beach); (1.0)
Matched Cover Range=1, Conflict Cover Range=0

IF (~weekday(0.30), hot(0.36), ~windy(0.34)) THEN (Go-to-beach); (1.0)

Matched Cover Range=2; Conflict Cover Range=0

IF (hot(0.40), dry(0.36), ~windy(0.24)) THEN (Go-to-beach); (1.0)

Matched Cover Range=2; Conflict Cover Range=0

IF (weekday(0.27), hot(0.35), dry(0.38)) THEN (Go-to-beach); (1.0)

Matched Cover Range=2; Conflict Cover Range=0
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IF (~hot(0.63), ~dry(0.37)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0

IF (~hot(0.62), ~windy(0.38)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0

IF (~dry(0.45), windy(0.55)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0

IF (~weekday(0.33), hot(0.24), windy(0.42)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=2; Conflict Cover Range=0

IF (weekday(0.32), ~hot(0.68)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0

IF (weekday(0.44), ~dry(0.56)) THEN (~Go-to-beach); (1.0)

Matched Cover Range=4; Conflict Cover Range=0

The detailed case-bycase explanations are given in Appendix A. Note that for this
deterministic domain reasoning by rules yields an overall predictive accuracy of 1.

5.2 The monk’s problem data sets

The three Monk’s problems constitute a benchmark domain for inductive machine
learning algorithms [11]. They are discrete classification problems with six different
attributes to identify an artificial robot. The six attributes are

x,: head_shape {round, square, octagon}
X2: body_shape {round, square, octagon)
X3 is_smiling {yes, no}

X4: holding {sword, balloon, flag}

xs: jacket_color {red, yellow, green, blue}
Xs: has_tie {yes, no}

We examine problem M, and M; and omit M2 because of the space limit in this paper.

5.2.1 Monk 1
Problem M,: (head_shape = body_shape) or (jacket_color = red).

There are 124 training instances randomly selected from 432 possible examples. There
are no misclassifications in this data set.

Networks are constructed as presented in Chapter 9 of [11], see Table 7. There are 17
input units, each corresponding to one of the 17 (boolean) input feature values, and one
hidden layer with 3 hidden units.

The following observation becomes necessary in improving the quality of the rule set.
The input vectors of the training data are coded under a local constraint in order to
represent a multiple valued domain by boolean valued input units in the MLP. An input
variable (x1 to x6) corresponds to a set of input units depending on the number of its

-25-
13/01/97




Explaining Neural Networks

possible values. One of the input units to each input variable must be 1 and the rest must
be 0. This local constraint is represented in GR2 by input groups. In the rule extraction
process, only the input feature with value 1 can be selected from each group for
converting into a premise of the rule. This is a general modification on the rule
extraction process to cope with domains whose input variables have multiple values. Of
course, boolean input variables are a special case of the variable with multiple values.
GR2 allows a boolean input represented either by one input unit, or by two units with
exclusive values. Note: N for setting the FSD threshold is the number of input variables,
six in this example, instead of the input vector dimension.

hiddenl hidden2 hidden3
xl=1 0.379863 3.38416 3.97957
%1=2 -3.36186 0.120335 -1.36079
x1=3 1.59203 -3.66981 -4.54251
x2=1 0.152452 3.11559 429571
%2=2 1.70372 -3.55563 -5.28836
x2=3 -3.28578 0.170422 -0.724256
x3=1 -0.679289 -0.300242 -0.879989
x3=2 -0.289235 -0.141164 -0.591719
xd=1 -0.460906 -0.457638 -0.478595
x4=2 -0.04827 0.0186045 -0.40257
x4=3 -0.484881 0.0805534 -0.780363
x5=1 -4.25606 -6.21256 4.23643
%5=2 0.840806 1.7855 -1.91755
X5=3 0.857625 2.15388 -1.66635
x5=4 1.38552 1.57324 -2.4776
x6=1 -0.452624 -0.104307 -0.664879
xG=2 -0.474712 -0.23297 -1.16858
bias -1.029948 -0.55633402 -1.6094799
| output
hiddenl -5.20181
hidden2 -7.06326
hidden3 9.29557
bias 3.0946786

Table 8. MLP weights for the M, problem

There is a special feature in the definition of the M, problem: only the positive property
is specified. If any negative rule is generated, until they cover all possible space for the
negative class, there will be mis-classified instances in the test (whole) set. To prevent
GR2 from extracting negative rules, we simply raise the FSD threshold T for the
negative class to a large value, say 100, so that no rule of the negative class will be
generated. Here only a few representative instances are illustrated in Appendix B. The
overall accuracy on the M, problem is 100%.

5.2.2 Monk 3

Problem M3: (holding a sword and jacket_color is green) or (body_shape is not octagon
and jacket_color is not blue), simplified as (x4=1 and x5=3) or (x2#3 and x5#4).

From 432 examples, 122 were selected randomly, and among them there were 6
misclassifications.

The MLP network has one hidden layer including 3 hidden units.
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hidden 1 hidden 2 hidden 3
x1=1 0.0059099235 0.9472996 -0.73383844
x1=2 1.8466698 -0.26342666 -0.67896807
x1=3 -1.4575262 -0.2670728 2.1996262
x2=1 -1.8898789 -0.79776365 1.6834232
x2=2 -2.7031727 -1,9993198 -0.96162158
x2=3 49484158 3.1095428 0.27180243
x3=1 1.4532402 -1.1256549 -0.73032016
x3=2 -0.63673681 1.2663549 1969153
xd=1 0.79512382 -1.225943 3.2781074
x4=2 0.40265474 0.76956165 -1.0391884
x4=3 -0.40681547 0.68001312 -1.189911
x5=1 -2.8933601 -0.64486891 1.6797435
x5=2 -1.8767953 -1.052377 0.12152703
x5=3 0.717704 -3.5005422 0.53808266
x5=4 4.6651802 5.0797367 -1.4538313
x6=1 1.1653591 0.11742916 0.23057088
x6=2 -0.30767989 0.12740196 0.64650488
bias 0.7550745 0.025773972 1.1010749
| output

hidden 1 -6.9178467

hidden 2 -5.5448179

hidden 3 4.7419658

bias 3.675133

Table 9. MLP weights for the M; problem

The MLP network classifies the training set to an accuracy 98.36%, with the accuracy

on the negative class of 98.39%, and on the positive class of 98.36%. The classification
accuracy on the complete set of 432 examples is 97.17% with the 94.3% on the negative
and class and 100% on the positive.

The FSD thresholds for the negative class is set to 100 and that for the positive class is
the default value of 1.0 for the same reasoning given for the M, domain. We will only

show those rule extraction situations for the positive class as follows. As there is noise
in the training set, the expected accuracy in the rule validation operation is set to 0.75.

The extraction and explanation is illustrated in Appendix B. Applying the rule set on the
training set, we have the following results: accuracy for the positive class of 90%;
accuracy for the negative class of 96.8%; overall accuracy 93.4%. On the complete test
set, we have: accuracy for the positive class of 87.7%; accuracy for the negative class of
100% and overall accuracy of 93.5%.

5.3 Breast cancer data set

The application task described in this section is the diagnosis of cancer from fine needle
aspirates of the breast. We first provide a brief synopsis of research detailed [24,28].

Breast cancer is a common disease affecting around 22 000 women yearly in England
and Wales and is the commonest cause of death in the 35-55 year age group of the same
population [16]. The primary method of diagnosis is through microscopic examination
by a pathologist of cytology slides derived from fine needle aspiration of breast lesions.
The acquisition of the necessary diagnostic expertise for this task is a relatively slow
process. (A trainee pathologist in the UK requires at least five years study and
experience before being allowed to sit the final professional pathology examinations for
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membership of the Royal College of Pathologists.) There is thus scope for a decision-
making tool for this domain, both to assist in training junior pathologists and to improve
their performance.

There are three performance indicators widely used in medical decision making.
Sensitivity: defined as the ratio of the number of correct positive diagnoses to the
number of positive outcomes. Specificity: defined as the ratio of the number of correct
negative diagnoses to the number of negative outcomes. Accuracy: defined as the ratio
of the number of correct diagnoses to the total number of patients. In this domain,
taking malignancy as a “positive” outcome, specificity must be high (approaching
100%), to avoid unnecessary surgery being carried out. This is because a patient
diagnosed as having a malignant tumour will go straight for surgery, whereas a benign
diagnosis will be referred to the surgeon and the patient will be reviewed. Thus some
false negatives are acceptable whilst false positives are not.

The data used in this study consisted of 413 patient records each comprising ten binary-
valued features recorded from observation of breast tissue samples by an expert
pathologist (of Consultant status with 10 years experience in the field). The samples
were taken from patients referred to the Royal Hallamshire Hospital, Sheffield, UK with
symptomatic breast lesions between 1989-1993. The distribution of categories within the
data was fairly even — 53% of cases were malignant, 47% benign. Although the data-set
was claimed to have predictive value for the diagnosis task [12,15], there are only 92
distinct input vectors in the set and 12 of them correspond to conflicting conclusions
appearing in many places. Thirty eight of the 92 distinct input vectors occur more than
once in the data-set. Among the conflicting occurrences, 17 patterns belong to the
minority class while most patterns having the same input vectors do not. An additional
data set was also employed with 50 records blinded to the true diagnosis.

The ten data features used in the study are all claimed to have diagnostic value for the
task. We give the definitions of each feature, together with the abbreviations by which
they will be referred to throughout the remainder of this section in Appendix C.

Two hundred and thirteen records are randomly selected as the training set and the
remaining 200 records as the test set. An MLP having 3 hidden units is found to perform
best in this domain. The classification results of the MLP are shown in Table 10.

Data set On the training set (%) On the test set (%)
Performance Sensitivity | Specificity | Accuracy | Sensitivity | Specificity | Accuracy
By MLP 95.96 95.61 95.79 93.75 95.19 94.47

Table 10. MLP classification results on the Breast Cancer data set.

Extracting rules using the default FSD threshold of 1.0, we have the result:

Data set On the training set (%) On the test set (%)
Performance Sensitivity | Specificity | Accuracy | Sensitivity | Specificity | Accuracy
By rules 91.23 91.92 91.55 87.5 89.58 88.5

Table 11. Classification results on the Breast Cancer data set using the
extracted rules

The rules are shown in Appendix D where ~Malignant indicates the conclusion
“benign”.
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Observing the individual rules, we find they are all acceptably accurate in terms of the
cover ranges. They are mostly, however, fairly long, with the average length (the
number of the premises) 4.692, nearly half of the input dimension. The rules are
therefore not general enough. When the rules are applied to the test set (200 patterns
total, 66 distinct patterns) for classification, 7 distinct patterns are not covered by any
rules, which causes a reduction of the accuracy.

Now we take the generalisation step (step 5 in Rule_extraction(e)), the performance is
improved thus:

Data set On the training set (%) On the test set (%)
Performance | Sensitivity | Specificity | Accuracy | Sensitivity | Specificity | Accuracy
By rules 95.61 03.94 94.84 95.19 90.62 93

Table 12. Classification results on the Breast Cancer data set using the
generalised extracted rules

The generalised rule set is:

IF (~ICL(0.22), ~3D(0.12), ~Foamy(0.13), ~Size(0.52)) THEN (~Malignant); (0.9677)
Matched Cover Range=060; Conflict Cover Range=2
IF (~3D(0.16), ~Naked(0.24), ~Foamy(0.32), ~Size(0.28)) THEN (~Malignant); (0.9000)
Matched Cover Range=54; Conflict Cover Range=6
[F (~ICL(0.29), ~3D(0.11), ~Nucleoli(0.29), ~Size(0.30)) THEN (~Malignant); (0.9674)

Matched Cover Range=89; Conflict Cover Range=3

Matched Cover Range=0; Conflict Cover Range=1

[F (~ICL(0.29), ~Nucleoli(0.40), ~Size(0.31)) THEN (~Malignant); (0.9479)
Matched Cover Range=91; Conflict Cover Range=5
IF (~ICL(0.23), ~3D(0.19), ~Naked(0.16), ~Size(0.43)) THEN (-Malignant); (0.9651)
Matched Cover Range=83; Conflict Cover Range=3
IF (ICL(0.88), ~Apocrine(0.12)) THEN (Malignant); (0.9848)
Matched Cover Range=65; Conflict Cover Range=1
IF (Pleo(0.38), Size(0.62)) THEN (Malignant); (0.9894)
Matched Cover Range=93; Conflict Cover Range=1
IF (Nucleoli(0.85), ~Apocrine(0.15)) THEN (Malignant); (0.9286)
Matched Cover Range=91; Conflict Cover Range=7
IF (Size(0.89), ~Apocrine(0.11)) THEN (Malignant); (0.9697)

Matched Cover Range=96; Conflict Cover Range=3

The total number of rules is nine, and the average length is three. Applying these rules to
the test set, all patterns are covered by some rules.

Most rules were confirmed as being correct by the third author who is a consultant
pathologist having more than 10 years experience in the field. For example, the last rule
tells us that Size (increased nuclear size) is usually only found in malignant cells with the
exception of benign epithelial cells showing apocrine change.

Next, we used the latter rule set to classify and explain the additional clinical records. In
the 49 records, there are only 17 distinct cases. GR2 explains them as shown in
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Appendix D. We attach a pathologist’s comment to each case according to the clinical
diagnoses and analyses.

6. Conclusion

GR2 realises its explanation functionality both at the domain level via the process of rule
extraction from a trained neural network, and at the case level via reasoning from
extracted rules.

Rule extraction is an important technology in the field of neural networks, and there are
still some difficulties to overcome. In GR2 both white-box and black-box criteria are
used to facilitate the rule extraction process. The resultant general rules represent both
qualitative and quantitative knowledge.

At case level, GR2 provides information regarding the questions of “how” and “to what
extent”. It also provides causal knowledge that reflects the relative importance of the
elements in the given input vectors. Special facilities are provided to explain cases in

' situations such as conflict matching, non-matching and the so-called “failures” of
traditional rule-based systems.

The explanation functions in GR2 are at a preliminary stage compared with those of
fully-fledged expert systems. For instance, there is neither a real dialogue component nor
a natural language interpreter for “social” interaction between users and the computer.
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Appendix A: Case-by-case explanations for the “go-to-beach?”

example
The input vector is <0 0 0 0>. The defined output is 0.

The result of reasoning by rules is 0
with a certainty degree 1

The contribution degrees of the conditions to the conclusion:

hot=0: 0.6278
dry=0: 0.3722
windy=0: 0.3776

There are 2 rules matched.
IF (~hot(0.62), ~windy(0.38)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0
."" IF (~hot(0.63), ~dry(0.37)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0
The conclusion is Not Go-to-beach by direct reasoning.
/‘**************************************/
The input vector 2 is <0 0 0 1>. The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree |
The contribution degrees of the conditions to the conclusion:
hot=0: 0.6278
dry=0: 0.4518
windy=1: 0.5482
There are 2 rules matched:
‘ IF (~dry(0.45), windy(0.55)) THEN (-Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0
IF (~hot(0.63), ~dry(0.37)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=4,; Conflict Cover Range=0
The conclusion is Not Go-to-beach by direct reasoning.
/**************************************.,f
The input vector 3 is <0 0 1 0>. The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree 1
The contribution degrees of the conditions to the conclusion:
hot=0: 0.6224
windy=0: 0.3776
There is 1 rule matched:

IF (~hot(0.62), ~windy(0.38)) THEN (~Go-to-beach); (1.0)
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Matched Cover Range=4; Conflict Cover Range=0
The conclusion is Not Go-to-beach by direct reasoning.
/**************************************/
The input vector 4 is <0 0 1 1>, The defined output is 1.
The result of reasoning by rules is 1

with a certainty degree |
The contribution degrees of the conditions to the conclusion:

weekday=0: 0.2585

hot=0: 0.1952
dry=1: 0.3048
windy=1: 0.2415

There is 1 rule matched:
IF (~weekday(0.26), ~hot(0.20), dry(0.30), windy(0.24)) THEN (Go-to-beach); (1.0)
Matched Cover Range=1; Conflict Cover Range=0
The conclusion is Go-to-beach by direct reasoning.
/******************#*******************/
The input vector 5 is <0 | 0 0>. The defined output is 1.
The result of reasoning by rules is |
with a certainty degree 1
The contribution degrees of the conditions to the conclusion:
weekday=0: 0.3038
hot=1: 0.3581
windy=0: 0.3381
There is 1 rule matched:
IF (~weekday(0.30), hot(0.36), ~windy(0.34)) THEN (Go-to-beach); (1.0)
Matched Cover Range=2; Conflict Cover Range=0
The conclusion is Go-to-beach by direct reasoning.
/**************************************/
The input vector 6 is <0 1 0 1>. The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree 1
The contribution degrees of the conditions to the conclusion:

weekday=0: 0.3333

hot=1: 0.2437
dry=0: 04518
windy=1: 0.5482

There are 2 rules matched:
IF (~weekday(0.33), hot(0.24), windy(0.42)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=2; Conflict Cover Range=0
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IF (~dry(0.45), windy(0.55)) THEN (-Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0
The conclusion is Not Go-to-beach by direct reasoning.
/**************************************/
The input vector 7 is <0 1 1 0>. The defined output is 1.
The result of reasoning by rules is 1

with a certainty degree 1
The contribution degrees of the conditions to the conclusion:

weekday=0: 0.3038

hot=1: 0.4014
dry=1: 0.3629
windy=0: 0.3381

There are 2 rules matched:
IF (hot(0.40), dry(0.36), ~windy(0.24)) THEN (Go-to-beach); (1.0)
Matched Cover Range=2; Conflict Cover Range=0
IF (~weekday(0.30), hot(0.36), ~windy(0.34)) THEN (Go-to-beach);
Matched Cover Range=2: Conflict Cover Range=0
The conclusion is Go-to-beach by direct reasoning.
R R R KK R o K S K K o
The input vector 8 is <0 | 1 1>. The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree 1
The contribution degrees of the conditions to the conclusion:
weekday=0: 0:3333
hot=1: 0.2437
windy=1: 0.423
There is 1 rule matched:
IF (~weekday(0.33), hot(0.24), windy(0.42)) THEN (~Go-to-beach);
Matched Cover Range=2; Conflict Cover Range=0
The conclusion is Not Go-to-beach by direct reasoning.
/**************************************l
The input vector 9 is <1 0 0 0>. The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree 1
The contribution degrees of the conditions to the conclusion:
weekday=1: 0.4426
hot=0: 0.6823
dry=0; 0.5574
windy=0: 0.3776
-35-
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There are 4 rules matched:

IF (weekday(0.44), ~dry(0.56)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0
IF (weekday(0.32), ~hot(0.68)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0
IF (~hot(0.62), ~windy(0.38)) THEN (~Go-to-beach); (1.0)

Matched Cover Range=4,; Conflict Cover Range=0
[F (~hot(0.63), ~dry(0.37)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0
The conclusion is Not Go-to-beach by direct reasoning.
RS oo oo o RO ok
The input vector 10 is <1 0 0 1>. The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree |
The contribution degrees of the conditions to the conclusion:
weekday=1: 0.4426
hot=0: 0.6823
dry=0: 0.5574"
windy=1: 0.5482
There are 4 rules matched:
IF (weekday(0.44), ~dry(0.56)) THEN (~Go-to-beach); (1.0)
Malched Cover Range=4; Conflict Cover Range=0
IF (weekday(0.32), ~hot(0.68)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0
IF (~dry(0.45), windy(0.55)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0
IF (~hot(0.63), ~dry(0.37)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0
The conclusion is Not Go-to-beach by direct reasoning.
/**************************************/
The input vector 11 is <1 0 1 0>. The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree 1

The contribution degrees of the conditions to the conclusion:

weekday=1; 0.3177
hot=0: 0.6823
windy=0: 0.3776

There are 2 rules matched:
IF (weekday(0.32), ~hot(0.68)) THEN (~Go-to-beach): (1.0)
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Matched Cover Range=4; Conflict Cover Range=0
IF (~hot(0.62), ~windy(0.38)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0
The conclusion is Not Go-to-beach by direct reasoning.
/**************************************/
The input vector 12 is <1 0 1 1>. The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree 1
The contribution degrees of the conditions to the conclusion:
weekday=1: 0.3177
hot=0: 0.6823
There is | rule matched:
IF (weekday(0.32), ~hot(0.68)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=4,; Conflict Cover Range=0
The conclusion is Not Go-to-beach by direct reasoning.
/:i:*************************************/
The input vector 13 is <1 1 0 0>. The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree |
The contribution degrees of the conditions to the conclusion:
weekday=1: 0.4426
dry=0: 0.5574
There is | rule matched:
IF (weekday(0.44), ~dry(0.56)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0
The conclusion is Not Go-to-beach by direct reasoning.
/**************************************’f
The input vector 14 is <1 1 0 1>, The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree |
The contribution degrees of the conditions to the conclusion:
weekday=1: 0.4426
dry=0: 0.5574
windy=1: 0.5482
There are 2 rules matched:
IF (weekday(0.44), ~dry(0.56)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0
IF (~dry(0.45), windy(0.55)) THEN (~Go-to-beach); (1.0)
Matched Cover Range=4; Conflict Cover Range=0
Sy e




The conclusion is Not Go-to-beach by direct reasoning.
/**************************************/
The input vector 15 is <1 1 1 0>. The defined outputis 1.
The result of reasoning by rules is 1
with a certainty degree 1
The contribution degrees of the conditions to the conclusion:
weekday=1: 0.2678
hot=1: 0.4014
dry=1: 0.3845
windy=0: 0.2358
There are 2 rules matched:
IF (weekday(0.27), hot(0.35), dry(0.38)) THEN (Go-to-beach); (1.0)
Matched Cover Range=2; Conflict Cover Range=0
IF (hot(0.40), dry(0.36), ~windy(0.24)) THEN (Go-to-beach); (1.0)
Matched Cover Range=2; Conflict Cover Range=0
The conclusion is Go-to-beach by direct reasoning.
[ o ok RSk R K
The input vector 16 is <1 1 1 1>. The defined output is 1.
The result of reasoning by rules is 1
with a certainty degree 1
The contribution degrees of the conditions to the conclusion:
weekday=1: 0.2678
hot=1: 0.3476
dry=1: 0.3845
There is 1 rule matched:
IF (weekday(0.27), hot(0.35), dry(0.38)) THEN (Go-to-beach); (1.0)
Matched Cover Range=2; Conflict Cover Range=0

The conclusion is Go-to-beach by direct reasoning.

/**************************************/
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Appendix B: Case-by-case explanations for the Monk’s problem

Monk 1
pattern[0]: 10010010100001010,0.9589;

Non-PDS:llIIllll]1101011];\

FSD: 0.38 0.370.00.460.330.130.050.050.16 0.1 0.06 0 0.08 0.14 0.06 0.06 0.06;
IF (x1=1(0.38), x2=1(0.46)) THEN (monk); (1.0)

Matched Cover Range=9; Conflict Cover Range=0

Valid rule

Patterns 1-8 are covered by the extracted rules, so that they are passed.

pattern[9]: 10001010100100001, I;
Non-PDS:11100111111111110;

FSD: 0.05 0.0 0.04 0.01 0.04 0.03 0.07 0.07 0.15 0.09 0.06 0.56 0.09 0.09 0.37 0.09 0.09;
IF (x5=1(0.56)) THEN (monk);  (1.0)

Matched Cover Range=29; Conflict Cover Range=0

Valid rule.

There are some patterns of the negative class, from which no rules are extracted owing to the high FSD
threshold previously set.

pattern[61]: 01 00101010001001 0, 0.9581
Non-PDS: 111111111111111T1TI,

0.3765 0.3894 0.01285 0.07001 0.1312 0.06118 0.03134 0.03134 0.09155 0.03697 0.05458 0 0.1273
0.0976 0.02969 0.0376 0.0376,

IF (x1=2(0.39)) THEN (monk);  (0.5238)
Matched Cover Range=22; Conflict Cover Range=20
Invalid rule discarded.

pattern[67]: 0100101000101000 1,0.9508,
Non-PDS: 1111111111110 111I;

0.17320.2316 0.05837 0.1321 0.2194 0.08728 0.104 0.104 0.03209 0.06307 0.09516 0 0.1325 0.02897
0.1035 0.061 0.061;

IF (x1=2(0.23), x2=2(0.22)) THEN (monk); (1.0000);

Matched Cover Range=15; Conflict Cover Range=0;

Valid rule

pattern[109]: 00100110100000101, 0.9566

Non-PDS: 111111111 11111111,

FSD: 0.150.06 0.21 0.03 0.33 0.36 0.04 0.04 0.16 0.06 0.09 0 0.03 0.02 0.05 0.055 0.055
IF (x1=3(0.21), x2=3(0.36)) THEN (monk); (1.0)

Matched Cover Range=17; Conflict Cover Range=0

EXPLANATION for Monkl

The input vector 1 is<1 001001010000 10 10>. The defined output is 1.
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The result of reasoning by rules is 1
with a certainty degree 1
The contribution degrees of the conditions to the conclusion:
xl=1: 0.4482
x2=1: 0.5518
There is 1 rule matched: ‘
IF (x1=1(0.45), x2=1(0.55)) THEN (monk); (1.0)
Matched Cover Range=9; Conflict Cover Range=0
The conclusion is monk by direct reasoning.
lf**************************************/
The input vector 9is<1001000100110000 I>. The defined output is 1.
The result of reasoning by rules is 1
with a certainty degree 1

The contribution degrees of the conditions to the conclusion:

xI=1: 0.4482
x2=1: 0.5518
x9=1r |

There are 2 rules matched:
IF (x5=1(1.00)) THEN (monk);  (1.0)
Matched Cover Range=29; Conflict Cover Range=0
IF (x1=1(0.45), x2=1(0.55)) THEN (monk); (1.0)
Matched Cover Range=9; Conflict Cover Range=0
The conclusion is monk by direct reasoning.
AR R KRR R R
The input vector 10is<1000101010010000 1>. The defined output is 1.
The result of reasoning by rules is 1
with a certainty degree |
The contribution degrees of the conditions to the conclusion:
x5=1: 1
There is 1 rule matched:
IF (x5=1(1.00)) THEN (monk);  (1.0)
Matched Cover Range=29; Conflict Cover Range=0
The conclusion is monk by direct reasoning.
JEFRI ko kR kR KRR R R
The input vector 11 is<1 000101010001 00 10>. The defined output is 0.
0
with a certainty degree 0.
There is no rule directly matching this input vector. However,

the exceptional reasoning enables since there is no extracted rules
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on negative class
The conclusion is Not monk
/**************************************/
The input vector 67 is<0 1001010001 10000 1>. The defined output is 1.
The result of reasoning by rules is 1
with a certainty degree 1

The contribution degrees of the conditions to the conclusion:

x1=2: 0.6578
x2=2: 0.3422
x5=1: 1

There are 2 rules matched:
IF (x1=2(0.66), x2=2(0.34)) THEN (monk); (1.0)
Matched Cover Range=15; Conflict Cover Range=0
IF (x5=1(1.00)) THEN (monk);  (1.0)
Matched Cover Range=29; Conflict Cover Range=
e o o ot okt KK SR KKK ok
The input vector 113is<0010011000110000 1> The defined output is 1.
The result of reasoning by rules is 1
with a certainty degree 1

The contribution degrees of the conditions to the conclusion:

x1=3: 0.3607
x2=3: 0.6393
%5=fe 1

There are 2 rules matched:

IF (x1=3(0.36), x2=3(0.64)) THEN (monk); (1.0)
Matched Cover Range=17; Conflict Cover Range=0
IF (x5=1(1.00)) THEN (monk);  (1.0)

Matched Cover Range=29; Conflict Cover Range=0

The conclusion is monk by direct reasoning.

/**************************************/

Monk 3

pattern[0]: 100 10010100100001,0.9993
Non-PDS: 010111001 11111110,

FSD: 0.08407 0.06208 0.022 0.1093 0.01466 0.09464 0.1183 0.1183 0.08087 0.06394 0.01693 0.2288
0.008722 0.009452 0.2106 0.07673 0.07673,

IF (x5=1(0.23)) THEN (monk);  (0.6875)
Matched Cover Range=22; Conflict Cover Range=10
Invalid rule.

pattern[1]: 10010010100010010,0.9819
Non-PDS:01010100111011100,
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FSD: 0.08991 0.06872 0.02119 0.4474 0.02416 0.4232 0.06449 0.06449 0.0709 0.03746 0.03344
0.0141 0.4582 0.0134 0.4307 0.02527 0.02527,

IF (x2=1(0.45), x5=2(0.46)) THEN (monk); (1.0000)

Matched Cover Range=9; Conflict Cover Range=0

Valid rule

pattern[3]: 10010010100001010,0.8561

Non-PDS:01010100111000100,

FSD: 0.0847 0.06872 0.01598 0.2273 0.05925 0.1681 0.03011 0.03011 0.1405 0.06852 0.07202 0.0141
0.04785 0.4926 0.4307 0.03002 0.03002,

IF (x2=1(0.23), x5=3(0.49)) THEN (monk); (0.8333)

Matched Cover Range=5; Conflict Cover Range=1

Valid rule

pattern[5]: 10010010010100010,0.986

Non-PDS:01011100001111101,

FSD: 0.09063 0.07275 0.01788 0.2226 0.0527 0.1655:0.06521 0.06521 0.06715 0.1351 0.0679 0.2785
0.01868 0.0545 0.2053 0.06448 0.06443,

0.09063 0.07275 0.01788 0.2226 0.0527 0.1699 0.06521 0.06521 0.06715 0.1351 0.0679 0.2785
0.01868 0.0545 0.2053 0.06448 0.06443,

IF (x2=1(0.22), x5=1(0.28)) THEN (monk); (1.0000)

Matched Cover Range=12; Contlict Cover Range=0

Valid rule

pattern[17]: 10001010100001010,0.8696

Non-PDS:01001100111000100,

FSD: 0.1237 0.07402 0.04973 0.04931 0.2174 0.1681 0.02537 0.02537 0.4587 0.3165 0.1422 0.0141
0.05251 0.2624 0.1958 0.02867 0.02867,

IF (x2=2(0.22). x4=1(0.46), x5=3(0.26)) THEN (monk); (1.0000)

Matched Cover Range=4; Conflict Cover Range=0

Valid rule

pattern[18]: 10001010010010010,0.8305

Non-PDS:01110101101101101,

FSD: 0.3762 0.3591 0.01716 0.02023 0.1941 0.1739 0.0207 0.0207 0.0658 0.1356 0.0698 0.01267
0.44550.3144 0.1183 0.0259 0.0259,

IF (x1=1(0.38), x2=2(0.19), x5=2(0.45)) THEN (monk); (1.0000)

Matched Cover Range=8; Conflict Cover Range=0

Valid rule

pattern[21]: 10001010001100010,0.9855

Non-PDS:01110101110011101,

FSD: 0.157 0.08674 0.07028 0.01422 0.4549 0.4407 0.03809 0.03809 0.03269 0.0599 0.09259 0.5054
0.01923 0.1315 0.3547 0.01745 0.01745,

IF (x2=2(0.45), x5=1(0.51)) THEN (monk); (1.0000)

Matched Cover Range=10; Conflict Cover Range=0

Valid rule

pattern[25]: 1000101000100100 1, 0.8796

Non-PDS:01110101110110110,

FSD: 0.4189 0.3957 0.02326 0.01548 0.1399 0.1244 0.02554 0.02554 0.01735 0.1024 0.1198 0.00746
0.008808 0.1312 0.1149 0.1808 0.1808,

IF (x1=1(0.42), x6=2(0.18)) THEN (monk); (0.5909)

Matched Cover Range=13; Conflict Cover Range=9

pattern[65]:01001010001010001, 0.9378

Non-PDS: 10110101110101110,

FSD: 0.01162 0.06934 0.05772 0.01888 0.148 0.1291 0.02894 0.02894 0.05521 0.09714 0.1524
0.003973 0.7275 0.3484 0.3752 0.1265 0.1265,

IF (x5=2(0.73)) THEN (monk);  (0.6774)

Matched Cover Range=21; Conflict Cover Range=10

pattern[69]: 0100100110001000 1, 0.9994

Non-PDS: 10000111111001110,

FSD: 0.06591 0.08316 0.01725 0.0143 0.413 0.3987 0.07339 0.07339 0.06095 0.02885 0.03209
0.05306 0.193 0.01008 0.1298 0.03625 0.03625,
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IF (x2=2(0.41), x5=2(0.19)) THEN (monk); (0.9231)

Matched Cover Range=12; Conflict Cover Range=1

Valid rule

pattern[71]:01001001010001010,0.807

Non-PDS:10001111001000100,

FSD: 0.05873 0.07472 0.01598 0.04868 0.4093 0.3606 0.155 0.155 0.01285 0.1259 0.113 0.0141

0.05377 0.1798 0.1119 0.03738 0.03738,

IF (x2=2(0.41), x5=3(0.18)) THEN (monk); (0.7500)

Matched Cover Range=9; Conflict Cover Range=3

pattern[74): 01 000110100001010,0.7531

Non-PDS: 10000000111000100,

FSD: 0.1615 0.2332 0.07171 0.05729 0.06921 0.1265 0.1269 0.1269 0.6141 0.1906 0.4235 0.07441

0.1129 0.392 0.2047 0.08646 0.08646,

IF (x1=2(0.23), x4=1(0.61), x5=3(0.39)) THEN (monk); (1.0000)

Matched Cover Range=2; Conflict Cover Range=0

Valid rule

pattern[100]: 00101010010001010,0.9673

Non-PDS:11101100001000100,

FSD: 0.3218 0.1177 0.4395 0.01144 0.09531 0.08387 0.02402 0.02402 0.05029 0.1395 0.08926 0.0133

0.05377 0.1543 0.0872 0.04044 0.04044,

IF (x1=3(0.44)) THEN (monk);  (0.5000)

Matched Cover Range=17; Conflict Cover Range=17

Invalid rule

pattern[108]: 00100110100001001, 0.7688

Non-PDS:11100000111000111,

FSD: 0.07983 0.08461 0.1644 0.02006 0.01941 0.03947 0.17130.1713 0.3149 0.1878 0.1271 0.06445

0.06848 0.2705 0.1376 0.09862 0.09862,

IF (x3=1(0.17), x4=1(0.31), x5=3(0.27)) THEN (monk); (0.8333)

Matched Cover Range=5; Conflict Cover Range=1

Valid rule

IF (x2=1(0.49), x5=2(0.51)) THEN (monk); (1.0000)

Matched Cover Range=9; Conflict Cover Range=0

Valid rule

IF (x2=1(0.32), x5=3(0.68)) THEN (monk); (0.8333)

Matched Cover Range=5; Conflict Cover Range=1

Valid rule

IF (x2=1(0.44), x5=1(0.56)) THEN (monk); (1.0000)

Matched Cover Range=12; Conflict Cover Range=0

Valid rule

IF (x2=2(0.23), x4=1(0.49), x5=3(0.28)) THEN (monk); (1.0000)

Matched Cover Range=4; Conflict Cover Range=0

Valid rule

IF (x2=2(0.47), x5=1(0.53)) THEN (monk); (1.0000)

Matched Cover Range=10; Conflict Cover Range=0

Valid rule

IF (x2=2(0.68), x5=2(0.32)) THEN (monk); (0.9231)

Matched Cover Range=12; Conflict Cover Range=1

Valid rule

IF (x1=2(0.19), x4=1(0.50), x5=3(0.32)) THEN (monk); (1.0000)

Matched Cover Range=2; Conflict Cover Range=0

Valid rule

IF (x3=1(0.23), x4=1(0.42), x5=3(0.36)) THEN (monk); (0.8333)

Matched Cover Range=5; Conflict Cover Range=1

Valid rule

A part of explanations to Monk3:

The input vector 1 is<100100101001000 | 0>. The defined output is I.
with a certainty degree 0.9677.

There is no rule directly matching this input vector. However,
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the exceptional reasoning enables since there is no extracted rules

on positive class

The conclusion is monk
/**********x***************************/

The input vector 7is <1 001 00101000001 10>. The defined output is 0.
The result of reasoning by rules is O
with a certainty degree |
The contribution degrees of the conditions to,\the conclusion:
x5=4: 1
There is 1 rule matched:
IF (x5=4(1.00)) THEN (~monk); (1.0)
Matched Cover Range=31; Conflict Cover Range=0
The conclusion is Not monk by direct reasoning.
/**********************************#***/
The input vector 97is<1 00001 101001000 1 0>. The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree 1
The contribution degrees of the conditions to the conclusion:

x1=1: 0.1605
® x2=3; 0.8395
x5=1: 04252
There are 2 rules matched:
IF (x2=3(0.57), x5=1(0.43)) THEN (~monk); (1.0)
Matched Cover Range=10; Conflict Cover Range=0
IF (x1=1(0.16), x2=3(0.84)) THEN (~monk); (1.0)

Matched Cover Range=13; Conflict Cover Range=0
The conclusion is Not monk by direct reasoning.
/*i$***********************************/
The input vector 99is<1 00001101000 100 I 0>. The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree 1
The contribution degrees of the conditions to the conclusion:
xl=1: 0.1605
x2=3: 0.8395
x5=2: 04191
There are 2 rules matched:
IF (x2=3(0.58), x5=2(0.42)) THEN (~monk); (1.0)
Matched Cover Range=9; Conflict Cover Range=0
. IF (x1=1(0.16), x2=3(0.84)) THEN (~monk); (1.0)
Matched Cover Range=13; Conflict Cover Range=0
The conclusion is Not menk by direct reasoning.
/**************************************/
The input vector 101is<1 000011010000 10 [ 0>. The defined output is 1.
The result of reasoning by rules is 0
with a certainty degree 1
The contribution degrees of the conditions to the conclusion:
xl=1: 0.1605
x2=3: 0.8395
There is 1 rule matched:
IF (x1=1(0.16), x2=3(0.84)) THEN (~monk); (1.0)
Matched Cover Range=13; Conflict Cover Range=0
The conclusion is Not monk by direct reasoning.
This result is different from the demain definition.
/**************************************/
The input vector 103is<1 0000110100000 [ 1 0>. The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree 1
The contribution degrees of the conditions to the conclusion:
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xI=1:  0.1605
x2=3; 0.8395
x5=4: 1
There are 2 rules matched:
IF (x1=1(0.16), x2=3(0.84)) THEN (~monk); (1.0)
Matched Cover Range=13; Conflict Cover Range=0
IF (x5=4(1.00)) THEN (~monk); (1.0)
Matched Cover Range=31; Conflict Cover Range=0
The conclusion is Not monk by direct reasoning.
/**************************************/
The input vector 105is <1 00001100101000 I 0>. The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree |
The contribution degrees of the conditions to the conclusion:
xl=1: 0.1605 .
x2=3: 0.8395
x4=2: 0.2142
x5=1: 0.4252
There are 3 rules matched:
IF (x2=3(0.57), x5=1(0.43)) THEN (~monk); (1.0)
Maltched Cover Range=10; Conflict Cover Range=0
IF (x2=3(0.79), x4=2(0.21)) THEN (~monk); (1.0)
Matched Cover Range=13; Conflict Cover Range=0
IF (x1=1(0.16), x2=3(0.84)) THEN (~monk); (1.0)
Matched Cover Range=13; Conflict Cover Range=0
The conclusion is Not monk by direct reasoning.
/**************************************f
The input vector 109is<1 0000110010001 0 [ 0>. The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree 1
The contribution degrees of the conditions to the conclusion:
xI=1:  0.1605
x2=3: 0.8395
x4=2; 0.2142
There are 2 rules matched:

IF (x2=3(0.79), x4=2(0.21)) THEN (~monk); (L0)
Matched Cover Range=13; Conflict Cover Range=0
IF (x1=1(0.16), x2=3(0.84)) THEN (~monk); (1.0)

Matched Cover Range=13; Conflict Cover Range=0
The conclusion is Not monk by direct reasoning.
/**************************************/
The input vector 111is<100001100100001 1 0>. The defined output is 0.
The result of reasoning by rules is 0

with a certainty degree 1
The contribution degrees of the conditions to the conclusion:

xl=1: 0.1605
x2=3; (0.8395
x4=2: (0.2142
x5=4: 1
There are 3 rules matched:
IF (x2=3(0.79), x4=2(0.21)) THEN (~monk); (1.0)
Matched Cover Range=13; Conflict Cover Range=0
IF (x1=1(0.16), x2=3(0.84)) THEN (~monk); (1.0)

Matched Cover Range=13; Conflict Cover Range=0
IF (x5=4(1.00)) THEN (~monk); (1.0)
Matched Cover Range=31; Conflict Cover Range=0

The conclusion is Not monk by direct reasoning.
/**************************************/
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The input vector 113is<100001100011000 1 0> The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree 1
The contribution degrees of the conditions to the conclusion:
x1=1: 0.1605
x2=3: 0.8395
x4=3: 0.3355
x5=1: 0.4252
There are 3 rules matched: \
IF (x2=3(0.57), x5=1(0.43)) THEN (~monk); (1.0
Matched Cover Range=10; Conflict Cover Range=0
IF (x2=3(0.66), x4=3(0.34)) THEN (~monk); (1.0)
Matched Cover Range=14; Conflict Cover Range=0
IF (x1=1(0.16), x2=3(0.84)) THEN (~monk); (1.0)
Matched Cover Range=13; Conflict Cover Range=0
The conclusion is Not monk by direct reasoning. “
/**************************************/
The input vector 117is <1 000011000100 10 1 0>. The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree 1
The contribution degrees of the conditions to the conclusion:
x1=1: 0.1605
x2=3: 0.8395
x4=3: 0.3355
There are 2 rules matched:
IF (x2=3(0.66), x4=3(0.34)) THEN (~monk); (1.0)
Matched Cover Range=14; Conflict Cover Range=0
IF (x1=1(0.16), x2=3(0.84)) THEN (~monk); (1.0
Matched Cover Range=13; Conflict Cover Range=0
The conclusion is Not monk by direct reasoning.
/**************************************/
The input vector 155is<010100100100100 1 0> The defined output is 1.
The result of reasoning by rules is 0
with a certainty degree 1
The contribution degrees of the conditions to the conclusion:

x1=2: 0.4081
x3=1: 0.09282
x4=2: 0.1531]
x5=2: 0.2043
x6=1: 0.1417

There is | rule matched:
IF (x1=2(0.41), x3=1(0.09), x4=2(0.15), x5=2(0.20), x6=1(0.14)) THEN (~monk); (1.0)
Matched Cover Range=2; Conflict Cover Range=0
The conclusion is Not monk by direct reasoning.
This result is different from the demain definition.
/**************************************/
The input vector 165is<010100100010010 1 0>, The defined output is 1.
The result of reasoning by rules is 0
with a certainty degree |
The contribution degrees of the conditions to the conclusion:

x1=2: 0.2256
x4=3: 0.2073
x5=3: 0.398

x6=1: 0.1691

There is | rule matched:

IF (x1=2(0.23), x4=3(0.21), x5=3(0.40), x6=1(0.17)) THEN (~monk); (1.0)
Matched Cover Range=2; Conflict Cover Range=0

The conclusion is Not monk by direct reasoning.
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This result is different from the demain definition
f**************************************/

The input vector 213is<010010100010010 10> The defined output is 1.
The result of reasoning by rules is 0

with a certainty degree |
The contribution degrees of the conditions to the conclusion:

x1=2: 0.252
x2=2: 0.1825
x3=1: 0.06042
x4=3; 0.2156
x5=3: 0.398
x6=1: 0.1691

' There are 2 rules matched:
i IF (x1=2(0.25), x2=2(0.18), x3=1(0.06), x4=3(0.22), x5=3(0.29)) THEN (-monk); (1.0)
: Matched Cover Range=2; Conflict Cover Range=0 '
IF (x1=2(0.23), x4=3(0.21), x5=3(0.40), x6=1(0.17)) THEN (~monk); (1.0)
Matched Cover Range=2; Conflict Cover Range=0
The conclusion is Not monk by direct reasoning.
. This result is different from the demain definition.
f**************************************/
The input vector 214is<0 100101000100 100 I>. The defined output is 1.
The result of reasoning by rules is 0
with a certainty degree |
The contribution degrees of the conditions to the conclusion:

x1=2: 0.252
2= 01825
x3=1: 0.06042
x4=3: 0.2156
x5=3: 0.2895

There is 1 rule matched:

: IF (x1=2(0.25), x2=2(0.18), x3=1(0.06), x4=3(0.22), x5=3(0.29)) THEN (~monk); (1.0)
4 Matched Cover Range=2; Conflict Cover Range=0

The conclusion is Not monk by direct reasoning.

This result is different from the domain definition.
/**************************************/

The input vector 241 is<0 1000110100100 0 1 0>. The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree |
The contribution degrees of the conditions to the conclusion:
x2=3: 0.5748
x5=1:  0.4252
There is 1 rule matched:
IF (x2=3(0.57), x5=1(0.43)) THEN (~monk); (1.0)
Matched Cover Range=10; Conflict Cover Range=0
The conclusion is Not monk by direct reasoning.
f**************************************/
The input vector 249is<0 10001100101 000 I 0>. The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree |
The contribution degrees of the conditions to the conclusion:
x2=3: (.7858
x4=2:  0.2142
x5=1: 0.4252
There are 2 rules matched:
IF (x2=3(0.57), x5=1(0.43)) THEN (~monk); (1.0)
Matched Cover Range=10; Conflict Cover Range=0
IF (x2=3(0.79), x4=2(0.21)) THEN (~monk); (1.0)
Matched Cover Range=13; Conflict Cover Range=0
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The conclusion is Not monk by direct reasoning.
[ s ok o ok o o o o ok ok ok kK stk sk otk ks stk sk ook
The input vector 251is<0100011001001 001 0>. The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree 1
The contribution degrees of the conditions to the conclusion:

x1=2: 0.4081
x2=3: 0.7858
x3=1: 0.09282
x4=2: 0.2142
x5=2: 04191
x6=1: 0.1417
There are 3 rules matched:
IF (x2=3(0.58), x5=2(0.42)) THEN (~monk); (1.0)
Matched Cover Range=9; Conflict Cover Range=0
IF (x2=3(0.79), x4=2(0.21)) THEN (~monk); (1.0)

Matched Cover Range=13; Conflict Cover Range=0
IF (x1=2(0.41), x3=1(0.09), x4=2(0.15), x5=2(0.20), x6=1(0.14)) THEN (~monk);
Matched Cover Range=2; Conflict Cover Range=0
The conclusion is Not monk by direct reasoning.
/**************************************/
The input vector 258 is<0 1000110001100 00 I>. The defined output is 0.
The result of reasoning by rules is 0

with a certainty degree 1
The contribution degrees of the conditions to the conclusion:

X2=3:
x4=3:
K=

0.6645
0.3355
0.4252

There are 2 rules matched:
IF (x2=3(0.57), x5=1(0.43)) THEN (~monk); (1.0)
Matched Cover Range=10; Conflict Cover Range=0
IF (x2=3(0.66), x4=3(0.34)) THEN (~monk); (1.0)
Matched Cover Range=14; Conflict Cover Range=0
The conclusion is Not monk by direct reasoning.
/**************************************/
The input vector 261 is<0 100011000100 1 01 0>. The defined output is 0.
The result of reasoning by rules is 0

with a certainty degree |
The contribution degrees of the conditions to the conclusion:

x1=2: 0.2256
x2=3: 0.6645
x4=3: 0.3355
x5=3: 0.398

x6=1: 0.1691

There are 2 rules matched:

IF (x1=2(0.23), x4=3(0.21), x5=3(0.40), x6=1(0.17)) THEN (~monk); (1.0)
Matched Cover Range=2; Conflict Cover Range=0

IF (x2=3(0.66), x4=3(0.34)) THEN (~monk); (1.0)

Matched Cover Range=14; Conflict Cover Range=0

The conclusion is Not monk by direct reasoning.
/**************************************/

The input vector 275is <0 100010101001 00 1 0>. The defined output is 0.
The result of reasoning by rules is 0

with a certainty degree 1
The contribution degrees of the conditions to the conclusion:

x2=3: 0.7858
x4=2: 0.2142
x5=2: 04191
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There are 2 rules matched:

IF (x2=3(0.58), x5=2(0.42)) THEN (~monk); (L.0)
Matched Cover Range=9; Conflict Cover Range=0
IF (x2=3(0.79), x4=2(0.21)) THEN (~monk); (1.0)

Matched Cover Range=13; Conflict Cover Range=0
The conclusion is Not monk by direct reasoning.
II****=|==|=********************************/
The input vector 277is<0100010101000 10 1 0>. The defined output is 0.
The result of reasoning by rules is 0 '
with a certainty degree 1
The contribution degrees of the conditions to the conclusion:
x2=3: 0.7858
x4=2: 0.2142
There is 1 rule matched:
IF (x2=3(0.79), x4=2(0.21)) THEN (~monk); ¢1.0)
Matched Cover Range=13; Conflict Cover Range=0
The conclusion is Not monk by direct reasoning.
/**************************************/
The input vector 279is<0 1000101010000 1 1 0>. The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree |
The contribution degrees of the conditions to the conclusion:
x2=3: 0.7858
x4=2: 0.2142
x5=4: 1
There are 2 rules matched:
IF (x2=3(0.79), x4=2(0.21)) THEN (~monk); (1.0)
Matched Cover Range=13; Conflict Cover Range=0
IF (x5=4(1.00)) THEN (~monk); (1.0)
Matched Cover Range=31; Conflict Cover Range=0
The conclusion is Not monk by direct reasoning.
/**:ﬁ*:ﬁ*********************************/
The input vector 388 is<00 10011010001 000 1> The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree |
The contribution degrees of the conditions to the conclusion:
x2=3: 0.5809
x5=2: 04191
There is 1 rule matched:
IF (x2=3(0.58), x5=2(0.42)) THEN (~monk); (1.0)
Matched Cover Range=9; Conflict Cover Range=0
The conclusion is Not monk by direct reasoning.
I'**************************************/
The input vector 403 is<001001100010100 I 0>. The defined output is 0.
The result of reasoning by rules is 0
with a certainty degree 1
The contribution degrees of the conditions to the conclusion:
x2=3: 0.6645
x4=3:  0.3355
x5=2: 04191
There are 2 rules matched;
IF (x2=3(0.58), x5=2(0.42)) THEN (~monk); (1.0)
Matched Cover Range=9; Conflict Cover Range=0
IF (x2=3(0.66), x4=3(0.34)) THEN (~monk); (1.0)
Matched Cover Range=14; Conflict Cover Range=0
The conclusion is Not monk by direct reasoning.
/**************************************/

The input vector 407is<001001 10001000 1 1 0>. The defined output is 0.
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The result of reasoning by rules is 0
with a certainty degree 1
The contribution degrees of the conditions to the conclusion:
x2=3:  0.6645
x4=3: 0.3355
x5=4: 1
There are 2 rules matched:
IF (x2=3(0.66), x4=3(0.34)) THEN (~monk); (1.0)
Matched Cover Range=14; Conflict Cover Range=0
IF (x5=4(1.00)) THEN (~monk); (1.0)
Matched Cover Range=31; Conflict Cover Range=0
The conclusion is Not monk by direct reasoning.
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Appendix C: FNAB feature definitions

DYS: True if majority of epithelial cells are dyhesive, false if majority of epithelial cells are in cohesive
groups.

ICL: True if intracytoplasmic lumina are present, false if absent.

3D: True if some clusters of epithelial cells are not flat (more than two nuclei thick) and this is not due
to artefactual folding, false if all clusters of epithelial cells are flat.

NAKED: True if bipolar “naked” nuclei in background, false if absent.
FOAMY: True if “foamy” macrophages present in background, false if absent.

NUCLEOLI: True if more than three easily visible nucleoli in some epithelial cells, false if three or
fewer easily visible nucleoli in epithelial cells.

PLEOMORPH: True if some epithelial cell nuclei with diameters twice that of other epithelial cell
nuclei, false if no epithelial cell nuclei twice the diameter of other epithelial cell nuclei.

SIZE: True if some epithelial cells with nuclear diameters at least twice that of lymphocyte nuclei, false
if all epithelial cell nuclei with nuclear diameters less than twice that of lymphocyte nuclei.

NECROTIC: True if necrotic epithelial cells present, false if absent.

APOCRINE: True if apocrine change present in all epithelial cells, false if not present in all epithelial
cells.
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Appendix D: Rules for the breast cancer example

Extracted rules

IF (~ICL(0.16), ~3D(0.09), ~Naked(0.06), ~Foamy(0.10), ~Nucleoli(0.22), ~Size(0.38)) THEN
(~Malignant);  (0.9630)

Matched Cover Range=52; Conflict Cover f(ange=2

IF (-3D(0.10), ~Naked(0.16), ~Foamy(0.21), ~Nucleoli(0.19), ~Pleo(0.16), ~Size(0.18)) THEN
(~Malignant);  (0.8929)

Matched Cover Range=50; Conflict Cover Range=6

IF (~ICL(0.14), ~3D(0.12), ~Naked(0.16), ~Foamy(0‘;15), ~Pleo(0.16), ~Size(0.27)) THEN
(-Malignant);  (0.9630)

Matched Cover Range=52; Conflict Cover Range=2

IF (~-ICL(0.25), ~3D(0.12), ~Nucleoli(0.38), ~Pleo(0.09), ~Size(0.17)) THEN (~Malignant);
(0.9651)

Matched Cover Range=83; Conflict Cover Range=3

IF (~ICL(0.18), ~3D(0.09), ~Naked(0.05), ~Nucleoli(0.21), Pleo(0.16), ~Size(0.31)) THEN
(~Malignant);  (1.0000)

Matched Cover Range=5; Conflict Cover Range=0

IF (~ICL. ~3D, Naked, Foamy, ~Nucleoli, Pleo, ~Size) THEN (~Malignant); (0.7600)
Matched Cover Range=1; Conflict Cover Range=0

IF (ICL(0.57), Foamy(0.29), ~Necrotic(0.07), ~Apocrine(0.07)) THEN (Malignant); (0.9375)
Matched Cover Range=15; Conflict Cover Range=1

IF (~Foamy(0.16), Pleo(0.28), Size(0.56)) THEN (Malignant); (0.9808)

Matched Cover Range=51; Conflict Cover Range=1

IF (ICL(0.53), Naked(0.38), ~Apocrine(0.09)) THEN (Malignant);  (1.0000)

Matched Cover Range=7; Conflict Cover Range=0

IF (3D(0.31), Foamy(0.19), Nucleoli(0.43), ~Necrotic(0.08)) THEN (Malignant); (1.0000)
Matched Cover Range=13; Conflict Cover Range=0

IF (ICL(0.36), 3D(0.29), Nucleoli(0.35)) THEN (Malignant); (1.0000)

Matched Cover Range=28; Conflict Cover Range=0

IF (Nucleoli(0.37), Size(0.63)) THEN (Malignant); (0.9775)

Matched Cover Range=87; Conflict Cover Range=2

Explanation

/**************************************/

The input vector 1is <0000 10000 0> MLP results in 0.0219.
The result of reasoning by the rules is 0
with a confidence degree 0.9651

The contribution degrees of the conditions to the conclusion are:

ICE=0Q & 0.2752

-52-




Explaining Neural Networks: Appendices

3D=0: 0.1823
Naked=0: 0.1499
Nucleoli=0: 0.3808
Size=0: 0.4132

There are 2 rules matched:

IF (~ICL(0.23), ~3D(0.19), ~Naked(0.16), ~Size(0.43)) THEN (~-Malignant); (0.9651)
Matched Cover Range=83; Conflict Cover Range=3

IF (~ICL(0.29), ~Nucleoli(0.40), ~Size(0.31)) THEN (~-Malignant); (0.9479)
Matched Cover Range=91; Conflict Cover Range=5

The conclusion is Not Malignant by direct reasoning.

Comment: right conclusion.

/****************************#*********/

The input vector 2is<0000000 00 0> MLP results in 0.0173.
The result of reasoning by the rules is 0

with a confidence degree 0.9677
The contribution degrees of the conditions to the conclusion:

ICL=0: 0.2752

3D=0: 0.1823

Naked=0: 0.2156

Foamy=0: 0.2858

Nucleoli=0: 0.3808

Size=0: 0.5074
There are 4 rules matched:
IF (-ICL(0.23), ~3D(0.19), ~Naked(0.16), ~Size(0.43)) THEN (~Malignant); (0.9651)
Matched Cover Range=83; Conflict Cover Range=3
IF (~ICL(0.29), ~Nucleoli(0.40), ~Size(0.31)) THEN (~Malignant);  (0.9479)
Matched Cover Range=91; Conflict Cover Range=5
IF (~3D(0.16), ~Naked(0.24), ~Foamy(0.32), ~Size(0.28)) THEN (~Malignant); (0.9000)
Matched Cover Range=54; Conflict Cover Range=6
IF (~ICL(0.22), ~3D(0.12), ~Foamy(0.13), ~Size(0.52)) THEN (~Malignant); (0.9677)
Matched Cover Range=60; Conflict Cover Range=2
The conclusion is Not Malignant by direct reasoning.

Comment: right conclusion.

/**************#***********************/

The input vector 3is <000 100000 0> MLP results in 0.0604.
The result of reasoning by the rules is 0
with a confidence degree 0.9677
The contribution degrees of the conditions to the conclusion:
ICL=0: 0.2752
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3D=0: 0.1149
Foamy=0: 0.1285
Nucleoli=0: 0.3808
Size=0: 0.5074
There are 2 rules matched:
IF (~ICL(0.29), ~Nucleoli(0.40), ~8ize(0.31)) THEN (~Malignant);  (0.9479)
Matched Cover Range=91; Conflict Cover Range=5
IF (~ICL(0.22), ~3D(0.12), ~Foamy(0.13), ~Size(0.52)) THEN (~Malignant); (0.9677)
Matched Cover Range=60; Conflict Cover Range=2
The conclusion is Not Malignant by direct reasoning.
Comment: right conclusion.
[ KRR R KK
The input vector 6 is<000000 1 10 1> MLP results in 0.4181.
The result of reasoning by the rules is 1
with a confidence degree 0.9894
The contribution degrees of the conditions to the conclusion:
Pleo=1: 0.3796
Size=1: 0.6098
There is | rule matched:
IF (Pleo(0.38), Size(0.62)) THEN (Malignant), (0.9894)
Matched Cover Range=93; Conflict Cover Range=1
The conclusion is Malignant by direct reasoning.
Note: the MLP result is 0!
Comment: right conclusion.
AR R Koo K ok ko R KRk Ko
The input vector 9is <0 00101000 0> MLP results in 0.650895.
0
with a confidence degree 0.3301

The contribution degrees of the conditions to the conclusion:

ICL=0: 0.2171
3D=0: 0.1149
Foamy=0: 0.1285
Nucleoli=1: -0.7904
Size=0: 0.5074

Apocrine=0: -0.1382
There are matched rules in different classes:
>>> In class O there are ] rule matched:
IF (~ICL(0.22), ~3D(0.12), ~Foamy(0.13), ~Size(0.52)) THEN (~Malignant); (0.9677)
Matched Cover Range=60; Conflict Cover Range=2
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>>>In class 1 there are I rule matched:
IF (Nucleoli(0.85), ~Apocrine(0.15)) THEN (Malignant); (0.9286)
Matched Cover Range=91; Conflict Cover Range=7
The conclusion is Not Malignant by a vote.
Comment: the output of the MLP is 0.65, although week, but different from this conclusion.
JREERE R R AR AR KRR EHAAH
The input vector 14 is<0 000011 100> MLP results in 0.981960.
The result of reasoning by the rules is 1
with a confidence degree 0.9894
The contribution degrees of the conditions to the conc‘_lusion:
Nucleoli=I: 0.7904
Pleo=1: 0.3796
Size=1: 0.8612
Apocrine=0: 0.1382
There are 3 rules matched:
IF (Size(0.89), ~Apocrine(0.11)) THEN (Malignant); (0.9697)
Matched Cover Range=96; Conflict Cover Range=3
IF (Nucleoli(0.85), ~Apocrine(0.15)) THEN (Malignant); (0.9286)
Matched Cover Range=91; Conflict Cover Range=7
IF (Pleo(0.38), Size(0.62)) THEN (Malignant); (0.9894)
Matched Cover Range=93; Conflict Cover Range=1
The conclusion is Malignant by direct reasoning.
Comment: right conclusion.
[ R o o KKK K
The input vector 15is <0 00001 11 10> MLP results in 0.9226.
The result of reasoning by the rules is 1
with a confidence degree 0.9894
The contribution degrees of the conditions to the conclusion:
Nucleoli=I: 0.7904
Pleo=1: 0.3796
Size=1: 0.8612
Apocrine=0: 0.1382
There are 3 rules matched:
IF (Size(0.89), ~Apocrine(0.11)) THEN (Malignant); (0.9697)
Matched Cover Range=96; Conflict Cover Range=3
IF (Nucleoli(0.85), ~Apocrine(0.15)) THEN (Malignant); (0.9286)
Matched Cover Range=91; Conflict Cover Range=7
IF (Pleo(0.38), Size(0.62)) THEN (Malignant); (0.9894)
Matched Cover Range=93; Conflict Cover Range=1
8
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The conclusion is Malignant by direct reasoning.
Comment: right conclusion.
j**************************************/
The input vector 16is <0001 1 1000 0> MLP results in 0.7183.
The result of reasoning by the rules is 1
with a confidence degree 0.9286
The contribution degrees of the conditions to the conclusion:
Nucleoli=1: 0.7904
Apocrine=0: 0.1382
There is 1 rule matched:
IF (Nucleoli(0.85), ~Apocrine(0.15)) THEN (Malignant); (0.9286)
Matched Cover Range=91; Conflict Cover Range=7
The conclusion is Malignant by direct reasoning.
Comment: right conclusion, also right contribution fctors.
l‘**************************************II
The input vector 18 is<000 110000 0> MLP results in 0.0953.
The result of reasoning by the rules is 0
with a confidence degree 0.9479
The contribution degrees of the conditions to the conclusion:
ICL=0: 0.2752
Nucleoli=0: 0.3808
Size=0: 0.292
There is | rule matched:
IF (~ICL(0.29), ~Nucleoli(0.40), ~Size(0.31)) THEN (~Malignant); (0.9479)
Matched Cover Range=91; Conflict Cover Range=5
The conclusion is Not Malignant by direct reasoning.
Comment: right conclusion.
/**************************************{'
The input vector 21is<00 1010000 0>. MLP results in 0.1463.
The result of reasoning by the rules is 0
with a confidence degree 0.9479
The contribution degrees of the conditions to the conclusion:
ICL=0: 0.2752
Nucleoli=0: 0.3808
Size=0: 0.292
There is 1 rule matched:
IF (~ICL(0.29), ~Nucleoli(0.40), ~Size(0.31)) THEN (~Malignant);  (0.9479)
Matched Cover Range=91; Conflict Cover Range=5
The conclusion is Not Malignant by direct reasoning.
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Comment. right conclusion,
/****:}:*******************************#*/
The input vector 24 is <0000 10 1 1 00> MLP results in 0.9834.
The result of reasoning by the rules is 1
with a confidence degree 0.9894
The contribution degrees of the conditions to the conclusion:
Pleo=1: 0.3796
Size=1: 0.8612
Apocrine=0: 0.1085
There are 2 rules matched:
IF (Size(0.89), ~Apocrine(0.11)) THEN (Malignant); (0.9697)
Matched Cover Range=96; Conflict Cover Range=3
. IF (Pleo(0.38), Size(0.62)) THEN (Malignant); (0.9894)
Matched Cover Range=93; Conflict Cover Range=1
The conclusion is Malignant by direct reasoning.
Comment: right conclusion.
AR R o ok ko o R ko
The input vector 25is<1 000011 1 00> MLP results in 0.9938.
The result of reasoning by the rules is |
with a confidence degree 0.9894
The contribution degrees of the conditions to the conclusion:
Nucleoli=1: 0.7904
Pleo=1: 0.3796
Size=1: 0.8612
Apocrine=0: 0.1382
. There are 3 rules matched:
IF (Size(0.89), ~Apocrine(0.11)) THEN (Malignant); (0.9697)
Matched Cover Range=96; Conflict Cover Range=3
IF (Nucleoli(0.85), ~Apocrine(0.15)) THEN (Malignant); (0.9286)
Matched Cover Range=91; Conflict Cover Range=7
IF (Pleo(0.38), Size(0.62)) THEN (Malignant), (0.9894)
Matched Cover Range=93; Conflict Cover Range=1
The conclusion is Malignant by direct reasoning.
Comment: right conclusion.
AR R b o b o o o R R R
The input vector 31is <0001 101 10 1> MLP results in 0.9725.
The result of reasoning by the rules is 1
with a confidence degree 0.9894
The contribution degrees of the conditions to the conclusion:
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Pleo=1: 0.3796
Size=1: 0.6098
There is 1 rule matched:
IF (Pleo(0.38), Size(0.62)) THEN (Malignant); (0.9894)
Matched Cover Range=93; Conflict Cover Range=1
The conclusion is Malignant by direct reasoning.

Comment: right conclusion.

[ s s K o Kok oK SRR o K SRSk KRR KR KR R Kk

The input vector 36 is <0000 101 10 1> MLP results in 0.7561.
The result of reasoning by the rules is 1
with a confidence degree 0.9894
The contribution degrees of the conditions to the conclusion:
Pleo=1: 0.3796
Size=1: 0.6098
There is | rule matched:
IF (Pleo(0.38), Size(0.62)) THEN (Malignant); (0.9894)
Matched Cover Range=93; Conlflict Cover Range=]
The conclusion is Malignant by direct reasoning.
Commient: right conclusion.
R s ek sk RS KR KR KR
The input vector40is <0000 1 11 100>, MLP results in 0.993.
The result of reasoning by the rules is |
with a confidence degree 0.9894
The contribution degrees of the conditions to the conclusion:
Nucleoli=I: 0.7904
Pleo=1: 0.3796
Size=1: 0.8612
Apocrine=0: 0.1382
There are 3 rules matched:
IF (Size(0.89), ~Apocrine(0.11)) THEN (Malignant); (0.9697)
Matched Cover Range=96; Conflict Cover Range=3
IF (Nucleoli(0.85), ~Apocrine(0.15)) THEN (Malignant); (0.9286)
Matched Cover Range=91; Conflict Cover Range=7
IF (Pleo(0.38), Size(0.62)) THEN (Malignant); (0.9894)
Matched Cover Range=93; Conflict Cover Range=1
The conclusion is Malignant by direct reasoning.
Comment: right conclusion.
R R AR o K KRR KKK o ook o
The input vector 41 is<1 100101 1 00>. MLP results in 0.9968.
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The result of reasoning by the rules is |
with a confidence degree 0.9894
The contribution degrees of the conditions to the conclusion:
ICL=1: 0.8715
Pleo=1: 0.3796
Size=1: 0.8612
Apocrine=0: 0.1133
There are 3 rules matched:
IF (Size(0.89), ~Apocrine(0.11)) THEN (Malignant); (0.9697)
Matched Cover Range=96; Conflict Cover Range=3
IF (Pleo(0.38), Size(0.62)) THEN (Malignant); (0.9894)
Matched Cover Range=93; Conflict Cover Range=1
IF (ICL(0.88), ~Apocrine(0.12)) THEN (Malignant);(0.9848)
. Matched Cover Range=65; Conflict Cover Range=1
The conclusion is Malignant by direct reasoning.

Comment: right conclusion.

/**************************************/

The input vector 43is<1 00000 1 1 00>. MLP results in 0.9878.
The result of reasoning by the rules is 1
with a confidence degree 0.9894
The contribution degrees of the conditions to the conclusion:
Pleo=1: 0.3796
Size=1: 0.8612
Apocrine=0: 0.1085
There are 2 rules matched:
IF (Size(0.89), ~Apocrine(0.11)) THEN (Malignant); (0.9697)
‘ Matched Cover Range=96; Conflict Cover Range=3
IF (Pleo(0.38), Size(0.62)) THEN (Malignant); (0.9894)
Matched Cover Range=93; Conflict Cover Range=1
The conclusion is Malignant by direct reasoning.

Comment: right conclusion.

/**************************************/
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