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Abstract

A new regularized least squares estimation algorithm is derived for the estimation

of nonlinear dynamic rational models. Theoretical analysis and numerical simula-

tions demonstrate that the new algorithm provides improved estimates compared

“ with previously developed rational model estimators.
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1 Introduction

The NARMAX (Nonlinear AutoRegressive Moving Average with eXogenous input) model
provides a general input-output description for a wide class of nonlinear systems and can
be expanded to provide polynomial, rational and neural network model forms. The nonlin-
ear polynomial NARMAX model has been extensively studied (Leontaritis and Billings
1985a, 1985b, Chen and Billings 1989, Haber and Unbehauen 1990, Sales and Billings
1990) and widely applied (Billings et a! 1988, Hernandez and Arkun 1993, Proll and
Karim 1994, Sriniwas et ol 1995). Recently, the nonlinear rational model formulation, de-
fined as the ratio of two polynomial expansions, has been introduced. Rational functions
provide superior approximation properties compared to polynomials and are widely used
in static function approximation (Ratkowsky 1987, Ford et al 1989, Ponton 1993). These
properties carry over to the dynamic rational NARMAX model which can be considered
~as a general form with polynomial and neural network expansions as special cases (Billings

and Chen 1989, Billings and Zhu 1991, Zhu and Billings 1993, Billings and Zhu 1994a).

Despite the attractive advantages the nonlinear rational model is much more difficult to
identify than the polynomial model because rational models are inherently nonlinear in
the parameters. One of the first estimators for dynamic nonlinear rational models was
the prediction error (PE) algorithm proposed by Billings and Chen (1989). Because the
prediction error (PE) algorithm is based on nonlinear optimization, it is computaionally
expensive and the estimates may not correspond to the global minimum. To avoid this
problem Billings and Zhu (1991) developed the Rational Model Estimator (RME) by mul-
tiplying out the rational model to form a linear-in-the-parameters expression. The main
contribution of the RME algorithm was to show how the severe noise problems which are
induced by multiplying out the model can be avoided by reformulating the least squares
solution. The noise problems arise as a direct consequence of making the rational model
linear in the parameters and, unlike linear polynomial or neural network models, this

induces severe bias in the rational model estimates even for low levels of white noise, Sev-




eral algorithms have been developed based on this resulf, Zhu and Billings (1991), Zhu
and Billings (1993), Billings and Zhu (1994a), and the RME has been shown to provide

consistent estimates for nonlinear rational models.

Often the first requirement when designing an estimator is to ensure that the estimates are
consistent. Under this constraint, however, the estimator can not guarantee that the min-
imum mean squared error (MSE) or covariance will be achieved. Both of these measure
estimator precison and are associated w:ith prediction performance, so that strengthing
the consistency property might lead to an inflation in mean squared error (MSE). Conse-
quently, the estimates obtained from fitting the model to particular samples might be far
from the true values. Regularization can be used to prevent mean squared error (MSE)
inflation (Hoerl and Kennard 1970, Barron and Xiao 1991, Bishop 1991, Orr 1995) by
tra.diilg off the MSE reduction at the expense of the consistency property of the algorithms.

In the present study, the mean squared error of the RME (Billings and Zhu, 1991) es-
timate is initially investigated. This reveals that the MSE inflation problem exists in
RME and it is shown how this can lead to a deterioration in prediction performance.
To overcome this problem, a new regularized rational model identification algorithm is
derived where the requirements of consistent estimates and minimum mean squared error
can be balanced. Theoretical analysis and numerical simulations demonstrate that the

new algorithm provides improved estimates.

This paper is organized as follows, in Section 2 the RME estimator is reviewed and the rea-
son why the prediction performance may deteriorate is analysized from the MSE inflation
point of view. A new regularized RME is derived in Section 3.1, and the orthogonal reg-
ularized RME is developped in Section 3.2. Section 4 provides some numerical examples

to demonstrate the performance of the new algorithm.




2 Rational Model Estimator (RME) and associated

statistical properties

2.1 Brief review of RME

Consider the dynamical nonlinear rational model given by:

_ Fily(k—1)...y(k —nny),u(k = 1) ... u(k —np),e(k —1)...e(k — 1y, )] (k)
Foly(k—1)...y(k —nay),u(k—1)...u(k — ng),e(k—1)...e(k — ng.)] )

y(k)

where u(k) and y(k) denote the input and output at time k(k = 0,1,...) respectively,
{e(k)} is an unobservable independent noise sequence with zero mean and finite variance

o? . Fi(e) and Fy(e) are nonlinear polynomials, n, denotes order.

Equation (1) can also be written to the following regressor-parameter form:

o1 Pni(k)bn;
y(k) = =
4T (k)B4

+ e(k) (2)

where @,(k) and 6, denote regressor and parameter respectively, npum = Tny + Mny + Npe,

Teden = Nidy + gy + Nge.

Expresson (2) is nonlinear in the parameters and conventional least squares (LS) esti-
mators can not be applied directly to obtain unbiased parameter estimates. One of the
first estimation algorithms for nonlinear rational models was the prediction error (PE)
algorithm proposed by Billings and Chen (1989). But this is based on a nonlinear opti-
mization method which can be computationally expensive and can lead to local minima

problems.
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An alternative is to multiply out the rational model into a linear-in-the -parameters form

(Billings and Zhu 1991) to yield

Y(k)

where:

Fi(k) = y(R)[Fa(k) — a1 (k)0ar] + Fa(k)e(k)
nim Pni(F)8ns — %ﬂ e (R)y(k)84 + £(F)
HBo+e)

[1ree(k) + Proise (K)]© + £(K)

B1ree(k)O + &4(K) (3)

Y (k) = y(k)par(k)bar |gy=1
£(k) = Fa(k)e(k)

§1(k) = par(k)e(k)

Fi(e)

y(k) = y(k) - e(k) = Fy(e)

) = [gnl . gnnnum 9&2 v edﬂdm]T

(k) = [pm (k) - Prnnum (k) —@az(k)y(E). .. = @inden(k)y (k)]

Piree(k) = [pr1(R) - . Prunum(K), —@a2(k)F(K). .. = Qanden(k)F(E)]

¢’ﬂ.oise

Define

(k) =1[0...0, —paa(k)e(k)...— Pingen(k)e(k)]

Y =[Y(1),Y(2)...Y(\V)

2 = [¢7(1),47(2)... 4" (W)

Tee = [(ﬁ}-‘ree(l)! ¢§:T'CE(2) e qs?:'ree(N)]T

e = [80500(1), 6700, (2) . 0T (M)




E1 = [6(1),&(2)... &(N)T

to give the following vector equation

Y = 80 +E=(®free + Broise)O +

[1]

(4)
= (I’f'reee + El (5)

If ordinary least squares (LS) is applied the estimate would be of the form

Ors = (878) @7y (6)

However, the probability limit (denoted by Plim) of this estimate

~

Plim(©rs) = Plim[(®78)'8TY]
= Plim[(®73)'37(30 + )]

T Tr—
@N@)-l s Blisn @N“ )

= O+ Plim(

indicates that the ordinary LS estimate is not consistent because of the correlation be-

tween the noise vector = and ®nis. included in the regressor vector @, eqn(4).

To overcome the problem, Billings and Zhu (1991) proposed a modified least squares algo-
rithm tailored specially for the rational model and called RME by taking the correlation

between = and @, and that between ® and @ into consideration to yield
Orus = (278 — Nypy)H(2TY — Nypy) (7)

where E(e) denotes the expection of (e), and

'(lbl = E[ Eo{se(k)qsno‘iss(k)] 111)2 = E[‘i’i‘msc(k)fl(k)}




2.2 Mean squared error (MSE) inflation and RME

When an estimator and the quality of a model is evaluated it is often necessary to examine
both the mean and the mean squared error (MSE) or covariance of the estimate. The

mean is related to consistency and the mean squared error (MSE) measures both the bias

and variance of the estimate.

It has been demonstrated (Billings and.Zhu 1991, Zhu and Billings 1993, Billings and
Zhu 1994a) that the Rational Model Estimator (RME) provides consistent estimates.

Consider therefore an analysis of the mean squared error (MSE) of Oruz:

MSE(@RME) = E[(Ormz — 0)7(OrmE — 9))
= TT{COU(C:)HME)]

-where cov(e), E(e) and T'r(e) denote the covariance, the expection and the trace of (o)

respectively.

cov(©) = E[(6-0)(6-0)]
= E{[(272 - N1) (7Y — Nepy) — O][(87& — Nypy) }(8TY — Nypy) — ]}
= E[(®T® — N¢,)'87%,..0078% ,8(3T& — Ny,)™]
+E[(87® — Ntpy) 187 8,..0=T8(378 — Nep, )™
—E[(®T® — N+,)'97%,,..007]
—E[(®7® — N4»1) ' 878, ONp] (878 — Nypy)™Y]
+E[(@7® — N¢p) ' @72,0787,,,8(87& — Nypy)™]
E[(37F — Nyy)1878(878 — Nypy)l]o?
—E[(37® — Nyy) ' @7, NyI(37® — Nepy)™?
—E[(®7® — Ny,) ' 8Tz, 07)
—E[(87® — N9b,) "' N9,0737T  8(378& — Nyp,)™Y)
+E[(®T® — Nep1) " N+p,07]




—E[(3T® — N9p;) ' Np,ZT (37 @ — Ny )Y
+E[(3T® — Nypy) Nop; NypT (8T8 — Ny )™
—E[0078T  3(373 - Nyy)™Y

free

—E[0Z]3(37® — Nv;)™Y] + E[09I(87® — N¢y)™'] + 007

where of denotes the variance of noise sequence {¢1(t)} in eqn (3).

The probability limit of the mean squared error of ® gpg is then obtained (see Appendix
A for details):

PIim[MSE((:)RME)] = Tr{[th(@T(I)) 1]~ 1[1,b1 ¢2¢§][th(@TQ)) ¢1]_}
T 0'
+77{ Pim( 22 I Jf,} ®)

Note that the mean square error (MSE) of the ordinary LS estimate eqn (5) is

MSE(@1s)=Tr {[Plim( q’;@ )]_1%2} (9)

Comparing (8) and (9), shows that the MSE of © gprz will be inflated if

° g >t
® TT‘('(/)l ) > T?"(‘l,bz’l/) )

o Tr{[Plim(%2) — 1]} > Tr { Plim[(52)]}

The first and the second conditions are system and signal dependent, but the third is

definitely true because the matrix 1, is positive definite.




The investigation of the mean squared error (MSE) above therefore shows that while
RME provides consistent estimates, this may be accompanied by MSE inflation as shown
in Fig.1. A direct result of mean squared error (MSE) inflation is that the estimates
obtained from fitting the model to a particular set of data may differ from the true values
and result in the predictions differing from the observations. Notice that the ordinary least
squares (LS) estimate will be biased and inconsistent due to the inherent noise problems
discussed in Section 2.1. Conversely, MSE inflation seems to be a drawback of RME and

the factor that can lead to a deterioration in predictive performance.

MSE inflation case
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Figure 1: MSE comparison of inflation case eqn (8) and ordinary case eqn (9)

3 Regularized Rational Model Estimator (RRME)

‘3.1 The basic RRME

In Section 2, the deterioration in prediction performance from a MSE inflation point of
view was analysed. The consistency property of RME conflicts to some extent with the

prediction performance. To balance both requirements a compromise between these two

factors can be made by introducing




N

T = Y {[Y(k) - ¢(k)O) + 6716}
= [1; ~20)7[Y — 0] + NOTXO (10)

where A = Diag{);, i=1,2..} and )\; > 0 is the regularized parameter. Optimizing
J1 with respect to ©, yields

~

0= (2T + NN)'eTYy (11)

Taking the correlation between ® and = and that between ® and & into considera-

tion (Billings and Zhu 1991), yields the following Regularized Rational Model Estimator
(RRME)
_ Orame = [878 + NX — Nyy| 1 [87Y — Ny, (12)

The probability limit of Orryg is given as follows

2 y (ﬁT@ QT (I’ TEe E
Plim(OramE) = [th(_N—) + X — |7 Plim]| (Bsree +21) — 1]
07 B srec 3T &;..
= [Plim(—F5) 4 X7 o Plim(— )0
®T @ Tee
= © - MPlim(—L=-1) 4 )10

Obviously, the estimate via regularization is not consistent. If A = 0, Bias(é)RRME) =0

and the regularized rational model estimator (RRME) is reduced to RME.

10




3.2 Orthogonal RRME (ORRME) and regularization param-

eter selection

Although the analysis in previous sections shows how to obtain a regularized rational

model estimate, it is also important to consider how to determine the structure or which

terms to include in model eqn (1). Indeed the structure detection problem is much more

challenging than parameter estimation and the following orthogonal transformation is

introduced to address the problem

W =971

where T is the orthogonal transformation matrix

W = Wffee %+ Wnoise -

1 T12 Tl'p
T — 0 1 % TZ;J-—i
0 0 B
Wifree(1) Wpree(1)
: +
wlf’rce(N) e w'pf'rec(N) i
WTW/N = Diag{d;, i=1,2...

P = Nnum + Nden — 1

wlnoise(l)

wlnoise(N)

p}

(14)

Wpnoise(1)

Wonoise (N)

The orthogonal transformation matrix T can be computed using a Gram-Schmidt scheme,

full details of which can be found in Billings and Zhu (1994). The regressors w;fre.(k)

and Winsis. (k) respectively correspond to ww;(k) and e;(k) defined in the aforementioned

paper.

11




Applying the orthogonal transformation to (4), the regression equation is converted to:

Y = WGE+E=(Wiee + Waoise )G+ =
= WffgeG + El (15)

where G =T0O is the new parameter vector.

Analogous to the basic RRME, the Orthogonal Regularized Rational Model Estimator
(ORRME) is given by:

G =[WTW + N) = NI, {WTY — NI, (16)
| where
wnoise(k) = [wlnofse(k) s wpno‘i:e(k)]
¥, = E[wm,-se(k)Twmi“(k)] = Diag{¥y;, i=1,2...p}
¥y = Elwl,,, (k)& (k)] = [Tar ... g7
The 7 — th element of & is:

. wY/N — ¥y
Py o B 17
d di + A — ¥y, an)

Where w; = [w.‘-(l)...w,—(N)] = [w,'f,eg(l) + w,-mm(l) TR w,;_,c,.,c(N) + w,-m,-se(N)].

The mean and the mean squared error of §; can now be investigated using

& w,Y/N = ‘Ijg,:

R = d; + X — ¥y
. wi(Wf'reeG + El)/N — Uy,
B d-.' T+ /\1' = \I’h'
(wiffee + wmme)(MﬁegG + E]J/N — W,

— 18
di+ A — ¥y {e)

12




The probability limit of the estimate is

Plim(w;freew]i,../N)gi + Plim(w;=1/N) — ¥y
szm(d,) + A=Yy

% =Plim(§) =

dig;
d; + A;
= ¢ + Bias[§] (19)

where

T
w{f"'eewifree

d: = Pli
{ = Plim(Z2

) = Plim(d;) — ¥y

Aigi
d; + X

B?:U.S[é‘i] T e

The probability limit of the covariance is given as follow

cov(g:) = Plim[E(§; — g¢:)*]

= Plm[E(§: -5+ — g9:)]
= Plim[E(§: — T)°| + Plim[E(7 — ¢:)7] (20)

where the first part of the right side of (20) is equal to (see Appendix B for details)

. 2
Plim[E(g; — 7)°] Plim{E[Mj 4o ] }

T i+ A
Plim(waw? [N)o? [N — L0y, (21)
(di + Xi)?

The second part of the right side of (20) is equal to

Plim[E(g; — ¢;)* ———-A—?;g‘?—— 22
zm[ (91 gz) ] = ()\-i"d’)z ( )

13




Therefore the mean squared error (MSE) of the regularized estimate is

s P Plim(w;w? /N)o? /[N — T, Aig?
MSE(G s 1 &1 21 * &t 1J1
\Conmum) 2 (d; + M\i)? (i + d2)?

(23)

The MSE of nonregularized estimator can be obtained by substituting A; = 0 into (23) to

yield

. P Plim(ww? /[N)o? /N — 9T.0,,
MSE(GormE) =) ( / 3,_261/ G

1=1 1

(24)

The results eqn (23) and eqn (24) are obtained under the assumption that sample number
N goes to infinity. For a large finite N, the results are approximately true. A reduction
of mean squared error (MSE) is the aim of employing regularization and the regularized

parameter A; should guarantee

Plim(ww] /N)o? /[N — 910, Mg? 2 Plim(wiw! /[N)o? [N — U0,
(di + A)? (Ai+di)? ~ d?

T

(25)

Solving the inequality, provides a range for the regularized parameter

[2Plim(ww] [N)o? [N — UL T,]d;
g?d;z + \I’%\I’zi - Plim(wgw?/N)agl /N

0 < )\,‘ < (26)

which will result in an improvement in the MSE.

Expression (25) provides no practical guidance because the upper bound contains the

unknown true parameters. Comparing (18) and (19), yields

gid; = Plim(w;Y/N) — ¥y;

14




Substituting (27) into (26), the range of ); is then obtained

ks & [QPIz'W‘f,(?,t.w,--r.u?/N)a?1 IN — UI0, [Plim(waw? /N) — ¥y,] (28)
<2 Plim(wY/N) — Up? + UoUy; — Plim(wa? [N)o? /N

In practice the upper bound of A; can be computed by replacing Plim(e/N) with (e)/N
“in (28) when N is sufficiently large.

After obtaining the orthogonal parameter estimates g;, the parameters in the original

model (2) can be computed from

A

Bp :jp

~ p -
9,;=g",'— ZT"J‘GJ" i=p—l...2,l

j=t+1

Remark 1

When solving inequality (25) the following assumption has been made
(¢:d;)* > Plim(ww] [N)o? /N — 0T 0y,
which is equivalent to

) PIim(w.;w?/N)o?l/N —0TU,,
g9; > 42

The physical explanation of the above inequality is that the size of the parameter to be
estimated is larger than that of the estimation error (in terms of eqn (24)), which is almost

always true. Therefore the assumption is reasonable.

15




Remark 2

The regularization approach was introduced for the purpose of improving and enhancing
RME estimation. In fact, regularization can also overcome overfitting when the raw data
is very noisy, and alleviate ill-conditioning which often occurs when the elements of the

parameter vector are of different orders of magnitude.

4 Numerical simulations

To test the performance of the proposed regularization algorithm, two examples will be
used as a demonstration. In both examples, the input u(k) was a uniformly distributed
‘random sequence with zero mean and amplitude £1, the noise (k) was a normally dis-
trubuted disturbance sequence with zero mean and variance 0.01. In each example, 600
pairs of input /output data were produced, where 500 pairs were used for fitting the model,

and the remaining 100 pairs were used to test the predictive performance of the estimator.

Example 1

Consider the nonlinear stochastic model:

o(k) = HEREEE D) (29)

The equivalent linear-in-the-parameter expression is given as follows

Y(k) = y(k = 1) +u(k—1)e(k — 1) - y*(k — 1)y(k) + £(k) (30)

16




where

Y(k) = y(k)

£(k) = 1+ y*(k — 1)]e(k)

Applying the regularization algorithm RRME and non-regularized RME (Billings and
Zhu 1991) to the unknown model, the parameter estimates obtained are listed in Table 1.
The true output and one-step ahead predicted output for the RRME algorithm is shown
in Fig.2, the model validity tests (Billings and Zhu, 1994b) are shown in Fig.3

Comparing the results obtained from the two algorithms, shows that the new regular-

ization algorithm proposed in this paper provides more accurate estimates and than the

non-regularized RME.

Example 2

Consider a more complex dynamical stochastic nonlinear rational model:

oyl =1) +u(k — Du(k —2) + y(k — 2)e(k — 2)
N L+y%(k—1)+u?(k —2)

y(k) + e(k) (31)

The linear-in-the-parameter expression of the rational model is given as follows

Y(k) = y(k—1)+u(k—L)u(k—2)+y(k — 2)e(k — 2)
—y*(k = 1)y(k) — u*(k — 2)y(k) + £(k) (32)

where

Y(k) = y(k)

§(F) = [1+y%(k — 1) +u’(k - 2)]e(k)

17




Applying the regularization algorithm RRME and the non-regularized RME respectively
to the unknown model, the estimates are listed in Table 2. The true output and the
one-step ahead predicted output for the RRME algorithm is shown in Fig.4, the model
validity tests (Billings and Zhu, 1994b) are shown in Fig.5

A comparison of the results again shows that the regularized algorithm provides improved

results compared to the nonregularized scheme.

5 Conclusions

A new regularized least squares estimator has been derived for the dynamic rational model.
A detailed analysis of the property of the new estimator showed how regularization can be
~used to balance both mean squared error performance and consistency of the estimates.

Simulation results confirmed the advantages offered by the new algorithm.
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Appendix A: Properties of Oryp

The RME estimate is given by eqn (6) as

OrmME

(378 — N¥,) 1 (3TY — NT,)
(878 — NU;)"[87 (8,00 + =) — NT,]
(87® — NU;) 18780 + (878 — NT,)187Z, — (876 — NU,)" N,

The covariance of the estimate is given by:

cov(0)

E[(6 - ©)(6 - 0)T]
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E[(®7® — N41)'97%,,..00787  8(37® — Nyy)™']

+E[(2T® — N¢,)'37%,,..02T3(878 — Ny;)™]

—E[(37® — N¢1) 87 94,..007]

—E[(37® — N¢)1) 1878 4,..ONyT (878 — Nyy )Y
+E[(2T® — Nv,) 87,0787

free

B(8T® — Nepy)™]
+E[(87® — Nyy) 97 9(27® — Nepy) Yo,
~E[(37® — N¢h) ' @7E, N7 (872 — Nyyy) 7Y
—E[(37® — Ny,) ' 87=,07]
—E[(®7® — Np1) " N1p,0T 8T (373 — Nepy) 2] + E[(87& — Nep;) " Nh,07]
—E[(8T® — Nt1) " NoET 8(873 — Nepy) ™Y
+E[(87® — Nyp1) ' Ny, N7 (870 — Nyyy) ™| — E[007 8T, 8(87® — Nepy)™']
—E[OZ79(27® — Nyyy) '] + E[04T (878 — Ny,)™}] + 007

where o, denotes the variance of noise sequence {£;(t)}.
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Therefore the Probability limit of the covariance is:
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Appendix B: Properties of Eqn (21)

From eqn (20)
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numerator polynomial | RRME estimate | RME estimate | true value
y(k—1) 1.0205 1.0338 1
u(k — 1)e(k — 1) 0.5019 0.9100 1
denominator polynomial | RRME estimate | RME estimate | true value
yik—1) 1.0659 1.1843 1
Table 1: Parameter estimates for Example 1
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Figure 2: The output and one-step ahead prediction of Example 1 (RRME)
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Figure 3: The model validity tests for Example 1
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numerator polynomial | RRME estimate | RME estimate | true value
y(k—1) 1.0248 1.0585 1
ulk — u(k — 2) 0.9706 0.9852 1
y(k — 2)e(k — 2) 0.9010 1.1222 1
denominator polynomial | RRME estimate | RME estimate | true value
2k — 1) 0.9965 1.2556 1
u?(k —2) 0.9903 0.9913 1

Table 2: Parameter estimates for Example 2
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Figure 4: The output and one-step ahead prediction of Example 2 (RRME)
(dotted line —predicted output

solid line-true output)
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Figure 5: The model validity tests for Example 2

(&P

25

b=®(ye)e2)




