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ABSTRACT 

The Ultima TPS MoM THR was designed and developed as a 2nd generation MoM THR specifically aimed 

at younger more active patients due to the anticipated low wear rates and increased longevity of MoM 

THRs. In 2010, published clinical data highlighted the early failure of the Ultima TPS MoM due to fretting-

crevice corrosion at the stem-cement interface. Since 2010 similar observations have been reported by 

other clinical centres implicating competitor products as well as the Ultima TPS MoM THR.  In an attempt 

to replicate the electrochemical reaction and interactions established across MoM THR systems, fretting-

crevice corrosion tests subjected to galvanic coupling were conducted. Galvanic coupling was seen to 

significantly increase the rates of corrosion under static and dynamic conditions. This was due to the 

large potential differences developed across the system between active and passive areas, increasing 

the rates of corrosion and metallic ion release from the stem-cement interface. 

1. Introduction 

Joint replacements have been a medical intervention practised since the late nineteenth century 

(Reynolds and Tansey, 2006). However it has only been since the 1950’s it has become a long term 

solution to arthritic and congenital diseased joints since the 1950’s due to the advances in both fixation 

techniques and implant design made by Sir John Charnley. The orthopaedic industries have made many 

advances since and Total Hip Arthroplasty (THA) is now widely accepted as being a successful surgical 

procedure with results from the National Joint Registry supporting this (National Joint Registry, 2012). 

THAs are commonly used to treat arthritis or severe joint damage. Osteoarthritis of the hip joint is a 

painful and debilitating condition, estimated to affect 8 million people in the United Kingdom and 27 million 

in the United States (National Joint Registry, 2012; World Health Organisation, 2003).  Different 



treatments exist to treat the condition but to date the most effective method of alleviating pain and 

restoring motion is THA.  

MoM Total Hip Replacements (THR) have the longest clinical history of any of the bearing combinations 

with the first generation of MoM THR being designed and developed by Philip Wiles in 1938 (A.Santavirta 

et al., 2003). However these implants were largely unsuccessful due to the poor quality of material which 

was primarily stainless steel, poor manufacture and lack of inadequate fixation within the body (Reynolds 

and Tansey, 2006). MoM THR’s regained popularity in the last 10 years due to improved manufacturing 

methods and decreased wear rates (Fisher et al., 2006). Retrieval studies indicate that well-functioning 

MoM THRs produce minimal wear debris and the surrounding tissues appear to have less inflammation 

compared with typical histiocyte-dominated tissue response to polyethylene debris (Jacobs et al., 1998). 

However in the recent years the amount of revisions has increased due to the Adverse Reaction to Metal 

Debris (ARMD). 

The Ultima TPS™ was introduced in 1997 as triple tapered, highly polished cemented femoral stem. The 

Ultima TPS™ was primarily used with a MoM bearing typically coupled with a 28mm 10/12 taper low 

CoCrMo Ultima femoral head, 28mm high CoCrMo Ultima acetabular liner and a Ti–6Al-4V cementless 

acetabular shell that ranged from 48mm – 68mm in size. Polished tapered femoral stems generally have 

a good survivorship with revision rates of 2.8% at 7 years after operation being seen for commonly 

cemented stainless steel devices (Purbach et al., 2009). Similar figures have been presented for CoCrMo 

polished demonstrating revision rates of 4.1% 10 years postoperative (Burston et al., 2012). However 

recent studies have highlighted the importance of wear and corrosion, known as tribocorrosion, at the 

stem-cement interface with clinical studies implicating the interface with high failure rates due to ARMD 

(Bolland et al., 2011; Donell et al., 2010). 

Of the tribocorrosion tests of components for THR all are primarily concerned with one part of the entire 

THR system; the bearing surfaces the taper and the stem-cement interface. Therefore this study 

considers the role of electrochemical coupling between the stem-cement interfaces and the assumed to 

be passive Ti–6Al-4V cementless acetabular shell in an attempt to simplify and understand how the 

system variables interact when subjected to both wear and corrosion. To the authors’ knowledge this 



study is the first to introduce other interfaces/metals in order understand the role galvanic coupling plays 

on the corrosion of cemented MoM devices.   

2. Experimental Materials and Method 

2.1. Test Specimens 

In order to gain a full and comprehensive understanding of the role fretting-corrosion and galvanically-

enhanced fretting corrosion plays in the overall degradation of cemented femoral stems low carbon (LC) 

CoCrMo) Ultima TPS™ (DePuy International, Leeds, United Kingdom) femoral stems were utilised in this 

study as the working electrodes (WE).  Table 1 gives results from analysis of the Ultima TPS femoral 

stems along with the ISO 5832-12:2007 standard for the LC alloy.   

Table 1 - Chemical composition of alloys tested in this study. † Chemical composition of Ultima 
TPS™ femoral stem 

 Chemical Composition (% wt) 

C Si Mn P S Cr Fe Mo N Ni Co 

LC CoCrMo 0.04 0.21 0.69 <0.005 0.0008 27.65 0.41 5.40 0.17 0.48 Bal. 

LC CoCrMo† 0.05 0.19 0.67 0.005 0.0010 27.65 0.30 5.48 0.18 0.24 Bal. 

In order to replicate the galvanic interaction between the CoCrMo and Ti-6Al-V acetabular components, 

Ti-6Al-4V rings with the same surface area of the 68mm Ti alloy acetabular component1 were 

manufactured. Because it is difficult to estimate the exact surface area of the Ti alloy acetabular 

component due to the presence of a porous coating, a CAD package (SolidWorks, USA) was utilised to 

calculate the coated and uncoated area of the acetabular component. A total surface area of 140cm2 and 

75cm2 for the total Ti alloy acetabular cup and porous coated surface area, respectively, was calculated 

and re-created with the Ti alloy rings (Figure 1). This yields an approximate area ratio of 3:1 for the Ti 

alloy ring and CoCrMo femoral stem (surface area ≈ 58cm2) respectively. Once Ti alloy rings had been 

manufactured and the Ti-6Al-4V Porocoat© (DePuy International, United Kingdom) porous coating 

applied, each ring was cleaned and passivated which consisted of ultrasonic cleaning and chemical 

passivation processes. To facilitate electrochemical measurements a plastic coated Cu wire was glued to 

                                                            
1 (Ø68mm was the largest Ti-6Al-4V acetabular available on the market at the time and considered to be the worst 

case scenario with respect to surface area ratios. The entire area of the acetabular cup was assumed to be exposed 

to the electrolyte. This was informed from clinical retrieval analysis of this particular cohort.) 



the surface of the Ti alloy ring and CoCrMo femoral stem using conductive epoxy glue. The junction was 

then carefully sealed with a impervious sealant to ensure a waterproof connection.  

 

Figure 1 - Ti ring manufactured to represent the acetabular components 

The solution used for electrochemical measurements was 0.9% NaCl solution (pH 7.4, 8ppm O2), 

prepared using analytical grade reagent and deionised water.  Isotonic sodium chloride was used as it 

has similar ion content to that of the human body fluids, allowing the effects of proteins to be isolated. At 

this stage the role of protein was neglected due to the complex nature of the electrochemical reactions 

within the interface and uncertainty as to their interaction at the stem-cement interface. 0.9% NaCl also 

has a similar Cl- content of the natural synovial fluid.  

2.2. Fretting-corrosion Setup 

A novel test method was derived, developed and conducted in part reference to ISO 7206-4, to evaluate 

the mechanically enhanced corrosion mechanisms at the stem-cement interfaces of fully cemented 

femoral components. Full details of the test arrangement can be found in (Bryant et al., 2013a; Bryant et 

al., 2013b). Each test was immersed in 600mL of 0.9% NaCl solution at 37±1°C and initially held at a 

static load of 100N for 24hrs in order to simulate a time of no load bearing after surgery and also to let the 

system achieve equilibrium before cyclic testing. After 24hrs, a cyclic load of 300N to 2300N at 1Hz for 

500,000 cycles was applied to the stem through a Ø28mm LC CoCrMo femoral head and UHMWPE liner. 

Care was taken to seal the modular taper interfaces to eliminate any additional effects that may result 

Porous coated area Un-coated area 



from corrosion or tribocorrosion processes occurring there. The head and liner interfaces were not 

immersed to ensure they did not contribute to the electrochemical measurements. Figure 2 demonstrates 

the test setup and orientation and fixation utilised in this study. 

 
 

Figure 2 - Orientation and fixation method utilized 

 

2.3. In-situ electrochemistry measurements 

In order to facilitate in-situ corrosion measurements a 3-electrode electrochemical cell was integrated into 

the ISO 7206-4 fatigue test arrangement. A Thermo-scientific Sureflow Redox combination electrode, 

consisting of a Ag/AgCl reference electrode (RE) and Pt counter electrode (CE) was employed to 

facilitate in-situ corrosion measurements. In order to quantify the influence of galvanic coupling on the 

fretting corrosion rates of cemented femoral stems two electrochemical procedures were conducted: 

Procedure 1: In order to quantify the free corrosion potential (Ecorr) and fretting corrosion currents (Icorr) of 

uncoupled cemented femoral stems, intermittent Ecorr and Linear Polarisation Resistance (LPR) 

measurements were recorded as a function of time. Ecorr measurements were conducted every 60secs. 

Although the LPR technique is considered to be a non-destructive technique, LPR measurements were 

conducted every 10hrs to minimise disruption of the CoCrMo surface due to polarization. Polarisation 

scans were conducted from -50mV to +50mV (vs. Ecorr) at a scan rate of 0.25mV/s. The application of an 

over-potential to a metallic sample results in a current flow between the WE and CE.  Within a small 

potential range of Ecorr, a linear relationship between applied potential and measured current is typically 

seen due to a separation of electrical charge arising from the establishment of the metal oxide and 



electrochemical double layer.  Above and below Ecorr, a net anodic or cathodic reaction, respectively, is 

observed. The slope of the linear polarization curve is related to the kinetic parameters of the corroding 

system. Experimentally obtained Rp values were inputted into the Stern-Geary (SG) equation using 

constants obtained from femoral stems subjected to Tafel polarisation whilst undergoing fretting. Tafel 

polarisation was conducted ±0.5V vs Ecorr. The SG coefficient was calculated as being 0.056. Due to the 

large number of samples required to obtain Tafel constants as a function of time, the SG coefficient given 

above was assumed to be constant throughout the test. The authors acknowledge that this assumption is 

a simplification to the system, but thought to be the most accurate way to determine corrosion currents 

without extensive polarisation and damage to the surfaces.  

It is important to note under this test procedure there is no electrical coupling of the femoral stem to a 

mixed metal.  

Procedure 2: Zero Resistance Ammeter (ZRA) measurements were also utilised in experiments, where 

there is a galvanic cell set up between the stem-cement interface and Ti ring. The measurements consist 

of the WE1 and another material (WE2) of interest being connected to a ZRA which allowing a net current 

to be measured between to the two samples. Depending on the convention of current (+ usually anodic, - 

usually cathodic), the direction of electron flow can be observed. When the net galvanic current (Ig) is 

equal to zero, no current flows therefore no galvanic corrosion occurs. This does not mean that oxidation 

of the surfaces is not occurring. This technique only considers the excess corrosion/electron transfer 

liberated due to fretting-crevice corrosion. It does not take into consideration the current transfer between 

passive and active areas on the WE. In order to estimate the actual corrosion rate (Icorr galv) of the CoCrMo 

femoral stem when coupled to the Ti alloy ring, other techniques need to be utilised to evaluate the self-

corrosion current/rate (current resulting from oxidation and reduction reactions) of the WE (procedure 2). 

The cell potential (Emixed) of the system was also measured relative to a Ag/AgCl reference electrode. It is 

important to note that the Emixed reflects the Ecorr of both the Ti alloy and CoCrMo as both alloys will 

participate in the redox reactions when electrically coupled.  



All electrochemical measurements were conducted using a PGSTAT101 potentiostat/galvanostat 

(Metrohm Autolab B.V, Utrecht. NL). Figure 3 demonstrates the electrode arrangement for procedures 

1and 2. All results presented in this study represent experimental mean ± experimental error (n=3).   

  

(a) (b) 

Figure 3 - Schematical representation of the electrode arrangement utilised in a) procedure 1 and 

b) 2. 

Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) tests were conducted to measure the Total 

Ionic Mass Loss (TIML) during a fretting test. Upon completion of each test 600mL of electrolyte was 

drained into a sterile polyethylene bottle and stored in the freezer until analysis to prevent further 

degradation of the solution.  Prior to analysis, samples where defrosted and 1mL of bulk electrolyte was 

extracted using a polymer tipped pipette and stabilised in 9mL 2%HNO3. Isotope Co 59, Cr 52, Mo 96 and 

Fe 58 were used in order to quantify the amount of metal ions released from the metal-cement interface. 

Cr 52 was chosen to eliminate any interference from Cl (MW: 34.45) and O (MW: 15.99) present in the 

electrolyte. The combination of ICP-MS and electrochemical techniques highlighted previously allows a 

mechanistic evaluation of the relative contributions of metallic ions arising from chemical and mechanical 

degradation. Metallic ion release resulting from chemical dissolution can be further broken down and the 

influence of galvanic coupling on the pure and wear enhanced-corrosion mechanisms observed.  



Low powered optical light microscopy was also conducted in order to assess the surface for any visable 

areas of fretting-corrosion. Scanning electron microscopy (SEM) was further utilised using a Carl Zeiss 

EVO MA15 microscope to further elucidate the wear mechanisms acting upon the femoral stems.  

3. Results 

 

3.1. In-situ corrosion measurements  

In order to investigate the role of galvanic coupling under fretting crevice-corrosion conditions Procedures 

1 and 2 were conducted. For the galvanic fretting corrosion tests a Ti ring with the same surface area of 

the acetabular shell in the Ultima THR system was immersed with the femoral stem.  

Figure 4 demonstrates the cell potential response for both systems. Upon immersion ennoblement in both 

the Ecorr and Emixed was seen suggesting the formation of a protective passive oxide/hydroxide layer. At 

24hrs this was seen to have stabilised to around 0.08 and 0.11V for the uncoupled and coupled systems 

respectively.   

Upon the application of cyclic loading at 24hrs, a cathodic shift in potential was seen for both the Ecorr and 

Emixed was seen respectively. In the case of the uncoupled test, a sudden decrease in Ecorr is associated 

with depassivation of the CoCrMo surface and an increase in fretting corrosion current due to exposure of 

the reactive CoCrMo substrate. For the coupled system, a decrease in Emixed demonstrates depassivation 

of the CoCrMo surface. The shift in Emixed was not as extreme when compared to Ecorr values due to the 

counter effect of cathodic depolarisation imposed on the femoral stem due to the coupling to the Ti alloy 

ring. This depolarisation also serves to increase the anodic reactions increasing the rate of corrosion.  

The gradual decrease in Emixed suggests that although depassivation of the CoCrMo occurs upon the 

application of cyclic loading, the rate of the anodic reaction on the CoCrMo surface, and the areas in 

which these reactions occur, are in a constant rate of change which will influence the Emixed of the system. 

Similar trends where seen for all tests.  

 After 500,000 cycles the cyclic loading was removed and the sample held in compression for a further 10 

hrs at 0.3kN. An increase in the Ecorr and Emix was seen demonstrating a repassivation of the CoCrMo and 

an ennoblement of the mixed metal system. Throughout the tests an increased cell potential was seen 



under both static and fretting conditions when galvanically coupled. This is due to the polarising nature of 

the Ti alloy ring.   

 

Figure 4 - Measured free corrosion and mixed potential for polished femoral stems when 

subjected to dynamic loading 

Figure 5 demonstrates the fretting-corrosion currents obtained from ZRA and LPR measurements. Upon 

the application of cyclic loading, Icorr was seen to increase by an order of magnitude demonstrating 

depassivation of the metallic surface and an increase in the rate of oxidation taking place on the metallic 

surface of the uncoupled system. Icorr was seen to remain constant until the removal of load. At this point 

Icorr was seen to decrease suggesting partial repassivation of the CoCrMo and a decrease in the corrosion 

rate. Furthermore the partial recovery of Ecorr, combined with the increased Icorr compared to the initial 

static value after cyclic loading had been removed suggests the formation of an environment capable of 

sustaining an increased rate of localised crevice-corrosion, a characteristic commonly associated with 

fretting-corrosion of modular head-neck tapers of biomedical implants (Goldberg and Gilbert, 2003).   

ZRA measurements demonstrated a net anodic current from the CoCrMo femoral stem to the Ti alloy 

ring. Upon the application of cyclic loading, on average an increase in current from 7.51×10-7A to 

1.75×10-5A was seen demonstrating that galvanic coupling increases the wear-enhanced corrosion. The 

presence of a galvanic couple significantly increases the rate of pure and wear induced corrosion within 

the interface.  
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It is important to realise that net anodic current measurements do not take into consideration any 

reduction occurring within the stem-cement interface and in the current form are not directly comparable 

to Icorr measurements obtained using the LPR technique. In order to take this into consideration in our 

galvanic measurements 𝐼𝑎(𝑠𝑡𝑒𝑚) = 𝐼𝑐𝑜𝑟𝑟 + 𝑛𝑒𝑡 𝐴. The effect of this on the fretting-corrosion currents is 

demonstrated in Figure 5.  Applying this factor (displayed at Icorr+netA in Figure 5), an increase in anodic 

fretting corrosion current from the CoCr femoral stem was seen.  Table 2 summarises the mean currents 

observed during fretting corrosion tests.  

 

Figure 5 - Current response for uncoupled and coupled polished femoral stems when subjected to 
dynamic loading 

Table 2 – Comparison of mean current during fretting for uncoupled and coupled femoral stems 

 Mean current (A) 

Uncoupled (Icorr) 1.17x10-5±2.05x10-6 

Coupled (Net A) 1.64x10-5±2.77x10-6 

Coupled (Net A+ Icorr) 2.17x10-5±3.53x10-6 

3.2. Ionic Mass Loss 

Due to the nature of the system, it is difficult to quantify the total mass loss from the metallic stem 

gravimetrically due to the formation and accumulation of corrosion product within the cement mantle, 

along with the removal of the cement mantle in its entirety. Removal of the femoral stem from the PMMA 

cement will further influence any gravimetric results providing in-accurate and unrepresentative 
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measurements. The ionic mass loss with respect to time due to pure oxidation and wear induced 

corrosion of the metallic surface can be calculated from Faraday’s relationship shown in equation 1.  

𝑚 = (𝑄𝐹) × (𝑀𝑛 )   (1) 

Where ‘m’ is the ionic mass loss due to pure oxidation and wear induced corrosion of the metallic surface 

(g), ‘Q’ is the total electric charge passed through a substance (𝑄 = ∫ 𝐼𝛿𝑡𝑡0 , where t is the total time 

constant, Q=C), F = 96,485 C mol-1, M is the molar mass of the substance (58.93g assuming 

stoichiometric dissolution of the alloy) and n is the valence number of ions in the substance (in this case 2 

was assuming oxidation according to (𝐶𝑜 → 𝐶𝑜2+ + 2𝑒−). ICP-MS was also utilised to quantify the total 

ionic mass loss (TIML) in the bulk solution. 

Integration of the current vs. time curve was conducted in order to observe the cumulative ionic mass due 

to chemical dissolution (Figure 6). Galvanic coupling significantly increases the ionic mass loss from 

1.39±0.26 to 2.56±0.31mg. ICP-MS further supported these findings demonstrating a TIML of 1.44±0.11 

and 2.74±0.19mg for uncoupled and coupled femoral stems respectively. Table3 summarises these 

findings. An increase in the rate of ionic mass loss due to corrosion (𝜕𝑚𝜕𝑡 ) from  4.70 × 10−3 to 1.71 ×10−2𝑚𝑔ℎ𝑟−1 was seen for uncoupled and coupled femoral stems respectively under fretting conditions.  

 

Figure 6- Cumulative ionic mass loss for uncoupled and coupled polished femoral stems when 
subjected to dynamic loading 

0 20 40 60 80 100 120 140 160 180

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 

 

C
u

m
u
la

ti
v
e

 M
a
s
s
 L

o
s
s
 (

m
g

)

Time (Hrs)

 Uncoupled (Icorr)

 Coupled (Net A)

 Coupled (Icorr+NetA)

Cyclic Loading 



Corrosion currents measured with the LPR technique do not take into consideration any ionic/metallic 

debris liberated from the metallic surface due to mechanical wear; only loss of material by electrochemical 

corrosion. Any additional metal ions that are produced due to the production and dissolution of debris will 

therefore be in addition to those measured by electrochemical techniques. ICP-MS provides a good 

method to do this. The discrepancy between the two measurements will result from the ions which result 

from the dissolution of any wear debris. Table 3 compares the final ion levels after 500,000 cycles. 

Corrosion is thought to be the main source of ion release with differences beyond experimental deviation 

in the TIML and Faradaic mass losses being seen. In all cases Ti was seen to be below the detection limit 

(<0.50µg/L). This demonstrates that Ti was again acting as the net cathode. 

Table 3 – Comparison of Faradaic and Total Ionic Mass Losses.  

 
Mass of ions released 

calculated from Faradays law 
(mg) 

Measured Total Ionic Mass 
Loss (mg) 

Uncoupled (Icorr) 1.39±0.26 1.44±0.11 

Coupled (Net A+ Icorr) 2.56±0.31 2.74±0.19 

 

3.3. Surface Analysis 
 

3.3.1. Macroscopic assessment  

Upon the completion of 500,000 cycles, each femoral stem was carefully removed and the surfaces of the 

CoCrMo femoral stem observed according to the grading and sectioning method present in Figure 7. 

Upon removal of the uncoupled femoral stem, fretting corrosion could be macroscopically seen in the 

proximal anterior-lateral and posterior-medial regions of the femoral stem in Gruen zones 1 and 7. 

Towards the distal regions of the stem, localised areas of pitting corrosion was seen typically in Gruen 

zone 3. Qualifications for the Gruen Zones can be found in (Bryant et al.; Bryant et al., 2013d) 



 

Figure 7 - Location and orientation of Gruen zones used to map fretting corrosion in this study 

(Bryant et al., 2013d). 

3.3.2.  Optical Microscopy Images 

Optical microscope analysis was conducted in order to assess the implications of micro-motion on the 

surface morphology of cemented femoral stems. A distinct directionality of the surface was seen in the 

proximal regions of the femoral stem for both uncoupled and coupled CoCr femoral stems (Figure 8a-b). 

A similar surface morphology was seen in Gruen zones 2,3, 5 and 6 (Figure 8c-d). Localised areas of 

fretting corrosion were seen to occur around pores found in the counterpart PMMA bone cement, similar 

to the observation presented by Zhang et al (Zhang et al., 2011).  Towards the distal regions of the 

femoral stems (Gruen zone 4), crevice corrosion was seen in the absence of any micro-motion (Figure 8 

e-f).   

 

 

 

 



Uncoupled Coupled 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 8 - Optical Microscope analysis of uncoupled and coupled femoral stems in Gruen zones a-
b) 1 and 7 c-d) 2 and 6 e-f) 4 

 



SEM analysis was also conducted on a select number of stems to highlight the difference in surface 

appearance across the stem-cement interface. As previously mentioned, the mode of degradation was 

seen to vary as a function of stem length, with a corrosive attack becoming prevalent at the distal portions 

of the stem. In the regions of which micromotion was present between the CoCr femoral stem and PMMA 

bone cement an abrasive type wear mechanism could be observed. This was typified by cutting and 

plough of the CoCr surface. 

  
(a) (b) 

 

(c) 

Figure 9 – SE SEM Images of a sample femoral stem in the Gruen Zone a) 1-7 b) 1-7 at higher 
magnification and c) 4. 

 

4. Discussion  
4.1. Tribocorrosion Mechanism 

Biomedical alloys typically owe their corrosion resistance to a formation of an inert protective oxide film 

resulting in very low corrosion rates. In order for a material to form a passive film, the substrate must 

rapidly react with oxidising agents in the environment (Mischler and Muñoz, 2013). When a passive alloy 

is utilised in a tribological application, depending on the contact mechanics and lubrication regimes, 

200µm 200µm 

200µm 



mechanical removal of the passive film occurs leaving the reactive substrate exposed to the environment. 

Rapid oxidation of the substrate usually occurs resulting in metal ions being liberated from the metallic 

substrate. This process is known as tribocorrosion. Tribocorrosion is found in many engineering 

applications due the use of lubricating fluid films or the operating environment itself. However the 

mechanisms involved are not fully understood. Mischler (Mischler et al., 2001) described tribocorrosion as 

a material deterioration or transformation resulting from simultaneous action of wear and corrosion. The 

investigation of tribocorrosion requires the control of the chemical conditions during a wear test. 

Because tribocorrosion describes both the mechanical removal of material as well as the chemical 

degradation, it is important to appreciate and to identify the contribution of corrosion and wear to overall 

material loss. Uhlig, as cited by Mischler (Mischler, 2008),  was amongst the first to recognize the role 

wear and corrosion play on the degradation in fretting contacts. Uhlig demonstrated that material 

deterioration, and in turn metal ion release, results from two distinct mechanisms; mechanical wear and 

wear-accelerated corrosion to produce a simple mechanistic model as shown in equation 2, where  Vmech 

represents the volume of material removed by mechanical wear, Vchem is the material loss due to wear 

accelerated corrosion.  

𝑉𝑡𝑜𝑡 =  𝑉𝑚𝑒𝑐ℎ + 𝑉𝑐ℎ𝑒𝑚 (2) 

In the past the stem-cement interface has been neglected as a primary source of metal ion release only 

receiving attention from a few researchers. Results from this study have demonstrated that the ion 

release rates at this interface are not negligible. Studies into the quantity, relative ratios and the exact 

source of metal ion release from the interfaces of actual biomedical components are rare and limited to 

MoM bearings. Fretting corrosion currents observed in this study were, if not similar, higher at this 

interface compared to the articulation surfaces and other modular interfaces demonstrating that the 

corrosion at this interface is not negligible. Table 4 compares current literature with respect to Faradaic 

and total mass losses observed in this study.  

In reality, MoM THR’s are electrically coupled via their interfaces, as well as across the metallic surface, 

resulting in numerous galvanic cells been established. Currently ISO/ASTM test standards exist outlining 



test protocols to investigate the role of wear and corrosion of biomedical devices and materials. However 

these universally examine one particular component of the implant system in isolation to other system 

variables and contributors. Galvanic interactions occur when a potential difference is established between 

two electrically-connected metals immersed in a corrosion or conductive solution, as well areas of passive 

and depassivated alloy.  

Although the mechanisms for fretting corrosion at the stem-cement interface have been explored and 

reported in literature (Blunt et al., 2009; Brown et al., 2007; Bryant et al., 2013a; Bryant et al., 2013c; 

Geringer et al., 2005; Geringer and Macdonald, 2012; Geringer et al., 2010; L.Blunt et al., 2009), the role 

of galvanically-enhanced tribocorrosion and the impact galvanic coupling has on the degradation of 

orthopaedic implants has not been investigated. Galvanic corrosion is a topic which has been the focus of 

many discussions in the corrosion science field for many years with mixed findings. 

Although the mechanisms of static galvanic corrosion are fairly well understood and thought to be an 

issue for active-passive and material couples far apart in the galvanic series, galvanic corrosion in the 

bio-tribocorrosion field is not well understood. Galvanic corrosion of dissimilar metals is one of the most 

common and most severe forms of corrosion. Mansfeld (Mansfeld, 1973) highlighted that the magnitude 

of galvanic corrosion depends not only on the potential differences of mixed metals, but also on kinetic 

parameters such as corrosion rates or exchange current densities of the uncoupled materials. 

Papageorgio and Mischler (Papageorgiou and Mischler, 2012) have recently highlighted the importance 

and implications of galvanic coupling between active and passive regions found on a material when 

subjected to tribological conditions (i.e. potential difference established inside and outside the wear track), 

modelling potential and current transients based upon the Tafel equation. This potential difference 

between the active wear track and passive surrounding areas results in an electron flow, resulting in 

accelerated corrosion of the more susceptible alloy (Anode) and protection of the other areas (Cathode). 

Apply these current concepts and understandings, galvanic interactions between the passive and active 

areas on the CoCr femoral stem are expected during fretting, giving rise to the characteristic Ecorr curve 

presented in Figure 4. The electrochemical reactions occurring at the stem-cement interface can be 

visualised using Evans’ diagrams. Figure 10 represents the evolution of current of the cathodic and 



anodic reactions for the uncoupled and coupled situations.  Ecorr1 corresponds to the intersect at which the 

rate of the anodic reactions is equal to the cathodic reaction in the absence of fretting. At this point the 

self-corrosion rate at the interface is established (Icorr1).  Upon the application of fretting, an increase in the 

rate of metal oxidation is seen due to the loss of passivity resulting in a negative shift in Ecorr1 to Ecorr2 and 

an increase in the rate of corrosion to Icorr2. Mischler and Munoz (Mischler and Muñoz, 2013) have 

highlighted that since the depassivated and still passive areas are in electronal contact, a galvanic 

coupling occurs between active and passive areas on the alloy.  

For the case where passive Ti alloy is electrically connected to the stem-cement interface, a second 

galvanic couple or redox reaction is introduced.  According to mixed potential theory, because we have 

an additional reduction reaction (O2 reduction on Ti-6Al-4V) and assuming the dissolution of Ti alloy is 

negligible, the rate of the reduction and oxidation reactions need to be equal to satisfy charge 

conservation. In addition to this, as two electron consumption reactions are present these need to be 

summed giving rise to the qualification presented above. This therefore results in an increase in the rate 

of corrosion and release of metal ions into the bulk solution as demonstrated in Figure 10b.  

 
 

(a) (b) 

Figure 10 - Simplified Evans diagrams demonstrating the mechanisms for potential and current 

shifts for a) uncoupled and b) femoral stems coupled to Ti-6Al-4V.   

The results presented in this study support this hypothesis and demonstrate that the presence of static 

and passive Ti alloys and other metals will anodically polarise the CoCrMo femoral stem, increasing the 

rate of oxidation within the interface due to the large potential differences established between the 



passive Ti alloy ring and fretting contact. This is not surprising and has been shown by many authors 

(Guadalupe Maldonado et al., 2013; Landolt et al., 2001; Stack and Chi, 2003) that by increasing the 

over-potential of a system, wear-corrosion transitions can be observed depending the nature of the alloy. 

This paper highlights the need and importance of developing and taking a systems approach (i.e. 

understanding the interactions between other components rather than studying them in isolation) when 

considering the degradation mechanisms of orthopaedic alloys. Electrochemical reactions occurring 

across other interfaces have the ability to accelerate or supress the dissolution mechanisms at localised 

interfaces. This will have a drastic effect on the overall performance of the construct which will not be 

captured when interfaces are studied in isolation.  

4.2. Wear Mechanism 

Surfaces demonstrated a characteristic surface morphology depending of the degradation mechanism 

acting on them. Howell et al (Howell et al., 2004a; Howell et al., 2004b) presented a comprehensive 

study, conducting SEM and 3-D interferometry analysis on both retrieved polished and matte femoral 

stems. Polished stems were seen to exhibit signs of ductile wear accompanied by pitting of the surface 

typically in the anterolateral and posteromedial aspects of the stem, similar to the locations of wear and 

corrosion observed in this study. SEM analysis presented in this study (Figure 9) demonstrates cutting 

and plastic deformation of the CoCr femoral surface suggesting the presences of an abrasive wear 

mechanism. An abrasive wear mechanism exists at the stem-cement interface due to the formation and 

transfer of a Cr2O3 particulate film. Subsequently a hardness differential between the femoral stem (5-

10GPa) and Cr2O3 film (14-30GPa) will be established, resulting in abrasion of the femoral stem and 

depassivation of the surface. Evidence has been presented in previous studies (Figure 11) which has 

demonstrated the formation and presence of Cr2O3 films in the stem cement interface, creating a third 

body abrasive wear scenario. This was also seen to be of similar composition of that observed in retrieval 

studies.   



 
(a) 

 
(b) 

Figure 11 - Fretting corrosion product found on a) stem and b) PMMA bone cement after 500,000 

cycles of fretting (Bryant et al., 2013b). 

4.3. Links to Clinical Data 

In 2008, Donell et al (Donell et al., 2010) reported the dramatic corrosion of generally solidly fixed femoral 

stems when combined with MoM articulations. The current revision rate stands at 20.2% at 15 years post-

op (Bryant et al., 2013d). It was thought that the necrosis of the surrounding tissue was associated with 

the release of potentially toxic metal ions such as cobalt and chromium from the stem-cement interface 

due to corrosion of the alloy. In contrast to this, Shetty et al (Shetty et al., 2006; Shetty et al., 

2005)presented the findings of the Ultima TPS femoral stem when used in conjunction with a MoP 

articulation. No hips required revision within 5 years due to ARMD when used in conjunction with a MoP 

articulation and ‘a similar performance as the Exeter femoral stem’ which has at least 20 years of clinical 

prevalence was seen. Although anecdotal, this suggests an effect of the MoM articulation on corrosion 

mechanisms and rates at the stem-cement. A subsequent publication by Bolland et al (Bolland et al., 

2011) further demonstrated high levels of corrosion of the cemented portions of the femoral stem in a 

same-metal MoM system further supporting this hypothesis. 



Tribo-chemical reactions have also been shown to be a predominant factor in the degradation at the stem 

cement-interface of MoM THR influencing the ratios in which metallic ions were released at the stem-

cement interface. Previous publications have demonstrated that the formation of films within the interface 

significantly influences the ion release from the interface due to the thermodynamic stability of the alloying 

elements within the interface (Bryant et al., 2013a; Bryant et al.; Bryant et al., 2013d). To date there are 

no reported in-vitro studies of direct measurements of ionic mass loss from the stem-cement interface into 

the bulk environment. Hart et al (Hart et al., 2013) presented the tissue findings of the Ultima TPS MoM 

cohort which are in good agreement with the experimental findings demonstrating a preferential release 

of Co into the biological environments. This is due to the formation of chromium rich oxide layers being 

formed within in the stem-cement interface as a result of fretting, resulting in a preferential release of Co.  

These findings also further question the use of in-vivo metal ion measurements as a surrogate marker of 

wear in MoM total hip replacements as the tribochemical reactions occurring at these interfaces have the 

propensity to influence the actual metal ions released in the biological environment.  



Table 4- Comparison of electrochemical parameters ionic mass losses from recent in-vivo studies 
on orthopaedic components 

Study Interface 
Observed 

Electrochemic
al Technique 

Max. 
observed Icorr/ 
change in cell 

potential 
under 

depassivation 

Faradaic / 
Total Ionic 
Mass Loss 

(mg) 

(Ratio 
Co:Cr:Mo) 

Duration 
of Test 

Test 
Electrolyte 

This 
Study 

Stem-Cement LPR/ZRA/Ecorr Uncoupled: 
3.5×10-6A/ 

Δ0.24V 

Uncoupled: 
0.91/1.49 

(9.5:0.3:0.2) 

0.5million 
cycles 

0.9% NaCl 

Coupled: 
2.5×10-5A/ 

Δ0.36V 

Coupled: 
2.54/2.73 

(9.8:0.1:0.1) 

Hesketh 
et al 

(Hesketh 
et al., 
2013) 

36mm MoM 
Articulation 

LPR/Ecorr 6.0×10-6A 
/Δ0.35V 

0.535/1.1 

(6:3:1) 

1million 
cycles 

18g/l  foetal 
bovine 
serum 

diluted with 
PBS and 

0.03% 
sodium 
azide 

Al-Hajjar 
et al (Al-
Hajjar et 
al., 2013) 

28 & 36mm 
MoM 

Articulation 

-  -  NA/0.22-
1.12 

Correlated 
against 
wear 

volume 

25% (v/v) 
calf serum 
with 0.03% 

sodium 
azide 

Heisel et 
al (Heisel 

et al., 
2008) 

47mm MoM 
resurfacings 

-  -  NA/ 
≈10000µg/L 

(6.5:2.8:0.7) 

3million 
cycles 

30g/L 
Serum 
content 

Goldberg 
et al 

(Goldber
g and 

Gilbert, 
2003) 

Head neck 
taper 

ZRA 7.2×10-6A/ 
Δ0.35V 

NA/ max. 
0.03 

1million 
cycles 

Phosphate 
Buffered 
Saline 
(PBS) 

 

 



This study highlights the importance of the galvanic coupling of the Ti alloy shell in the Ultima TPS system 

to the stem-cement interface with respect to the occurrence and magnitude of galvanic corrosion. These 

results demonstrate that consideration must be taken when designing and researching biomedical 

devices and that there is a need for new generation of test techniques and simulation methods that would 

accommodate such factors. Further work also needs to be conducted to understand the potentials 

established across the surface of metals and mixed metal systems as well as the influence of surface 

area ratios. 

5. Conclusions 

Electrochemical techniques combined with visual, optical, electron microscopy and solution chemistry 

techniques have been utilised in order to identify the role of galvanic coupling on the fretting-corrosion 

rates and metallic ion production of cemented polished femoral stems. From this study it can be 

concluded that: 

 The introduction of cyclic loading results in a depassivation of the CoCrMo femoral stem 

surface.  

 The presence of Ti significantly increases the rate of wear enhance oxidation increasing the 

rate in which metal ions are produced.  

 A 100% increase in total ion release was seen for femoral stems coupled to Ti. 

 Large potential differences between the Ti alloy and active CoCrMo surface are established 

due to depassivation of the femoral stem surface resulting in a large current flow from the 

CoCrMo surface to the Ti.  

 Ti alloy increases the rate of wear enhanced oxidation by polarising the femoral stem surface 

according to the mixed potential theory.  

 A corrosive wear mechanism is seen at the stem-cement interface, with corrosion accounting 

for 95% of all metal ions released for uncoupled and coupled femoral stems respectively.  
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