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Abstract

A new equation structure is proposed as an alternative to the Morison equation for
the prediction of wave forces. Initially nonlinear parametric continuous time differential
equation models were estimated from wave force data for a variety of flow situations by
adopting a new approach which avoids direct differentiation of the input-output data.
The method consists of two stages. The first stage involves estimation of a discrete
time model (polynomial I:\*ARMAX) from sampled input-output data and computation
of the linear and higher order frequency response functions. The second stage involves
identifying continuous time models by curve fitting to the complex frequency response
data using a weighted complex orthogonal estimator. The orthogonal property of the
estimator helps in identifying the correct model structure or which terms to include in
the model and the weighting property provides an additional degree of freedom to control
the properties of the estimator with respect to the selection of the frequency range and
number of data points. Morison equation models were initially fitted to the data but
were shown to simply curve fit to the data without capturing the underlying dynamics.
The frequency domain characteristics of the Morison equation models were also analysed
and shown to be structurally deficient in representing certain dynamic features of the

force. However, it is shown that the new equation structure is capable of emulating all
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the relevant features of the wave force mechanics. The paper is organised into two parts.
Part-] is concerned with the modelling of wave forces on a fixed cylinder and Part-II
deals with a responding cylinder. Extensive simulations on a variety of experimental
data show that models based on the new structure perform remarkably well compared
with the Morison equation. For each flow situation. in addition to the drag and inertia

coefficients of the Morison equation there are two non-dimensional coefficients defining

history effects which show some consistency between widely different flow situations.

1 Introduction

An accurate and precise prediction of wave forces on offshore structures that are subjected
to random ocean waves i1s an essential prerequisite for design. Wave forces on structures
composed of slender members are traditionally calculated on the basis of th_e Morison equation
which was introduced by Morison et al (1950) as a semi-intuitive expression predicting the
force exerted on a body in a viscous fluid under unsteady flow conditions and is given by
‘ Fit) = %wpchm'a + %pDC’du|u|
= Kit+ Kyulu| (1)

where ‘F(t)’ is force per unit axial length, ‘u(t)’ is the instantaneous flow velocity, ‘p’ is the
water density and ‘D’ is the diameter K; = impDC, Ky = 2pDC,. The dimensionless drag
and inertia coefficients ‘Cy" and ‘C,,’ depend on the characteristics of the flow. More recently
the general validity of Morison’s equation and particularly the validity in relation to wave
induced loads on circular cylinders has been questioned. Specifically the determination of
Cq and C,, at high Reynolds numbers has presented a formidable problem that has endured
for many years. Although much progress in the basic understanding of oscillatory flow has
been made, many uncertainties and conditions in the reported data and conclusions still exist
(Sarpkaya and Issacsson,1981, Chakrabarti,1987). The Morison equation generally predicts
. the main trends in measured data quite well; however some characteristics of the flow are
not well represented. For example i n sinusoidal oscillatory flow the force variation at the
fundamental frequency may be well predicted while that at higher harmonics is not. This
implies that peak forces may be poorly predicted. A poor representation of the high frequency
content of the forces is a serious limitation for the determination of the fatigue life of a
structural element. Hence Morison's equation needs to be extended.
An attempt to determine new model structures to predict the wave forces has been made
by Stansby et al(1992). These authors showed that two simple extended equations allowed a

considerable increase in the accuracy of curve fits to data measured in a variety of flow situa-




tions. A sophisticated system identification technique based on the Nonlinear Auto Regressive
Moving Average with eXogenous inputs (NARMAX)(Leontraritis and Billings,1985) model
was used by Worden et al (1994) to model the wave force dynamics of U-tube,De-Voorst and
Christchurch Bay data. Although the discrete NARMAX models obtained could adequately
represent the dynamics of the input-output data and performed well compared to the Morison
equation so far as the predictive performance was concerned, the parameters of the discrete
models could not be easily related to the physical parameters of the inherently continuous
time system. Hence, it is often desirable to fit continuous time models to the input-outpqt
data to obtain physically interpre table parameters.

Identification of continuous time models from input-output data has been studied by
several authors in the past and comprehensively documented by Unbehauen and Rao(1987).
Most of the techniques developed so far are limited to the identification of linear systems and
make use of several types of modulating function,state variable filters,Poison filter chains and
chain integrators in order to avoid direct differentiation of the process data. Extending these
techniques to the identification of nonlinear systems 1s much more involved.

An alternative indirect approach is to estimate the parameters of a continuous time dif-
ferential equation model by curve fitting to the system frequency response functions. But
when the system is nonlinear,computation of the higher order frequency response functions
directly from input-output data involves extending the classical cross and power spectral den-
sity concepts to multidimentions and using correlation or FFT based techniques coupled with
multidimensional windowing and smoothing (Kim and Powers,1988). An indirect approach
1s to estimate a linear or nonlinear discrete time model from sampled input-output data and
then to compute the higher order frequency response functions from the unbiased process
model using the recursive algorithm proposed in Billings and Tsang(1989),Peyton Jones and
Billings,1989). The latter approach offers significant advantages since only small data sets are
required and the complexities of multi dimensional windowing and smoothing are avoided.

The present study attemp;ts to find continuous time models which accurately represent the
nonlinear wave force data by parameterising the system frequency response functions in terms
of the coefficients of a nonlinear ordinary differential equation (Tsang and Billings,1992, Swain
and Billings,1995). The motivation for this approach comes from the fact that the discrete
representation of a continuous time system is not unique. Thus different discrete time models
can be obtained for the same system. But whatever models are obtained,if the models have
captured the dynamics of the system adequately, the frequency response functions must be
the same. The present method therefore utilizes the invariant information in the frequency

response functions to fit continuous time models. The procedure consists of three steps

e Identify a discrete time model (polynomial NARMAX) using sampled input-output data




o Compute the linear and nonlinear frequency response functions using the algorithms of
Tsang and Billings (1989), Peyton Jones and Billings (1989).

o Identify the continuous time models by curve fitting to the frequency response functiox_xs

using the weighted complex orthogonal estimator (Swain and Billings,1995).

Based on the observations of the experimental data and from preliminary mathematical anal-
ysis of the Morison equation, a new equation structure is proposed for prediction of wave
forces.

The organisation of the paper proceeds as follows. Section-2 highlights the preliminary
characteristics of the Morison equation. A brief tutorial concerning the concepts and tech-
niques of fitting discrete parametric models (NARMAX) from sampled input-output data is
presented in section 3. The concept of freqitency domain analysis and the interpretation of
generalised frequency response functions (GFRF) are briefly introduced .in section-4. The
procedure of identifying nonlinear continuous time differential equation models from com-
plex frequency response data using the weighted complex orthogonal estimator is described

.’ in section-5. Identification of nonlinear differential equation models from several data sets is
carried out in section-6-8. Section-9 further analyses the behavior of the Morison equation
from the point of view of system identification and a new equation structure is proposed
for the prediction of wave forces. Continuous time models are fitted based on the proposed
structure using least squares

and the results show that the estimated nonlinear continuous time models are capable of
emulating all the dynamic features of the wave force data and are a significant improvement

compared to the Morison equation.

2  Frequency Domain Characteristics of Morison’s Equa-
tion ‘

Since the final objective of the present study is to fit nonlinear continuous time models of the
wave forces,it will be appropriate to begin by analysing the general behavior of the Morison
equation. A comparative analysis of the Morison model and the discrete NARMAX model
for specific sets of data has been made in the practical examples.

It is not possible to directly map the Morison equation into the frequency domain using
the techniques of Volterra series due to the presence of the drag term u|u| which has a discon-
tinuous second derivative, since a necessary condition for the existence of the Volterra series

1s that all nonlinearities must be infinitely differentiable (Palm and Poggio,1977). However it
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1s possible to approximate the drag term u|u| in eqn(1l) as a polynomial of the form
ulu| = a1u + ayu® + gqu® + agut + agu + . (2)

Under the assumption that the input signal is a zero mean Gaussian signal whose odd order
moments are identically zero (often a reasonable assumption), eqn(2) can be represented as

an odd order polynomial of the form
ulul = a1u+ azu® + agud + ... (3)
The approximated Morison equation is therefore given by

F(t) = K+ Ki(ayu+ asu® + asu® +.....)
= K.;'!l-f-Kﬂu-f- Kﬁu3+K¢5u5+ ..... ; (4)

where Ky = Kja,, Kus = Kgyaz and so on. The analysis of the approximated Morison
equation is possible using techniques of the Volterra series. Assuming that the drag term
can be approximated with reasonable accuracy by a third order polynomial of the input, the

approximated Morison equation is given by
F(t) = K{ﬂ-f'Kd]_u-}-Kﬁus (5)

The linear and third order transfer function of the approximated Morison equation of
eqn.(5) are given by
Hl(jwl) = Ka 4 ju K; (6)

Hi(jwr, juwy, jws) = Ky (7)

From the linear transfer fumction eqn.(6) it is obvious that as w; — oo, the magnitude
|Hy(jw:)| = oo which means that when the cylinder is subjected to a high frequency input
wave of very small amplitude, it will experience an extremely high force. The third order
frequency response function is a constant independent of the frequency of the input wave.
The intrinsic characteristic of the Morison equation is such (as evident from its linear
transfer function) that it cap adequately capture the dynamics of a system whose linear gain
increases with the frequency of the input signal. But often in the case of most practical
systems, the gain of the system falls off as the frequency increases. It will be obvious in
the examples when models are fitted to the real data that Morison’s equation may require

modification and extension.

The first step in the search for a possible extension of the Morison equation is to fit




continuous time models to the input-output (velocity-inline force) data for a variety of flow
situations and look for any consistency in the models. However, estimation of continuous
time differential equation models from raw input-output data involves differentiation of the
data and hence may result in incorrect parameter estimates due to the presence of noise
inherent in practical data. To avoid errors due to differentiation, 2 new approach is followed
in the estimation process where a discrete NARMAX model is initially fitted to the data
and then continuous time models are fitted to the frequency response functions which are
computed from the NARMAX model.| Note that one of the most important advantages of
the NARMAX model is that the process terms and noise terms are decoupled from each
other;thus the computed frequency response functions from the process model are noise free.

Prior to the estimation of continuous time models; the relevant theoretical prerequisites
of the procedure adopted in the estimation phase are briefly presenfed in tutorial form in

section-3-5.

3 System Identification in the Discrete Domain-the
Polynomial NARMAX Model

The problem of system identification is primarily concerned with the mathematical represen-
tation of a linear or nonlinear input output relationship. The mathematical model representa-
tion basically depends on the identification methods considered and the structure of the data
that are available. The identification of nonlinear systems using the functional series expan-
sion of Volterra and related methods have been well documented in a comprehensive way by
Billings(1980). The representation of a nonlinear system by the functional series expansion
of Volterra or Wiener that maps past inputs into the present outputs, requires an excessive
parameter set often extending to well in excess of 500 kernel values even for simple nonlinear
systems and hence proves to'be impractical.

However,the difficulty of excessive parameters associated with the Volterra modelling of
nonlinear systems can be overcome by representing the system by a discrete parametric model.
One of the possible choices is the NARMAX model (Nonlinear Auto Regressive Moving Av-
erage with eXogenous inputs); initially proposed by Billings and 'Leonata.ritis(1982). It has
been proved by Leontaritis and Billings (1985),that a nonlinear discrete-time time invariant

system can always be represented by the NARMAX model
y(k) = FMy(k - 1), Yk =y ), u(k —1),..u(k— ny),e(k —1),...e(k — n,)] + e(k) (8)

in a region around an equilibrium point provided the response function of the system 1s

finitely realizable and a linearised model would exist if the system were to be operated close
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to the chosen equilibrium point, where y(k),u(k) and e(k) represent the output, input and
noise respectively at time intervals ‘k’. n,,n,,n. are the corresponding lags and FM[.] is some
nonlinear function. In practice the noise e(k) can not usually be measured and is replaced by

the prediction errors defined as ”
e(k) = y(k) — (k) (9)

where (k) is the one step ahead prediction of y(k).

It should be noted that the model includes both linear and nonlinear noise components.
If the system is nonlinear any noise that arises is also likely to enter in a nonlinear manner.
Although all these terms correspond to unmeasurable states,they must be included in the

model, otherwise the estimated parameters will contain systematic errors called bias.

3.1 Structure Detection and Parameter Estimation

In the present study the map F™[] is taken to be a polynomial of degree ‘N’ but FM []
can be defined as a neural network, rational function expansion etc. In order to estimate the

parameters of this map, eqn(8) is expressed in prediction error form as

N!
y(k) =3 bizi(k) + e(k) (10)

=1

where N, is maximum number of terms in the NARMAX model and is given by

N,
N: = Z’Ri ﬂ.D:l

1=0
n = nia(ny+n,+n.+i-1)/, IR — N, (11)
and
Py Qu Te
(k] = Hy(k—nyj)Hu(k—nuk) H e(k —n..,) (12)
7=1 k=1 m=1
71:2} """ 71, PynQua""cZOQ lspy+qU+T¢-<-N“
1< 9y 5 6y, 1 A M, BTy 1< n., < n.and ‘N, is the degree of polynomial
expansion.

By convention py, = 0 indicates that z;(k) contains no y(.) terms. Similarly ¢, = 0

indicates that z;(k) contains no u(.) terms and r. = 0 indicates that z;(k) contains no e(.)




terms. Regrouping terms in eqn(8) yields

y(k) = FPly(k-1), ~y(k=ny),u(k - 1)..u(k — n,)]
T y(k = 1)..y(k —ny), ulk — 1), ..u(k - ), e(k —1),...e(k — n,)] + e(k) (13)

where F?[.] contains all terms b;z;(k) with r, = 0 and F™[.] contains all terms b;z;(k) with
e # 0. F?[]is referred to as the process model and F™[.] as the noise model. When the system
1s nonlinear direct estimation based on eqn.(13) may involve an excessive number of terms.
Simply increasing the orders My,My and n, and the degree ‘N;’ of the polynomial expansion to
achieve the desired accuracy will in general result in an excessively complex model and possibly
numerical ill-conditioning. The determination of the structure or which terms to include in
the model is therefore essential if a parsimonious model is to be determined from the large
number of candidate terms(eqn.(11)). An orthogonal regression estimator Billings et al(1988)
can select a subset of significant terms very efficiently. The basic idea is to transfer the model
of eqn.(13) into an equivalent orthogonal equation. Because of the orthogonal property,signif
icant terms can be determined in a particularly simple forward regression procedure. The
criterion for selecting terms is based upon the proportion of the output variance that each
term contributes.

An advantage of the orthogonal estimator is that significant parameters can be determined
recursively and quite independently of the other terms already selected. Furthermore the
estimation of the process and noise mode] parameters can be decoupled. This is particularly
useful for the identification of the mode] of eqn.(13). A parsimonious Process model is first
determined. This model will not be affected by whatever noise model is produced later. The
initial prediction errors are computed based on this process model and a noise model can
then be selected. A revised prediction error sequence is then calculated and an improved

noise model is determined.

3.2 Model Validity Tests

After fitting a NARMAX mode] 4o the input-output data, it is important to test for possible
inadequacies of the fitted model, that is to check if the model has successfully captured the
system dynamics and is not just a curve fit to one data set. The problems of curve fitting are
discussed in the examples. Over the last few years a lot of work has been reported in the system
identification literature relating to the design and development of model validation tools by
Billings and co-workers (Billings and Voon,1986,Billings and Zhu,1994). In the present study,

the models are validated based op the predictive performance (cross validation) and correlation
tests.




3.2.1 Cross Validation

the predictive performance based on both one-step ahead prediction of the system outpyt
defined as

Yosa (k) = FN‘[y(k =2 Lhoes s gl ~ ny), u(k — 1),...,u(k - ny), e(k — L)issn €0k — 7, )] (14)
and the model predicted output given by
Gmpo(k) = FM [k = 1), ...  Impo(k =1y ), u(k — 1), u(k — n,)] (15)

A metric which measures the closeness of fit between the predicted output and measured
output is the normalised root mean square error(NMSE) which is defined as (Weigend and
Gershenfeld,1993)

_ [z —vwy
S \‘ ORI 48

where 7(k) is the predicted (either one-step ahead or model predicted) output of the system.
Another approach commonly known as cross validation, is based on dividing the available data

set into two disjoint sets, the estimated and the test set. The former is used for estimation

and the latter set is used for model validation.

3.2.2 Correlation Tests

correlation function of the residuals and the cross-correlation function between the residuals

and the input(Soderstrom and Stoica,1989). This result has been extended by Billings and co-

‘workers to the case of validating identified nonlinear models (Billings and Voon,1986, Billings

and Zhu,1994). The identified model will only produce acceptable predictions over different
data sets if it is unbiased. If the model structure and the estimated parameters are correct

then the prediction error sequence €(k) should be unpredictable from all linear and nonlinear

conditions hold

Pee(T) = El(e(k - 7)e(2)) = §(r),
Gue(T) = Elu(k - 7)e(2)) = ), v,
Bare(7) = Ef(u(k—7)— u?(t))e(t)] =0 Vx5 (17)

—

bora() = Blaik—r)-@@)ee] - o
Ple)(T) = Ele(t)e(k -1 - Thuk—1-1) = 0, 72> 0.
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where §(7) is the Kronecker delta. The over-bar signifies mean value and E [.] denotes expec-
tation. The underlying rationale of the correlation tests is that for a model to be statistically
valid, there should be no predictable information in the residuals. However, in practice only a
finite data length will be available which is contaminated with noise (which is rarely additive,
Gaussian or white) measured with finite precision and subject to innumerable external influ-
ences in the environment and the measurement apparatus. Hence confidence bands should be
used to indicate if the correlation between variables is significant or not. For large N, the 95%
confidence bands are approximately o+ 17% and any significant correlation will be indicated

by points lying outside the respective confidence band.

3.3 Preprocessing of the Data

Before estimation, the raw data may require preprocessing e.g. removal of any possible
trends in the data and suitable choice of sampling time, in order to avoid .possible numerical
ill-conditioning and identifiability problems.

3.3.1 Choice of Sampling Time

A judicious choice of sampling time is central to the success of any identification algorithm.
A lot of studies have been made by several authors in the past (Iserman,lQSO,Ljung,l987) for
selecting proper sampling times for identifying and controlling linear systems. The sampling
time should neither be too small nor too large. Too small a sampling time causes the data
vector to be autocorrelated and hence involves singularity of the information matrix. Too
large a sampling time can cause a loss of information i.e. the inter sample behavior contains
a lot of information. All the observations by the authors in the past are based on a rule
of thumb. These suggest that for successful control and identification of a linear system,the
sampling time T, should lie between i%th to the Elath of the dominant time constant of the
system or at least 15 to 20 samples should be taken between 95% of the settling time of the
system.

The choice of sampling times for nonlinear systems has received relatively little attention
in the past until recently when Billings and Aguirre(1994) showed that the sampling time
which enhances model structure selection is not necessarily the best choice of sampling time
for parameter estimation and vice versa. Billings and Aguirre (1994) suggested several rules
for selecting the sampling time but the most practical and easiest method is to analyse the

linear and nonlinear correlation functions of the output. Consider the correlation functions

(1) = El(y(k) - y(B))(y(k ~ 7.) - y(B)] (18)
?51"71”" (Tc) = E[(yz(k) - m)(yz(k - Tt—‘) - m)]a s L —
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Then determine

Tm = min|7,, Ty (19)

where 7, is the time of the first minimum of $4,(7) and 7,z is defined analogously. Finally
the sampling time can be chosen as follows. 2 <<=

It should be emphasised here that the above procedure only provides a guide to the selec-
tion of sampling time. The choice differs from process to process and upon the requirements

of the analyst.

4 Frequency Domain Analysis and Interpretation

In the last section, procedures for fitting discrete NARMAX models were discussed. However,
the discrete polynomial NARMAX representation of a particular system is not necessarily
unique which means that it is possible to get different discrete models for the same system;
thus one can not be sure if the difference in model structure is due to differences in the
underlying physics or if it is simply a reflection of non-uniqueness. However, no matter what
the form of the model, if the model correctly captures the dynamics associated with the data
sufficiently, this must reflect the correct linear and nonlinear frequency content of the system.
In other words, although there may be a number of discrete time models that represent
a continuous time system, the higher order frequency response functions corresponding to
each of the discrete models should correspond with those for the continuous time system
description. This forms the motivation for analysing the above systems in the frequency
domain.

Since continuous time differentia] equation models are to be estimated for different sets
of wave force data by curve fitting to the generalised frequency response functions which are
computed by mapping the NARMAX models into the frequency domain, a brief review of
this will be given below.

The n-th order generalised frequency response function (GFRF) of a system is defined as

Hn(jwl,...jwn):/_ f hﬂ(’rl,.._.,Tn)emp(—j(wlﬁ + ...wnTn))dm ... dT, (20)

where h,(7y,....... 7») is known as the ‘nth’ order Volterra Kernel or generalised impulse re-
sponse function of order ‘n’ . The frequency domain representation of a system having non-

linearity of degree ‘N)’ is given as

Yow) = o Y. (w)

21
= Eﬂ1 ﬁflr:ffom---ffomHn(.?'wl,---jwn)U(ij)»'-U(jwn) (21)

11
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where w = wy + w, + ... + Wn, Y(jw) and U(jw) Tepresent spectrum of output and input
respectively.

For example, if a system were represented by a Volterra series of order three, then

Y(jw) - Hl(jwl)U(J-wl) + '2‘1;12 Hz(jwl,jwz)U(jwl)U(jwz)dﬁh

+(271r)2 /_: /_: Ha(jm,jwz,jwa)U(jw1)U(J'wg)U(jw3)dw1dwz (22)

i

4.1 Relevant Frequencies of the GFRF Plots

An important property of nonlinear systems is that new frequencies may be generated in the
output including harmonics and intermodulation effects caused by the nonlinear interaction
and mixing of input frequency components. These phenomena are captured by the generalised
frequency response functions. ) _

If a system possessing an n-th order nonlinear term is excited by an input signal that is
strictly band limited such that it has no spectral components above some frequency (wy )mas,
the maximum frequency (wy )ma= of the output will contain n-th order harmonics of the highest

frequency of the input and will thus satisfy the relation

(@i )maz = 7wy )mas (23)

The sampling frequency ‘w,’ must therefore satisfy the following Inequalities to avoid aliasing

> 2 X 7ty g (24)

Furthermore, the ‘nth’ order GFRF H,(jwy, ... Jwy,), which is a multidimensional function
will generate an intermodulation frequency w = w, + --wn in the output for a particular com-
bination (w, ..wy,) in the inpﬁt frequency space. Since input-output signals are sampled at
the sampling frequency w,, only those frequencies within the fundamental range [k, “] are
meaningful. Hence it is required that w = w, + ---wn should be kept within the fundamenta)
frequency range. Since each frequency variable w1, ...wy in the n-tone input varies indepen-
dently, the relevant range for the n-th order frequency response function H.(jw,, .. Jwn) is
w; < 2. The value of the generalised frequency response functions beyond this frequency

range should therefore be ignored.

12




4.2 Interpretation of Generalised Frequency Response Functions

The generalised frequency response functions of discrete NARMAX models can be obtained
using the recursive algorithm of Peyton Jones and Billings (1989). The frequency at which the
magnitude of the linear transfer function H, (jw:) is maximum is the linear resonant frequency
of the system (say w,). This indicates that for this frequency of excitation, the amplitude
of the linear part of the response ¥1(t) is a maximum. Similarly it is possible to interpret
the higher order frequency response functions from the magnitude and contour plots. For
example, the ridges in the contour plot of the higher order frequency response functions are
equivalent to the peaks in the linear frequency response plot H, (jw1). Thus if the equation of
the ridge in the n-th order transfer function is given by wi +wy + ..w, = Wy, this indicates
that the n-th order output y,(t) of the system will be a maximum if the system is excited by
an input whose frequency sum equals w,,. |

To further improve the understanding and interpretation of the geﬁeralised frequency
response plots, consider as an example a system which is modelled by the NARMAX model
of the form

y(k) = ary(k — 1) + az(y(k - 2) + biu(k — 1) + bou(k —2) + au(k — 1)u(k — 2)u(k — 3) (25)

The linear transfer function of this system is given by

1.0
1 — a1/t — gre—72w

= H (). HA®) juy) (26)

H}(jwl) = (ble_jw‘+bze“j2“’l)'

where HI(MA)(jwl) corresponds to the part of the linear transfer function due to pure input
terms only (Moving Average part) and HI(AR)(jwl) corresponds to the part of H; (Jwi) due to
pure linear output terms (Auto Regressive part).

Since the model does not i;osses any second order nonlinear terms, the second order trans-
fer function Hy(jwi, jw,) is absent. The analytical expression for the third order frequency

response function of the system is given by

¢ e~ 3 (w14 2wz +3w3)

Hy(jw jw,, jws) = (27)

1 — gye-i(watwatuws) _ aze72(w1+wz tws)

Note that for the present case, the contribution of the nonlinear term to the magnitude of
Hs(.) is ¢, since the magnitude of the phasor remaining in the numerator of Hj(.) is unity.
Comparing the expression for Hj(.) with that of Hl(AR)(.) in eqn(26), it will be obvious that
if wAR is the resonant frequency of HI(AR)(.), the maximum in the magnitude of Hs(.) will

occur when wy + wy + wy = wAR Thusifa system possesses pure input nonlinearity, the peak
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in the magnitude of H3(.) will occur at those combinations of input frequencies whose sum

equals the resonant frequency of the autoregressive part of the linear transfer function.

5 Reconstruction of Nonlinear Continuous Time Mod-

els

Before a nonlinear continuous time model can be fitted to the frequency response data the
form of the general nonlinear continuous time model must be defined. Consider a system

whose dynamics are described by the nonlinear differential equation

N m L P P+g ;
Z Z Z Cpo(l, "IP'H?) H Dliy(t) H D i”’(t) =0 (28)
m=1p=01;,lp4,=0 =1 i=p

where ‘L’ is the maximum order of the differential; MV, is the maximum degree of nonlinearity,
p+g¢ =m,and m = 1,... N, corresponds to various orders of nonlinearity. The operator
‘D’is the differential operator. Once ‘m’ takes a specific number,all the mth-order terms,
each of which contains a pth-order factor in ‘DYy(t)’ and a gth-order factor in ‘Dhu(t),
subject to p + ¢ = m, are included and each term is multiplied by a coefficient .oty <oilpag)
while the multiple summation over the li(l = 0...L) generates all possible permutations of
differentiations. For example, the general linear differential equation is included in the above

form by setting the order of nonlinearity ‘m’ as 1 to give:

L L
Z cllo(ll)Djly(t) + Z co,l(ll)D“u(t) = [ (29)

!1=0 fl'-:D

As an example the differential equation

j%’ + 2.5% + 1.0y § 1.2% + u + 100y® + 504 + 10%y° + 25.0(%)11,2 =0 (30)
would be represented by the model of eqn.(28) with following definitions
c10(0) = 1.0, e1o(1) = 2.5, e10(2) = 1.0, c03(0) = 1.0, cox(1) = 1.2 c2,0(0,0) = 100.0,
c02(0,0) = 50.0, ¢5,6(0,0,0) = 10, ¢ 5(1, 0, 0) = 25.0
The frequency domain equivalent of eqn(28) is based on the generalised frequency response
functions which are given by mapping the time-domain representation into the frequency
domain (Billings and Peyton-Jones,1990)

L
- 2 cro(l)(Jwy + ....jw,)" Hy¥™ (jwy, ... jw,)

iJ=D
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11,1,,:0
n-1ln—-g¢ L

+ Z Z z Cp,q(ll'n "'EP'I‘Q)(j‘wn-g-}.l )IP'H _..(].wn)lp+an-q,p(jWI, -.jw'n.—q)

g=1 p=1l,ln=0

n L
o Cp0(l1y L) Hry g (Juwn, .. jwn). (31)
P=213,l,=0
where the recursive relation is given by
n—p+1
H:,?m() = Z H:'(jw:l, ...jwz‘)Hn_,"p_l (jw,;+1, __jwﬂ)(jwl + ... +jwi)lp. (32)
i=1

The recursion finishes with p = 1 and H,a(jw,....jw,) has the property

H,1(jw, ety ) = Hi (10, - Jwn)(Jwy + ... -i—jwn)I‘. (33)

The above equations for the generalised frequency response function will be used to derive the
regression equations for estimating the unknown parameters ¢, o(l1,..l,1,) in equation(34).
Note that, the computation of the n-th order frequency response functions is a recursive
procedure where each lower order of generalised frequency response function contains no effects
from higher order terms. This offers a distinct advantage since the parameters corresponding
to different nonlinearities or terms in the continuous time nonlinear differential equation can
be estimated one at a time and quite independently ,beginning with first order terms and

then building up to include the nonlinear terms.

5.1 Estimation of Linear Terms

The first order frequency response is only related to the linear input-output terms. Setting

n =1 in eqn(31) gives
z L
B Lg Cl,o(h)(jwl)“} Hi(jw) = 15; co1(h)(jwn )", (34)

Without loss of generality it is assumed that the parameter corresponding to the linear output

term ¢;,0(0) is unity. Moving all other terms to the right hand side gives
L L
—Hi(jw) = 3 eo(l)(jw) Hy(jw) + > con(l)(jws )b, (35)

13=],!1#0 11=0
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which is linear in the parameters expression. The parameters ¢;0(.) and co4(.) can be esti-
mated using the weighted complex orthogonal estimator (Swain and Billings,1995) (described
in Appendix-A). For clarity compare eqn(35) with eqn(A.1) to relate the parameters of both
equations.

So that from equation(A.1)

z2(jw) = b1p1(Jw) + 2p2(jw) + ... + Oypar(jw) (36)

where M = 2L + 1 and

z(jw) = —Hi(jw1)

61 = c10(1), pi(jw) = (jw1)H(jwy)
b2 = c10(2), p(jw) = (jwl)zﬂl (Jwr)

L =c1o(L), pr(jw)= (jwi)*Hi(jw;)

0141 = c0,1(0), pr+1(Jw) = pm(jw) = (jw,)° = 1

fr42 = c0(1), pr42(jw) = (Jwi)
(2

9L+3-——Co1 ) PL+3(.7"~'—’) (le)

bar41 = coa(L), par+1(jw) = pu(jw) = (Jun)F
The proposed estimation algorithm can now be applied to eqn.(36) to identify the unknown

parameters by replacing the frequency response function H; (jw, ) by estimates of this function.

5.2 Estimation of Second Order Nonlinearities

To estimate the parameters associated with second order nonlinear terms, set n = 2 in eqn.(31)
so that

L

i ZCl,D(ll)(jwl +J"-“’2)l’ Hy™™ (.?wl,sz Z Co,2 31532)(%”1) (jwz)IQ

"'1 =0 13 12-0

L
+ > ca(h, b)(jw)" Hyp(jwn)

11,lo=0
X
+ Y co(ly, ) Hao(jwn, jws). (37)
11,la=0
By the recursive relation
Hyy(jun) = Hy(jwr)(jwn ). (38)

H;,szym(jwhjwz) = 17171(,‘."U-h)Hm(,’a"f-dz)(,?'wl)l2
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= H1(jwl)Hl(jwz)(ng)“(jwl)l’. (39)

So that finally a linear regression equation is obtained as

I I
= 261,0(51)(3"“1 ‘i‘J'W'z)I1 Hgsm(jwhjwz)= Z 50.2(lla12)(5’;“’1)[1(].‘-‘-’2)!2

1‘1:0 lJ,[::ﬂ

L
+ Z C1,1(31,32)(3'“):’.)121?{1(Jf"-”l)(.fwl)l1

11 ,l;:D

%
2 eaolly ) Ha(jon ) H(juws)(jun o (). (40)
13,l,=0
Notice that the parameters c10(l1),ls = 0,...L on the left hand side have been estimated
as linear terms initially while all the Parameters on the right hand side of the equation can be
estimated from eqn(37) by replacing the first and second order frequency response functions

by their estimates and applying the estimator.

5.3 Estimation of Higher Order Nonlinearities

When dealing with higher order terms (n=3,4,..),s0me parameters which have been obtained
in previous stages (for orders less than the ‘nth’) appear on the right hand side of the equation.
These are associated with lower order pure output and cross-product terms but not pure input

terms.Moving these terms to the left hand side gives

L
- Z c1,0(l1)(Jw; + ....jwn)[‘ H2V ™ (gwy, . jwy,)

13=0
n—2n-g-1 [

= Z Z Z Cw.q(lla---lpﬂ)(jw -q+1)lp+]---(jwn)l”qﬂn—q,p(jwla--jwn—g)

g=1 p=1 I;,l,=0

—

L
- Z cpo(l, anedp ) g o Fy e Jwn)

I1,lp=0
L
= Z CD,'n.(l.'l-,n--'Z'n)(.'l;“")l)r:l---(.7."""1'1.)1,1

l] ,In =0

n—1 L
+Z Z Cp,q(zh-'-ln)(jwn—qﬂ)zﬁl--(jwn)IHQHn—q.n—q(J‘wl,--J'Wn-q)

¢=11l,l,=0

3

k-1
Il
(%]

L
-+ Z cn,D(Zl,...Ip)Hmn(jwl,..jwn). (41)

11 ,lﬂ=0

The reconstruction is achieved by applying the weighted complex orthogonal estimator
(Appendix-A). Full details of the algorithm, the properties and guidelines for implementation
can be found in Swain and Billings (1995). The weighting matrix ‘Q’ in all the examples has
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been taken to be
Q = diag[g:(w), g2(w), -......qn(w)] (42)

where ‘g;(w)’ is a monotonically decreasing exponential of the form
¢ = ezp(~wi/)) (43)

The weighting parameter ‘)’ controls the distribution of the weights of the errors for each

frequency ‘w’

Examples

In the following sections, wave force data from a variety of systemé have been modelled by
applying the techniques and procedures described in previous sections. In all the examples
the models have been fitted and analysed in the following manner:

. o Fit a discrete NARMAX model to the sampled input-output data by applying an or-

thogonal least squares (OLS) estimator

e Compute and interpret the generalised frequency response functions of the estimated
NARMAX model.

e Fit a Morison equation model to the input-output data using conventional least squares
“curve fitting techniques and make a comparative analysis with respect to the NARMAX
model

¢ Estimate nonlinear continuous time differential equation models by curve fitting to the

generalised frequency response functions.

® 6 Modelling of Small Scale Wave Force Data

The velocity and force time histories for twenty two different rectangular wave spectra with
a fixed cylinder were obtained from the University of Salford (Baker,1994). The cylinder
was subjected to random waves with rectangular spectral density functions having different
bandwidths. The force was measured on a small cylindrical element and the input velocity
1s the ambient horizontal water particle velocity at the mid point of the element (obtained
without the cylinder in position). These data were sampled with an uncertainty of 40usec.
All wave tests had a variance of water surface elevation of 650mm?. The flow conditions were
described by three parameters - KC,Re and £ where KC, the Keulegan-Carpenter number, is
_‘——'——\/EZ}%'TW _‘LZ)TWD , B is the

defined in the present study as , Re is the Reynolds number
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Stokes number defined as %
velocity, T, is the period associated with the peak in the velocity
kinematic viscosity of fluid. The diameter and length of the cylindri
and 0.05067m. Relevant information about the data sets used in the

in Table-1. Further details about the experimental set up can be fo

» Urms 15 the root mean square (rms)

value of the horizontal
spectrum and v is the
cal element are 0.038m

present study are shown

und in Baker(1994). .

Table-1 : Experimental Conditions of Salford Cylinder

Tests on Minimum | Maximum ~ Spectral S_a_nﬁing No.of Flow Parameters
Constrained | Frequency Frequency | Bandwidth | Interval Data (KC,3, Re )
Cylinder Hz Hz Hz sec Collected
Data Set-1 0.3239 0.6002 | 0.2763 0.02 20972 | KC=4.74, 5=667.2
3 Re=3.1638E+03
Data Set-2 0.2570 0.6476 0.3906 0.02 19437 KC=4.95, B=653.11
Re=3.2332E+403
Data Set-3 | 0.1657 | 0.7339 0.5682 0.02 16879 | KC=4.46, /=649 51
Re=2.9021E+03
6.1 Discrete Time Modelling

Models were fitted between the inline force and the horizonta] water particle velocity. The
input-output data were decimated by a factor of 2 (effective sampling frequency of 25Hz)
using the decimate function available in MATLAB (1992) This function filters the data with
an eighth order Chebyshev Filter that is basically a lowpass filter having a cutoff frequency

equal to 0.8 f
8% f,
cuto = 4
Jeutoss = — (44)
where f; is the sampling frequency of the original data and R is the decimation factor. The

original spectral information of the data is not lost due to decimation. The above sampling
was chosen using the procedures described in section 3.3. In order to fit a discrete NARMAX
model,700 data points were used for estimation purposes and the model validation was done
with a sequence of 1000 points of input-output data taken arbitrarily from the rest of the
The discrete NARMAX models were fitted to the data sets-1,2 and 3
=3, ne = 10, N; = 3. The terms that were
selected together with their associated parameter estimates, error reduction ratios (ERR)
Table-2.1,2.2 and 2.3. Note
that from no a priors knowledge, the estimator selects the significant terms to include in the
model and ranks them in the order given in Table-2.1,2.2 and 2.3. Multiplying the ERR

values by 100 gives the % contribution that each term makes to the variance of the output.

available data points.

with an initial model specification of Ny = 3,m,

and the standard deviation of the parameters are tabulated in
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The estimated noise model is given in the last row of each table. Note that the estimation of

noise model is essential to ensure that the parameters of the process model are unbjased.

Table-2.1 : Results of Orthogonal Estimator for Data Set-1

terms estimates ERR Cest.
y(k- 1) 0.15593E+01 [ 0.98545E+00 0.90788E-01
y(k- 2) -0.44738E-[:00 0.13507E-01 | 0.16114E+00
y(k- 3) -0.15585E+00 | 0.60027E-04 0.77194E-01
u(k- 1) 0.12829E+01 | 0.72154E-05 0.16776E+00
u(k- 3) -0.11957E+401 | 0.18119E-03 0.16177E+00
u(k- 3)u(k- 3)u(k- 3) | 0.48262E+01 0.38678E-05 | 0.23974E+01

0.2630 e(k-3)-0.2612¢(k-2)-0.239¢(k-2)-0. 1618e(k-6)-0.046 1 (k-7)
+0-0469€(k-9)-0.031e(k-8)-+0.025¢(k-5)-0.0016e(k-10)-+0.00062¢ k-1)

Table-2.2 : Results of Orthogonal Estimator for Data Set-2

terms estimates ERR Oest.
(k- 1) 0.15459E+01 | 0.98269E+00 | 0.81696E-01
y(k- 2) -0.45829E+00 | 0.16004E-01 0.14191E+00
y(k- 3) -0.13742E+00 | 0.31174E-04 | 0.67870F-01
u(k- 1) 0.14043E+01 | 0.21535F-04 0.17364E+00
u(k- 3) -0.13099E+01 | 0.21617E-03 0.16841E+00
u(k- 3)u(k- 3)u(k- 3) | 0.58851E+01 | 0.41526E-04 | 0.12081E~+01

“0.2805e(k- 2)-0.171e(k-4)+0.152¢(k-3)-0.1186e(k-6)+0.031e(k.7)
+0.067e(k-1)-0.028¢(k-8)+0.0128¢(k-10)-0.01e(k-5)-0.003¢(k-9)

Table-2.3 : Results of Orthogonal Estimator for Data Set-3

terms estimates ERR «
y(k- 1) 0.10280E+01 | 0.98606E+00 0.84491E-01
y(k- 4) -0.43382E+00 | 0.12405E-01 0.70496E-01
y(k- 2) 0.58203E-01 | 0.71540E-04 0.12640E+00
y(k- 3) 0.27386E+00 | 0.29857E-04 0.11942E+00
u(k- 1) 0.18241E+401 | 0.19159E-04 0.16255E+00
u(k- 3) -0.17171E4-01 | 0.15014E-03 0.15756E+400
u(k- 3)u(k- 3)u(k- 3) | 0.12059E+02 0.42011E-04 | 0.18696E-+01

+0.514e(k-1)-0.138e(k-2)-0.204e(k-6)-0.198e(k-4)+0.148e(k-5)
-0.120e(k-7)-0.099e(k-8)-0.073e(k-9)-0.062e(k-3)+0.042e(k-10)

The correlation plots and model predicted outputs over the estimation and test sets for
data set-1 are shown in Figure-1,2 and 3.

The respective plots for the models fitted to other data sets were quite satisfactory and
are not given here for space reasons. However, the normalised mean squared errors based on

the one step ahead predictions and model predicted outputs are shown in Table-3.
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Figure 1: Correlation tests of the NARMAX model of Fixed Cylinder for data set-1

Table-3: Normalised Mean Square Errors of NARMAX models of
Salford Cylinder

Model NMSE of one-step ahead output | NMSE of Model Predicted Output
Data Set-1 0.000656 0.0166
Data Set-2 0.000873 0.0188
Data Set-3 0.00099 0.0228

The results suggest the estimated NARMAX model for data set-1 1s unbiased and the
predictive performance of the model is excellent. The model generalises well over the rest of

the data points, see Fig-1(c), and may be used for predicting the wave forces for any set of

input data.

6.2 Frequency Domain Analysis

The plots of the linear and third order frequency response functions of the estimated discrete
NARMAX model for data set-1 are shown in Figure-4 a,b,c and d.

The magnitude plot of H;(f;) shows a peak value of 20.10db at a frequency 0.825Hz
which corresponds to the linear resonant frequency and thereafter decreases monotonically.
This is in contrast to the linear frequency response of the general form of the Morison model
(eqn(6)) which increases with frequency. Since the NARMAX model of the system does not

contain any second order nonlinear term H,(f1, f2) is absent. From the gain plot of the third
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Figure 2: Model Predicted Output of the NARMAX model of Fixed Cylinder for data set-1:
Estimation Set
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Figure 3: Model Predicted Output of the NARMAX model of Fixed Cylinder for data set-
1:Test Set

order frequency response function ,the peak magnitude of Hj(.) is found to be 40.98db. This
compares with a maximum of the linear gain of 20.1db and shows that the system possesses
a dominant nonlinear characteristic. This occurs when the system is excited by an input
whose frequency sum equals 0.55Hz that is when fi+ f2+ fa = 0.55Hz which corresponds
to the ridge in the contour plot. This shows that there will a significant amount of energy
shift to the lower frequency region under certain conditions of input excitation due to the
nonlinear effects. This can not be explained from the Morison model where Hj(.) (eqn(7))
will be a constant for all frequencies with no ridges. The information from the frequency
response functions of the estimated models shown in Table-2.2-2.3 is summarised in Table-
4 and this shows a reasonable consistency over the data sets which represent excitation at
different bandwidths.
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Figure 4: (a) Gain (H;(f1) (b).Phase (c) Gain Hs(f1, f2, f3) (d) Gain Contour for the NAR-
MAX model of Data-Set-1

Table-4:Characteristics of the Frequency Response Functions of
NARMAX Models of Salford Cylinder

Model Resonant Frequency | Max.Linear Ridge Equation Max. Nonlinear
(Linear) in Hz Gain (dB) Gain(dB)
Data Set-1 0.825 20.1014 h+fa+ f3=0.55 40.988
Data Set-2 0.900 ° 20.03 i+ fo+ f3=0475 41.47
Data Set-3 0.775 19.99 h+fo+f3=06 45.92

6.3 Estimation of Nonlinear Continuous Time Models

Having fitted discrete NARMAX models to the input-output data and computing the gen-
eralised frequency response functions, the last step of the proposed approach is to estimate
continuous time nonlinear differential equation models by curve fitting to the GFRFs. Note
that the accuracy of the final estimated continuous time model depends on the accuracy of the
discrete model. Hence it will be appropriate to make a comparative analysis of the Morison
model with the discrete NARMAX model prior to reconstructing nonlinear continuous time

models using the new approach.
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Figure 5: Morison Fit of Data Set-1

6.3.1 Discrete NARMAX vs Morison Model

The Morison equation fitted to the data set-1 using conventional least squares curve fitting
1s given by
y = 2.32644 + 34.3064ulul (45)

The approximated Morison equation fitted to the data is given by
Yy = 2.32647 + 1.4192u + 175.90u° (46)

The output of the Morison equation compared with the original output is shown in Figure-
5 "

The Morison equation appears to fit the data quite well. But when estimating the param-
eters of a given model from a set of input-output data it is essential to investigate whether the
model has successfully captured the system dynamics. This is very important if the models
are to yield good predictions of the system output for different input excitations and is not
simply a curve fit to one data set. It is simple to show that the linear transfer function of
the Morison model increases monotonically as the frequency increases thus exhibiting high
frequency instability which is not expected from the original input-output data. The Morison
models fitted to the other data sets are given in Tables-12-14 and have similar behavior to

the present model.
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Figure 6: Response of Continuous Time Model for data set-1 of Salford Cylinder

6.3.2 Reconstruction of the Nonlinear Continuous Time Model:

It has been shown that the NARMAX model explains the dynamics in the data much better

than the Morison model. But the parameters of the NARMAX model can not be easily

interpreted. In the present search for a possible extension of the Morison equation, and

to have a physically interpretable model, a nonlinear continuous time model needs to be

estimated. This is done by curve fitting to the GFRFs computed from the NARMAX model.
The discrete NARMAX model fitted to data set-1 from Table-2.1 is given by

y(k) = 1.5593y(k—1)- 0.44738y(k - 2)
—0.15585y(k — 3) + 1.2829u(k ~ 1)
—1.195u(k — 1) + 4.8262u(k - 3)u(k - 3)u(k - 3)
+0;

(47)

The last term in eqn.(47) corresponds to the noise terms in Table-2.1.

In order to reconstruct the.linear part of the continuous time system, 100 equally spaced
frequency response data were generated in the frequency range of 0-5Hz and the weighting
parameter'A’ was chosen to be 4.0 For the reconstruction of the nonlinear third order part
64 equally spaced frequency response data were generated in the frequency range of 0-0.2Hz.
It was found that with the inclusion of a ‘u® term the sum of the error reduction ratio (err)
values equaled 99.77% which means that this term is adequate to capture almost all of the

nonlinear dynamics of the system. The final model was given by

3y d?y dy du 3
0.0014533 + 0.04632{2— + 0.2609d—t +y= 2.2701?{ +1.983u + 109.8554 (48)

To further validate the reconstructed continuous time model the output response of the

model in eqn(47) was compared with the original data and this is illustrated in Figure-6.
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It is evident from Figure-6 that the estimated continuous time model performs well in
predicting the output force. Continuous time models were also reconstructed for the models
of Data Sets-2 and 3 under identical conditions. The normalised mean square errors of the
reconstructed models were compared with the actual output and the results are summarised

in Table-5. The reconstructed models for the other data sets are shown in Tables-13-14.

Table-5:Normalised MSE of Reconstructed Models of Salford

Cylinder
Model Normalised Mean Square i)rror
Data Set-1 0.0339
Data Set-2 0.0427
Data Set-3 0.0656

7 Modelling of Wave Force Data from a Directional
Sea State

In this section the new model structures are fitted to forces and velocities measured on the
0.48m diameter column of the Christchurch Bay Tower described by Bishop(1979). The sea
states have wave heights of 7m and are directional with a prominent current. The forces were
measured on a section of column 0.535m long and the velocities were measured with calibrated
perforated ball meters attached at a distance of 1.228m from the cylinder axis. This will not
give the exact velocity at the center of the force sleeve unless waves are unidirectional with
crests parallel to the line joining the velocity meter to the cylinder. This is called the Y
direction and the normal to this is the X direction. The waves are, however, always varying
in direction so in order to facilitate the fitting of a single-input-single-output (SISO) model,
the data was chosen from an i.'nterval when the oscillatory velocity in the X direction was large
and that in the Y direction small. The KC,Re and p values of the data are 20.56, 5.21 x 10°
and 2.53 x 104

To fit a discrete NARMAX model all the available 1000 data points were used for esti-
mation. The model was fitted to the input-output data with an initial model specification of
Ni=3n,=2n,=3n,= 20. The selected terms together with the associated parameter
estimates, error reduction ratios and standard deviation of the parameters with proper model

validation are shown in Table-6.

26




600

400

200

Output
o

—200

—400¢

—600

——— Output (M odel)

Actual Output

200

400

600

Data Points

800

1000

Figure 7: Model Predicted Output of NARMAX model of Christchurch Bay data

Table-6 : Results of Orthogonal Estimation for Chirstchurc

Bay Data
terms estimates ERR Oest.

y(k- 1) 0.23243E+01 | 0.95596E+00 0.16485E400
y(k- 2) -0.19528E+01 | 0.29568E-01 0.28459E+00
y(k- 3) 0.56292E+00 | 0.33298E-03 0.13803E+00
u(k- 2) -0.55953E+02 | 0.16349E-04 0.14688E+02
u(k- 1) 0.57434E+402 | 0.14759E-02 | 0.15304E-+02
u(k- Du(k- 1)u(k- 1) | 0.15184E+01 | 0.19230E-03 | 0.71454E+00

+0.1478e(k-6)+0.107e(k-15)-0.0457(k-3)-0.097e(k-18)
-0.568e(k-1)+0.164e(k-4)+0.054e(k-17)-+0.063e(k-20)
+0.0638e(k-5)+0.0505¢(k-9)-0.068¢(k-16)-0.044e(k-13)
-0.036e(k-7)+0.0395¢(k-2)-0.026e(k-12)

The model predicted output is shown in the Figure-7.

The normalised mean square errors based on one step ahead prediction and model pre-
dicted outputs are shown in Table-7.

Table-7: Normalised Mean Square Error of NARMAX models of
Christchurch Bay

Model
Chirst Church Bay

NMSE of one-step ahead output
0.0114

NMSE of Model Predicted Output
0.2433

From the results it is found that the fitted NARMAX models provided acceptable predic-
tive performance.
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Figure 8: (2) Gain (H:(f1) (b).Phase (c) Gain Hi(f1, f2, f3) (d) Gain Contour for the NAR-
MAX model of Christchurch Bay Data

7.1 Frequency Domain Analysis

The gain and phase plots of the linear transfer function and the gain and -contour plots for
the third order frequency response functions are shown in Fig-8a,b,c and d. The magnitude
of the higher order frequency response function shows that there is a significant nonlinear
effect.

The plot of the linear freq;uency response function shows that the linear resonant frequency
of the system is 0.3535Hz with a magnitude of 57db and that is followed by a decreasing trend
as the frequency is increased. This type of characteristic can not be provided by the Morison
model. From the third order frequency response plot, the maximum magnitude of Hs(.) is
around 40db indicating that the nonlinear effects of the system are significant. The nonlinear
ridges occur due to the interaction among input frequency components whose frequency sum
equals 0.375Hz and 0.35Hz.
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Figure 9: Response of the Morison Model of Christchurch Bay Data

7.2 Estimation of Nonlinear Continuous Time Model of Chirstchur;:h
Bay Model

Morison vs NARMAX

Before estimating the nonlinear continuous time models from the GFRF a Morison equation

model was fitted to the data using least squares to yield
y(t) = 148.6776x + 90.5731uu] (49)

The continuous time Morison equation with cubic approximation of the function ulul is
given by
y(t) = 148.6776u + 54.339u + 32.0243 (50)

The response of the Morison equation was compared with the original data and this is
shown in Figure-9 which shows a reasonably good fit.

It is simple to show that the Morison model is simply a curve fit to the data and does not
correctly represent the underlying dynamics in the data. The third order transfer function
H3() of the Morison model has a magnitude of 30.10db and remains constant at all frequencies

and does not posses any ridges compared to the third order transfer function of Figure-8c.
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Figure 10: Response of Continuous Time Model of Christchurch Bay Data

7.3 Reconstruction of Continuous Time Models

The discrete NARMAX model of the system is given by

y(k) = 2.3243y(k - 1)~ 1.9528y(k - 2) + 0.5620y(k — 3)
=55.9534u(k - 2) + 57.4343u(k — 1) + 1.5184u(k — 1)u(k — 1)u(k 1) (51)
+0;

In order to reconstruct the linear part of the continuous time system, 100 equally spaced
frequency response data were generated in the frequency range of 0-2.5Hz and the weighting
parameter ‘A’ was fixed at 10. For the reconstruction of the nonlinear part, 64 equally spaced
third order frequency response data were generated in the frequency range of 0-0.1Hz. It was
found that with the inclusion of the term 13 the sum of the err values equalled 99.1% which
suggests that this term is adequate to capture the nonlinear dynamics of the system. The
resulting continuous time model was given by

0.089% + 0.2581% + 0.6101% +iff = 178.6955-;f + 33.6343u + 23.1578x3 (52)

The response of the continuous time mode] js shown in Figure-10.

The normalised mean square error between the actual output and the output of the re-

constructed continuous time system are shown in Table-8.

Table-8: Normalised MSE of Reconstructed Models for Christchurch Bay

Model Normalised Mean Square Error
Christchurch Bay 0.2562
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8 Modelling of Wave Force Data from De Voorst

This data set was obtained from the delta flume of the De Voorst facility at Delft Hydraulics.
The particular data considered here comes from run OA1F1 which used a fixed smooth cylin-
der. The same cylinder was used as in Christchurch Bay but the sea states have smaller wave
heights (up to 2m against 7m at Christchurch Bay). The unidirectional wave profiles were
generated so that the surface elevation spectrum approximated to a JONSWAP spectrum.
More details of the experiment can be found in Davies et al (1990) which contains an ex-
haustive wave-by-wave Morison analysis of the full De Voorst data set. In the experiment,
the horizontal velocity was obtained from electromagnetic flowmeters placed adjacent to the
cylinder at the same distance from the wave maker. The forces were recorded from force
sleeves placed at three levels (stations 2,3 and 4) on the cylinder. The data from station
2 was discarded as the sleeve fell within the crest to trough region of the wave. Of those
remaining,station 3 was nearest to t he surface while fully immersed and was consequently
subjected to the highest nonlinear forces. For this reason data from station 3 will be used
in the following analysis. The KC,4 and Re values of the flow are 5.8030, 4.14 x 10* and
2.40 x 10° respectively.

Out of several thousand input-output pairs of the OA1FI data set,the most nonlinear
data were taken for model estimation. It is known that for the successful identification of
any system the input should be persistently exciting so as to excite all the relevant modes
(both linear and nonlinear) of the system. In the present example this corresponds to the case
where the velocity is high. Since one useful sign of nonlinearity is the size of the transverse
component of the force which is caused entirely by vortex shedding, the data for analysis was
chosen to be centered about the instant of maximum transverse force excursion.

The model of the De-Voorst tube data was estimated based on the data sampled at 20Hz.
In order to fit a discrete NARMAX model, 700 data points were used for estimatjon and
the remaining 300 data points were used for mode] validation. The model estimated with an
initial specification of N; = 3y = 5ny = 4 and n, = 20 with proper model validation is

given in Table-9.
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Figure 12: Model Predicted Output of the NARMAX model of De-Voorst tube:Test Set
Table-9: Results of Orthogonal Estimator for De-Voorst Tube
terms estimates ERR Cest.
. y(k- 1) 0.84684E+00 | 0.99322E+00 | 0.36790E-01
y(k- 3) -0.41859E+400 | 0.31783E-02 | 0.33035E-01
u(k- 4) -0.23755E403 | 0.28243E-03 0.50806E+02
u(k- 1) 0.29322E4-03 | 0.33148E-03 0.82545E+02
y(k- 2) 0.35113E4+00 | 0.92201E-04 | 0.49659E-01
u(k- 4)u(k- 4)u u(k- 4) | 0.16426E+02 | 0.71055E-04 0.24373E+401
u(k- 2) -0.57093E402 | 0.16406E-04 | 0. 12668E4-03

+0.364e(k-3)-0.192e(k-20)+0.179¢(k-4)-0.138e(k-17)+0.094e(k-5)
-0.10e(k-18)+0.071e(k-13)+0.0692¢(k-9)-0.050e(k-7)

The model predicted output and the model validated outputs are shown in Figure-11 and
12.

The normalised mean square errors based on one step ahead prediction and model pre-
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dicted outputs are shown in Table-10.

Table-10: Normalised Mean Square Error of NARMAX models of
De-Voorst Tube Data

Model NMSE of one-step ahead output

NMSE of Model Predicted Qutput

De-Voorst Tube

0.0023

0.0192

8.1

Frequency Domain Analysis

The linear and third order frequency response functions of the model in Table-9 are shown

in the Figure-13a,b,c and d. From the linear frequency response plots it is evident that the

magnitude of H,(.) reaches a maximum value of around 60db. It does not show a continually

increasing trend. The magnitude of the higher order frequency response function shows that

there is a significant nonlinear effect represented by the ridges in Figure-13c which occur when

the sum of the frequencies of the input excitation equals 0.4Hz.
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Figure 14: Response of Morison Model of De-Voorst Tube Data
8.2 Estimation of Nonlinear Continuous Time Model

8.3 Discrete NARMAX vs Morison Model

The Morison model estimated from the data by least square was given by
y(t) = 169.6661 + 95.9804uu| (53)

The continuous time Morison equation with cubic approximation of the function u|u| was
given by
y(t) = 169.666 + 27.054u + 72.22u.2 (54)

The response of the Morison equation is compared with the original data in Figure-14
The magnitude of third order transfer function Hs() is 37.17db which remains constant

for all frequencies.

& 8.4 Reconstruction of the Continuous Time Model
From Table-9, the discrete NARMAX model is given by

y(k) = +0.84684y(k—1) — 0.41859y(k — 3)
—237.55u(k — 4) + 293.22u(k - 1) (55)
+16.426u(k — 4)u(k — 4)u(k - 4) - 57.09u(k — 2) + O,

The linear part of the continuous time model was reconstructed by generating 100 equally
spaced frequency response data in the frequency range 0-2.5Hz and the weighting parameter
A was fixed at 5.0. For the reconstruction of the nonlinear part 64 equally spaced frequency

response data in the frequency range 0-0.04 Hz were used. It was found that with the selection
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Figure 15: Response of the Continuous Time Model

of the u® term the sum of the error reduction ratios became 96% and the contribution of other
terms in subsequent iterations was found to be negligible. This implies that the system has

a dominant third order nonlinearity in the input. The estimated continuous time mode] was

. given by

d*y dy du
\ — 1606 —= = 94— . . ?
0.02236 Tz T 0.1606 o +y=171.94 T + 4.8118u + 74.0056u (56)
The output response of the continuous time model is compared with the original in Figure-15
The normalised mean squared errors between the actual output and the output of the

reconstructed continuous time system are given in Table-11.

Table-11: Normalised MSE of Reconstructed Models of De-Voorst Tube Data

Model Normalised Mean Square Error
De-Voorst Tube 0.0584

9 A Proposed Equation Structure

9.1 Structural Characteristics of Morison’s Equation

In the simulated examples based on experimental data it has been observed that the Morison
equation fits the data reasonably well but fails to capture the underlying system dynamics.
Eqn(4) shows that the Morison equation is essentially an infinite order polynomial in the in-
put with an additional term consisting of the input derivative that partly takes into account
the inviscid effect of flow acceleration. The Morison equation is therefore a polynomial ap-
proximation to a system and the well known limitations of polynomial curve fitting apply. A
polynomial of too low an order cannot capture the structure in the data whereas polynomial

of too high an order will tend to overfit and have poor generalisation properties.
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Although the wake flows generating forces in waves are complex phenomena and an ac-
curate representation is often difficult to achieve, it can be shown that the wave force at any
particular instant depends on the flow acceleration, the rate of vorticity shed and the flow
behavior in the recent past (Stansby,1977). The Morison model can capture the first two
effects due to the presence of the input derivative and the drag term but will fail to represent
the effects of flow behavior in the past because of the absence of any output dynamics.

An extended version of the Morison equation called the Morison-Duffing equation has
been proposed by Stansby et al (1992) to provide a better fit than the Morison equation to

data collected from several flow situations. The Morison-Duffing equation is given by
osF + a;F + oy F|F|+ F = 0.5pDCqulu| + 0.257pD*C,, % (57)

The higher order derivative terms of the force are included to represent the history effects
and the term F|F| has been included to represent other effects of nonlinéarity and improve
the fit. However, it may be shown that since the drag term ulu| is a polynomial of infinite
order, it can emulate all the higher order nonlinear effects which can be represented by the
output drag term F|F|. Hence the F|F| drag term in the Morison-Duffing equation is not

necessary in an equation correctly modelling the dynamic structure which is achieved below.

9.2 Dynamic Morison Equation

The results of fitting nonlinear continuous time differential equation models to data for a
variety of flow situations have been given in sections 6-8. Although, in the estimation process,
no a priori assumptions have been made regarding the structure of the models; both during
the estimation of the discrete NARMAX model or during the reconstruction of continuous
time models from the higher order frequency response functions, the models obtained in
almost all cases show a remarkable consistency. The structure of the continuous time models
estimated for the Salford and Christchurch Bay data are of the form
&’y d’y dy

du
Q3F+G2E+QIE +y=ﬁm;&'+ﬂdlu+ﬁd3u3 (58)

and the model for De-Voorst tube has the structure given by

d*y dy du 5
sz—tg-l-cha? +y=ﬁma— + Baru + Basu (59)

It has been observed that although perfectly reconstructed continuous time models (sum of
ERR equals 100 %) for Salford and Chirstchurch Bay data yield models possessing third

order output dynamics, exclusion of the term ‘;—i:ji during the reconstruction phase does not
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significantly affect the overall performance of the model. A continuous time model of the
form given in eqn(59) seems to be adequate to emulate all the dynamics associated with the
wave force data.

The last two terms in the right hand side of the eqn(59) can be assumed to be associated
with the drag term. Note that while estimating the NARMAX model it was found that with
present available data sets, a third order NARMAX model was sufficient to model all relevant
features of the data. Hence the continuous time models estimated possesses nonlinearity up
to third degree. However, depending on the different experimental conditions it may not be
possible to approximate the system input-output data with a NARMAX model of third order
and the corresponding reconstructed nonlinear model may contain higher order nonlinear
terms of the input. To accommodate those possibilities a model structure containing an
explicit drag term. _

02@+C¥1@;y=ﬁmé&+ﬁdu|u| : (60)
dit? dt di
1s preferred. The coefficients (. and f; are related to inertia and drag coefficients respectively
such that

B, 0.25mpD*C,,
Bas = 0.57pDC; (61)

Eqn(60) will therefore be referred to as the Dynamic Morison equation.

9.2.1 Characteristics of the Dynamic Morison Equation

o The linear transfer function of the proposed equation is given by

H}(] ) _ ﬁdl + Jwﬁm

= : : 62
. 14 jwas + (Jw)?ez az)

Thus as w — oo, Hy(jw;) — 0 implying that it does not suffer from high frequency
instability.

e The drag term ufu|, in conjunction with the output derivative terms can emulate the

nonlinear features of the system to an arbitrary degree of accuracy.

9.3 Parameter Estimation Based on The Dynamic Morison Equa-
tion

Having postulating a new model structure eqn(60) the next step is to estimate the parame-

ters o, @z, B and fa.These can be estimated directly by applying a standard least squares
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estimator with noise modelling to the input-output data but this will involve computation of
the input and output derivatives. To reduce the effects of noise due to differentiation, the
parameters of the approximated form of the new model structure (eqn(59)) were estimated
using the reconstruction procedure described in section-6 and the results are shown in the

Tables as Dynamic Morison(Reconstructed).

9.4 Summary of Results and Discussion

The results of estimating different forms of continuous time models to al] the data sets are

summarised in Table-12-16. For each data set the models fitted are

® Morison : Models fitted based on the Morison equation using least squares curve fitting
techniques

* Reconstructed (NARMAX): Continuous time differential equation models reconstructed
by curve fitting to the Generalised Frequency Response Functions using the weighted

complex orthogonal estimator

* Dynamic Morison (Reconstructed) : Parameters of eqn(59) where the u|u| has been

approximated by cubic estimated from the GFRFs.

The predictive performance of these models together with the Dynamic Morison model with-
out history terms have been evaluated based on normalised mean square error. Terms of the
form (Ba1u + Pasu®) in the reconstructed models have been approximated by Ssulu| in a least

square sense and the drag coefficients were then calculated using eqn(61).

Table-12 : Continuous Time Models for Data Set-1

Model & C: | NMSE
Morison © y=2.3264% 4 34.3064 uy] 2.05 |1.8056 | 0.0394
Reconstructed 0.00145 i—} + 0.0463 % + 0.2609 %f + y= 2.0 1.7573 | 0.0339
(NARMAX) 2.2701 2 + 1.983 u + 109.855 u?
Dynamic Morison 0.04564 £ + 0.2220% 4 y= 1.8936 | 1.8178 | 0.0322
(Reconstructed) 2.1485 2 4+ 2.094 u + 108.1211 w3
Dynamic Morison y=2.1485 £ + 2.094 u + 108.1211 w® | 1.8936 | 1.8178 | 0.0621
(Without history term)

38




Table-13 : Continuous Time Models for Data Set-2

Model Cm Cs | NMSE
Morison y = 2.1243% 4+ 35.70 ulu] 1.8715 | 1.8789 | 0.0487
Reconstructed 0.0012 &¥ + 0.04067 ¥ + 0.2556 2 + y= | 1.9311 | 1.7076 | 0.0427
(NARMAX) 2191 % 4 1894 u + 118.113 v® |
Dynamic Morison 0.04029 % + 0.22057% + y= 1.8385 | 1.7537 | 0.0422
(Reconstructed) 2.086 ¢ + 1.992 u + 116.441 u®
Dynamic Morison y= 2.086 % + 1.992 u + 116.441 3 1.8385 | 1.7537 | 0.0467
(Without history term)

Table-14 :Continuous Time Models for Data Set-3

— —

Model s Cq EIES-
Morison ¥ = 2.1435‘;—‘; + 33.9967 u|ul 1.8892 | 1.7893 | 0.061
Reconstructed 0.000484 £¥ + 0.04729 £¥ 4 0.2061 % + y= [ 1.7012 | 1.7188 | 0.065
(NARMAX) 1.9302 2 4 1.450 u + 163.545 v
Dynamic Morison 0.04698 £¥ + 0.19334% 4 y= 1.6746 | 1.7367 | 0.045
(Reconstructed) 1.9001 2 4+ 1.4979 u + 162.322 u3
Dynamic Morison y=1.90001 £ + 1.4979 u + 162.322 3 1.6746 | 1.7367 | 0.072
(Without history term)

Table-15 : Summary of Results For Christchurch Bay Data

Model O C. |[NMSE]
Morison y = 148.67762* + 90.5731 ulu] 1.5351 | 0.7054 | 0.2145
Reconstructed 0.089 ¥ + 0.2581 £ + 0.6101 % + y= | 1.845 | 0.4621 | 0.2562
(NARMAX) ‘ 178.69 % 4+ 33.6343 u + 23.1578 u®
Dynamic Morison 0.2791 Z¥ + 0.563% + y= 1.7671 | 0.4037 | 0.2596
(Reconstructed) 171.145 % 4 23.00 u + 23.25 u®
Dynamic Morison y=171.145 £ 12300 u + 23.25 «® | 1.7671 | 0.4037 | 0.3084
(Without history term)
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Table-16 : Summary of Results For De-Voorst Tube Data

Model Cn._ | C: |NMSE|
Morison y = 169.6662 + 95.9804 uu] 1.7518 | 0.7475 | 0.0233
Dynamic Morison 0.02236 %i—;? + 0.1606 %% + y= 1.7753 | 0.4120 | 0.0584
(Reconstructed) 171.94 2 4 4.8118 u + 74.0056 v
Dynamic Morison y=171.94 % + 4.8118 u + 74.0056 »* | 1.7753 | 0.4120 | 0.0404
(Without history term)

The Dynamic Morison equation(60) has two additional terms with coefficients which may
be non-dimensionalised with reference to a time scale. For this purpose the wave period
associated with the peak in the spectrum (or the mid point in the case of the Salford data)

were chosen. Eqn(60) is thus given by
12T50 + 1 Tuy +y = Bt + Baulul (63)

It is always desirable that coefficients of the equation should vary as little as possible from

one situation to another and after experimenting algebraically eqn(63) is written in the form
YoMTw)’d + nTud +y = it + Baulu| (64)

The results for the five test situations (together with T,,Cy, Cr, KC,Re values) are given
in Table-17. The values of v, are very similar apart from Salford data set-3 which is unusual
in that it has a wide band spectrum. The narrower bandwidths for Salford Data Sets-1 and 2
and for the Christchurch Bay and De-Voorst data have Yo = 0.86 £ 0.04. This is a remarkably
small variation considering the range of KC,Re and wave conditions (from unidirectional
wave flumes to directional field conditions). It is also interesting to compare the coefficients
for the Salford data with those for the De-Voorst lume. The KC values are similar (about
5) but the Reynolds numbers differ in magnitude by approximately a factor of 80. It is
generally accepted that vortex shedding becomes weaker as Reynolds number increases (for
a comprehensive review of such matters see Sarpkaya and Isaacson,(1981) and Stansby and
Isaacson (1987)). Vortex shedding generates the history effects and consistently the value
of m ~ 0.1 for the Salford data (Re ~ 3 x 10°) and 7, =~ 0.03 for the De-Voorst data
(Re >~ 2 x 10°) . On the other hand the Reynolds number of the De-Voorst and Christchurch
Bay data are similar (within a factor of 2) but the KC values are very different. At KC = 6
for the former vortex shedding is generally less strong than for K C ~ 20 for the latter. The
corresponding values of y; are 0.03 and 0.06. The values of y; are therefore consistent with
our knowledge of vortex shedding and its dependence on KC and Re.

It is also interesting to note the values of Cy and C,,. C,, varies little but Cy >~ 0.4 at

high Reynolds numbers is much smaller than at the lower Reynolds numbers where C; ~ 1.8
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. While this overall trend with Reynolds number is expected, Cy >~ 0.4 is less than what is
normally obtained at Re > 10° from the Morison equation where Ca¢ =~ 0.6.
The results in terms of non-dimensional coefficients are thus quite encouraging but many

more situations need to be analysed to confirm these preliminary findings.

Table-17 : Summary of Results

Model i il Yo | 'm Cn | &2 | KQ Re

Data Set-1 2.164 [0.90 | 0.103 [1.89 | 1.82 [ 4.74 | 3.16 x 10°
Data Set-2 2.2109 | 0.83 | 0.0997 [ 1.84 | 1.75 | 4.95 | 3.23 x 10°
Data Set-3 2.2232 | 1.26 | 0.0869 | 1.67 | 1.74 | 4.46 | 2.90 x 10°
Christchurch Bay | 9.090 [0.88 | 0.062 | 1.77 | 0.40 | 20.5 | 5.21 x 10°
De-Voorst Tube | 5.5555 [ 0.87 [ 0.0289 | 1.77 | 0.41 | 5.80 | 2.4 x 10°

10 Conclusions

Nonlinear continuous time models have been estimated for the wave forces on fixed cylinders
from a variety of flow situations using a new procedure that does not involve direct differen-
tiation of the input-output data and performs reasonably well in all the cases. It was shown
that while the Morison equation can fit to the data, it generally fails to capture the underly-
ing dynamics of the system. Although the experimental conditions for the data used in the
current modelling vary considerably and no a priori assumptions were made regarding the
structure of either the discrete NARMAX or the nonlinear continuous time models during the
estimation phase, the models estimated from all the data sets and the associated frequency
response functions show a remarkable consistency. This suggests that there is a consistent
underlying model form and a new equation called the Dynamic Morison equation has been
proposed. The new equation structure has thus been formulated from & thorough mathemat-
ical analysis, experi mental observation and intuitive reasoning to produce an effective model
which emulates all the nonlinear and dynamic features of wave force mechanisms and per-
forms well in the prediction of wave forces. This new equation involves two non-dimensional
coefficients describing history effects (one of which is almost constant) in addition to the drag
and inertia coefficients of the standard Morison equation. These coefficients are consistent
with the physical understanding of vortex shedding for widely different Keulegan-Carpenter

numbers and Reynolds numbers.
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A APPENDIX
A.1 Weighted Orthogonal Least Squares

Consider a system which can be modeled as

2(gw) = 3 ipi(jw) + £(jw) (A.1)

i=1

where 6;,i=1,...... M are the real unknown deterministic parameters of the system associated

with the complex regressors pi(jw)e = 1,....M. z(jw) is a complex dependent variable or

the term to regress upon and £(jw) represents the modeling error. Before any attempt is

made to estimate the parameters ‘6, the complex variables involved in eqn(A.1) should be

partitioned in to real and Imaginary parts; otherwise 8 could be complex. If ‘N’ measurements

of z(jw) and p;(jw) are available at w;, 1 = 1,.....N the complex system of equation(A.1) can
. be represented after partitioning in matrix form as

Z=P§+= (A.2)

The weighted complex orthogonal estimator (Swain and Billings,1995) transforms eqn(A.2)
in to an auxiliary equation
Z=Wg+= (A.3)
The properties of the matrix W are such that WTQW is orthogonal; where ‘Q’ is a positive
definite weighting matrix. Further let

V=wTQ (A.4)
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The regressors of the auxiliary model of egn.(A.3) can be obtained recursively from

w(w) = p(w)

i-1
wi(w) = pw)- T arwi(w) for k<1 (A.5)
k=1
where
{f (@)Q)pi(w))

Qg =
(wf ()Q)wk(w)) (A.6)
- iﬂﬂb’_&& for k=1..1-1

(wa(w)wa(w)) 470 F T S
~and ‘(,,.)* denotes the dot product of the vectors. The estimates of the i-th element of the
auxiliary parameter vector ‘g’ is given by

. _ (2(w), vi(w))

_ %7 o), w(w))

Once the parameters g;,7 = 1,...M are estimated,the original system Vpa.rameters &1 =
1,...M can easily be recovered according to the formula

for:=1,..M (A.7)

b=g—(T-1) (A.8)
that is
b = Gu
% M "
br = G— Y owb;, fork=1,..M-1 (A.9)
1=k+1

Therefore by using the above equations.the unknown parameters 6;,7 = 1,....M can be esti-
mated step by step. The structure of the system or which term to include in the model can
be determined by using the error reduction ratio test

_ g7 (vi(w), wi(w)) i
ERR; = (o) oy ¥ 0%, i=1,.M (A.10)

which gives the percentage contribution that each term makes to the output variance (energy).
The value of ERR indicates the significance of a candidate term. Normally at the beginning
all available candidate terms are examined and the term which contributes the maximum
ERR is included in the model. This is repeated until all candidate terms have been exhausted
or the sum of the ERR reaches around 100%.

45



