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Abstract: The global stabilization of nonlinear systems is considered by reducing the
problem to a lower dimensional switching manifold which is made globally
attracting. The method generalizes the standard Lyapunov approach.
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L. INTRODUCTION

The stabilization of systems using switching surfaces has been investigated
thoroughly for linear systems using variable structure control [1], [2]. The idea of the
present paper comes from attempts to stabilize dissipative systems in Hilbert space
[3], [4]. Here we shall use a generalized Lyapunov-like theory to develop switching
surfaces directly, which are globally attracting by construction. If these surfaces can
be designed around the stable manifold of the unforced system, global stabilization is
guaranteed. If the unforced system has no stable manifold, then part of the control
may be used to create one and then the remaining part of the control can be used to
drive the system to this manifold.

In the next section we shall study local systems defined on R” by a linear
analytic structure, i.e.

X = f(x) + ug(x) (1)

The basic idea of the control is simple. We choose a function o(x) such that
{x:o(x) =0} is a smooth manifold through x = 0 and for which

(g,grado)# 0




Then we choose the control u so that o— 0 as r— . Thus o is a generalized
Lyapunov function, although we shall now require

o(x)<0if o(x)>0
o(x)>0if o(x) <0

so that o— 0 .

In section 3, some methods are given for smoothing the control chattering. The
theory is extended to MIMO systems in section 4.

The global theory for systems on analytic manifolds will be given in section 5.
Thus, systems are defined by vector fields V and W on a manifold X which are locally
of the form f{x) and g(x). The theory of manifolds we require can be found in [5] and
Morse theory in [6].

Finally in section 6 we shall discuss the solutions of the partial differential
equation

(grado,g) = constant

which must be solved in general to find a suitable function o.

II. LOCAL SYSTEMS

In this section we shall consider a local system of the form

x = f(x)+ug(x) @)

We shall assume first that g(x)= 0 for all x (this condition will be relaxed later). Let
o(x) be a smooth function such that all the level surfaces o(x) = const are (n-1)-

dimensional smooth manifolds in R" , and consider the control

, = —\fgrado) +c _ —Lote o
(g,grado) Lo

where L, is the Lie derivative with respect to fand ¢ <0 ifo>0and ¢>01f 0<0 .
Then we have our first result:

2.1 Theorem Suppose that we can find a function o such that

Lo(x) # 0

for all x. Then the level surfaces o(x) is globally attracting with the control (3)

Proof We have 200391428

A




5= ?* = (f.grado) + u(g,grado)= ¢
X

if u is given by (3). Hence, if o(x,)>0 then ¢<0 and c— 0 as t > —o(x,)/c.
Similarly, if o(x,) <0 then ¢ >0 and - 0 again as t = —o(x,)/ c. W

The most obvious function ¢ to choose is
2
o(x) = |x|" -~ “
for some r > 0. Then we have

2.2 Corollary Suppose that the system (2) is locally controllable in the open set U
near 0 and

B ={x: [#|=ric=ll

if

(g(x),x)#0 forallxe R"\B,,
then the system (2) is globally stabilizable.

Proof Define ¢ as in (3); then grad o= 2x and

g = —(f,grado)+c _ =2{f,x)+c
(g.grado) 2(g,x)

- and since (g,x)# 0 the control is well-defined. This control will drive any point

x € R"\ B to B, and then we can use the local controllability. ]

2.3 Remark The size of the control in corollary 2.2 can be bounded in the following
way. If ||x0|| = u, then let

4, =ter<|d<p,
and put

* = inf{(g(x),x):(g(x),x)>0,x €4, ,}
Y~ = inf{{(g(x),x):(g(x),x)<0, x €4, }

<
Il

y = min(y",y").

Since 4,, is compact, y > 0. Then




2 max 8
| < "“ﬂﬁ (5)

2.4 Example Consider the system

x
X =f(x)+u( ;J
Xy

Then the control

=21

C2(x2+x))

will drive the system to the ball B, for any r >0 and any function £ The size of the
control is bounded by

g QmaxAﬂ_’“ﬂ|.;z+1
" 2inf, (x] +x3)

|4

where z1=|x,|-

However, we are unlikely to have a control function g in the form of that in
example 2.4 and so we must choose a different control near the set where
(g.grado)=0. Let

Q= {x:(g,grado) =0}
and let

Q, ={x:dist(x,Q)< ¢ }
be an 'e-neighbourhood' of Q.

2.5 Theorem Suppose there exists a function o such that the set 2 is an m-
dimensional manifold for some m<n and &, is an (n-1)- dimensional manifold for

each &>0. Moreover, suppose that, for some £>0, the set Q. is invariant for some

feedback control u=u(x), with w-limit set {0} (i.e. the system is stabilizable in Q._.)
Then the system (2) is globally stabilizable.

Proof Parameterize o so that Q. is the set where o = 0 and that > 0 in R" \ Q,.
Then the control (3) will drive the system to £#€.. We can then choose a stabilizing
control in Q, to drive the system to 0. 0

2.6 Example Consider the system




. " ;|
X, = —X,tX;

X, = X; + X%, +U
For any £>0, the strip
Q,={xlx,| <&}
is clearly control invariant for the system and the control

=2l —2(—xf+x§ +‘x1x§+x|x§)—1

2%, 2x,

drives the system to Q. Here, we have taken
oc=x;-¢&
but we could have taken o= x{ +x; — &, for example. U

Rather than choose the surface o = 0 arbitrarily, we may choose it to have
some relation to the dynamics of the system with no control. Thus, suppose that the
system

F=f(x), xR’

has a stable manifold # < R" of dimension m<n, and assume that g is transversal to
M (apart, possibly, at the origin). If / (and g) are analytic then there exists a
neighbourhood U of M in R" and a function ofx) such that

M ={x:0(x) =0}
and g is transversal to the level curves
M,={x:ox)=e}N U, £>0

The function o is a Morse function [6] and its existence can be proved by elementary
Morse theory (simply follow the dynamics determined by g). Let V denote the
maximal neighbourhood of # on which ¢ can be chosen so that g is transversal to the
level curves M ,. Then we have

2.7 Theorem Under the above conditions, we have that the system (2) is globally
stable on V.

Proof As before define the feedback control u by




—(f,grado)+c

(g,grado)

(with ¢<0 if 0>0 and ¢>0 if 0<0). Since g is transversal to #, we have

(g,grado)# 0 on V and so the control drives the system to M . Now, since M is
stable manifold of

X = f(x) (6)
we can turn off the control when we reach # and follow the unforced system (6).

2.8 Example Consider the system

N ST 3
i }:F(x,u) 7

;= =%+ xg +u
where F(x,u) = f(x)+(0,1)"u. The unforced system
x=f(x)
has a unique equilibrium at (0,0) and a stable manifold of the form shown in figure 1.

To define o we can simply choose it so that the level curves o= const. are

parallel to the stable manifold o=0. Thus, if the equation of the stable manifold is
given by

x, =8(x;)
then we take
o=x,—5(x;).
Hence the system (7) is globally stabilizable with control

—(x, +x7)ds [ de, +(x, —x3)~1
u=1—(x, +x7)ds/ dx, +(x,—x])+1
0

in the regions x, > (<,=) s(x,) respectively. In general, consider again the nonlinear
system (2) which we assume can be written in the form

0
$=f(x) +u 0 | ®)
7 (x)

where y(x)— 1 asx — 0. Suppose that the linearized system at the origin




0
5= 0yx + 4| 0 ©)
ox
1(x)

is controllable. Then we define u = u, +u, and choose , = u,(x) to stabilize (9). Then
the system (8) becomes

0 0
i=f) +u(x)| 0 |+ 0
7 (x) 7 (x)

where #, is a known function of x. Let M denote the subset of the stable manifold of

the vector field f(x) + %(0 -+ 0 y(x))" which is tangent to the plane
{x: x =0} atx =0.Then we have

2.9 Theorem Let M < M denote the largest simply connected complete subset of
M on which g is transversal fo M . (By complete we mean that all trajectories

starting in this set remain in it) Let o be the unique solution of the partial differential
equation

grado=2%+ . +9% (0. 0 y(x))
ax, ax,

n

with characteristic surface M, where g = 0. Then the system (6) is asymptotically
stable in the region

M =U . {x(tx,) i) =g(x(1) =0 )

Xo€M

ie. M' is the open set consisting of all trajectories of the vector field g starting on
M " which are continued until g = 0.

2.10 Example Consider the system

X = X

%, = —x,+x; +u(l+x])

The linearized system

d(x 0 1|(x 0

- = + u

dr\ x, -1 0 \x, 1
is controllable and if we take u, = 2x,, then the origin has a stable manifold.
Defining # = u, +u, in (8) we have




X, = X,

%, = x,+x2+2x] +u,(1+x])
A stable submanifold of the unforced system can be found from

3 2
dx, _ X 2%+
dx

be

1 2

whose solution is
x, = (2™ -2x' —3x? —4x, -2)"*

Hence, the stable submanifold is

xz—\/262" —-2x) -3x}—4x,-2,if x, 20
ag=
X, +4/2e™ —2x) =322 —4x,-2 , if x, <0

The control input w, is derived from (3) and can be expressed as

1

_ — (2" -3x} -3x,-2) %]
(1+x2) ?

2 3
{c-(x1+x2+2x1) +\/282x|_2x3—3x2—4x ~7
1 1 1

U,

Figures 2, 3 and 4 give the simulation results. For this simulation |¢| is chosen to be
0.5, and the initial conditions are x =[0.4 0.7]".

III. CHATTERING ALLEVIATION

In order to keep the system on the manifold, the control input u in (3) changes
sign which brings high frequency control chattering. This can be alleviated by
considering instead of (3), the control

&
loj+ 6

Lgcr

—c( )—L,o

uﬁq-

where ¢>0 and Jis a positive small number.

In this case, we have, for example, if >0

o= _C(|o1 + 5J

and so when o is small, this is approximated




e, o(f)=o(x,)e™ "’ so that switching surface is never reached. This control is
simply keeping the system close to the switching surface, which is chosen to be
stable. The simulation results are given in figures 5, 6, and 7 for §=0.02 and ¢=0.5.

Another possibility of smoothing the control signal is to use saturation
function, 1.e.,

—csai(o)—L,o

u.\'ar

Lgcr

where ¢>0, d1s a positive small number and

-1 if oo}
sat(o)=10 1if -d<o<d.
1 if o<-6

By using this control, we have

¢c if o026
o=-csat(o)=40 if -0<o<é
—c if o<-6

which means that the control steers the system into a strip and inside the strip, the
system tends to reach the stable manifold. The simulation results of this control are
given in figures §, 9, and 10 for 6=0.02 and c=0.5.

IV MIMO SYSTEMS

In this section, the methodology is extended to multi-input systems. Let the
nonlinear system be defined by

£= /() + Gl = f()+ D 8 () @)

where u € R". Let o(x) be a smooth function such that all the level curves
o(x) = const are (n—1)-dimensional smooth manifolds in R" , and consider the
control vector whose i™ element defined by




_ (8.grado)(~(/.grado) + c)
D (g,.grado)’
k=1
L o(-L,o+ c)

m

DL,

k=1

for 1=1,2,-,m (4.2)

where L, is the Lie derivative with respect to g(x) and ¢ <0 if >0 and ¢>0 if
c<0.

4.1 Theorem Assume that we can find a stable manifold o such that
> (L,0)#0 Vx
k=1

Then the level surface o(x)=0 is globally attracting with the control (4.2)

Proof Simply take the derivation of o;

o= 0% = (grada, S+ Y ugradong (x)
X

and substitute », into the equation. Then,
o= c.

Hence, if o(x,)>0 then ¢ <0 and c— 0 as t > —o(x,)/ c. Similarly, if o(x,) <0
then ¢ >0 and o— 0 againas f > —o(x,)/ c. 0

4.2 Example Consider the system

X, =X, +x; +u +(1+x)u,

%, = x,+x +(1=x))y,
The linearized system is controllable and has a stable submanifold. The stable
submanifold of the unforced nonlinear system can be generated by solving the

following first order differential equation

3
dx, % tx
- 3

dx, Xx,+X;

which is
2
Xy, =X

Then the stable manifold can be easily written as

10




o=x,+x =0
The control vector is derived from (4.2) and the elements are

(A’Z—Jt'zz)[(:—(x2 +3x + X, +x13)]
£ G- ¥ {527

(l+x,2)[c—(x2 +x§’+x, +x]3)]
B (2-22F (1457 F

2

Figure 11 to 14 give the simulation results for |¢[=0.5, and x(0)=[-0.3 -0.75]".

To alleviate the chattering on the control signal, the same smoothing processes
can be applied to the multi-input case. For instance,

LJ(W—LJ]

Up, = fori=1,--,m

Z (LS.( 0-)2
k=1

where ¢>0 and & is a positive small number. The simulation results are given in
figures 15,16, 17, and 18 for these control inputs. (§=0.02 and ¢=0.5.)

The control vector can be rewritten using saturation function as follows;
Lo (csat(cr) -L.o )

i (Lg& 0-)2

iy — fori=1,---,m
where ¢>0, dis a positive small number and

-1 if czd
sat(o)=q0c if —-d<o<é.
1 if o<-6

The simulation results are given in figures 19, 20, 21, and 22. (For this simulation, we
take 6=0.02 andc=0.5)

V. GLOBAL THEORY

Let X be a compact differentiable manifold of dimension n and let ¥V, W be
vector fields on X. The controlled vector field F'+uW has the local representation

T




G A "

X = f(x)+ug(x)

in the coordinates x:N — R" for some open set Nc X. If Sc Xis a smooth
submanifold of X of dimension -1 (i.e. a hypersurface) then § and the vector W, are
transversal if

TS® RW, =TX

Suppose that p € X is an equilibrium point of ¥ i.e. ¥, =0. It is well-known [6]
that the total index of vector field ¥ on X is given by the Euler characteristic of
X, y(X). Then X has at least one equilibrium point if

y(X)>0.
Let
@ % = f(x)+ug(x)
be a local representation for the system at p, where x:U — R”" is a coordinate system

in the neighbourhood U of p with x(p) = 0. We shall assume that (f, g) is
linearizable and controllable at p so that we may write

% = Ax+ fAx) +u(g(0)+ g (x)) = Ax+bu+ fO(x)+ug™(x)
where

A= Z_J:(O), b=g(0), fP(x)=f(x)-4x, gV(x)=g(x)-g(0)

We may assume that canonical coordinates have been chosen so that » has the form
(0,0,---,0,1)". Now write ¥ = u, +u, and choose u, = kx to stabilize (4,b). Then we

’ have

% =(a+bk)x+ P (x)+ (ko +u,)g" (x) +u,b

Now choose an (n-/)-dimensional stable submanifold Sc U of the system such that
b+g"(x) is transversal to S. Then S can be defined by a function & such that

S={xelU:o(x)=0}

If 3y:U —>R" is another coordinate  neighbourhood  such  that
UNnU =D and SN U # D then we can extend S as follows. If

y=h(x)

then u, is extended to u, =kh™ (y) in U and S is extended into U’ as the union of all
trajectories of the system

12




y=(A+Dbk)R™ () +FP 0T )+ Gl (0))gP (T ) +u, (b + g (7 ()

in U passing through Sin U N U . In this way we obtain the maximal extension of S to
X on which b+g®(h™'(y)) is transversal to the submanifold. Let S, denote this
maximal (n—1)- dimensional stable submanifold of the system (V, ). It is defined by a
set of equations

S ={xeX:0,(x)=0,ieU,}
where {U,},.., is a set of coordinate neighbourhoods. These functions ©,(x) piece
together to form a section of the real line bundle over X. Finally we integrate the

partial differential equation

grado =b+g®(x)

from S, and define the region M just as in the local case. Then the local control

—{f,grads) + c
U —
i (g,grado)

will drive all the points in M to S, , which is then a stable manifold using u, =0.

5.1 Example Consider the simple dynamical system on the sphere in Figure 23. The '/’
dynamics define a saddle at the north (and south) pole and the g dynamics has orbits
along the latitudes. Using a neighbourhood ¢ of the north pole as shown we can define

o in a quadrant by removing a small disk at the pole. (This is a simple example just to
illustrate the ideas.)

5.2 Example As a slightly less trivial example, consider Euler's equation for the
control of a rigid body:

19, =1, - 1)Q,Q, +u,
L, =(I, - 1)Q.Q, +u,
Iaga =1, - 1,)2£2, +u,

which lives on so(3), with the corresponding orthogonal matrix O satisfying Q = 0”0
being defined on SO(3) where it is a geodesic under the obvious metric if
w, =u, =u, =0. The equilibrium point is Q, =Q, =Q, =0 and there is no stable
manifold, the unforced motion (¥, = u, = u, = 0) remains on the invariant ellipsoid

1
0(Q,,Q,,Q,) = E(Ilﬂf +1,Q0 +1.O3)

since

13




3
6=> 100 =L, -L+L-1+1 -1,)Q,Q,Q,=0

i=1
Using o as the switching function, so that o= 0 is the origin, then

19, (e- Q0,0 (L(L, - L)+ L - 1)+ L, -1)))  1Q.c

u = 3 ) =3 .
2.(12) (72,)
i=1 i=1

LQ. ¢

Uy =— 27ey ,

> (19)
i=1

e PRGN,

) i(m,f

(This is an example of the control in (4.2)). Note that if we choose

= _i(‘[iQi )2

i=]

then the control is bounded and is given by

VI. PARTIAL DIFFERENTIAL EQUATION FOR G
We have seen that it 1s necessary to solve the partial differential equation
grado=g (6.1)

in order to determine a stabilizing region for a system. This equation may be written
in the form

Jdo

A necessary condition for the existence of a solution of this problem is

. dg.
o8 _%% , 1<ij<n (6.3)

This condition is well-known to be necesaary and sufficient for the line integral

14




jw-dx (6.4)
0

to be independent of the path from 0 to x. We have

6.1 Theorem Let X be a compact Riemannian manifold with metric y:TM x TM — R.
Then the function o is given by

o(x) = [y (W(x(0), W (x(n))dt (6.5)

where x € X and x(t) is a solution trajectory of the vector field W joining
x(0) eS={x:0(x)=0} fox.

Proof We can extend the definition of o systematically through a system of local
neighbourhoods, so we can prove (6.5) locally. Thus, by (6.4) we define

o(x) = _:[Va-dx =I7(Vo,dx) =j;y (Va,—d{i(t—r)) dt

y (g(x(1)), g(x(1)))dt

O —y~

by (VL1). O
6.2 Example A trivial example will illustrate the method. Let X be R" with the
standard Buclidean metric and let S = {x:o(x) =0} be the x,-axis. If g=(0,1)" then
¥(g,g) =1 and so, if x(0) =(x,(0),0) €S and x eR" \ § we have

o(x)= [1dt =x,
]

6.3 Remark If g does not satisfy (6.3) then we can solve the more general equation
{grado,g)= constant # 0

to find a suitable function o. O

VII. CONCLUSIONS

In this paper we have shown that stabilization of many kinds of nonlinear
systems can be achieved by first designing a stable manifold of codimension 1 for the
system and then using a switching control to steer the system to this submanifold. The
method easily extends to global systems on differentiable manifolds, giving a truly
global control method for nonlinear systems.

15
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