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The Simulation Testing of Analytically-Derived, Steady-State and
Transfer-Function Models for CSTC Binary Distillation Columns

”»

J. B. Edwards and S. B. Mohd Noor

Abstract

Parametric steady-state and transfer-functions models, analytically-derived for
separation occurring within a packed CSTC distillation column reported in ACSE RR573,
1995 are here validated by comprehensive time domain simulation. Both large-signal
steady-state and small-signal dynamic responses are found to be in complete accord with
the analytical predictions under both open- and linear, closed-loop control conditions.
Differences in large signal behaviour are demonstrated and are explained in terms of the
non-linear reversing gain characteristic of the process here derived. The work is
undertaken and reported as essential preliminaries to using the models for future
behavioural prediction, in particular under the On Line Riccati Control strategy of
Banks!2].

1. Introduction

This report is the third in a series on analytical modelling, control and behavioural
prediction of binary distillation columns and chemical reactors. The first reportll] is ACSE
RR573, April 95 which presents the analytically derived steady-state and transfer function
models in parametric from for columns of the packed type, both distributed (tubular) and
approximate stirred-tank (CSTC) versions.

The present report uses exhaustive simulation to validate the CSTC version in both open-
and closed-loop situations as a prerequisite for further behavioural prediction and, in
particular, before attempting the application of the On-Line Riccati Control techniquel2] of
Banks. That will be reported in the fourth research reportl3], ACSE RR631, 1996, now in
preparation. The Banks method has been applied and reportedl4] already in ACSE
RR576, Dec. 1995, to an idealised, first-order, isothermal CSTR reactor model and
subsequently by Rowlands!5] to a second-order, adiabatic CSTR with manipulable cooling
and varying temperature effects. These process models are simpler, even compared to
even the CSTC reactor model, but indicated significant potential improvements possible in
the process control area from utilisation of the On-Line Riccati Control strategy compared
to PID. The more involved column models, whilst presenting a more significant challenge
in applying the method, offer scope for greater potential improvements in performance as a
result of the greater scope offered by their increased state dimension.
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The Banks' method, being model based, it is clearly essential that the adequacy of column
models, such as the one presented here, are understood as fully as possible. Hence the
present report.

The report tests the correctness of the steady state large signal prediction of the analytic
CSTC models of RR573 and goes on to compare small signal step responses of the
simulated and derived transfer function models. Large signal behaviour is also investigated
and the source of significant differences from small signal responses is explained in terms
of a large signal steady state characteristic derived here in appendix 1. Section 2
concentrates on steady state and open loop dynamic response whilst Section 3 examines
the validity of proportional closed loop stability criteria developed in RR573. As well as
the local stability criteria, interesting large signal behaviour is also examined. Throughout
the project, a wide range of plant parameter space has been investigated and models
validated therefore. Widely spaced typical results are presented here. Conclusions are
drawn in Section 4.

2. Testing the CSTC Separation and Gain Formulae
2.1 Formulae to be Tested

ACSE Research Report 573 (Edwards and Mohd Noor : April 1995)i1 developed
analytically the following formulae for the steady state gain g, between small (strictly
infinitesimal) changes, &, in output product separation, S, and total fractional circulating
flow (v+D)/V, where changes v and / in vapour and reflux rate are kept equal (i.e. v=1).
The formula is

(1)

o) ae[ sL2—4aL—e }
£o

“2vV.” @+))|{Go-DL+a+1}?

where V denotes quiescent vapour rate V, in the rectifier section of the column, L the
normalised length of the rectifier, i.e. :

=Lk
v

L (2)

where L' is the actual length and k the evaporation rate p.u. length p.u. deviation from
equilibrium and & (a!) is the slope of the equilibrium curve in the rectifying (stripping)
section. Parameter € is given by :

e=a-l (3)

The model is derived for balanced quiescent column operation i.e.
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where L and V denote quiescent liquid and vapour molar flow within the column,
suffixes r and s distinguishing rectifier and stripping sections. From eqns. (4) and (5), it
follows that :

D=W-=F ©)

where Dand W denote the molar flow rate of top and bottom product respectively under
quiescent conditions and F denotes the constant flow rate of vapour feed rate into the
column (assumed also equal to the flow of liquid in the feed mixture). The condition :

Vr=aVs (and hence L; = aLs) @)
: = oF
thus making V (= Vr) =— ¢))
3
and Vi = ©)
E

is also assumed, being the condition required by tubular columns for even quiescent
loading throughout the two sections of the column. These flow conditions were shown in
RR573 to produce a quiescent separation given by :

£ [(3a+1)L+a—lJ (10)

B (a+1)| Ba-1)L+a+1

2.2 Simulation Details

The simulation used SIMULINK representation of the bilinear process equations” set out
in RR573 i.e. for the column and feed sections

S+VS(S+aSe)——£\::L+:F{S—E/(a+1)} _s,-S= -Se-avs{S;L_,Se(l)}

(11)

* Eqns (11) and (12) here are identical to eqns. (132) and (136) in RR573 but with the mistyped sign of €
in eqn. (136) here corrected in (12). The same sign error appeared in source eqn. (32) of which (136) is a
restatement purely typographical. The error does not propagate in RR573.




and, for the end vessels :

2L 8= (v, + F)S-aS,(1)+e) )
n

S denotes the real output separation between top vapour and bottom liquid compositions.
S is fictitious and denotes its value if the column operated in thermodynamic equilibrium.
Se(1) is also fictitious and denotes the separation that would exist between vapour in
equilibrium with the accumulator liquid and liquid in equilibrium with reboiler vapour.

is the normalised time constant, T, of the end-vessels. The derivatives of the three
n

state variables S, S, and S.(1) may be extracted to give the non-linear state equations :

S = -S(A+BV,) + S,(1-CV,) + DV, +EF (13)
Se = S - Se(1+CV,) + CV, S.(1) (14)
Se(1) = GS(Vg+F) - HS.(1)(V, +F) + J (Vs +F) R

where constants A to J are given (in terms of LV, rather than kL', using eqn. (2)) by :

€
A_1+z (16)
1
B-W (17)
C=aB (18)
D=¢B (19)
E
E—LV(a-i-]) (20)
G=—1 21)
T aVT
H=0G (22)
J=¢G (23)



Fig. 1 is the SIMULINK block diagram representing eqns (13) to (15), constants A to J
having been calculated from input parameters o, L, F and T by a merged algebraic routine
implementing eqns. (8) and (16) through (23). Process input V; is the control input to the
process and is subjected to various step signals initially for open-loop response validation.
Subsequently V is to be derived from control equations.

2.3 Steady-State Testing

The quiescent steady state separation formula (10) is first validated by setting input V; to
\%
the constant ™ (ie. to _:L)# as required to meet our prespecified quiescent operating

condition. The process was run to steady state from preset initial conditions (usually
zero). The experiment was repeated and values of S recorded for a variety of values for
parameters o and L and the values of S achieved in steady-state were found to accord
almost identically with those predicted by analytical formula (10). Fig. 2 shows the
analytical curve of S versus L for =2 and 5 and 0 < L < 40 with points generated by the
simulation superimposed. Experimental and predicted numerical values agree to within +
0.0001 with SIMULINK operating at 16-digit precision. It is concluded therefore that
egn. (10) is reliable for the steady-state prediction of separation S under symmetrical
operating conditions (4), (5) and (6) and special loading condition (7).

2.4 Checking the Small-Signal Gain

Having allowed the process to reach steady-state, gain tests were made by applying step
perturbations to manipulable flow rate V(t) in Fig. 1 and observing the change § in
separation for various L, o-combinations, in order to check the small-signal gain formula

o
. Fig. 3 for a=2, L=20 (case (a) in RR573) is
(2v/V) g ( (a) )

typical and shows responses forv=1, i_ 10, 20 and 35 % of rectifier quiescent rate V.
(Since V =V, =aVj, in this case V =2V; so the changes v amount to 2, 10, 20, 40 and

(1), against the observed ratio

- d
70 % of V). The ratio W clearly falls as v is increased as might be expected and
v

indeed & itself reaches a maximum for v=0.35V, above which & falls as illustrated by Fig.
4. At v=0.85V, there is zero steady-state response and & becomes negative for even larger

. Although the facility exists, no variation of F has been attempted in this series of experiments since
response to variable feed has not been an object of ACSE research hitherto and no analytical predictions
have been made for this experiment. As regards composition responses to changes in Vs (and L)), all that

V. L
1s important is the ratio : T:— (and ?r) as analysis shows and as tests have verified. Apart from such

verification, therefore, F was set arbitrarily at unity throughout the tests reported here.




v. Figs. 5 and 6 show the responses for case (d) (a=5, L=15), again indicating a maximum
attainable separation.

However, for the smaller changes in v, the g, formula gives a good approximation to the

)
observed ratio (2 /V) as Figs. 9 and 10 show for the two tests cases &=2, L=20 and a=5,
v

- L=15 (cases (a) and (d) in RR573). The curves are cleariy asymptotlc to the predicted g,
values for small v/V as expected. The reduction in apparent gain for the larger v-
perturbations is an inevitable effect of the large-signal behaviour of the process, which
imposes a limit on the separation achievable by adjustment of V; at constant F and given
., as proved in Section 2.5 following.

It is worth noting in passing that, for moderate values of v, the transient step responses of
Figs. 3 and 4 show non-minimum phase characteristics as predicted in the linearised system
analysis of RR573. This question will be addressed in Section 2.6.

2.5 Large Signal Separation versus Vg Relationship

Equation (10) relating steady-state separation S to L {and hence to V (=—\7r) via relation
(2)} is derived for the special loading equation (7) V; =aVs. The eqn. (10) does not
permit exploration of relationship S versus Vg at constant feed rate F since eqn. (7) implies
eqn. (9)i.e. F=Ve and hence a constant V s/F ratio. Asshown in Appendix 1 (to this
report), if the constraint eqn. (7) is lifted, we obtain the more general steady-state solution

(24)

_ e | kL{2Vi(a+1)+F}+aV,F
a+1| kL'(20V, + F) + aVF + 200V2

Formula (10) is obtainable from general case (24) merely by setting F=V€, V=aV, and
normalised length L=kL'/V in accordance with eqn. (2). Because the numerator of (24) is
linear and the denominator is quadratic in V, the resulting curve of S versus Vg shows a
maximum S occurring at :

| =
s

- ofaF + 2kL"(a + 1)} [-JZaF{aF+ kL (@+1)} - aF] 25)

Curves of S versus V by eqn. (24) are graphed in Figs. 7 and 8 for a=2, L=20 and for
a=5, L=15 (i.e. cases (a) and (d) of RR573 respectively) with points obtained from the
SIMULINK simulation superimposed for verification. The maximum values of S are
indeed found to occur at values of Vg given by eqn. (25). These large-signal results
explain the large perturbation responses of Figs. 3 and 4 and, in particular, why there exists
a maximum attainable deviation & despite increasing v beyond a limit, set by eqn. (25). As




an illustration, for case (a), =2, L=20, setting F=1.0 so that V=2.0, VF = 2%.0= 10, so
that setting kL' = VL = 40 in egn. (25) gives V=1.66 @ S=Spax so that the size of
perturbation v needed for change & in S to be maximum is 1.66-1.0 = 66% i.e. close to the
near 70% (35% of V) found in simulation to give maximum &. (See Figs. 3 and 4).

Finally it is worth noting that the formula (1) for g, should be derivable by analytic

oS V . -
determination of EADY from general steady-state separation eqn. (24). Such a derivation
8

awaits a subsequent report but numerical checks here do confirm their agreement at the

—
quiescent points V, = py

2.6 Open-Loop Dynamic Characteristics

In RR573, 1995 Edwards and Mohd Noor predicted a non-minimum-phase transfer-
function for the separation dynamic response over a wide range of plant parameter space.
In particular the transfer-function for the special case of zero end vessel capacitance (i.e.
for T=0) was found to be :

oV (073 eL2—4aL-—£,—sL{e+(a+l)L}
“'—-=g1(5)= 29 (26)
2v @+D)| {o+1+@a-DHa+1+@a-1)L +20(L+1)Ls+ol s

; . , t .
[Note that s here denotes Laplace variable wrt normalised time T (=T—) where base time
n

H
T, =~ where H is the molar capacitance p.u length of the vapour or liquid compartments

within the rectifier or stripping section. Variable p was used instead of s in RR573 but the
use of these symbols is interchanged here for reasons on consistency with other authors in
the area of spatial process modelling]. Equation (26) is only second-order because T=0 in
that special case. In general the transfer function is third-order and its analytical
expression more complicated. However, its asymptotic behaviour was derived to be as
follows :

. B
Hm g9 =17 T,s @n
. g
and Ils.i,im g,(s)= T+ Ts (28)

where steady state gain g, is given by egn. (1) (already verified),




_2aL(L+D)+T(L-1) L{e+(@+1)L}

°7  Ga-1DL+a+l el? —4al-¢ 2%)
ele+@+ 1LY
8 = > (30)
@+ Dfo+1+@Ba-1)LYe+(Ga+1)L2}
e _ L{L(a+1)+¢} 31

e {L2Ga+1)+e}

For the majority of practical cases, parameters g, g.., T, and T,, are positive thus yielding
non-minimum phase behaviour closely approximated by the second-order transfer function

g, (1=Tis)
ga(s) = e ; (32)
I+(T, +T;5) s+ T, T s
where, for the same asymptotic behaviour, RR573 showed that :
T -T,
Tyay = Rells T (33)
8ot 8

T.+g.T

T = £o B= 1y (34)
8o t 8
g, . [g T +2.T, ]

and T, Ty = 35
== Ty J (35)

Figs. 9 and 10 compare the step-response of ga(s) with those obtained from non-linear
SIMULINK simulation for a=2, L=20 (case(a)) and a=5, L=15 (case(d)) respectively for
end-vessel time constant T=1.0. Step changes 2v/V = 1.0% and 10.0% are applied in both
cases. The responses clearly compare well in the initial stages. Towards steady-state, the
smaller input step clearly produces a much closer agreement with the linearised model as
would be expected in view of the existence of the soft maximum limits on achievable
separation discussed previously and illustrated in Figs. 7 and 8.

2.7 The Effect of End-Vessel Capacitance

Figs. 11(A) and (B) and 12(A) and (B) show that the effect of increasing the normalised
end-vessel time constant from 1, to 10 and 50 for cases (a) and (d) respectively, Figs.
11(B) and 12(B) being zoomed versions of the initial response of cases (a) and (d)




respectively. Results from both asymptotic and non-linear process simulations are shown,
the latter for small input steps 2v/V = 1.0%.

As expected, T has comparatively little effect on the initial response, since the parameter is
absent from the high frequency asymptotic model parameters g_, and T, - see eqns. (30)
and (31). As T is increased, it does slow down the approach to steady-state as can be seen
in both cases and as expected from its linear influence of the low-frequency asymptotic
time constant, T, - see eqn. (29). As this predicts, 9T, /T = (L-1)/{(3a-1)L+a+1}
[=0.184 for case (a) and 0.065 for case (d)] the influence of T on the later stages of the
response is more powerful in case (a) than in case (d). The effect of T is not precisely the
same on the later stages of the responses of the asymptotic and non-linear processes as
inspection of Figs. 11 and 12(A) shows. The differences, however, are largely the result of
the slight inequality of the steady states attained by the linear and non-linear models rather
than being the result of dynamic mismatch.

3. Closed-Loop Tests

The simulation results presented in the previous section give confidence in the applicability
of

(a) the open-loop analytical predictions of RR573 in general and

(b) the open-loop validity of the second-order asymptotic model of eqn. (32) and its
associated parametric formulae (29) through (35).

The precise large-signal equations and open-loop transfer-function formula derived in
RR573 have been simulation-tested very comprehensively as the foregoing sections of this
report have illustrated. The predicted small perturbation behaviour, both transient and
steady-state, has been validated under open-loop conditions for small inputs 2v/V=1.0%,
but the effect of a soft maximum limit on separation (derived analytically here) has been
shown to limit the applicability of the small signal model somewhat. Closed-loop
experiments may prove more exacting than the open-loop tests since :

(a) the closed-loop predictions are based on the 2nd-order, asymptotic model
which must, necessarily deviate from the third-order process model over the mid-
frequency range, and

(b) the large transient inputs generated by closed-loop action may drive the
process into regions of state space far-removed from the quiescent point around which the
linear models (3rd-order and 2nd-order, asymptotic) are derived.

3.1 Checking for Critical Stability

In RR573, based on the second-order, non-minimum-phase asymptotic model ga(s),
defined by eqn. (32) in the present report, it was predicted that the open-loop gain of the
process for critical closed-loop stability (under proportional control) is given by :




K.g, = 80(To - To)

(36)
goTno + ngo

where K, is the critical value of controller gain K, and model parameters g, g.., T, and
T are related to plant parameters L, a and T by eqns. (29) through (35).

The validity of the prediction has been checked using the simulation of Section 2.2 and
Fig. 1, to which is coupled a controller of the form

Vg = Vet + (55‘1) (Sret -S) 37)

where separation and vapour flow references Sper and Vs are steady-state consistent, i.e.,
for specified parameters L and @, S, is set according to eqn. (10), viz.

£ |'(3a+1)L+a—1] -

Srer = (@+DLGBo-1)L+0+1
and Vg..rand V according to the quiescent operating conditions of eqns. (8) and (9), viz.;

Vot = F/e (39
and V=0 Vges=aF/¢e (40)

The appearance of the parameter (V/2) as a multiplier of K in control eqn. (37) arises from

the fact that the process transfer function g(s) is defined as o (eqn. (1)) so that, for

v/V)’
consistency, controller gain K is defined as :

o 2(vsref - V)

= V(5-Suer) @l

Control eqn. (37) is clearly a manipulated restatement of (41). Its absolute value being
unimportant, the value of F was retained set at unity throughout the tests. The simulation
was arranged to switch in the desired value of gain K from a zero initial setting at an
adjustable time from process initiation. This allowed the controller performance to be
examined for both large and small initial deviations from the target steady state specified
by Srer and Virer, ie., if desired, the process could be run up towards steady state on
exact, open-loop control, using the closed-loop control of gain K for the final approach
phase.

The value of critical gain K, predicted by eqn. (36) was verified for a range of parameters
L and a by running the process close to steady state on open loop control and then

10




switching in the closed loop controller with values of K set around the predicted K value.
Fig. 13 is a typical result for case (a) (a=2, L=20, T=1) where K_, is evaluated from (36) to
be 212.7. The responses presented are for K=200. The LH traces clearly show marginal
stability as expected from the linear analysis, (It is observed that control Vg slightly
impinges the zero limit in transient which would be infeasible in practice of course). The
RH traces show the response with the controller initiated slightly earlier i.e. from a larger
initial deviation. This causes V to be driven above the value corresponding to Sy, (eqn.
25) such that the process enters the negative gain region (of S versus V) with the result
that it settles apparently at an incorrect steady-state as indicated. The steady-state values
of S and V thus achieved are consistent with general steady-state formula (24).

3.2 Large Signal Closed Loop Behaviour

For gains K well below the critical value K, the linear proportional controller is stable and
achieves the target steady state reference conditions Sy, Vger €ven from large initial
deviations therefrom. The trace for K=100 (i.e. just less than 50% of K. (=212.7) for case
(a) shown in Fig. 14 is typical for such situations, even though the initial condition for the
closed-loop test, i.e. S(0)=0.3333, is far removed from S, (=0.4563). The desired
steady-state is also achieved, as again shown in Fig. 14, if the gain is raised to 148,
although now there is a prolonged dwell in the response before it climbs to achieve the
value of S, following a small overshoot.

Increasing K slightly to 150 however causes another other feasible steady-state to be
achieved (i.e. $=0.3637 and V =14.898) as a result of the V - transient exceeding the
value given by eqn. (25) for S, The gain of 200, (which yields a stable response
settling at S=S . for small initial deviations : see Fig. 13) again produces an undesired
solution for $=0.2359 and V=45.09, even further-removed from the desired separation of
0.4563.

The apparent steady-state nature of the higher gain solutions, e.g. for K=150 and 200 in
Fig. 14 are somewhat difficult to explain. It is true that they are consistent with steady
state equation (24) but the points achieved by the two responses (by =100 on Fig. 14) lie
on the unstable i.e. negative gain portion of that steady-state characteristic. This fact
prompted longer term experiments around in the gain region 148 < K < 150 the results of
which are shown in Figs. 15 and 16. Clearly the solutions at =100 in Fig. 14 for K=150
and 200, although of long duration, may be only temporary in the strict sense of the word.
This claim is made since, as Fig. 15 and 16 show, as K in increased from 148.00 to 149 .85,
the dwell in the response becomes progressively longer, albeit a jump {to the (locally)
stable steady sate of S=0.4563, V¢=1.0} ultimately occurs. For practical purposes,
however, the excessively long dwell of 7=4000 compared to a low gain time constant of
around 1=6.0 (see the response for K=100 in Fig. 14) is quite unacceptable. It is worth
noting that other cases (e.g. case (d)) show similar trends.

11




4. Conclusions

The analytically-derived parametric models for the separation within CSTC distillation
columns presented in ACSE RR573, 1995 have been comprehensively validated by
numerical simulation and a wide range of typical results have been presented here. In
particular, the equation for steady-state separation in terms of normalised column length L
and volatility parameter a has been shown to make exact predictions for the operating
condition V; = aV (Ls = aV,). A more general separation formula in terms of vapour
flow Vg specifically has been derived here and also validated. The non-linear characteristic
relating S to V, has been shown to exhibit a maximum turning point followed by a
negative gain region, thus yielding two mathematical solutions for V, for a given S. The
transfer function models derived in RR573 have been shown here to yield transient step
responses very similar to those obtained in simulation for small initial deviations from
steady state and for small steps in V.

The above-mentioned non-linear steady-state characteristic explains why differences in
large signal behaviour can be generated and in particular why large increases in Vg beyond
the operating point V, = &V can yield a steady-state reduction (rather than just the
analytically predicted non-minimum-phase transient reduction) in separation. The physical
explanation of the phenomenon is that, whereas a small increase in energy input (i.e. in
V), will produce an increase in steady-state separation through increased evaporation, a
large increase merely causes increased circulation and therefore increased physical mixing
within the system overall, rather than increased thermodynamic separation.

Predicted local closed loop stability criteria have been verified over a wide range of plant
and feed parameter space and interesting non-linear phenomenon also demonstrated. In
particular, for proportional controller gains exceeding some 50% critical and for large
initial deviations from the target steady state, an open-loop unstable solution on the above-
mentioned negative-gain characteristic can be sustained for very long periods before
switching to the desired solution. This is consistent with the many anecdotal reports of
unpredictability of the separation control characteristic of columns. The models are here
convincingly verified for self consistency and may safely be used in future theoretical
control studies.
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Fig. 7 Steady-state characteristic S versus V; for case (a) : Analytically derived and by
simulation
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Fig. 8 Steady-state characteristic S versus V; for case (d) : Analytically derived and by
simulation
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Fig. 9 (A) Comparing the simulated open-loop, unit step responses of the non-linear
process for steps of 2v/V = 1.0% and 10.0% with that of the linear asymptotic model.
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Fig. 9 (B) Zoomed display of initial responses of Fig. 9 (A)
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Fig. 10 (A) Comparing the simulated open-loop, unit step-responses of the non-linear
process for steps 2v/V = 1.0 % and 10.0% with that of the linear asymptotic model.
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Fig. 11 (A) Showing the effect of increasing end vessel time constant on the unit step
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Fig. 11 (B) Zoomed display of initial responses of Fig. 11 (A)
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Fig. 12(A) Showing the effect of increasing end vessel time constant on the unit step
response. Case (d).
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Fig. 12 (B) Zoomed display of initial responses of Fig, 12 (A)
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Fig. 13 Showing the effect of closing the control loop with a gain marginally less than the
predicted critical value. Case (a), K=200.

0.5 T T T T T T T T T

0.45

0.4 ]
§ K=150
Eoa3s5 _
g
&
0.3 -
025} K=200 2
0-2 1 1 1 1 1 1 L 1 1
0 10 20 30 40 50 60 70 80 20 100

Fig. 14 Large signal behaviour under linear proportional closed-loop control. Case (a).
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Fig. 15 Showing progressively long dwell in response for values of gain > 148.
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Fig. 16 Showing further increase of dwell time with only marginal increase in gain

towards 150.
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Appendix 1

Derivation of Steady-State Separation as a General Function of Vapour Rate, Under
Constant-Feed and Symmetrical Operating Conditions.

From the steady-state version of process differential equations (11) and (12) we obtain :

(Vs +F)S+aVS, ~Fe/(@+1)—eV; _ aVy{S.(1)-S,}

L Se-S= i (A1)
and (Vs+F)(S-aS(1)+e)=0
so that Se(1) =(S +g)/a (A2)
for Vs +F #0.
Thus, we may eliminate S.(1) from the RHS of eqn. (A.1), using eqn. (A.2) to give
g o SU+Vs/kL)+eVy/kL!
© (1+ oV, /kL’)
or Se (kL' +aVy) = S(kL’ + V,) + €V (A.3)
From the LHS of eqn. (A.1) we also obtain
S.(KL'—aV,) = S(kL"+ V, + F) -e{V,(a+ 1)+ F}/(a+1) (A.4)
Eliminating S, between equa&ions (A.3) and (A .4) therefore yields
€ kL'{2V(a+1)+F}+aV,F
- (a+ 1) [kL’(ZaVS +F)+FaV, +2av52J (A.5)

This result is restated as eqn.(24) in the main text.
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Calculation of Turning Point in S versus Vs Characteristic

It is convenient to write eqn. A.5 in the form

e [ f(v,)+av, ]

" @+ D] f(V,)+bV2 ha

where F(Vg) = ¢V +d so that ayavs =c
and where a=2kL'

b=2a

c=a(F+2kL")
and d=FkL'
Thus, for the turning points in the curve of S versus Vg :TS = 0 so that if f denotes 385 ,
we deduce that S s

(F+bV2)(f+a)-(f+aV,)(f+2bV,) =0 (A7)
giving VZ b(c+a) + 2bdV, —ad =0 (A8)

Solving quadratic eqn. (A.8) thus yields the values of V, for the turning points in the S
versus V characteristic, viz :

+,/db {db+a(c+a)} - bd
V.=
d (c+a)b

(A9)

and on substituting for a, b, ¢ and d in terms of k, L', o and F, we deduce that, for the
maximum value S, of S

kL'
|

S:;m i ])}[Jzar{an kL'(ct+ 1)} - oF (A.10)

This result is presented as eqn. (25) in the main text.
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