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Abstract 

Advanced bioactive systems with defined macroscopic properties and spatio-temporal 

sequestration of extracellular biomacromolecules are highly desirable for next generation therapeutics. 

Here, chitosan hydrogels were prepared with neutral or negatively-charged crosslinkers in order to 

promote selective electrostatic complexation with charged drugs. Chitosan (CT) was functionalised 

with varied dicarboxylic acids, such as tartaric acid (TA), poly(ethylene glycol) bis(carboxymethyl) 

ether (PEG), 1.4-Phenylenediacetic acid (4Ph) and 5-Sulfoisophthalic acid monosodium salt (PhS), 

whereby PhS was hypothesised to act as a simple mimetic of heparin. ATR FT-IR showed the 

presence of C=O amide I, N-H amide II and C=O ester bands, providing evidence of covalent network 

formation. The crosslinker content was reversely quantified by 1H-NMR on partially-degraded 

network oligomers, so that 18 mol.-% PhS was exemplarily determined. Swellability (SR: 299±65–

1054±121 wt.-%), compressability (E: 2.1±0.9–9.2±2.3 kPa), material morphology, and drug-loading 

capability were successfully adjusted based on the selected network architecture. Here, hydrogel 

incubation with model drugs of varied electrostatic charge, i.e. allura red (AR, --), methyl orange (MO, 

-) or methylene blue (MB, +), resulted in direct hydrogel-dye electrostatic complexation. Importantly, 
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the cationic compound, MB, showed different incorporation behaviours, depending on the 

electrostatic character of the selected crosslinker. In light of this tuneable drug-loading capability, 

these CT hydrogels would be highly attractive as drug reservoirs towards e.g. the fabrication of tissue 

models in vitro. 
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Graphical abstract 

Systematic chitosan functionalisation resulted in 

hydrogels with varied network architecture, electrostatic 

charge and macroscopic properties, so that bespoke 

hydrogel loading was successfully accomplished by 

controlling the electrostatic dye-hydrogel complexation.  

 

1. Introduction 

In in vivo tissue engineering, multifunctional material systems should temporally mimic natural 

tissues, exhibiting controlled macroscopic properties and inducing specific biological signals to local 

stem cells [1]. In vivo, these functions are provided by the extracellular matrix (ECM), a highly 

organised supramolecular hydrogel structure binding and stabilising growth factors in a spatio-

temporal, controlled manner [2]. ECM sulfated glycosaminoglycans, such as heparin, protect bound 

growth factors from proteolytic degradation, potentiating their bioactivity by facilitating cell receptor 

interactions [3]. Consequently, the design of advanced bioactive systems mimicking ECM growth 

factor features in a defined, application-dependent, temporal fashion, is currently considered one of 

the greatest challenges in regenerative medicine [4, 5].  

Functional biomaterials, including hydrogels [5, 6, 7, 8, 9, 10, 11], sponges [12], scaffolds [13], 

electrospun meshes [14] and capsules [15], have been extensively investigated for the localised 

loading and controlled release of growth factors. Among the different carrier systems, hydrogels are 

attractive material candidates since they are generally biocompatible, biodegradable and can mimic 

ECM architecture over different length scales [16, 17]. At the same time, their high swelling and hard 

to control elasticity and degradability must be carefully addressed in order to ensure a timely and 



sustained material performance without compromising loading and release profiles [9]. Using 

functionalised dextran hydrogels, Schillemans et al. applied reversible electrostatic interactions for 

post-loading and release of proteins [18]. Here, protein incorporation was not homogeneous and 

nearly-complete release was observed following 50 hours. Aiming at sustained and localised delivery, 

Jeon et al. synthesised growth factor-encapsulating hydrogels [19]. Here, covalently-linked heparin 

segments were expected to mimic ECM growth factor-binding sites, although release was found to be 

mainly driven by diffusion rather than network degradation. In an effort to control loading and release 

capability independently of network characteristics, Freudenberg et al. described a modular system of 

biohybrid hydrogels based on covalently cross-linked heparin and star-shaped poly(ethylene glycols) 

[5]. Although mechanical properties and biofunctionality could be ruled independently, up to only 

about 5 wt.-% loading was observed†, while nearly 20 wt.-% of loaded growth factor was released 

within 7 days. Besides biopolymer-based hydrogels, surface-modified synthetic hydrogel networks 

have also been established, whereby pH-triggered, hour-scale, release of model drugs was 

demonstrated [11]. From all the aforementioned examples, it appears rather clear that successful 

clinical translation of current hydrogel systems as controlled drug delivery systems has been deterred 

by setbacks such as (i) poor loading efficiency, (ii) large initial burst release and (iii) limited control 

in material properties. An interesting approach to address these challenges is based on the design of 

functional hydrogel reservoirs allowing for the controlled loading of a wide range of biomolecules, 

whereby stimulus-triggered drug release can be obtained. To reach this goal, the molecular network 

architecture must be thoroughly investigated, so that defined structure-property-function relationships 

can be established [20]. 

Chitosan (CT) is the second most abundant natural polymer on earth and serves as a structural 

polysaccharide for many phyla of lower plants and animals. CT is derived from the partial 

deacetylation of chitin, thereby resulting in the only linear cationic polysaccharide. It contains 

glucosamine and N-acetylglucosamine units along its polymer backbone, so that it mimics the 

chemical composition of ECM glycosaminoglycans. In light of its suitable biodegradability, 
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biocompatibility, immunological, antibacterial and wound-healing properties as well as good 

mechanical and film-forming properties [ 21, 22], CT has therefore been widely applied in the 

biomedical field as a wound dressing [23], haemostat [24] and scaffold for tissue engineering [25, 26], 

and as controlled drug [27] and gene [28] delivery vehicles. At the same time, CT’s polycationic 

nature should be carefully considered for the successful formulation of bespoke drug delivery 

systems, due to the potential electrostatic repulsion of the polymer backbone with positively-charged 

growth factors, such as BMP-2 or FGF-2 [ 29 ]. Furthermore, a non-controllable electrostatic 

complexation of the material surface with cells may be observed following protonation of CT amino 

groups in vitro or in vivo, ultimately leading to cytotoxic effects. To circumvent these issues, chemical 

functionalisation of CT can be carried out, whereby reaction of amino and hydroxyl terminations 

leads to the establishment of covalent, neutralised, net-points, so that the polycationic character of CT 

is controlled [30, 31, 32]. CT has been carboxymethylated [33, 34], grafted with phenylalanine [35] 

and crosslinked with low-molecular weight segments [36], leading to a broad range of polymers. 

However, despite such enormous polymer variability, the fact that CT solubility is restricted to acidic 

conditions imposes several constraints in terms of accomplishing selective and tuenable 

functionalisation, so that systematic changes in molecular organisation are highly challenging. Indeed, 

reacted products might be unstable at acidic pH, potentially resulting in occurrence of side reactions 

and reduced reaction yield, so that material properties and drug loading/release functionalities cannot 

be systematically varied. 

This work aimed at establishing a novel synthetic approach for the formation of bioactive 

CT-based systems displaying tunable network architecture and superior drug-loading functionality. It 

was hypothesised that selective CT functionalisation could be accomplished in aqueous systems with 

bifunctional segments of varied molecular weight, backbone rigidity, wettability and electrostatic 

charge, so that bespoke hydrogels with defined macroscopic properties could be formed. Based on the 

selected network architecture, it was hypothesised that hydrogel drug-loading functionality could 

result from the electrostatic complexation of the network chains with systematically-varied model 

drugs. To reach this goal, L(+)-tartaric acid (TA), poly(ethylene glycol) bis(carboxymethyl) ether 

(PEG), 4-Phenylenediacetic acid (4Ph), and 5-Sulfoisophthalic acid monosodium salt (PhS) were 



selected as dicarboxylic acids for CT functionalisation. TA and PEG have been previously applied to 

CT for the design of pH-responsive nanoparticles [32] and drug delivery hydrogels [36]. Here, both 

compounds were employed as flexible, aliphatic, neutral crosslinkers of varied molecular weight. 4Ph 

and PhS were selected as rigid, aromatic segments, whereby the only difference between the two 

molecules was the presence of a sulfonic acid group in PhS benzene ring, aimed at mimicking the 

growth factor-binding sites of heparin in vivo. Consequently, incubation in solutions containing either 

allura red (AR) as doubly negatively-charged, methyl orange (MO) as negatively-charged and 

methylene blue (MB) as positively-charged, model drugs was carried out in order to explore hydrogel 

loading functionality [37]. Thus, CT systems with systematically adjusted material properties and 

loading efficiencies via selective changes in network architecture were expected to be established. 

Ongoing research is focusing on the evaluation of the controlled drug release functionality in the 

presented chitosan systems.  

 

2. Materials and methods 

2.1. Materials 

Low molecular weight (50000-190000 Da) CT, N-(3-Dimethylaminopropyl)-N-

ethylcarbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS), PEG (average Mn ~  600 Da) 

and hydrochloric acid solution (37%) were purchased from Sigma Aldrich (Japan). 1-

Hydroxybenzotriazole (HOBt) was purchased from Kishida Chemical Co., Ltd. (Japan). PhS, 4Ph and 

TA were purchased from Tokyo Chemical Industry Co., Ltd. (Japan). Allura red, methylene blue and 

methylene orange were purchased from Tokyo Chemical Industry Co. Ltd. (Japan), Kishida Chemical 

Co., Ltd. (Japan) and Nacalai Tesque, Inc. (Japan), respectively. Deuterium oxide was purchased from 

Wako Pure Chemical Industries, Ltd. (Japan). 

 

2.2. Formation of CT -based hydrogels 

CT -based hydrogels were prepared by dissolving CT (0.15 g) in a HOBt (0.12 g)-water (4.23 g) 

solution [38]. Once the CT solution was obtained, an equimolar content of dicarboxylic acid (either 

TA, PEG, 4Ph or PhS) with respect to the CT amino functions was activated in water (0 °C, pH 4, 30 



min.) with EDC (1 or 2.3 M) in the presence of NHS. A three-fold excess of EDC/NHS with respect 

to the dicarboxylic acid molar content was introduced. NHS-activated dicarboxylic acid mixture was 

mixed with previously-obtained CT solution and incubated at room temperature under gentle shaking, 

in order to allow for the nucleophilic addition reaction of CT amino groups to the crosslinker 

carboxylic functions to occur. Complete gel formation was observed following 1-hour reaction of CT 

with selected NHS-activated dicarboxylic acids. Resulting hydrogels were thoroughly washed with 

distilled water, followed by vacuum-drying at room temperature.  

 

2.3. Chemical characterisation of hydrogel networks 

Attenuated Total Reflectance Fourier-Transform Infrared (ATR FT-IR) was carried out on dry 

samples using a Perkin-Elmer Spectrum 100 FT-IR spectrophotometer with diamond ATR 

attachment. Scans were conducted from 4000 to 400 cm-1 with 16 repetitions averaged for each 

spectrum at 4 cm−1 resolution. In order to investigate the molar content of introduced crosslinkers, 5 

mg hydrogel CT-PhS was exemplarily incubated in 5 M HCl solution at 60 °C until complete network 

degradation. Partially-degraded oligomers were dried at 40 °C with reduced pressure. 1H-NMR 

spectra were recorded at room temperature on a JEOL GSX 400 spectrophotometer (400 MHz) by 

dissolving 10 mg of dry oligomers in 1 mL deuterium oxide. Signals at į= 8.4 ppm and į=8.5 were 

selected to identify PhS species, while the signal at į=4.4 ppm was chosen to describe CT backbone. 

Consequently, the sulfonic acid content incorporated in the hydrogel was quantified according to the 

following equation: 
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2.4. Swelling tests 

Swelling tests were carried out by incubating dry samples in 5 mL aqueous medium, either 

distilled water or PBS (pH 7.4), at room temperature for 24 hours. Water-equilibrated samples were 

retrieved, paper-blotted and weighed. The weight-based swelling ratio (SR) was calculated as:  
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where ms and md are swollen and dry sample weights, respectively. Three replicas were used for each 

sample composition, so that SR results were expressed as average ± standard deviation. Single factor 

ANOVA was carried out to determine the statistical significance between experimental groups. A 

value of p < 0.05 was considered to be statistically significant. 

 

2.5. Compression tests 

Water-equilibrated hydrogel discs (ø 0.8 cm) were compressed at room temperature with a 

compression rate of 3 mm·min-1 (EZ test, Shimadzu Corporation, Japan). A 500 N load cell was 

operated up to sample break. The maximal compressive stress (ımax) and compression at break (İb) 

were recorded, so that the compressive modulus (E) was calculated by fitting the linear region of the 

stress-strain curve. At least three replicas were employed for each composition and results expressed 

as average ± standard deviation. 

 

2.6. Thermogravimetric analysis 

Thermogravimetric analysis (TGA, TG/DTA 6200, Seiko Instruments Inc., Japan) was 

conducted on dry samples in order to investigate the thermal stability of formed networks. TGA tests 

were carried out under nitrogen atmosphere (50 mL·min-1 nitrogen flow rate range) with 10 °C·min-1 

heating rate from 10 to 500 °C.  

 

2.7. Scanning electron microscopy 

The internal architecture of formed hydrogels was investigated following freeze-drying. Freeze-

dried samples were mounted on metal stubs using double-sided carbon adhesive tape and coated with 

osmium tetroxide by HPC-30 plasma coater (Vacuum Device Inc.). Coated samples were inspected 



with JEOL JSM-6700FE field emission scanning electron microscope, whereby the pore size was 

determined by direct measurements (n= 2-8). 

 

2.8. Drug loading into CT hydrogel  

Allura red AC (AR, Ȝmax = 504 nm), methyl orange (MO, Ȝmax = 505 nm) and methylene blue 

(MB, Ȝmax = 661 nm) were used as doubly negatively-, negatively- and positively-charged model 

drugs, respectively, in order to estimate hydrogel loading functionality. A stock solution of each dye 

was prepared in distilled water at a final concentration of 0.1 mg·mL-1. The stock solution was further 

diluted before incubation of a water-equilibrated hydrogel (10-50 mg) in 4 mL dye solution (0.025 

mg∙mL-1). At selected incubation time points, the incubating solution was collected in a cuvette and 

analyzed via a UV spectrophotometer U-3010 (Hitachi High-Technologies Corporation, Japan). Thus, 

hydrogel loading with model drugs was quantified according to the following equation: 
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whereby XX identifies the loading model drug, i.e. AR, MO or MB; Amax,d indicates the maximum 

absorbance of the model drug solution before incubation of the hydrogel sample, while Amax,t  

describes the maximum absorbance of the solution supernatant following hydrogel incubation at 

selected loading time points. 

 

3. Results and discussion 

CT hydrogels with varied crosslinkers, controlled macroscopic properties and tunable drug-

loading functionality were successfully synthesised (Scheme 1). These hydrogels were colourless and 

transparent in their gelled unloaded state; following drug loading the gels took on the colour of the 

relevant drug (Figure S1, Supporting Information shows an image of hydrogel CT-PhS following AR 

loading). CT was dissolved in HOBt aqueous solution, as an effective, reliable and cell-friendly 

system to directly functionalise CT avoiding any pre-derivatisation step or acidic conditions [38]. 

Reaction with selected NHS-activated dicarboxylic acids led to complete gel formation within 30 min 

reaction. Here, nucleophilic addition of CT amino and hydroxyl functions to activated crosslinkers 



takes place [22], leading to a covalent network consisting of hydrolytically-cleavable amide net-points 

(Scheme 1, A). Thus, either intra- or inter-molecular crosslinks can be introduced in CT chains, 

depending on the molecular rigidity, molecular weight and feed ratio of selected crosslinking 

segments (Scheme 1, B). Consequently, materials with varied macroscopic properties and internal 

geometry could be accomplished. Furthermore, hydrogel electrostatic charge was expected to be 

tuned based on resulting network architectures, so that loading with a wide range of drugs could be 

successfully obtained via electrostatic drug-hydrogel complexation (Scheme 1, C). In the following, 

CT-based hydrogels will be characterised as for their network architecture, swellability, thermo-

mechanical properties, material morphology and drug-loading functionality, aiming at establishing 

systems with defined structure-property-function relationships. Samples are coded as CT(XX%)-

YYY, whereby CT indicates a CT-based hydrogel, XX identifies the wt.-% CT concentration in the 

reacting mixture, while YYY states the type of crosslinker introduced in resulting networks, either 

TA, PEG, 4Ph or PhS.   

 



Scheme 1. Formation of CT-based hydrogels with varied network architecture and tunable drug-loading functionality. (A): 
A dicarboxylic acid segment is activated with EDC/NHS and reacted with an aqueous solution of CT-HOBt. (B): Molecular 
formula of selected bifunctional segments: Tartaric acid (1., TA), poly(ethylene glycol) bis(carboxymethyl) ether (2., PEG),  
1,4-Phenylenediacetic acid (3., 4Ph), Monosodium 5-Sulfoisophthalate (4., PhS). (C): Drug-loading functionality of 
CT-based hydrogels: native CT (–) behaves as a polycation in aqueous solution due to the protonation of amino and 
hydroxyl functions (I). By covalently functionalising CT with either negatively- or positively-charged bifunctional segments 
(–), hydrogel electrostatic charge can be promptly varied (II). Adjustment in backbone electrostatic charge is exploited to 
achieve hydrogel loading with drug model compounds (Ɣ) via electrostatic complexation (III).  

 

3.1. Chemical composition and network architecture   

Vacuum-dried CT -based networks were investigated via ATR FT-IR in order to explore the 

chemical composition in formed materials and elucidate the mechanism of network formation. 

Spectral analysis was then combined with 1H-NMR spectroscopy on oligomers resulting from 

network degradation in acidic conditions, in order to quantify the crosslinker content in the covalent 

networks. Figure 1 displays FT-IR spectra of native and crosslinked CT following reaction with 

selected bifunctional segments. Distinctive FT-IR bands of CT are at 3450 cm-1 (O–H stretch), 2872 

cm-1 (C–H stretch), 1646 cm-1 (Amide I), 1590 cm-1 (Amide II), 1152 cm-1 (bridge-O stretch), and 

1090 cm-1 (C–O stretch) [34, 36]. Each of these bands was found in all acquired spectra, confirming 

the CT-based composition in resulting samples. At the same time, increased intensities of Amide I and 

II bands, while an additional band at 1740 cm-1, were observed in crosslinked, in comparison to native 

CT, spectra. The former finding is likely to confirm the presence of a covalent network consisting of 

amide net-points formed following the reaction between CT amino terminations and activated 

carboxylic groups of the crosslinkers. Furthermore, the new peak at 1740 cm-1 is likely to identify the 

C=O band of ester groups formed following the reaction of hydroxyl functions with activated diacids.  

 



Figure 1. Exemplary ATR-FTIR spectra of CT (a), CT(2.2%)-TA (b), CT(2.2%)-PEG (c), CT(2.2%)-4Ph (d),  and 
CT(2.2%)-PhS (e). The presence of Amide I (1650 cm-1), Amide II (1550 cm-1) and Ester (1730 cm-1) bands in 
functionalised, compared to native, CT confirms the formation of a covalent network via reaction of carboxylic terminations 
of selected bifunctional segments with amino and hydroxyl functions of CT, respectively. 
 

The lower intensity of this band compared to amide bands suggests that hydroxyl group 

functionalisation is less favoured, which is expected due to the lower reactivity of hydroxyl compared 

to amino functions. Other than that, no additional band characteristic of selected diacids was observed 

in resulting sample spectra, likely due to the much lower crosslinker, compared to CT, content. 

Besides ATR FT-IR, it was of interest to quantify the crosslinker content effectively incorporated 

in formed hydrogels. This information was crucial in order to elucidate the molecular architecture of 

resulting networks and understand how this affected hydrogel macroscopic properties and drug-

loading functionality. Covalent, non-soluble, hydrogel networks are indeed challenging to characterise 

precisely, since main molecular parameters, such as network crosslinking density, can only be 

determined indirectly following equilibrium-swelling and rubbery-elasticity theories. However, noisy 

experimental conditions are usually associated with the determination of these molecular parameters, 

so that only semi-quantitative conclusions can be drawn [39]. In order to overcome these limitations, a 

reverse approach was pursued for the characterisation of network architecture, whereby selected a CT 

hydrogel was fully-degraded in acidic conditions and resulting oligomers analysed via 1H-NMR 

spectroscopy.  

 



Figure 2. 1H-NMR spectra (D2O, 25 °C) of native CT (top), PhS (middle) and partially-degraded oligomers (bottom) formed 
following hydrolysis (5 M HCl, 60 °C) of hydrogel CT(2.2%)-PhS. Signals related to PhS- (Ha, Hb) and CT- (H1) based 
species were clearly identified in oligomers spectra, so that the PhS content in resulting hydrogels was successfully 
quantified (~ 18 mol.-%).  

 

Accordingly, samples of CT(2.2%)-PhS, as an exemplary hydrogel system, were selected since it was 

of particular interest to investigate how introduced sulfonic acid moieties influenced hydrogel 

swellability and drug-loading functionality (sulfonic acid being responsible for basic growth factor 

sequestration in tissue ECM).   

Figure 2 displays the 1H-NMR spectra of native CT, PhS and partially-degraded oligomers, 

respectively. Here, PhS- (Ha, Hb) and CT- (H1) related signals could be clearly distinguished in the 

spectrum of partially-degraded network oligomers, whereby no overlap with any other species was 

observed. This finding provides supporting evidence that network degradation only takes place via 

hydrolytic cleavage of either amide or ester bond net-points, resulting from the PhS-mediated CT 

functionalisation. Consequently, CT-related signal H1 could still be identified following network 

degradation, so that quantitative information was successfully obtained via integration ratio of PhS-

related signals (Ha, Hb) and CT reference signal (H1, Equation 1). Accordingly, a sulfonic acid content 

of 18 mol.-% was determined. As for comparison, Muzzarelli functionalised CT with 5-formyl-2-

furansulfonic acid to obtain an anticoagulant polymer analogue, whereby a sulfation degree of less 

than 4% was obtained, although an additional chloromethylation step was required [40]. Following a 

similar approach, Hoven et al. synthesised N-sulfofurfuryl-bearing CT films [41], so that the sulfation 

degree was increased up to nearly 8%; however, the reaction was carried out in the bulk state so that a 

non-homogeneous functionalisation was expected. In contrast to previous approaches, requiring 

additional reaction steps and resulting in low, non-tunable functionalisation, this synthetic route is 

highly advantageous, since it enables the direct functionalisation of CT with enhanced degree of 

functionalisation, so that functional, tunable hydrogels can be successfully obtained. Due to the 

versatility of this synthesis, it is expected that the degree of functionalisation can be increased further 

by tuning the crosslinker: CT feed molar ratio. 

 

 



3.2. Swellability of CT-based hydrogels 

The swelling ratio (SR) was quantified in either distilled water (pH 6.5) or PBS (0.1 M, pH 7.4) 

in order to investigate material behaviour in physiologically-relevant conditions. Figure 3 describes 

SR values for the different hydrogel compositions; SR of resulting chitosan networks was  varied in 

the range of 300-1100 wt.-%; networks crosslinked with PEG showed the highest SR variation (SR: 

500-1100 wt.-%), followed by samples CT-TA (300-600 wt.-%) and CT-PhS (400-600 wt.-%), whilst 

samples CT-4Ph took up the lowest amount of aqueous medium (300-400 wt.-%). Hydrogels CT-PhS 

displayed slightly higher SR in PBS compared to distilled water, although the opposite trend was 

observed in all other networks, with significant differences observed in systems CT(1.5%)-TA and 

CT(2.2%)-PEG. Moreover, changes in reacting CT concentration significantly affected the 

swellability of PEG- (following incubation in both distilled water and PBS) and TA-based (following 

incubation in PBS only) systems, despite there being only a very small change in reacting CT 

concentration (1.5-2.2 wt.-%). Overall, the following parameters were observed to rule the swelling 

behaviour of resulting CT networks: (i) network architecture, whereby variations were mainly based 

on the wettability, backbone rigidity and molecular weight of applied crosslinkers; (ii) CT 

concentration in the crosslinking mixture; (iii) electrostatic contributions resulting from the swelling 

medium, occurrence of free (i.e. amino) CT terminations and/or ionically-charged groups (i.e. sulfonic 

acid moieties) introduced following crosslinking.  

                     

Figure 3. Left: Swelling ratio (SR) of CT-based hydrogels following equilibration in either distilled water (grey) or PBS 
(light grey) at room temperature. ‘*’ and ‘a’ indicate that related mean differences are significant at 0.05 level (Bonferroni 
test). ‘b’ and ‘c’ indicate that corresponding mean values are significantly different to all mean values described in the plot 
(at 0.05 level, Bonferroni test). Right: SR of CT-based hydrogels following equilibration in PBS at room temperature. ‘*’ 
and ’**’ indicate that corresponding mean values are significantly higher compared to all other mean values described below 
the black line (at 0.05 level, Bonferroni test); ‘a’ indicates that compared mean values are significantly different between 



each other at 0.05 level (Bonferroni test); ‘b’ indicates that corresponding mean value is significantly different from all other 
mean values described in the plot (at 0.05 level, Bonferroni test).  
 

Hydrogel swelling is driven by the spontaneous mixing of network chains with water, whilst the 

presence of covalent net-points among polymer chains prevents the dissolution of the network, 

although contribution from ionic moieties also plays a major role. In order to understand the swelling 

behaviour of obtained CT systems, it is therefore crucial to focus on their molecular organisation. 

Given that the same reaction mechanism was employed for network formation (Scheme 1, A) and a 

constant molar feed ratio was applied, differences in network crosslinking density are unlikely to be 

expected among the different CT systems. Consequently, the network architecture will be mainly 

affected by the molecular structure of each crosslinking segment, described by its molecular weight, 

molecular rigidity, wettability and electrostatic charge, although  the ionic contribution deriving from 

non-reacted amino terminations of chitosan also needs to be considered. Considering the former 

aspect, the enhanced swellability observed in PEG- (in either distilled water or PBS), and in some 

cases in TA- (mainly in PBS), based systems can be mainly ascribed to the increased hydrophilicity 

and flexibility of both PEG and TA compared to employed aromatic, rigid crosslinkers, such as 4Ph 

and PhS. Likewise, the lower swellability observed in TA- compared to PEG-based systems is likely 

related to the varied crosslinker molecular weight, since this molecular parameter rules network 

elasticity and extensibility during swelling [42]. Thus, higher swelling is likely to be expected in 

networks crosslinked with longer segments compared to networks crosslinked with segments of 

decreased molecular weight. Other than crosslinker molecular weight and backbone rigidity, the 

swelling medium is also shown to play a major role in hydrogel swellability. The reason for this 

interesting  behaviour in obtained CT systems is to be found in the polycationic nature of native CT. 

CT pKa is 6.2-7 [21, 32], so that its amino terminations are protonated in distilled water (pH 6.5), 

while they are likely neutralised in PBS (0.1 M, pH 7.4). This effect is reduced in crosslinked CT and 

inversely-related to the network crosslinking density, since free amino groups will be functionalised 

to form amide bonds, as observed via ATR FT-IR (Figure 1). Consequently, in CT networks 

crosslinked with non-ionically charged segments, i.e. TA, PEG, and 4Ph, non-functionalised amino 

groups will be protonated in distilled water, so that the electrostatic repulsion between them will 



promote increased swelling. In contrast, no repulsion will be present in PBS since all free amino 

terminations will be neutralised, resulting in decreased SR. This behaviour is slightly reversed in the 

case of PhS-functionalised CT, given that additional, negatively-charged moieties are established 

along crosslinked chains. In distilled water, sulfonic acid groups will be able to mediate additional 

electrostatic crosslinks with free, protonated amino groups, so that decreased SR is observed (Figure 

3). At the same time, such electrostatic interactions will disappear in PBS, since free CT amino groups 

will be neutralised in these conditions. Consequently, SR is slightly increased due to the electrostatic 

repulsion between negatively-charged sulfonic acid moieties.  

 

3.3. Thermo-mechanical properties of CT systems 

Thermal analysis was carried out via TGA on dry networks in order to get an insight on the 

thermal material stability and network morphology, while mechanical properties were investigated via 

compression tests on water-equilibrated hydrogels. Figure 4 describes TGA thermograms of native 

and crosslinked CT samples. Thermal phenomena such as water loss, material decomposition and 

combustion were exhibited by all samples. At the same time, no additional thermal event was 

observed in crosslinked compared to native CT, indicating that no presence of by-products or 

non-reacted moieties could be observed. The synthesis of pure, fully-crosslinked covalent networks 

was therefore proved following hydrogel formation and washing. Native CT displayed a weight loss 

between 50 and 150 °C which is obviously related to the water evaporation from the sample. Such 

weight loss is also observed in the crosslinked materials although in a smaller extent, especially in the 

case of TA-based networks, probably due to the presence of covalent net-points limiting the amount 

of fluid imbibed and retained by the network. Compared to native CT, crosslinked samples displayed 

lower thermal stability (< 250 °C). These observations likely suggest that inter- rather than 

intramolecular functionalisation of polymer chains is obtained following network formation, so that 

CT crystallisation is inhibited [21, 35]. Furthermore, the material thermal stability is affected only 

slightly by the molecular rigidity of introduced aromatic or aliphatic crosslinkers.  



 

Figure 4. TGA thermograms of CT networks: CT (–·–), CT(2.2%)-TA (—), CT(2.2%)-PEG (—), CT(2.2%)-4Ph (—), 
CT(2.2%)-PhS (···). 

 

Water-equilibrated hydrogels were investigated by compression tests at room temperature. Here, 

stress-strain curves were varied based on the network architecture of hydrogel samples (Figure 5), so 

that resulting compressive moduli (E) were obtained in the low kPa range (2-9 kPa). PEG- and 4Ph-

based systems showed the lowest and highest E value, respectively, while mechanical properties of 

TA- and PhS-based systems were within the two extremes. These mechanical observations are in 

agreement with aforementioned network architecture and swelling considerations, whereby samples 

showing increased SR exhibited decreased E and vice-versa. PEG is a polymeric hydrophilic, aliphatic 

segment, resulting in systems with enhanced elasticity and swellability, and reduced compressive 

modulus, in comparison to the other CT hydrogels. In contrast, 4Ph is an aromatic, bulky crosslinker, 

thereby leading to the formation of hydrogels with increased mechanical properties and decreased 

swellability. TA and PhS display intermediate molecular features between these two compounds. TA 

is a low-molecular weight aliphatic segment, so that the molecular weight between two covalent net-

points will be reduced in TA- compared to PEG-based systems. Consequently, decreased elasticity 

and swellability as well as increased compressive modulus will be expected in resulting networks. 

PhS is an aromatic crosslinker (unlike PEG molecule) containing an additional ionically-charged 

sulfonic acid moiety with respect to 4Ph compound.  



 

Figure 5. Compressive stress (ı)-strain (İ) curves of chitosan-based hydrogels. From top to bottom: CT(2.2%)-4Ph (black), 
CT(2.2%)-TA (dark gray), CT(2.2%)-PEG (gray), , CT(2.2%)-PhS (light gray). Compressive moduli were calculated (n ≥ 3) 
in the linear region and were observed to be affected by the specific network architecture. 
 

The decreased compression modulus observed in CT-PhS compared to CT-4Ph samples is therefore 

likely related to the electrostatic repulsion occurring during the compression of the hydrogel network. 

Here, crosslinked chains of CT-PhS network become closer, since the material is stressed in 

compression. This molecular mechanism is likely to explain the decreased compression modulus in 

CT-PhS with respect to CT-4Ph samples, although the swelling ratio in distilled water between these 

sample formulations is similar.       

 

3.4. SEM morphological investigation 

Since obtained CT systems were intended for biomedical applications, e.g. as drug reservoirs or 

scaffold for tissue engineering, it was of interest to explore material surface morphology and inner 

geometry. In both applications, the presence of pores play an important role in hydrogel properties, 

such as swelling [21], compressability [43] and cell adhesion [44], and can enhance nutrient diffusion, 

waste exchange as well as induce local angiogenesis following material implantation in vivo [25]. 

Figure 6 displays SEM pictures of freeze-dried network surfaces and cross-sections. Samples 

exhibited a porous morphology, whereby pore size (Ø 60-400 µm) was changed based on the selected 

CT system. TA-crosslinked CT exhibited a highly porous architecture (Ø 271±100 µm) with nearly-

rounded pores observed either in the outer or inner sections, in contrast to hydrogels CT-PEG (Ø 

82±24 µm) and CT-4Ph (Ø 62±5 µm).  



 
Figure 6. Scanning electron microscopy (SEM) on freeze-dried CT-based networks.  

 

At the same time, PhS-based samples revealed the presence of bigger pores (Ø 411±47 µm) in the 

inner structure, while the material surface was nearly bulky. Interestingly, the pore size of freeze-dried 

systems was that of previously-reported, gas-foamed CT-based scaffolds [25]. Given that no specific 

scaffold formation method was applied, it is likely that observed pores derived from the reaction 

conditions employed during hydrogel formation. Air-bubbles can indeed be introduced in the polymer 

solution during stirring, remaining entrapped in the hydrogel following network formation. 

Consequently, pores are expected to be formed in the resulting material following freeze-drying [45].  

Selected crosslinkers are likely to influence air-bubble stabilisation and thereby resulting material 

morphology. Slightly-hydrophobic moieties are supposed to enhance phase separation in foamed-like 

solutions [46], so that homogeneous pores of decreased size can be formed, as observed in the case of 

4Ph-based systems. In contrast, crosslinkers of increased hydrophilicity are expected to destabilise the 

air-liquid phase separation, so that coalescence and disproportionation of air-bubble is likely, 

ultimately resulting in pores of increased size and decreased occurrence. Such morphological features 

are clearly observed in samples CT-TA and, to some extent, in samples CT-PhS, but not in the case of 

samples CT-PEG. The varied molecular weight between TA and PEG is likely to count for the 

different material morphology between the two systems, since polymers of increased molecular 

weight will have an effect on the solution viscosity, which is another physical parameter crucial for air 



bubble stabilisation [46]. With the presented synthetic strategy, it was therefore possible to 

accomplish CT networks with crosslinking segments of varied wettability, so that pores with varied 

pore size could be formed adjusted towards specific clinical applications, such as osteoid ingrowth 

(Ø 40-100 µm) or bone regeneration (Ø 100-350 µm) [25]. 

  

3.5. Drug-loading functionality in CT systems 

In view of the versatility of these CT systems, it was of particular interest to investigate whether 

the formation of selected network architectures could result in advanced and tailorable drug-loading 

functionalities. By functionalisation of CT with selected crosslinkers, it was hypothesised that 

network electrostatic charge could be systematically tuned in order to promote hydrogel-drug 

electrostatic complexation with a wide range of drugs. Hydrogels CT-PEG, CT-4Ph and CT-PhS were 

incubated in aqueous solutions of either AR, MO or MB and the maximum absorbance of the 

supernatant monitored over time, in order to quantify any drug loading onto the material (Equation 3). 

Figure 7 (a) displays absorbance curves of MB solution at different time points following incubation 

with hydrogel CT-PhS. Here, the maximum absorbance peak is decreased at increased incubation time 

points, indicating a reduction of MB content in the supernatant, likely related to MB loading into the 

hydrogel. Significant decrease in absorbance was observed following 24 hours incubation, 

corresponding to the time window nedeed to enable equilibration of CT networks with distilled water.  

               
(a)               (b) 

        
(c)                (d) 

Figure 7. Typical loading behaviour of CT-based systems studied via UV-vis incubation experiments with dyes 
of varied electrostatic charge. Absorbance curve of MB-containing solution during incubation with hydrogels 
CT(2%)-PhS (a). Peak of MB absorbance at 661 nm is decreased at increased incubation time points (0, 12, 24, 
36, 48, 60, 84 h), providing evidence of MB loading in the CT hydrogel. MB (b), MO (c) and AR (d) loading 



curves in hydrogels CT(2%)-PhS (–Ŷ–), CT(2%)-4Ph (--Ƈ--), CT(2%)-PEG (āāŸāā).Triplicates were applied for 
the loading of hydrogels CT(2%)-PhS with MO; minimal standard deviation was observed between replicas at 
each loading time point (Loading: 1.04 ± 0.74 – 3.89 ± 1.07), giving supporting evidence of the system 
reproducibility. Hydrogels are selectively loaded with dyes of opposite electrostatic charge, due to the 
electrostatic hydrogel-dye complexation occurring following hydrogel incubation. 

  

At the same time, the maximum absorbance peak was mostly suppressed following 84 hours hydrogel 

incubation, indicating that MB loading onto the hydrogel was almost complete. From a molecular 

point of view, MB is a positively-charged compound, similarly to growth factors such as FGF-2 or 

BMP-2. Due to its cationic character, electrostatic repulsion with CT, resulting in minimal loading 

efficiency, should be expected [27, 28]. MB was dissolved in distilled water, at which pH protonation 

of CT amino groups takes place, as demonstrated via swelling tests (Figure 3). The only reason 

explaining the high MB loading onto hydrogels CT-PhS is therefore related to the presence of sulfonic 

acid moieties covalently bonded to CT backbone: such negatively-charged groups are likely to 

mediate electrostatic complexation with MB positively-charged groups, so that localised electrostatic 

complexation can successfully occur, ultimately resulting in almost complete loading. Further to that, 

no visible colour change was observed when loaded hydrogels were incubated (for at least three days) 

in distilled water, suggesting that only minimal burst release may be expected following hydrogel 

loading.  

In order to further understand the molecular mechanism ruling hydrogel loading capability, 

hydrogel loading with selected model drugs was quantified by monitoring the variation in maximum 

absorbance. Figure 7 (b) describes MB loading plots for samples CT-PhS, CT-4Ph and CT-PEG. As 

observed from the suppressed absrobance peak (Figure 7, b), CT-PhS could load up to 88% MB 

following 84 hours incubation, while the other two samples showed less than 20 % loading. 

Compared to that, the situation is completely reversed when hydrogels are incubated with solutions 

containing negatively-charged MO (Figure 7, b), whereby samples CT-PhS displayed only mininal 

adsorption (< 5%), while increased loading was observed in hydrogels CT-4Ph (~ 40%) and CT-PEG 

(~ 65%). Different loading capabilities were again observed when hydrogels were incubated with AR 

(Figure 7, c), so that samples CT-PEG highlighted more than 90% loading, followed by samples CT-

PhS (~ 70%), while samples CT-4Ph displayed nearly 50% loading. The wide difference between the 



loading capabilities of tested hydrogels confirmed a direct relationship with the molecular architecture 

of selected hydrogel networks. Hydrogels CT-PhS were unable to load negatively-charged MO, an 

observation which is directly ascribed to the electrostatic repulsion of this compound with CT-bound 

sulfonic acid moiety. In contrast to that, significant loading was observed in the same system with 

doubly-negatively charged AR, whereby the hydrogel turned red following dye incorporation in the 

material (Figure S1, Supporting Information). This finding is likely related to the fact that electrostatic 

complexation between non-functionalised, protonated CT amino terminations is more likely in the 

case of AR compared to MO, due to the increased density of negatively-charged moeties. 

Consequently, the previously-observed drug repulsion with PhS-functionalised CT could be 

overcome. Other than that, the high AR and MO as well as low MB loadings of PhS-free CT systems 

further support aferomentioned explanations, thereby demonstrating that tunable and localised 

hydrogel-drug electrostatic complexation could be successfully established based on the systematic 

variation in network architecture. Therefore, the drug-loading capability of formed CT systems was 

successfully ruled by the polymer functionalisation with selected bifuctional crosslinkers, so that a 

wide range of varied model drugs could be applied. In light of this direct relationship between 

network architecture and drug-loading functionality, the loading efficiency was significantly enhanced 

compared to previously-reported alginate- [9], poly(glutamic acid)- [10], , and PEG- [5, 29] based 

hydrogels. 

 

Conclusions 

Functionalised CT systems were successfully prepared. Bifunctional segments varying in 

molecular weight, backbone rigidity and electrostatic charge were applied to selectively functionalise 

CT in order to investigate the changing trends in network architecture, macroscopic properties and 

drug-loading capability. Systematically-adjusted swellability, and compressability were observed by 

applying selected crosslinkers, while a varied range of model drugs were successfully loaded into the 

systems via hydrogel-drug electrostatic complexation. In order to form tunable CT systems via a 

reliable, effective and cell-friendly synthetic route, CT was functionalised in a HOBt-water mixture, 

allowing for the direct formation of TA-, PEG-, 4Ph- and PhS-based hydrogels. Precise quantification 



of the crosslinker content was reversely obtained via acidic degradation of obtained hydrogels, so that 

an enhanced degree of CT functionalisation (S~ 18 mol.-%) was determined via 1H-NMR on 

exemplarily-formed oligomers CT-PhS. Network thermal stability was decreased compared to native 

CT, likely due to the formation of inter- rather than intramolecular netpoints, so that polymer 

crystallinity was decreased. At the same time, internal material morphology was affected depending 

on the molecular structure of incorporated crosslinkers. Based on the selected network architecture, 

swellability (SR: 299±65–1054±121 wt.-%) and compressability (E: 2.1±0.9–9.2±2.3 kPa) could be 

promptly adjusted. Furthermore, the electrostatic charge of hydrogel networks was varied leading to 

the promotion of selective complexation with a wide range of model drugs, i.e. AR, MO and MB, so 

that hydrogel loading was successfully adjusted (1-100%). Introduction of heparin-mimicking 

sulfonic acid moieties was crucial to ensure full MB loading in CT-PhS networks. This finding was 

not accomplished in any of the other network architectures, including 4Ph-bearing networks. This 

confirms the hypothesis that the sulfonic acid group is key in promoting chitosan binding to 

positively-charged model drugs, which is not possible in native chitosan. Consequently, a direct 

method to promptly alter the polycationic feature of chitosan was successfully established, potentially 

paving the way to selective and controlled loading and release of positively-charged growth factors. 

Because these CT systems can mimic biological tissues on a mechanical, molecular and functional 

level, next steps are focusing on the application of these materials as drug reservoirs, whereby 

sustained drug release can be obtained. Since selective loading was demonstrated with model drugs, 

CT systems will be investigated with growth factors, e.g. FGF-2 and BMP-2, in order to further 

explore the biofunctionality of these hydrogels as drug carriers.  
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