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Variable Selection in Nonlinear Systems Modelling

K.Z.Mao S.A.Billings
Department of Automatic Control and Systems Engineering
University of Sheffield
Sheflield S1 3JD, UK

Abstract

A new algorithm which preselects variables in nonlinear svstem models is in-
troduced by converting the problem into a variable selection procedure for a set
of linearised models. Based on this result an algorithm which consists of a cluster
analysis linearisation sub-region division procedure, a linear subset selection routine
using an all possible regression algorithm and a genetic algorithm is developed. This
algorithm can be applied to the modelling of nonlinear systems using a wide class
of model forms including the nonlinear polynomial model, the nonlinear rational
model. artificial neural networks and others. Numerical simulations are included to

demonstrate the efficiency of the new algorithm.

1 Problem statement

Consider a nonlinear function
y = f(z)+e (1)

where z = [z,,%3,...,2,)7 is an n-dimensional input vector, y and e denote a scalar

output and white noise respectively, and f(e) is some nonlinear function. The objective
is to construct a nonlinear model to approximate the underlying relationship f(e) using

a series of output and input observations.

Several types of nonlinear model are available for nonlinear approximation. Typical mod-
els include nonlinear polynomial models, nonlinear rational models, artificial neural net-
works and others. But whatever kind of model form is used, the first problem encountered
is how to determine which variables should be included in the model. Often many of the
variables z,, z,, ..., z, are redundant and only a subset of these variables is significant.
Including redundant variables in the model induces at least two problems. First, the
model complexity will increase because the size of nonlinear system models increases dra-
matically with the number of variables. For example, a nonlinear polynomial model with

8 variables and nonlinearity degree 3 contains 165 terms, but a model with 10 variables




and nonlinearity degree 3 comprises 286 terms. Second, including redundant variables
leads to a large number of free parameters in the model, and as a consequence the model
can tend to be oversensitive to training data and is likely to exhibit poor generalization
properties. In the past few years; sevé:al approaches have been developed to address the
variable selection problem including élgorithms based on principal component analysis
(PCA) (Oja 1992 and the references therein), mutual information (Battiti 1994, Zheng
and Billings 1996) and others. But the disadvatage of using PCA is that the link back to
the physical variables of the-system 1s lost.

In linear system modelling, several methods can be used for variable selection, these
include hypothesis testing, forward selection, backward elimination etc. However these
approaches cannot simply be extended to the nonlinear case. For example if the hypothe-
sis testing approach is used to select the input layer variables for a multilayered perceptron
(MLP) neural network, this will involve training a large number of neural networks which
include the various combinations of the given variables in the input layer. This is an enor-
mous computational burden because the training of just one MLP neural network requires
quite a lot of computations. Because of the nonlinear-in-the-parameter (weight) structure
of an MLP neural network, forward selection and backward elimination algorithms are
not applicable. Although the aforementioned algorithms can be used to detect the model
structure of nonlinear polynomial and rational models which have or can be converted into
a linear-in-the-parameters structure, these algorithms are in fact term selection and/or
deletion methods rather than variable selection and/or deletion algorithms in the non-
linear system case. The distinction between variables and terms in nonlinear models is
important and can be illustrated using the nonlinear system y = a;2? + a;z2; + a3z,
Here z; and z, are the variables, z,z2, 7 and z2 are the terms. Ideally the selection of
variables and the determination of terms should be seperated. If the significant variables
can be determined initially, the candidate term set, which is produced by performing a
nonlinear search over the selected variables, will be reduced and hence the model structure

detection procedure will be simplified.

In the present study it is shown that the variable selection problem for nonlinear models
can be converted into the variable selection problem for a set of linear models. Based on
this result, a novel algorithm which consists of a linearisation sub-region division proce-
dure using a cluster analysis approach together with an all possible regression linear subset
selection method and a genetic algorithm 1s developed. This algorithm can be used for
variable selection for a wide range of nonlinear model forms including the nonlinear poly-
nomial model, the nonlinear rational model, neural networks and others. Preselecting the

variables in this way enables the terms selection methods to be much more focussed and




leads to simpler and more efficient model structure detection routines. Simulations are

included to demontrate the application of the new algorithm.

2 Variable selection algorithm in nonlinear system

modelling

2.1 Preliminaries
Consider again the nonlinear function described by
y=f(z1,...,za) +E (2)
Notice that this is a general model which includes dynamic nonlinear models of the form
y(k) = Fly(k = 1)k = m) u(k = 1), ulk = na)] + (k) (3)

as a special case, where y(k — 1) and u(k — ¢) are respectively the output and input at
the time instant (k — ). For the case of dynamic systems the variable selection problem

becomes the lag selection problem.

To develop the new variable selection algorithm, consider initially model eqn (2) with the

following assumptions
(1) The variables z,, z3, ..., z, are bounded in an n-dimentional domain denoted by D
(El,$3,., § ,ﬂin) = 72

(ii) The output y is bounded.

(ii1) f is a smooth function so that it has a Taylor expansion.

Assume that one of the operating points is Dy = [Zy0,...,Zn0)7 € D and that there

1s a small domain AD; around Dy. Linearising the nonlinear function f in the domin
ADy + Dy € D, yields

D ARV Y (4)




where
Ay=y—yo (5)
Az; = T; + Tig =12 . h (6)
Yo = f(Im, L20;- - - ,I‘no)

and £ is the modelling error caused by the linearisation and the noise e.

Substituting eqns (5)-(6) into eqn (4), gives
yzao—:—ZaJi-l-f (7)
1=1
where 5
& f(fﬂl-;-- )zn):z e = 1’2’ n (8)
dz,
a0 = f(210: -+, Tno) —Zﬂéﬂfio (9)

=]

Comparing eqn (7) with (2) shows that if the variable z; is relevant to the output in
the original nonlinear function, it will make a contribution a;z; — a;zio to the linearised
model. Thus, detecting whether a variable is significant in the nonlinear model can be
simplified to checking if it is significant in the linearised model. Consequently the variable
selection problem for a nonlinear system can be converted to a variables selection problem
for a linear model which can easily be implemented using forward selection and backward
deletion algorithms etc. Eqns (8) and (9) clearly show that the parameters of the linearised
model will be operating region dependent (Billings and Voon 1987), and consequently the
significance of variables will also be operating region dependent. The overall significance
of a certain variable will therefore have to be evaluated based on its significance in several

operating regions.

The above consideration motivates the development of a new variable selection algorithm
in the present study. The new algorithm consists of a two-step procedure. First, the whole
operating region is divided into several linearisation sub-regions. Second, the significant
variables are detected based on the linearised models in the linearisation sub-regions
using a linear model subset selection algorithm. Details of the two-step procedure and

the implementation of the new algorithm are discussed in §2.2, §2.3 and §2.4 respectively.




2.2 Linearisation sub-region division algorithm

To divide the operating region, each input variable is initially divided into sub-ranges over
an appropriate interval. The operating sub-regions are the all possible combinations of

these sub-ranges. This will be illustrated below.

First, equally divide the variable z; into n; parts

-

Iimzz — Timin .
Az, = —— 1=1,2,...,n. L
n; :
and obtain the sub-ranges
Tal Ty2 Tin,
[mimin: Timin T AiEi), {m:‘mzn + Amis Timin + QAI'L)a vovy | Timaz — A'Tiu :Cima.:r]

where

By = macdeyly, =12, ..m

Timin = mmnd o by, 1= 1,2 .00, B

Then, combining these sub-ranges determines the operating sub-regions
Dy =dmErpd=12...n 3= LZ.ymt, k=1,2.....

This region division approach is simple and intuitive, and has been successfully applied in
the piecewise linear identification of nonlinear systems (Billings and Voon 1987). Because
each variable is equally divided, the sub-range interval of each variable must be narrow
enough in order to guarantee the modelling accuracy 1n all operating sub-regions. This 1s
illustrated by a one-dimensional case shown in Fig.1, where the interval must be smaller

than or equal to Ds. The narrow sub-range intervals can lead to a large number of sub-

Y

Figure 1: One-dimensional nonlinear system




regions. But a large number of sub-regions makes the samples very scattered and as a
result the accuracy of the least squares estimate and the significance evaluation in each
sub-regions will tend to degrade. In fact the linearisable regions do not necessarily have

to be of the same size some operating sub-regions, for example D, D3 and D, in Fig.1,
can be merged.

Cluster analysis (Brain 1993) is a technique that partitions a collection of features into a
number of subgroups or clusters where the features inside a cluster show a certain degree
of similarity. Cluster analysis techniques therefore have the potential to address the sub-
regions merging problem. Sub-regions that fit similar linear equations can be put into the

same cluster.

The prototype-based algorithm is the most commonly used clustering approach (Hath-
away and Bezdek 1995 and the references therein). This approach uses the distance

(dis-similarity ) measure as the clustering index

m N
J=3 3 d¥z(k), ) pi (10)
o1=1 k=1
where z(k) = [z1(k), z2(k),...,z.(k))T, and ¢ = [ci1,...,cm|T denotes the prototype

of the 7% cluster. N is the number of samples, and m is the number of clusters. The
membership of z(k) belonging to the i** cluster is denoted as py, and is either 1 or 0 (in the
non-fuzzy case), and d*[z(k), ¢;} represents the Euclidean distance from z(k) to prototype
¢;. Distance computation is an important step in cluster analysis. If the prototype is a
point, the distance ||z(k)—c||? = [z(k)—c]T[z(k)—c] is very easy to compute. But in the
present study the prototypes of clusters are linear equations, each of which represents a
hypersurface. The computation of the exact distance from a point z(k) to a hypersurface
¢; is very difficult to express analytically and a numerical method is required. To overcome

this problem a new cluster index is introduced as

T = i S l(k) — §0k)Pue (11)

where (k) is the one-step ahead output prediction based on a local linear model. Because
the samples in the same linearisation area can be represented by a local linear model it

is reasonable to use the linear model one-step ahead prediction error as the cluster index
in eqn (11).

The difficulty in minimising the cluster index eqn (11) is the determination of a proper




m. While a larger m can lead to a smaller J. .-, this will distribute the samples to
be more scattered. As a consequence the accuracy of the model parameter estimates
and the variable significance evolution in each sub-region will be reduced. A small m
is therefore required from the point of view of improving variable selection accuracy.
To strengthen this requirement, the cluster index eqn (11) is converted to the following

constraint optimization problem

. min {m} (12)
subject to
Ny 1~ V12
2 lg(k)Y — y(k ;
Zk—l[z’i,;.( )2 yi(k) < cutof f =N - (13)
k=1 Y23(k)
where cutoff is a specified accuracy. y:(1), v.(2), ..., v(N;) are the samples in the it

linearisation sub-region, and g;(k) is the one-step ahead prediction of y;(k) based on the
linear model fitted from the samples y;(1), v:(2), ..., y:(N:).

At this stage it is assumed that the whole operating region has been divided into several
linearisation sub-regions denoted by Dy, D;, ..., D, using the method in Billings and Voon
(1987), and the samples are partitioned into corresponding sub-regions, the objective is to
merge these sub-regions under the constraint eqn (13) so that the number of linearisation
sub-regions is minimised. Assume that there are two sub-regions D; and D,, and the

samples in the sub-regions are respectively

()

yil1): %:(2), - wa(V:)

yi(1), 9:(2), - (V)

Define the merging index (MI)

MIG ) = Sre [Wi(k) = Gieany (B + a2y [ys(k) — Uieq)(k))? (14)
1 Zf;1y=2(k) '!'Eiv; yf’(k)

where §,(:4+,)(k) denotes the one-step ahead prediction of y,(k) based on the linear model
fitted from the samples in both D; and D,. The two sub-regions D, and D, will be merged

if and only if the merging index satisfies following merging condition
MI{1,7) < cutof f (15)

For example assume that the operating region has been divided into linearisation sub-

regions which are labeled Dy, Ds, ..., D,. and samples have been partitioned into the

i




corresponding sub-regions. At the first step compute the merging index M(1,7), 7 =
2,3,...,p. Merge D, with the sub-region that meets the merging condition and has the
smallest merging index. Relabel the merged sub-region as D;, and the others as Dy,
Ds3, .... Repeat the procedure until D; can not merge with any other sub-regions. At
the second step, compute M(2,7), 7 = 3,4,..., and merge D; with the sub-region that
meets the merging condition and has the smallest merging index. Relabel the merged
sub-regions as D;, and the others as D3, Dy, .... Repeat the procedure until D; can not

merge with any other sub-regions. The final algorithm can be summarized as follows

(1) Divide each candidate variable into sub-ranges with small intervals and combine
these small sub-ranges to produce sub-regions. Label these sub-regions as Dy, D>,
..., Dp. Partition the samples into corresponding sub-regions and set the current

step as [ = 1.

(i1) Compute MI(l,q) eqn (14), where g = 1+ 1,14 2,...,p. Merge D, with the sub-
region that satisfies the two conditions

MI(l,q) < cutof f

min {MI(1, )}

Set p = p — 1, relabel the merged sub-regions as D;, and the remainder as D44,
2 T A—_—

(iii) Repeat step (i1) until D; can not merge with any other sub-regions.
(iv) Set I =1+ 1, repeat Steps (ii)-(ii1) until [ = p.

(v) Take the sub-regions obtained in step (iv) as the initial sub-regions, repeat steps

(i1)-(iv) until the linearisation sub-regions can not merge with each other.

2.3 The variable selection algorithm

Once the linearisation sub-regions are obtained, a linear system variable selection algo-
rithm can be applied to select the variables for the nonlinear system model. Several
possible algorithms can be used at this stage including forward selection, backward elim-
ination, stepwise selection, all possible regression etc. Among these approaches the all
possible regression algorithm (Gunst 1980) is the most comprehensive method of variable
selection because this approach provides the smallest number of variables for a defined

approximation accuracy. The all possible regression approach is in fact a combinatoral




optimization strategy which selects the model from a model set which contains models
of one variable and more. The full model set of a system with n candidate variables is
shown in Fig.2, where &; denotes the set of models containing i variables. For example

the full model set of a system which has three variables labeled as z;, z, and z; is
S = 51 U 52 U 53

where
& =4 '= aumy, 4 =1,2,3)
Sz = {y: a;Z; + a,I;, 1= 1,2, j=2,3, ] > E}

53 = {’y = @& + aplo+ 0.3323}

Figure 2: Full model set

Because complete information can only be attained from the use of all possible regression
this approach is the only method that can find the best subset given a specified selec-
tion criteria. The major drawback of this approach is, however, that a large number of
candidate models need to be evaluated. For a model with n variables the number of all
possible model subsets amounts to 2™ — 1, and because of this the all possible regression

approach is seldom attempted in practice (Gunst 1980).

In the present study genetic algorithms (Goldberg 1989) will be used to address the com-
binatorial optimization problem. The main difference between the new algorithm and
the standard all possible regression algorithm 1s that the new algorithm searches for the
optimal solution using a random search mechanism rather than by performing an exhaus-
tive search. As a consequence the near-optimal model subset can be found much more

efficiently.

The genetic algorithm works with a coding of the parameters rather than with the param-

eters themselves and therefore the candidate model subset needs to be encoded. Binary

g




coding is employed in the present study where a 1 is used to represent that the correspond-
ing variable 1s included in the model, and a 0 is used to denote that the corresponding
variable 1s not included in the model. For example, assuming there are eight possible
variables, the model

Y = a1T1 + Q2T5 + A3Te + A4Zg

can be represented by the following binary string

I T2 Ts Ty Iy Ts 7 Ta
e T e R A I T
1 0 0 0 ih 1 0 1

Genetic algorithms (GAs) consist of three genetic operators, reproduction, crossover and

mutation. The application of these operators can be summarised as follows

(1) Population initialization. Randomly generate an initial population consisting of
! individuals, where each individual represents one model subset, [ is a positive
integer. Because the number of variables and which variables are significant are all
unknown a priori, in the initial population set the number and position of the 0’s is

uniformly and randomly distributed in the ranges [0,n — 1] and [1,n] respectively.

(ii) Population evaluation. Because the purpose of using the all possible regression
algorithm is to find the least necessary variables for a specified accuracy the less the
number of variables the better the selection is. Therefore the fitness value should

be inversely proportional to the number of variables

fxl/n (16)
. This reverse relation can be mapped using
Fouas
1 = Jmaz — 1 Timin 17
f f Mimaz — Tlmin [n n ] ( )

where Timin, Mmaz, and fm.: denote the minimum and maximum number of variables
and the maximum fitness value respectively. Individuals that do not satisfy the

prespecified accuracy are given a zero fitness value.

(111) Reproduction. In the present study the reproduction is implemented as a linear
search through a roulette wheel. Each individual is allocated a slot on the roulette
wheel subtending an angle proportional to its fitness. A random number in the
range 0 to 27 is generated and a copy of a string goes to the mating pool if the

random number falls in the slot corresponding to that string. For a population of

10




(vi)

(vi1)

size [ the reproduction process is repeated | times and [ strings go into the mating
pool.

Crossover. Two strings are randomly selected from the mating pool. For example

consider the two randomly selected parent strings

T T2 3 s

T

1 0. "o 71 o o T o (A)
10 0o o 171 o0 (B)

Randomly select the bit from which the two strings are to exchange genes, for

example z5. Exchanging the two strings from the selected position yields

10 "o Tt T T o T (C)
100 "0 o0 o o0 1 o (D)

Often the above crossover procedure needs to be repeated several times.

Mutation. Mutation is a local operator that operates bit by bit which mutates a 1

toa0and a0 toal. Consider for example the string

10 "o "o 1 o 1 o

If bit z; is supposed to mutate, replacing the 1 with a 0 yields the mutated string

z T2 T3 T4 Ty Tg Ty Tg
A T et e I e e S
0 0 0 0 1 0 1 0

Selection. Steps (iv)-(v) are repeated [/2 times and ! offsprings are obtained. These
offsprings are evaluated together with the parent strings and the best [ are selected

as the population of the current generation.

Termination. Steps (ii)-(vi) are repeated until a pre-specified number of generations

1s reached.

11




2.4 Implementation of the nonlinear variable selection algo-

rithm

The nonlinear model variable selection algorithm is the combination of the linerization

sub-region division procedure and the all possible linear model variable selection proce-
dure:

(1) Divide the whole operating regions into linerization sub-regions and partition the

samples into corresponding sub-regions using the procedure developed in §2.2.

(i) Select the significant variables based on the samples in the linearisation sub-regions

using the new all possible regression algorithm developed in §2.3.

The implementation of these operations can be summarised using two functions division

and selection:

subregions = division(y, z, part, cutof f)
variables = selection(y, z, subregions, gawp, cutof f)

The function division can be used to divide the operting regions into linearisation sub-
regions and to partition the samples into corresponding sub-regions. The input param-

eters of this function are: y = [y(1),y(2),...,y(NV)]T a column vector which consists of

observations of the output, z = [zy,z3,...,z,] a matrix which consists of observations of
candidate input variables (z; = [2:(1),z:(2),...,2:i(NV)]T are the observations of variable
T,,t = 1,2,...,n), part is a scalar which specifies the number of sub-ranges that each

variable is divided into, and cutoff is a scalar which specifies the accuracy requirement.

The output of the function division is the subregions which is a matrix.

Once the sub-regions have been obtained using the function diwvision, the function selection
can be used to select variables. The input parameters to the function selection are: y
and z are the same as in division, subregions is the output of the function division,
gawp 1s a row vector which specifies the working parameters of the genetic algorithm
(gawp = [population, mutation, cpn, generation|, where population denotes the popula-
tion size, mutation the mutation rate, cpn and generation specify the times that the
crossover operation repeats and the number of generations that the genetic algorithm
evolutes respectively), and cutoff specifies the accuracy requirement. The output of
the function selection is the significant variables. By successive application of the two

functions, significant variables can be selected efficiently.




2.5 Remarks

3

1)

ii)

iii)

The total linearisation sub-regions are the combination of all sub-ranges of all vari-
ables. Therefore the number of variables and the width of the sub-ranges are vitally
important parameters that affect the linearisation sub-region division and sample
partitions. In order to accurately approximate the nonlinear system using piecewise
linear models, the width of each sub-range must be narrow enough and the initial
variables must be large-enough. But the narrower the sub-range widths and the more
variables that are considered the more scattered the samples will be distributed. Al-
though the cluster merging procedure can merge the samples distributed in different
sub-regions the procedure will only merge the sub-regions that have more samples
than the number of considered variables in order to guarantee the existence of least
squares parameter estimates of linearised models. This indicates that many sam-
ples will be lost. Because of this the proposed algoritim may be difficult to apply
to systems that have a small number of samples and/or have an excessively large
number of candidate variables. In practice, the aforementioned two parameters are

selected by trial and error.

The new nonlinear model variable algorithm selects the variables based on part
of the sampled data set. Model validation tests should be included in the model
building procedure to test whether the selected variables are adequate to describe

the underlying system.

In §2.1, the nonlinear function is required to be smooth so that a Taylor expansion
exists. Because the linearisation equations are fitted from samples in a sub-region

not at a point, in practice this restriction can be lifted.

Simulation Examples

Example 1

Consider the following nonlinear model

y = 10sin(z1z2) + 20(z3 — 0.5)° + 1023 — 575 + 67 + 23 + 5 cos(zezs) + exp(—||zs||)

where y and z; are the output and input variables respectively, and || e || denotes the

absolute value. In the simulation, it 1s assumed that z;, z, and zs are independent

13




random variables uniformly distributed in the range (0 1). The variables z4, z6, z7 and

zg have the following relationship with the independent variables

Iy = :c% + D.5$f
Ty = T1T3
Ig = I3T2
“ I7 = ZIT1Z3
Ig = 32

The variable selection algorithm was applied to find the most significant variables. The
function division was first used to divide the linearisation sub-regions. The number that
each variable is divided into is an important parameter that affects the linearisation sub-
region division. Consider the following four cases (i) part=2; (i1) part=3; (iii) part=4;

(iv) part=35, where part denotes the number that each variable is divided into.

In case (1), of 1000 samples 913 were clustered into 5 linearisation sub-regions. Applying
the new all possible regression linear model variable selection algorithm developed in §2.3

to find the significant variables based on the 913 samples three solutions were obtained
solution 1 = {z1, z2, zs5, constant}

solution 2 = {z», zs, z7, constant }

solution 3 = {z4, Ts, T7, constant }

In case (ii), of 1000 samples 664 were clustered into 17 sub-regions. Applying the new all
possible regression algorithm based on the 664 samples in the 17 sub-regions, the solutions

were the same as those in case (i).

In case (iii), of 1000 samples 482 were clustered into 18 sub-regions. The selected variables

based on these 482 sample were

solution 4 = {z4, 7, constant}
In case (iv), of 1000 samples 100 were partitioned into 3 sub-regions. Variable selection
based on such a small number of samples is not reliable and this case was therefore not

considered.

Using the four solutions as the inputs to four different RBF neural networks each with 20

14




hidden layer nodes and multiquadratic radial basis functions of unity width four different
RBF neural networks were trained using the 1000 samples. The one-step ahead predictions
of the four networks were all virtually coincident with the data. The mean squared
errors associated with the four neural networks were 0.4910, 0.4265, 1.2919 and 2.3535

respectively. All these show that the solutions in cases (1), (ii) and (iii) provide adequate
information.

Example 2

Consider a nonlinear rational model

z,(k) + z3(k)

vk =)

+ e(k) (18)
where z;(k), z2(k) and z3(k) are the input variables, y(k) and e(k) are the output and
a noise sequence respectively. Besides z;, z; and z3, other four measurable variables are

also involved in the system and have following relations.hip with z1, z; and z3

a(k) = n[0.5 + 25(k)]
zs(k) = DTIS( )]
zs(k) = ["HEZ( M
mﬂU= z1(k) + z2(K)]

This example is included to illustrate the application of the variable selection algorithm
to systems where many variables are involved but where the output is only a function
of part of these variables. In the simulation z1(k), z2(k) and z3(k) were independent
random variables uniformly distributed in the range (-0.5 0.5), {e(k)} was a normally
distributed random sequence with zero mean and variance 0.0025. When each variable
was initially divided into two sub-ranges, out of 1000 samples 688 were clustered into ten
linear sub-regions. When each variable was initially divided into three sub-ranges, out
of 1000 samples 161 were clustered into 9 sub-regions. When each variable was initially
divided into four sub-ranges, out of 1000 samples only 17 were clustered into 2 linearisa-
tion sub-regions with 8 and 9 samples respectively. Because only a small part of the data
samples were clustered into linearisation sub-regions in the latter two cases, each variable
was initially divided into just two sub-ranges. Applying the new all possible regression
variable selection algorithm developed in §2.3 to find the significant variables, two solu-

tions were obtained




solution 1 = {z,(k), z2(k), za(k)}

solution 2 = {z,(k), z2(k), zs(k)}

The two solutions can be used to build the nonlinear rational model. It was assumed that
the degree of nonlinerity was 3, a nonlinear search over all the seven variables produced
165 candidate terms for both the numerator and denominator polynomial, but a nonlinear
search over the selected variables produced only 20 candidate terms for both the numerator
and denominator polynomial. Applying the rational model identification algorithm (Mao

and Billings 1996), two models corresponding to the two solutions were obtained

(1) = 0:991923(k) + 0.99TTas(k)
N = T T 019122 (k)

(1) = 0.98442s(F) + 1.0096s(k)
N = 17 1.003922 (k) — 0.14822(k)

The one-step ahead output predictions of the two models were both excellent. The global
model validation tests (Billings and Zhu 1995) are shown in Fig.3 and Fig.4 respectively.
The predictions and the model validation tests show that both models provide an excellent

representation of the system and that the proposed variable selection algorithm is reliable.

Example 3
Consider a multi-input-multi-output nonlinear system

vi(k) = 0.8y1(k —1) 4+ w(k —2) — 1.2u3(k — L)ua(k — 2) + 0.4u2(k — 2)
=0.1y2(k = 1) + es(k) (21)

v2(k) = 0.5y3(k — 1) 4+ ua(k — 2) + ui(k — 1) + 0.5y,(k — 2)ul(k — 1) + ey(k) (22)

where y;, u; and e; denote the output, input and noise respectively. In this simulation,
the inputs u;(k) and u;(k) were independent random variables uniformly distributed in
the range (0 0.5) and (0 1) respectively, the noise {e;(k)} and {e,(k)} were normally

distributed random variables with zero mean and variance 0.01 and 0.04 respectively.

The maximum lag of the inputs and outputs was all initially set to three and each input

and output variable was divided into two sub-ranges. Applying the linearisation sub-
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regions division algorithm developed in §2.2, of 1000 samples 617 were clustered into
10 sub-regions for subsystem one, and of 1000 samples 456 were clustered into 12 sub-
regions for subsystem two. Applying the new all possible regression linear subset selection

algorithm developed in §2.3 to the two subsystems respectively produced the following
significant lags

solution ubsystemy = {y2(k — 1), wa(k — 1), u1(k — 2), y2(k — 1), us(k — 2), constant}
solution wasystemz = {w1(k — 1), y2(k — 1), y2(k — 2), ua(k — 1), ua(k — 2), constant}

Assuming a nonlinerity degree of three for both subsystems, a nonlinear search over three
lagged variables in all the inputs and outputs produced 455 candidate terms for each
subsystem, but a nonlinear search over the preselected lags produced only 56 candidate
terms. This shows that variable preselection can considerably reduce the nonlinear term

selection problem. Applying the forward regression orthogonal algorithm (Billings et al
1988) produced the final models

va(k) = 0.8041y,(k — 1)+ 0.9897u;(k — 2) — 1.2179uy (k — 1)uz(k — 2)
+0.4228ul(k — 2) — 0.1006y,(k — 1) (23)

y2(k) = 0.4911y,(k — 1)+ 1.0141uy(k — 2) + 0.9494u3(k — 1)
+0.5152ya(k = 2)ui(k — 1) (24)

A comparison with the original model clearly shows that both the correct model struc-
ture and parameter estimates have been obtained and this is confirmed by the one-step
ahead output predictions over the first 100 samples shown in Fig.5, and the global model
validation tests (Billings and Zhu 1995) shown in Fig.6.

4 Conclusions

Variable selection for nonlinear models is an important and difficult problem in nonlinear
system identification. In the present paper it has been shown that this problem can be
converted into a variable selection procedure for linearised models. The advantage of this
approach is that the significant system variables can be determined and used as candidates
for nonlinear model term composition and selection. This reduces the dimensionality of

the term selection space but the disadvantage is that sufficient data samples are required




in each of the linear sub-regions and this can mean that the algorithm is difficult to apply
if the number of samples 1s small.
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Figure 3: Global model validation tests for Example 2 (solution 1)
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Figure 4: Global model validation tests for Example 2 (solution 2)
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Figure 5: One-step predictions for Example 3 (solid-measurement,
dotted-prediction)

GLOBAL VALIDATION TEST--1
0.2

T ; T T T

-2

GLOBAL VALIDATION TEST--2
0.1 - - T T — .

T T T

0.05

-0.05




