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Abstract

In part-I of this papér, continuous time models have been fitted to wave forces
acting on fixed cylinders and a new equation structure called the Dynamic Morison
model has been proposed as an alternative to the traditional Morison equation. In this,
the second part of the paper,continuous time nonlinear differential equation models are
fitted to wave forces from responding cylinders and corresponding equation structures
are proposed as an alternative to the Morison equation for the prediction of wave forces
for the moving cylinder case. It is shown that the new models explain the wave force

mechanisms and perform considerably better than the Morison equation.

TG

1



1 INTRODUCTION

Prediction of wave forces acting on fixed structures composed of members of circular cross

section of relatively small diameter is generally based on the Morison equation given by

F(t) = 0.257pD?Cpti + 0.5pDCyulu]
= CphAnu+ C,;Adu|u| (1)

where ‘F(t)’ is the force per unit axial length, ‘u(t)’ is the instantaneous flow velocity, ‘p’
is the water density and ‘D’ is the diameter. C,, and Cy are dimensionless inertia and drag
coefficients respectively. A; = 0.25p7D? and Ay = 0.5pD.

When the cylinder is free to respond dynamically, the physics of the flow becomes increas-
ingly complex and it is often difficult to determine an accurate representation of the wave
force mechanics. Forces acting on moving structures of circular cross section are traditionally
computed by modifying the Morison equation for fixed cylinders as reviewed by Chakrabarti
(1987). The expression for the force is generally given in terms of relative motion as

F(1) CrnAi(h = &) + Az + CaAa(u — 2)|(u - )|
= COmAitl, + 4z + Cadaue|u,| (2)

where u, = (u — £) denotes the relative velocity. Eqn.(2) is known as the relative velocity
mode] of the wave force.

The equation is widely used to calculate wave forces acting on a variety of offshore struc-
tures including jacket platforms, articulated columns,risers,tension leg platforms etc. Flow
around a cylinder has been simulated numerically by Slaouti and Stansby (1992) for laminar
flow conditions (where simulations are accurate) with the cylinder allowed to respond with
two degrees of freedom. It has been observed that eqn.(2) fails to accurately represent the
force time history and can perform poorly in predicting the dynamic response.

In part-I, the limitations of the Morison equation for predicting wave forces on fixed
cylinders were investigated and a new Dynamic Morison equation was proposed. The second
part the paper makes similar investigations to develop a corresponding new equation for the
accurate prediction of wave forces on moving cylinders.

The organisation of the paper proceeds as follows. Section-2 describes the behaviour of the
Morison equation for a responding cylinder in the frequency domain. Section-3 fits continuous

time differential equation models between the inline force and the relative velocity. In section-



4 the performance of Morison equation models fitted to the data sets are shown. Based on the
knowledge of the model structure from section-3 and hydrodynamic reasoning a new equation

structure is proposed in section-5.

2 Frequency Domain Characteristics of the Morison

Equation For Moving Cylinders

The mechanics of wave forces on fixed cylinders is a complex phenomenon which becomes
increasingly complex when the cylinder responds dynamically. In this section the character-
istics of the Morison equation based on relative motion (Relative Motion Morison Equation)

given by

F(t) = CmdAi(u—12)+ Az + CaAy(u = 2)|(u— z)|
= Knthy + A + KauJu,| 3)

where u, = (u — &) is the relative velocity, Ky = 0.5p7C; and K,, = A;C,, will be analysed
in the frequency domain based on a Volterra series expansion. The direct Volterra series
expansion of eqn(3) is not possible because of the presence of the drag term U, |u,|, and hence
an approximated form of eqn(3) will be considered. It is possible to approximate the drag
term u,|u,| (Bendat and Piersol,1986) by

Urltie| = @1ty + agud + aguf + ... 4)

Eqn(3) can be expressed as

F(t) = Knt.+ A+ Kou,|u,|
= Knt, + AiZ + Ki((aju, + azud + asub + )
= Kntr + AiZ + Koyt + Kgsu? + Kysu® ()

where K‘ﬂ = Kdal, Kda = Kd1a3 and so on.
Assuming that the drag term can be approximated by retaining up to the third order

nonlinear term, the approximate Morison equation for a moving cylinder can be expressed as

F(t) = Aii + Kty + Kty + Kagu (6)



The linear transfer function between the output F(t) and the relative velocity u, from

eqn.(6) is given by
H;(jw;) = Kd1 +jW1Km (7)

The transfer function suffer from high frequency instability as in the fixed cylinder case since
as the frequency w; — oo, the magnitude |H, (Jw1)| = oo implying that when the cylinder
is subjected to a high frequency input wave of very small amplitude, this will induce an
extremely high force.

3 Discrete Time Modelling

The wave conditions for the experimental data sets used for modelling are identical to the
Salford fixed cylinder data (Baker,1994) as described in Table-1 of Part-I of the paper. The

flow parameters and the ratio of maximum cylinder velocity to the maximum input velocity
are tabulated in Table-1.

Table-1: Flow Conditions for Responding Cylinder

Tests on Flow Parameters mos(e
Responding (KC,8, Re)

Cylinder |
Data Set-1 | KC=4.74, f=667.2 | 0.2737
Re=3.1638E+03
Data Set-2 | KC=4.95, #=653.11 | 0.3273
Re=3.2332E+03
Data Set-3 KC=4.46, f=649.51 | 0.3662
Re=2.9021E+03

From the table it is evident that the cylinder velocity is small in relation to the flow velocity.
As a first step in modelling the data, the possibility of relating the inline force (actual output
y) with the relative velocity (u-z) which is compatible with our analysis procedure, will be
explored. That is the cylinder acceleration term is omitted. To achieve this, the input-output
and displacement data were decimated by a factor of 2 (effective sampling frequency of 25Hz)
using the decimate function available in MATLAB (1992). This function filters the data with
an eighth order Chebyshev Filter that is basically a lowpass filter having a cutoff frequency

0.8 % f,
- ®)

fcuto,ff —_



where f, is the sampling frequency of the original data and R = decimationfactor . The
spectral content of the present data is not lost due to this decimation. The above sampling
was chosen using the procedures described in section-3 of Part-I of the paper.

NARMAX models were fitted between y and (u — £) with an initial model

Discrete

specification of
ny=3,n, =3,n, =10, N, = 3. The terms that were selected together with the associated

parameter estimates, error reduction ratios and standard deviation of the parameters are
tabulated in Table-2.1,2.2 and 2.3.

Table-2.1 : Results of the Orthogonal Estimator applied to Data

Set-1

terms estimates ERR Cest.
y(k- 1) 0.17310E+01 | 0.97756E+00 | 0.10574E+00
y(k- 2) -0.87252E+00 | 0.20326E-01 | 0.18252E+00
y(k- 3) 0.67490E-01 | 0.19022E-03 | 0.85476E-01
u, (k- 3) -0.18432E+01 | 0.41944E-04 | 0.19645E+00
u, (k- 1) 0.19862E+01 | 0.29097E-03 | 0.21608E+00
[ (k- 3)u, (k- 3)u (k- 3) | 0.11265E+02 | 0.61020E-04 | 0.19157E-+01

0.478 e(k-1)+0.213(k-5)-0.190e(k-2)+0.107¢(k-7)-0.0747e(k-4)
+0.0692¢(k-3)-0.0345e(k-8)-0.022¢(k-10)-0.0188e(k-9)-0.028¢(k-6)

Table-2.2 : Results of the Orthogonal Estimator applied to Data

Set-2
terms estimates ERR Cest.

y(k- 1) 0.13461E+01 | 0.97745E+00 | 0.10913E+00
y(k- 2) -0:21205E+00 0.21425E-01 | 0.18535E+00
y(k- 3) -0.23536E+00 | 0.11446E-03 | 0.85756E-01

e (k- 1)u, (k- 1)u, (k- 1) | 0.96770E+01 | 0.95923E-05 0.13079E+01
u, (k- 3) -0.19558E+01 | 0.72028E-05 | 0.43870E+00
u, (k- 1) 0.23944E+01 | 0.18436E-03 | 0.29759E+00
u, (k- 2) -0.16772E+00 | 0.17910E-04 | 0.64868E+00

+0.944e(k-1)+0.268e(k-3)+0.301e(k-2)-0.0793¢(k-6)+0.0657e(k-9)
-0.0735e(k-5)-0.0682¢(k-4)+0.026¢(k-10)+0.065¢(k-7)-0.0394¢(k-8)
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Figure 1: Correlation tests of the NARMAX model of moving cylinder based on relative
velocity for data set-1

Table-2.3 : Results of the Orthogonal Estimator applied to Data
Set-3

terms estimates ERR Cest.
y(k- 1) 0.17159E+01 | 0.97650E+00 | 0.24047E-01
y(k- 2) -0.77429E+00 | 0.22530E-01 | 0.22424E-01
Uy (k- 2)u, (k- 2)u,(k- 2) | 0.89534E+01 | 0.15349E-04 | 0.13035E+01
u, (k- 1) 0.29072E+01 | 0.49061E-05 | 0.23855E+00
u, (k- 2) -0.28354E+01 | 0.14124E-03 | 0.23668E+00

+0.348¢(k-3)+0.249¢(k-1)+0.189¢(k-5)-0.160e(k-4)-0.130e(k-8)
-0.0826e(k-2)-0.0625e(k-6)-0.0632e(k-7)-0.0605¢(k-9)-0.0262e(k-10)

The correlation plots and model predicted output over the estimation and test sets for

data set-1 are shown in Figure-1, 2 and 3.

Corresponding plots for the models fitted to the other data sets were quite satisfactory
but are not given here to save space. The normalised mean squared errors based on one step

ahead predictions and model predicted outputs are shown in Table-3.
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Figure 3: Model Predicted Output of the NARMAX model

(relative velocity) for data set-1
over the Test Set

Table-3: Normalised Mean Square Errors (NMSE) for the NAR-
MAX models

- Model | NMSE of one-step ahea.d_:;z-tput NMSE_of Model Predicted Output
Data Set-1 0.00129 0.1193
Data Set-2 0.000658 0.1228
Data Set-3 0.000649 0.0974

The results suggest that the estimated NARMAX model is unbiased and the predictive

performance of the model is excellent. Fig-3 shows that the model for data set-1 generalises
well over the rest of the data points.
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3.1 Frequency Domain Analysis

Plots of the linear and third order frequency response functions between the inline force(output)
and relative velocity(input) of the estimated discrete NARMAX model for data set-1 (Table-
2.1) are shown in Fig-4a,b,c and d.

The plot of the magnitude of H(f;) shows a peak value of 23.53db at 1.2626Hz which
corresponds to the linear resonant frequency and then decreases monotonically. This is in
contrast to the linear frequency response of the standard form of the Morison model which
exhibits a response which increases with frequency. Since the NARMAX model of the system
does not contain any second order nonlinear terms, Hy(f1, f2) is absent. The peak magnitude
of Hy(.) is found to be 44.46db compared with a maximum of 23.53db for H;(.) and thus
shows that the system possesses dominant nonlinear characteristics which corresponds to the
ridges in Fig-4d when f; + f; + f5 = 0.85Hz. These can not be explained by the Morison’s
equation which has an Hj(.) which is constant for all frequencies. The information from all
the frequency response functions of the estimated models are shown in Table-4 and these

show acceptable consistency despite the variability of the experimental conditions across the



data sets.

Table-4:Characteristics of the Frequency Response Functions of
Models of Table-2

” Model Resonant Frequency Ma_x.Linea.r Ridge Equation Max. Nonlinear

(Linear) in Hz Gain (dB) Gain(dB)
Data Set-1 1.2626 23.53 fHi+fat+ fa=085 44.46
Data Set-2 1.20 22311 | fi+ fo + fs = 0.875 40.68
| Data Set-3 1.05 22.1995 | fi+ fa+ fa=0.75 44.9945

3.2 Estimation of Nonlinear Continuous Time Models

Nonlinear continuous time models were reconstructed from the GFRF of the estimated NAR-
MAX models. In order to reconstruct the linear part of the continuous time system, 100
equally spaced frequency response data were generated in the frequency range 0-5Hz and the
weighting parameter')’ was chosen to be 4.0 For the reconstruction of third order nonlin-
ear part 64 equally spaced frequency response data were generated in the frequency range
0-0.15Hz. It was found that with the inclusion of a ‘u’ term the sum of the error reduction
ratios values equaled 99.99% suggesting that the u2 term is adequate to capture the nonlinear

dynamics of the system. The results of the reconstruction for all the data sets are summarised
in Table-5.

Table-5 : Summary of Results of Reconstruction

Reconstructed Model o =" C: | NMSE
Data Set-1 0.02369 §+0.1686y+ y= 1.7985 | 1.8956 | 0.0784
2.0406 1u,+1.9518 u, + 151.430 u?
Data Set-2 0.02267 §+0.15288y+ y= 1.4828 [ 1.9138 | 0.0509
Il 1.6824 1,42.684 u, + 95.162 u?
Data Set-3 0.0276 §+0.1671y+ y= 1.7250 [ 1.5687 | 0.0970
I 1.9572 4,4+1.24 u, + 153.10 43

4 Morison Model Vs Reconstructed Model

The Morison model fitted to data set-1 using traditional least squares is given by

y(t) = 2.2652u, + 1.1346% + 47.4843u, |u,| (9)

9
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Figure 5: Morison Fit to Data Set-1

The approximated Morison model is given by

y(t) = 2.26394, + 1.1346% + 3.7450u, + 109.504%2

(10)

A comparison of the output of the Morison model with the original data is shown in Fig-5.

From the plot it is apparent that the model fits reasonably well. But it has been discussed

in section-2 that the linear transfer function between the force and relative velocity will in-

crease as the frequency increases showing high frequency instability. It should be emphasised

that the monotonic increase in the linear transfer function computed from the Morison equa-

tion is inherent in the structure and not just the coeflicients. Consequently any method of

estimating the parameters in the Morison model can never lead to a transfer function which
falls off for increasing frequency ; a feature exhibited by almost all the real data. The results

of fitting Morison models to all the data sets are summarised in Table-6.

Table-6 : Morison Models For Responding Cylinder

. Model " i C. |[NMSE
Data Set-1 | y = 2.2652u, + 1.1346  + 47.4843u, [w.| | 1.9965 | 2.4903 0.1553
|| Data Set-2 | y = 2.28534, + 1.1346 z + 37.10434, |u,| | 2.0142 | 1.9528 0.1450
Data Set-3 | y = 2.40994, + 1.1346  + 35.2771w, |w| | 2.124 | 18567 0.1049

10



5 Proposed Equation Structure

A successful model should exhibit the following properties :
e fit to the input-output data

e represent the underlying dynamics of the system

e be structurally stable
® contain just a few parameters which can be physically interpreted

In section-4 models based on the Morison equation were estimated for different data sets
and were shown to fit the data quite well but fail to emulate the underlying dynamics. The
Morison equation therefore only satisfies the first and last criteria above.

Nonlinear continuous time models have been fitted between the output (force) and relative
velocity in section-3. The estimation procedure makes use of the orthogonal least squares
algorithm of Billings et al(1988) and the weighted complex orthogonal estimator of Swain
and Billings,(1995) to correctly determine the structure of the model and to estimate the
unknown parameters. The structure of the models estimated based on the relative velocity

are of the form

a2y + ¥ + Y = Bt + Barty + Pasu’ (11)

The model has been shown to predict the wave force accurately and appears to capture the
underlying physics. It has been shown that this model does not suffer from high frequency
instability and is structurally sufficient to represent all the dynamic features of the data, The
last two terms in the models are assumed to be associated with the drag term.

Models based on eqn(11) do not however include the effect of cylinder acceleration.
Eqn.(11) may be simply extended to include cylinder acceleration which is likely to become
more significant as the maximum cylinder velocity increases in relation to the maximum fluid

velocity by a model structure of the form

o2y + oy +y = AZ + fntly + Batie || (12)

Inclusion of higher order derivative terms in the original Morison equation (eqn(2)) again
avoids the feature of high frequency instability in H;(.) and also allows the model to be
structurally sufficient to capture the history effects. Models based on eqn(12) were therefore

fitted and the results are summarised in Table-7.

11



Table-7 : Summary of Results of Proposed Model

Model I O C: |NMSE]
Data Set-1 0.0162 §j+0.11245+ y= 1.6269 | 2.6183 | 0.0453
1.1346 & + 1.8459 4, + 49.7482 v, |u,
Data Set-2 0.0181 §+0.12725+ y= 1.6018 | 2.4827 | 0.0539
1.1346 £ + 1.8174 %4 47.1716u, |u, |
Data Set-3 0.0268 §+0.13215+ y= 1.7486 | 2.1161 | 0.0324
1.1346 £ + 1.9840 1,+40.20 u,|u,|

The Normalised Mean Square Error (NMSE) for the Dynamic Morison Equation without
history terms for models of data set-1,2 and 3 are 0.1284,0.1405 and 0.1111 respectively. As
for the fixed cylinder, the Dynamic Morison equation(12 ) has two additional terms which may
be non-dimensionalised with reference to a time scale which we again choose to be associated

with the mid point of the rectangular wave spectrum. Eqn(12) is thus given by

VTo + nTud +y = AiE + fnter + Batir |ty (13)

This is again rewritten as

YnTu)’§ + Ty +y = A& + Bntir + Batiyur| (14)

and values of 4o, 71, Crn and Cy together with the test conditions are given in Table-8. The
corresponding results for the fixed cylinder are shown in Table-9 (Table-17 of Part-I of the
paper).

Table-8 : Summary of Results for Responding Cylinder

Model T "o "1 Cm | C: | KC Re |
Data Set-1 | 2.164 | 1.282 | 0.05195 | 1.627 | 2.618 | 4.74 | 3.16 x 10°
Data Set-2 [ 2.2109 [ 1.188 | 0.0575 | 1.602 | 2.483 | 4.95 | 3.23 x 10°
Data Set-3 | 2.2232 | 1.537 | 0.0594 [ 1.749 | 2.116 | 4.46 | 2.90 x 10°

Table-9 : Summary of Results for Fixed Cylinder

——

Model Tw Yo 85! Cm, Cg KC Re
Data Set-1 | 2.164 [0.90 | 0.103 | 1.89 | 1.82 | 4.74 | 3.16 x 10°
Data Set-2 | 2.2109 | 0.83 [ 0.0997 [ 1.84 | 1.75 | 4.95 | 3.23 x 10°
Data Set-3 | 2.2232 [ 1.26 [ 0.0869 | 1.67 | 1.74 | 4.46 | 2.90 x 10°

The 7o values are slightly larger for the responding cylinder while the 4, values are roughly

halved suggesting the history effects to be less. This is consistent with cylinder motion re-

12



ducing the flow velocity relative to the cylinder and thus creating a less strong wake and
weaker vortex shedding. The Cp, values are changed slightly by cylinder response while the
Cq values are increased by up to 40%. This should be associated with a stronger wake which
is inconsistent with the previous argument. Clearly the influence of cylinder response on wake
formation and vortex shedding is complex and while the Dynamic Morison equation with rel-
ative motion terms captures the underlying dynamic structure, the effect of the relative values
of the non-dimensional coefficients do not have a simple physical interpretation. Prediction
of cylinder response is however of great practical importance and progress would be made by
further analysis of data, preferably at high Reynolds numbers associated with full scale flows.

6 Conclusions

A nonlinear continuous time model has been estimated for the wave forces on cylinders free to
respond dynamically. The model is the same as that for a fixed cylinder with the inclusion of
relative velocity and the cylinder acceleration terms. The Dynamic Morison equation based
on relative motion captures the underlying dynamics while the simple Morison equation based
on relative velocity does not represent the true dynamics. The data analysed are only for a
small range of wave flume tests but the non-dimensional coefficients show some consistency
with fixed cylinder values for identical wave conditions apart from the drag coefficient which
can be markedly increased due to cylinder response. Analysis of more data sets, preferably at
high Reynolds number, is needed to establish the Relative Motion Dynamic Morison equation

as a predictive tool for practical application.
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