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Abstract

This study presents a new algorithm for nonlinear rational model identification.
The new algorithm consists of a two-step procedure: a nonlinear rational function
smoother is initially designed and used to smooth the data, system identification is
then performed ba.sec_l- on the smoothed signal. By using the smoothed signal instead
of the raw data, the severe noise problems which arise in rational model identifi-
cation are avoided. The new approach significantly simplifies the procedure for

dynamic nonlinear rational mode] identification, compared with earlier estimators,

and provides unbiased estimates with the same degree of accuracy.
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Abstract

This study presents a new algorithm for nonlinear rational model identification.
The new algorithm consists of a two-step procedure: a nonlinear rational function
smoother is initially designed and used to smooth the data, system identification is
then performed based on the smoothed signal. By using the smoothed signal instead

of the raw data, the severe noise problems which arise in rational model identifi-

cation are avoided.
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The new approach significantly simplifies the procedure for
namic nonlinear rational model identification, compared with earlier estimators,

and provides unbiased estimates with the same degree of accuracy.




1 Introduction

Nonlinear rational models, defined as the ratio of two nonlinear polynomials, have received
considerable attention in the past few years. Compared to polynomial models, nonlinear
rational models are able to approximate mathematical functions to the same degree of
accuracy with a smaller number of terms. The form of rational functions also allow the
representations of curves which approach a.syqrnptotes whereas ordinary polynomials gen-
erally do not have this property (Ratkowsky 1987, Ponton 1993). The properties of static
rational function models also carry over to dynamic nonlinear rational models (Billings
and Chen, 1989a). Despite the advantages of rational function models, the identification
of these models is very difficult because the rational model is nonlinear in the input,
output, noise and, especially, the parameters. The Marquardt nonlinear least squares
(Marguardt, 1963) and the prediction error algorithm (Billings and Chen, 1989a) can be
applied, but both these are computationally expensive. An alternative approach is to
multiply out the rational model to form a linear-in-the-parameters expression. But multi-
plying out the model induces a severe noise problem which induces bias even for additive
white noise. Billings and Zhu (1991, 1994a), Zhu and i3i11ings (1993) have shown how this
problem will produce biased estimates if least squares algorithms are used directly, and

demonstrated that the bias can be removed by reformulating the least squares solution.

The present study introduces a new algorithm for nonlinear rational model identification
which consists of two steps. A nonlinear rational function smoother is estimated with no
a prior information based on past, present and future raw data samples about the current
time step. Data smoothing is then performed and tests are introduced to determine when
the noise has been acceptably suppressed. Structure detection and parameter estimation
can then be applied to the smoothed data to yield unbiased estimates of dynamic nonlinear

rational models in a manner which avojds all the complexity associated with previous

estimators such as the Rational Model Estimator (RME).




The paper is organized as follows: The noise problem induced by the rational model
and a new solution are outlined in Section 2. In Section 3.1 a new nonlinear rational
function smoother is derived and a procedure for data smoothing is discussed in Section
3.2. Parameter estimation and model structure detection based on the smoothed data
are discussed in Section 3.3. Numerical simulation examples are presented in Section 4 to

test the performane of the new approach.

2 The noise problem in dynamic rational model iden-

tification and a new solution

Consider the dynamic nonlinear rational model given by:
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where u(k) and y(k) denote the input and output at time k(k = 0,1,...) respectively,
{e(k)} is the unobservable independent noise sequence with zero mean and finite variance

o2, Fy(e) and Fy(e) are nonlinear polynomials, n, denotes the order, ¢,(k) and 4, denote

the regressor and the parameters respectively.

Expresson (1) is nonlinear in the parameters and the ordinary least squares estimation

algorithm can not be used directly. Multiplying out the model to form a linear in the

parameters expression, yields

Y(R) = Fi(e) = y(k)[Fa(s) = par(k)Bar] + Fa(o)e(k)
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where:

Y(k)= y(R)par(k)bar o1
E(k) = Fa(o)e(k)
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These expressions show that multiplying out the model induces a severe noise problem,
the rc::gressor ¢(k) correlates with the current residue £(k), and this correlation will result
in biased estimates if the ordinary least squares algorithm is used directly. Notice that
unlike the case for linear or polynomial nonlinear models the bias is induced even when
£(k) is zero mean and white. To overcome the problem, Billings and Zhu (1991) reformu-
lated the least squares algorithm by taking the corre-lation into consideration (Billings and
Zhu 1991, 1994a, Zhu and Billings 1993). The disadvantage of this method however was

the need for an iterative procedure which involved essentially estimating and removing

the bias terms induced by the current residue ¢ (k).
Consider a new solution to the noise problem.

From eqn (2)
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where

Psree(k) = [a(R) .- Crnmum(k), —pa2(R)F(E). .. = Qanaen(k)F(F)]

(k) = par(k)e(k)
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y(k) = y(k) — e(k) =

Removing the £ (k) to the left side of equation (3), yields

?(k) = ¢frc=(k)®

where

?(k) . ‘10&1(13)?(;’5)

-

Y(k) is the current time noise e(k) free part of y(k). If 7(k) can be extracted from the
noisy output y(k) beforehand and the parameter estimator is formul:’a.ted based on the
Tegressive equation (4), the noise problem arising from multiplying out the model will
be solved automatically. The above consideration motivates the development in the next

section where a new nonlinear rational function signal smoother is designed and used to

extract F(k) from y(k) before the identification stage.

(4)




3 Nonlinear rational model signal smoothers

3.1 The nonlinear rational smoother

One way of eliminating or reducing unwanted noise in a signal is by filtering or smooth-
ing. Several kinds of filter or smoother are available, for example, the linear a.utoregfes-
sive (AR) filter, linear moving average (MA) filter, linear finite-duration impulse response
(FIR) filter and the nonlinear polynomial filter. However, the aforementioned algorithms
are in general insufficient to process the signal produced from a nonlinear rational model,
and if used the dynamic characteristics of the original signal may be distorted. Recently
nonlinear polynomial smoothers (Aguirre and Billings 1995) have been shown to be much
more efficient than filters. This suggests that nonlinear rational smoothers will be more
appropriate than rational filters for the noise problem above because they use past, present
and future information. The above consideration motivates the search for a non-causal

nonlinear rational smoother which can be estimated and then used as a signal preproces-
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where y,(k) denotes the smoothed output and n, denotes order. Notice that the terms
on the rhs of the model above include both positive and negtive lags and span a time
window which includes past and future terms about the current sample instant. Because

e(k — 1) = y(k — i) — y,(k — 1), the employed smoother is of the form

y(k) = Fonly(k + Ngy). .. y(k — sy ) u(k 4+ nsu) ... u(k —ns),y:(k — 1) - Ys(k—ng.)]
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where

Ny = ma‘x {nsny: Msdyy Nsne, n:de}
Ny = ImMmax {nsn'u: nsdu}
Tlse = mMaX {n.mes n.sde}

ns, = Mgy -+ Ngy + Nge

Multiplying out the model to form a linear-in-the-parameters expression, yields

Y;(k) = Z (P.m.j( STI-J Z ‘P;d; ’dJ
1=1
= ¢,(k)0, (6)

where
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It should be realized that both sides of equation (6) contain y,(k). If the initial value of
ys(k) is not close to 7(k), the smoother which is estimated based on eqn (6) will amplify the

error. This problem can be overcome by estimating the smoother based on the following

equation
Y(k) = ¢.(k)0, + £.(k) (7)
where

&s(k) = som(k)E() Psar(F)[y(k) = ya(k)] = Y (k) - Yi(k) -

The coeficients of the nonlinear rational smoother can then be obtained by minimizing




the following cost function:

Ji(N,0,) = i — ¢,(k)8;)? (8)

In theory, when the sample number N goes to infinity the estimate of ©, obtained by
minimizing eqn (8) will approach the true value. In practice, however, only finite samples
are available and the estimates might be far from the true values when the data are very
noisy. Recently, regularization was introduced to improve the estimation accuracy (Hoerl
and Kennard 1970, Barron and Xiao 1991, Bishop 1991, Orr 1995) and this approach can
be used to advantage in the rational smoother design. The regularized solution of @, is
defined as the value which minimises
1 N

Jao(N, Aw, ©,) = = 3 [V (k) - 6.(k)0.)* + ©T An O, (9)

o k=1

where Ay =diag{\y, 1 =1,2...2n, — 1}, X}y > 0 is a scalar regularization parameter.

Optimizing J;(e) with respect to the unknown smoother parameters 0., yields

.

6, = f: 6.(8) + 2] 5 E (Y (1) (10)

k_l

Obviously, when a constant is used as the regularization parameter, the estimates will be
biased. Taking the two aspects of unbiased estimates and data overfitting into consider-

ation, the regularization parameter should be selected to satisfy

i. XY decreases with increasing IV, and approaches zero when N goes to infinity.

ii. X} decreases at a réasonable rate so that its effect is not vanishing for a finite N.

The first condition guarantees that the estimates are unbiased and the second condition

ensures that the regularization improves estimation accuracy.




Once the rational smoother parameter estimates have been determined, the smoothed

signal can then be obtained from

L\ E3t 0omi (k)b ()

s(k i
y ( ) E;‘;I @sdj(k)gsdj(k)

(11)

3.2 Signal smoothing

In order to produce a smoothed signal y,(k) which approaches the desired signal 7(k) the
signal has to be passed through the smoother eqn (11) several times. This procedure can

be summarized as follows

1.-Define the structure of rational function smoother including n,,, nsy, n. and the

degree of nonlinearity n.

ii. Initially set y,(k) = y(k) and estimate the smoother. Smooth the data to produce
ys(k). o &

iii. Estimate a new smoother using the smoothed data, and then produce the new

smoothed data set y,(k).

iv. Test the validity of the estimated smoother. Two tests based on higher order cross-
correlation functions between the output and residuals and between the output,

residuals and input recently introduced (Billings and Zhu 1994b) are used. These

two tests are

N (e(k) =)k — 1) — F2
CO"';&;("') = k=1( (‘l") )({5(]: ) Es) (12)

= (e — 22) (T (e2(k) - ar)]”

and




where

If the residue satisfies
kl >0 ifr=0

coT 2 () =
0 otherwise

core2(T) =0 for any 7.

the estimated smoother is considered to be adequate to process the data and ys(k) = g(k),

otherwise steps iii-iv are repeated.

-

In practice, the 95% confidence limits at approximately 1.96/v/N are used to determine
if the smoothed data is valid.

Remark

In system identification, under the parsimonious condition the final model is often required
to be as concise as possible. Therefore model structure detection is considered as an
Important step. Compared with the final model, the structure of the smoother is less
important because the smoother is only an intermediate result which is used to preprocess
the data. In addition, structure detection can mot easily be carried out before the residue
satisfies the validity tests, thus structure detection is not important for data smoothering.
This does not however mean that the structure of the smoother can be arbitrarily large.

In practice, small values of Msy, Msu, Nse should initially be selected and tried.

10




3.3 Parameter estimation and model structure detection

Once an estimate of J(k) has been obtained using smoothed data, the identification in-
cluding parameter estimation and model structure detection of the rational model can be
carried out based on eqn (4) using the identification algorithms developed for nonlinear
polynomial models. This includes the orthogonal least squares estimator and associated
error reduction ratio for structure detection. Details of identifying nonlinear polynomial

models are not repeated here, see for example Billings and Chen (1989b,1989¢).

A comparison of the above identification algorithm with RME based algorithms (Billings
and Zhu 1991, 1994a, Zhu and Billings 1993), shows that the new algorithm significantly
simplifies the parameter estimation and model structure detection procedures of the non-
linear rational model. This simplification arises because the severe bias problem which is
normally induced by the e(k) term in the rational model of eqn (1) has effectively been

removed by the rational data smoother.

>

4 Numerical simulations

The identification algorithm based on smoothed data will be demonstrated using two
examples. In both examples, 500 data samples were used, the input was a uniformly dis-
tributed random excitation with amplitute 1 and the noise was a normally distributed
random disturbance with zero mean and variance 0.01.

Example 1

Consider a dynamic nonlinear rational model given by

11




y(k)

5 0.5y%(k = 1) = 0.1u?(k — D)u(k — 2) + u(k — 2) + e(k — 2)

Multiplying out the rational model to form a linear-in-the-parameters form, yields

y(k) = 0.5k —1) —0.1u*(k —.l)u(k —2)+u(k—2)+e(k-2)

L+ u(k—1) +0.7u3(k = 1)

—u?(k = 1)y(k) = 0.763(k — 1)y (k) + £(k)

where

(k) = [1+u®(k = 1) + 0.7u3(k — 1)]e(k)

(14)

09

Directly applying the ordinary least squares algorithm to estimate the parameters in eqn

(15) (assuming the model structure is known @ priori ), produced the parameter esti-

mates shown in Table 1. The estimates are far from the true values even using the correct

numerator polynomial | true value | estimate
vk -1) 0.5 0.2922

u(k — u(k - 2) -04 —0.8034
u(k — 2) 1 0.9277
e(k—2) 1 0.6596

denominator polynomial | true value | estimate

u’(k—1) 1 —0.5363 |

ui(k —1) 0.7 0.1738

Table 1: Ordinary least squares parameter estimates for Example 1

model structure. This is because the ordinary least squares estimates are biased due to

the correlation between ¢(k) and the regressors u?(k—1)y(k) and u?(k—1)y(k) in eqn (15).

Eqn (15) can also be written as

y(k) = 0.5y°(k 1) = 0.01u2(k — Lu(k — 2) + u(k — 2) + e(k — 2)

—w?(k = 1)g(k) — 0.7u3(k = 1)g(k) + e(k)

12




where

(k) = y(k) - e(k)

Applying the new algorithm to this problem a rational function smoother was initially
designed to smoothed the data prior to identification. The procedures summarized in
Section 3.2 were applied where the smoother structure was defined as follows: lags n,, = 2,
Ngy = 2 and n,, = 2 and the degree of nonlinearity n,, = 3 . After 15 iterations, the
validation tests in Step (iv) were satisfied. The smoothed signal y,(k), and the error
Y(k) — ys(k) after 15 iterations were shown in Fig.1 (only 100 samples are shown).

-
T

'
Vg
-0.5 ,' i ity Iy ! 5
' H v I !
\ { ] v
P - v
-1 -
o 10 20 30 <0 sa so0 * 70 ao S0 100
Time .

Figure 1: The smoothed signal and error of Example 1
(dashed line—y,(k) solid line—g(k) — y,(k))

Based on the smoothed data, parameter estimation and structure detection were applied
to produce the estimated model in Table 2. No assumptions regarding the terms in
the model were made. The initial search space was defined by setting n., = ng, = 2,
Mnu = N4y = 2 and n,, = ng, = 2 and the degree of nonlinearity n; = 3. These values
define a model with 168 possible terms. The final model in Table 2 was obta'ined by using

the polynomial model orthogonal estimator to select significant terms and estimate the

unknown parameters. The model validity tests are shown in Fig.2. ’

Comparing the results in Tables 1 and 2 shows the vast improvement that has been made
by using the smoothed data.

13




numerator polynomial | true value | estimate

yi(k—1) 0.5 0.4780
uw?(k — Lu(k — 2) -0.1 —0.1070
u(k —2) 1 0.9835
e(k —2) 1 0.8995
denominator polynomial | true value | estimate
u?(k —1) 1 0.8594
u(k - 1) 0.7 0.6042

Table 2: Parameter estimates based on the smoothed data for Example 1

0.5

O.4

0.3+

c.2F

.1k

o~ N \/\/ N A
-0.1F =
-0.2 -

-0.3
-0 4 -
RS -5 o = 10

(=)

o.s

o.4
o.af
o.2
o1k g
o W
-0.1 =
—o.zk
—-o.ak
-0, -
=953 —= © s 0

(=)

-

Figure 2: Model validity tests of Example 1’(3 —CoT g2 b—cor,,:2)

Example 2

(k=1 4u(k—1)+e(k—1)

y(k) =

1+ (k- D+ (k- T(c=1) T <)

Multiplying out the rational model to form linear-in-the-parameters expressions, yields

y(k)

= V(k=1)+u(k=1)+e(k-1)

—y*(k = 1)y(k) -
= y}(k—1)+u(k-
—y*(k — 1)g(k)

y(k = 1)u(k — 1)y(k) + £(k)
1)+e(k=1)
—y(k = Du(k = 1)7(k) + e(k)

14




where

§(k) = [1+y7(k = 1) + y(k = L)u(k — 1)]e(k)

Y(k) = y(k) — (k)

The smoother structure was defined as follows: lags n,, = 2, n,, = 2 and n,, = 2 and
the degree of nonlinearity ny = 2. The procedures summarized in Section 3.2 were then
applied. After 15 iterations, the validation tes‘l-:ls were satisfied. The smoothed data y,(k),
and the error J(k) — ys(k) are shown in' Fig.3 (only 100 samples are shown). Based on
the smoothed data, the final model is listed in Table 3. The initial model structure was
defined as nny = ngy = 2, Ny = nay = 2 and N, = ng, = 2 and the degree of nonlinearity
n; = 2. These values define a model with 56 possible terms. Fhe orthogonal estimator was
used to both select the significant model terms and to estimate the unknown parameters.

The model validity tests are shown in Fig.4.

o 10 20 30 “0 [-1=] a0 7o BO 20 100
Time

Figure 3: The smoothed signal and error of Example 2
(dashed line—y,(k) solid line—g(k) — y,(k))

* Directly applying the ordinary least squares algorithm to eqn (17), the parameter esti-
mates using a correct model structure are shown in Table 4. Comparing the results in

Tables 3 and 4 again shows the vast improvément that is achieved by using the smoothed

data.
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numerator polynomial | true value | estimate
yi(k—1) 1 0.9679
u(k — 1) 1 0.9800
e(k—1) 1 1.0501
denominator polynomial | true value | estimate
v (k1) 1 0.9215
y(k—1u(k-1) 1 0.9479

Table 3: Parameter estimates based on the smoothed data for Example 2

o.5 o.8
Q.4+ - (= 3
a.at - o.afb
o.2f E o.2}
0.1k o.1k -
—o.1 = —0.1 F
—o.2 4 —o.2fF
-0.3} . -0.3}h
-0 = —_—0. -
—°:53 -5 () s 10 =955 - o = 10
(m) =)

Figure 4: Model validity tests for Example 2 (a —corge b—cor,,z2)

5 Conclusion

A new rational model smoothing algorithm has been introduced. The smoother is esti-
mated without any a priofl information from the raw data and is based on past, present
and future sample values about the current time step. It has been shown that prepro-
cessing the data using the smoother alleviates the severe noise problem in rational model
estimation and allows all the well developed structure detection and parameter estima-
tion algorithms of polynomial models to be applied to rational models. This provides, for
the first time, the ability"t'gﬁt complex nonlinear rational models, which have excellent

approximation properties, using polynomial model algorithms.
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mumerator polynomial | true value | estimate
l yi(k—1) 1 0.4111
u(k—1) 1 0.8366
e(k—1) 1 0.8201
denominator polynomial | true value | estimate
y*(k—1) 1 —0.0012
y(k—1u(k-1) 1 0.0443

Table 4: Ordinary least squares parameter estimates for Example 2
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