
Spatial grammar implementation: From theory
to useable software

ALISON McKAY,1 SCOTT CHASE,2 KRISTINA SHEA,3 AND HAU HING CHAU1

1School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom
2Department of Architecture, Design, and Media Technology, Aalborg University, Aalborg, Denmark
3Virtual Product Development Group, Institute of Product Development, Technische Universität München, Garching, Germany

(RECEIVED March 31, 2011; ACCEPTED October 15, 2011)

Abstract

Currently available computer-aided design tools provide strong support for the later stages of product development pro-
cesses where the structure and shape of the design have been fixed. Support for earlier stages of product development,
when both the structure and shape of the design are still fluid, demands conceptual design tools that support designers’
ways of thinking and working, and enhance creativity, for example, by offering design alternatives, difficult or not, possible
without the use of such tools. The potential of spatial grammars as a technology to support such design tools has been dem-
onstrated through experimental research prototypes since the 1970s. In this paper, we provide a review of recent spatial
grammar implementations, which were presented in the Design Computing and Cognition 2010 workshop on which
this paper is based, in the light of requirements for conceptual design tools and identify future research directions in
both research and design education.

Keywords: Computational Design Synthesis; Implementation; Spatial Grammar

1. INTRODUCTION

Product development processes typically begin with a design
brief that is used to drive a design process that starts with initial
design concepts, usually in the form of hand-drawn sketches,
and ends with a fully defined design definition that can be
used to support engineering analyses and manufacturing.
Computer-aided design (CAD) tools, based on the solid mod-
eling methods reviewed by Requicha and Voelcker (1983),
provide strong support for the later stages of product design
and development when the structure and shape of the design
have been fixed. Support for earlier conceptual design stages,
when both the structure and shape of the design are still fluid,
demands a new kind of CAD solution that does not require an
unambiguous representation of the designed shape, yet recog-
nizes equivalency of such representations and allows multiple
reinterpretations. This new generation of solution, so-called
“computational design synthesis” systems, needs to support
designers’ ways of thinking and working so that they enhance
design creativity, for example, by offering nonobvious design

alternatives that were not originally recognized by the de-
signer. The latter is akin to pencil and paper processes iden-
tified by Stiny (1991).

In this article we use the term spatial as opposed to shape
grammars because the definition of shape grammar has tra-
ditionally implied a maximal element representation that sup-
ports emergence, that is, recognition and manipulation of
shapes that emerge through shape computation but are not ex-
plicitly represented. Although maximal representations are
theoretically possible for the solids and surfaces that typify
industrial product design activities, a key and presently unre-
solved prerequisite to their implementation lies in recogniz-
ing equivalent boundaries of these shape elements, namely,
surfaces and curves respectively. As a result, some of the sys-
tems reviewed in this paper cannot, strictly speaking, be re-
garded as shape grammar implementations because they
use other fundamental representations for shapes, such as
sets of parametrized objects, graphs, or pixels. The potential
of spatial grammars (including shape, set, and graph grammat-
ical approaches) as a theoretical framework on which compu-
tational design synthesis systems might be built has been
demonstrated through experimental research prototypes since
the 1970s. Over the decades, the term spatial grammar has
been applied to unrelated work in computer graphics and
computational geometry, as well as design grammars that

Reprint requests to: Alison McKay, School of Mechanical Engineering,
University of Leeds, Leeds LS2 9JT, UK. E-mail: a.mckay@leeds.ac.uk

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2012), 26, 143–159.
Cambridge University Press 2012 0890-0604/12 $25.00
doi:10.1017/S0890060412000042

143

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/29031617?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

use nonmaximal element representations (including several
reviewed later in this paper; Krishnamurti & Stouffs, 1993).
In addition, design grammars have been used as an educa-
tional device to support students in understanding how design
alternatives might be generated and to build their self-aware-
ness with respect to the shape generation processes they use.
In this paper we review progress made in achieving usable
computational design synthesis systems focusing on spatial
grammars. Regarding the journey to computational design
synthesis as a design exercise in its own right, we consider re-
quirements for spatial grammar based computational design
synthesis systems in the light of requirements for conceptual
design tools, and identify future research directions in both re-
search and design education. On this basis, we review cur-
rently available systems in terms of four key characteristics:
underlying representation and algorithms, user interaction
and interface, and two aspects of application support, support
for particular problem domains and support for specific
stages of the product development process.

The overarching structure of the paper is based on the
framework shown in Figure 1. It can be seen that this regards,
as two separate processes, a human activity of designing
shapes and a computational system that computes shapes;
the two processes are connected by a third, communication,
process. In Section 2, requirements for conceptual design to
support designers designing shapes are introduced and related
to requirements for grammar-based design systems. This con-
cludes with a collection of requirements for usable spatial
grammar based computational design system implementa-
tions. A review of the development of spatial grammar based
design systems with respect to these requirements is given in
Section 3. Section 4 draws from discussions at the Design
Computing and Cognition 2010 (DCC’10) workshop on
grammar implementations (DCC10 grammars) and identifies
future research areas.

2. REQUIREMENTS FOR SPATIAL GRAMMAR
BASED DESIGN SYSTEMS

2.1. Requirements for computational conceptual
design tools

Iordanova and Mueller (2010), in their workshop at DCC’10
on bridging the gap between abstract requirements and con-
crete implementation strategies for computational conceptual
design tools, provide a collection of requirements for such
tools. The names of these requirements are reproduced in
Table 1. The use of spatial grammars in the realization of
computational conceptual design tools demands robust and
complete implementations. In the long term a given spatial
grammar based kernel could be used to underpin multiple
conceptual design tools and applications: akin to the three-di-
mensional (3-D) solid modeling kernels identified by Requi-
cha and Voelcker (1983). The requirements in Table 1 that are
most applicable to such a kernel are highlighted in italic; these
requirements are the focus of this paper.

Fig. 1. A framework for computer-aided shape generation activities. Reprinted from “Design Synthesis and Shape Generation,”
A. McKay, S.C. Chase, S.W. Garner, I. Jowers, M. Prats, D.C. Hogg, H.H. Chau, A. de Pennington, C.F. Earl, and S. Lim, 2009, In De-
signing for the 21st Century: Interdisciplinary Methods and Findings (Inns, T., Ed.), pp. 304–321. Copyright 2009 by Gower Publishing.
Reprinted with permission. [A color version of this figure can be viewed online at http://journals.cambridge.org/aie]

Table 1. Requirements for computational conceptual design
tools

Ease of use Modeling
capabilities

Visualization
capabilities

Multiplicity

Flexibility Simultaneity Environment Semantics
Entity identity vs.

emergence
Entity linkages Abstract objects Diagram

support
History and design

space exploration
(Re)generativity

Note: The requirements are according to Ordanova and Mueller (2010).
Those requirements most applicable to a spatial grammar based kernel are
underscored and italic.

A. McKay et al.144

Modeling capabilities relate to the ability of a system to
support designers in expressing design concepts. For the de-
sign of physical products, this relates to both the capabilities
of the shape representation scheme underpinning the system
and the ability to represent other attributes of a design con-
cept, for example, material and surface properties. Similarly
semantics, the ability to associate semantic information
with a design concept is closely related to the underlying rep-
resentation scheme used. Entity identity (from entity identity
vs. emergence) relates to the provision of multiple presenta-
tions of a given concept. It aligns with the structure provided
within the integrated resources of the STEP standard
(ISO10303-1; ISO, 1994) that, if applied to support commu-
nication between conceptual design systems, would allow a
given design concept to have multiple representations and,
for each representation, multiple presentations. If the spatial
grammar based design solution is regarded as a kernel then
this would not be regarded as a key requirement. However,
emergence is regarded as a requirement because it places de-
mands on the underlying representation scheme to allow
multiple interpretations in order that the semantics of aspects
of a given design might be changed and used in ways not pos-
sible in the original representation. Whether entity linkages
are regarded as requirements for a kernel depends on the level
of detail needed in the linkages between concepts. They are
included here because a key benefit of grammar-based ker-
nels is the ability to capture traceability between generated
concepts.

Within spatial grammar based systems, linkages between
generated concepts and the grammars from which they were
generated can be used to support the exploration of both de-
sign histories and design spaces. For example, the history of
shapes in the style of a given brand might be explored through
the way in which the grammars used to both define the style
and generate the designs have changed over time. With re-
spect to the exploration of design spaces, a design language
(defined using a grammar) can be regarded as a definition
of a potentially vast design space. The generative capability
of a spatial grammar based system results in populations of
generated design concepts that sit within such spaces. With
appropriate exploration tools, ranging from interactive user
generation to automated search methods, these design spaces
can be explored by users. (Re)generativity relates to the abil-
ity of a system to recreate a design concept, for example, to
support the building of understanding of a complex shape.

2.2. Requirements for spatial design grammar
implementations

The use of spatial design grammars in the realization of com-
putational conceptual design tools demands robust and com-
plete implementations. A number of authors have identified
requirements for shape grammar implementations, for exam-
ple, Gips (1999) and Chau et al. (2004). In this paper the fol-
lowing requirements for spatial grammar-based implementa-
tions, derived from both Gips and Chau et al., are used to

characterize an idealized general spatial design grammar im-
plementation:

1. form (ranging from description to generation and in-
cluding parametric elements):

† enabling automatic subshape recognition and shape
emergence

† enabling automatic shape recognition under Euclid-
ean transformations

† allowing parametric shape rules
† enabling automatic shape recognition for parametric

shape grammars
† enabling automatic rule application
† supporting both surfaces and solids
† allowing curvilinear basic elements

2. orientation of shapes
3. semantics (ranging from general geometric elements to

domain specific concepts)
4. definition interface (on a scale from sketching to script-

ing) and its usability by designers in generate-test cycles
5. incorporating an intuitive user interface
6. providing measures for ranking designs for automated

selection
7. providing unambiguous interpretation of resulting de-

signs for downstream applications and their physical
realization

These requirements are related (Table 2) to the conceptual de-
sign system requirements introduced in Section 2.1, to pro-
vide a set of requirements for spatial grammar based concep-
tual design systems. In the long term, spatial grammar-based
kernels could be used to underpin multiple conceptual design
tools and applications, which are akin to the 3-D solid mod-
eling kernels identified by Requicha and Voelcker (1983).
Relationships between the requirements for conceptual de-
sign systems and those for spatial design grammar implemen-
tations are summarized in Table 2.

3. REVIEW OF SPATIAL GRAMMAR BASED
IMPLEMENTATIONS

The history of shape grammar implementations can be broadly
categorized by the foci of the systems that were developed.
Early work focussed primarily on general two-dimensional
(2-D) shape interpreters. For example, Carlson’s Grammatica
(1993) supported the generation and exploration of U12

1 floor
plans. Such systems were typically limited by the kinds of
shapes that they supported, in this case 2-D shapes including
parametric shapes, and showed potential for extension to more
complex 3-D design problems. At a similar time, Heisserman
(1991, 1994) developed a 3-D system, including parametric
rules, called Genesis, that generated Queen Anne houses

1 Algebra Uij concerns elements of dimension i in a space of dimension j.
For example, U12 refers to lines on a surface and U33 solids in 3-D space.

Spatial grammar implementation 145

and a variety of other geometric forms, for example, Sier-
pinski sponges, fractal-like mountains, and SLA support
structures. This was later extended at Boeing to the generation
of aircraft systems tubing and components, thus demonstrating
its generality as well as becoming the first commercially used
grammar-based system (Heisserman, 1994).

In contrast, Agarwal and Cagan (1998) describe a design-
specific coffee maker grammar and implementation, and Pug-
liese and Cagan (2001) introduce their Harley–Davidson mo-
torcycle grammar, which were typical of shape grammar im-
plementations at the time. For the purposes of this paper we

argue that a spatial grammar implementation suitable for
use in design needs not only to support the kinds of shape
that occur in the design domain of interest but also to align
with the ways in which designers think and the processes
that underpin their design practices. For example, Tapia’s
(1999) GEdit system interface is illustrated in Figure 2. GEdit
was an early example of a shape grammar system that both
considered the designer’s process, workflow and practice in
its interface and supported emergence.

The focus of this paper is a review of spatial grammar
based implementations of computational design synthesis

Table 2. Relationships between requirements for conceptual design systems and design grammar implementations

Conceptual Design System Requirements

Grammar Implementation Requirements
Modeling

Capabilities Semantics Emergence
Entity

Linkages
History and Design
Space Exploration

(Re)-
Generativity

Form (from description to generation) X
Orientation of shapes X
Semantics (general to domain specific) X
Definition interface (from sketching to scripting) X X
Usability by designers/intuitive user interface X X
Automatic subshape detection X X
Automatic rule application X

Fig. 2. The GEdit system user interface. Reprinted from “A Visual Implementation of a Shape Grammar System,” by M. Tapia, 1999,
Environment and Planning B: Planning and Design 26, 59–73. Copyright 1999 by Pion. Reprinted with permission.

A. McKay et al.146

focusing mainly on those presented in the DCC’10 workshop
(DCC10 grammars) as a strong indication of the current state
of the art. The challenge is to develop conceptual design tools
that support designers’ ways of thinking and working and en-
hance creativity, for example, by offering design alternatives
difficult or not possible to identify without the use of such
tools. In this section we introduce requirements for concep-
tual design tools and then explain how spatial grammars, as
an underlying formalism and technology, might contribute
in responding to these requirements.

Gips (1999) identifies a number of key tasks that shape
grammar systems could support the following:

† generation (design): generating designs using a spatial
grammar interpreter (the most common feature of spatial
grammar-based implementations)

† parsing (analysis): determination of whether a design is
in the language of a specified shape grammar (a difficult
problem with few implementations addressing this)

† inference (grammar construction): generation of a gram-
mar from a given set of shapes/designs (even more dif-
ficult; possible research could look at identifying fea-
tures that could be used to build grammars)

† development (designer’s aid): environments for design-
ing shape grammars (e.g., with built-in drawing editors
or links to CAD software; many recent systems include
this)

This paper focuses on the first and last points, that is, “genera-
tion” and “development,” because this is where most research
activity has been in the past 10 years. “Parsing” and “infer-
ence” are important issues that remain largely unresolved
with little research to date.

Representative systems (Table 3), presented in the DCC’10
workshop on which this paper is based (DCC10 grammars),
are described in four broad aspects, as identified by Chase
(2010):

1. representations and algorithms for geometry, other de-
sign attributes, and control

2. user interaction/interface
3. implementations that deal with specific design problems
4. integration into design and product development pro-

cesses

3.1. A prototype system for developing 2-D and 3-D
shape grammars

Li et al. (2009) introduced a 3-D shape grammar interpreter
that builds on the system reported by Chau et al. (2004). Li
et al.’s system (shown in Fig. 3) is built on a U13 shape rep-
resentation with no restrictions on the orientation of the shape
elements; the shape elements themselves can be straight lines,
arcs, and labeled points. The system anticipates a future where
a key aspect of a design activity will lie in the development of
grammars from which design alternatives might be generated.

As such, the focus of the system is to support designers in
creating and developing their own grammars as an integral
part of a design activity through a graphical user interface
(GUI). It can be seen from Figure 3b that the system supports
the definition of rules that can then be applied and the results
previewed. The system supports the development of general
purpose 2-D and 3-D grammars made from the supported
shape elements. In the context of product design and devel-
opment processes, the system is suited for use early in such
processes when alternative design shapes are under consid-
eration. The inclusion of an AutoCAD applet within the
system supports the transfer of design shapes to conventional
3-D solid modeling systems using the DXF format. Although
limited to lines and arcs, and so requiring human intervention
to produce solids data, this provides a mechanism for the in-
tegration of shape-related data generated by the system into
downstream product development processes such as analysis
and manufacturing.

3.2. Shape grammar interpreter for rectilinear forms

Trescak et al. (2010) introduced a system that supports U12,
straight line, shape elements whose orientation is restricted
to two orthogonal axes. The user interface for the system is
illustrated in Figure 4. As in Li et al.’s (2009) 3-D shape
grammar interpreter, the system supports designers in both
developing grammars and previewing the kinds of shape
that might be generated using the grammar. Three kinds of
rules (addition, substitution, and modification) are supported,
and individual rules can be labeled and defined either directly
or parametrically. Users interact with the system through the
GUI shown in Figure 4. Although not limited to a specific de-
sign domain, the system is presently limited to designs that
can be represented rectilinearly. In the context of a product
development process, the system does not include a capability
to translate shapes into formats that can be used by commer-
cially available 3-D CAD systems. However, given that the
system is open source and the shapes that can be represented
are a subset of those supported by Li et al. (2009), the addi-
tion of such a similar, DXF-like, interface is likely to be tech-
nically feasible.

3.3. A 3-D spatial grammar interpreter for CAD

An interactive 3-D spatial grammar interpreter was presented
by Hoisl and Shea (2011). The approach and prototype imple-
mentation have resulted from investigations on requirements
for the integration of spatial grammars as a standard module
within a CAD tool. Targeted at supporting mechanical de-
sign, which is heavily focused on the generation and manip-
ulation of solids, it takes a set grammar approach using a vo-
cabulary of parametrized solid primitives in algebra U33,
which differentiates it from most other systems reviewed
here. Both parametric and nonparametric rules can be devel-
oped using a GUI (Fig. 5), making use of common CAD
functions for creating and editing geometric objects. In addi-

Spatial grammar implementation 147

Table 3. Summary of reviewed systems

Li et al. (2009) Trescak et al. (2010) Hoisl & Shea (2011) Jowers & Earl
(2010)

Ertelt & Shea (2010) Jowers et al.
(2010)

Correia et al.
(2010)

Form (ranging from description to
generation)
modeling capabilities U13, straight lines, and

V03, labeled points in
3-D space

U12, straight lines U33, set grammar of
parametric solids

U12, Bézier curves U03, U13, U33 set
grammar of
parametric solids,
lines, points

U02, bitmaps U33, CGAL and a
B-rep

Orientation of shapes Unrestricted Restricted to orthogonal
axes?

Unrestricted Unrestricted Unrestricted Unrestricted Unrestricted

Semantics (ranging from general
geometric elements to domain
specific concepts such as
architectural objects)

(h) Semantics as the capability to
express semantic information
while providing semantic
coherence

General General General General Manufacturing
objects

General Anything that can
be expressed in
CGAL

(k) Abstract objects
Definition interface (on a scale from

sketching to scripting)
Usability by designers in generate-

test cycles
Graphical Graphical Graphical & script Graphical Source code

modification
Graphical Graphical &

script
(d) Multiplicity

Generative capabilities
Automatic subshape detection In some cases Yes Yes Yes Partiala Yes Yes
Automatic rule application Yes Yes Yesb Yes Yes Yes Yes
Can operate on emergent geometry No No No Yes?? Yesc Yes No

Note: CGAL, Computational Geometry Algorithms Library; B-rep, underlying geometric representation.
aThe system could be used to test the subshape relation, but it is not used in this application area.
bThere is automatic rule matching, including translation and rotation as well as parametric relations, but no subshape detection. It is a set grammar.
cThe system takes the shape as it is and not as a set of elements

A
.M

cK
ay

et
al.

148

Fig. 3. The three-dimensional shape grammar interpreter (a) as a screenshot from a 3-D interpreter and (b) as an annotated screenshot from
the SG development system. (a) Reprinted from “Evaluation of a 3D Shape Grammar Implementation,” by H.H. Chau, X.J. Chen,
A. McKay, and A. de Pennington, 2004, Design Computing and Cognition ’04: Proc. 1st Int. Conf. Design Computing and Cognition
(Gero, J.S., Ed.), pp. 357–376. Copyright 2004 by Kluwer. Reprinted with permission. (b) Reprinted from “A Prototype System for De-
veloping Two- And Three-Dimensional Shape Grammars,” by A.I.-K. Li, H.H. Chau, L. Chen, and Y. Wang, 2009, Proc. 14th Int. Conf.
Computer-Aided Architectural Design Research in Asia, pp. 717–726. Copyright 2009 by CAADRIA. Reprinted with permission. [A color
version of this figure can be viewed online at http://journals.cambridge.org/aie]

Spatial grammar implementation 149

tion, a dialogue is used to define parametric relations between
shapes so that parametric rules can be developed. Once fully
defined, rules can be saved and applied later. To apply rules,
they can be loaded to a sequence list and the settings for their
application specified, for example, the number of rule appli-
cations, the detailed selection of matched objects (e.g., ran-
domly or manually) or the mode of assigning values to free
parameters. This allows for fully automatic, semiautomatic,
or manual application of rules. The system provides, with
some restrictions, for the automatic matching of the left-
hand side of a rule in an existing primitive-based design as
well as the calculation of the required transformations, includ-
ing rotation and translation, and sizes of the transformed ob-
jects including, possibly, parametric relations.

This general purpose system has been successfully applied
to generate vehicle wheel rim and cooling fin designs (Hoisl
& Shea, 2011). Although limited to 3-D primitives, it is a step
toward providing a more general spatial grammar interpreter
in U33 within a familiar CAD environment using common
3-D solid modeling that enables transfer to other tasks in anal-
ysis, for example, FEA, and manufacturing. The implementa-
tion is based on the open source 3-D mechanical engineering
CAD system FreeCAD that is built on top of the open source
geometric modeling kernel OpenCASCADE, and hence is
available as open source software. The underlying geometric

representation is a B-rep, where the left-hand side and right-
hand side of a rule are saved as B-rep models and an XML file
is used to define the parametric relations. By using existing
functionalities for geometry representation and manipulation
provided by the OpenCASCADE kernel, the coding effort is
reduced. It uses Python as an internal scripting language,
which continues to gain popularity for design applications,
and the authors envision a system that provides a combination
of both visual rule definition and scripting to increase the po-
tential freedom in and expressiveness of rule definition.

3.4. QI: A shape grammar interpreter for curved
shapes

Jowers and Earl (2010) describe their QI system (Jowers,
2006) that supports U12 shape elements; in contrast to Tres-
cak et al. (2010), these shape elements are quadratic Bézier
curves. The user interface for the QI system is illustrated in
Figure 6. As with Trescak et al.’s (2010) system, both shapes
and shape rules are defined using a mouse input. The imple-
mentation demonstrated at DCC’10 showed the development
of a Celtic knot pattern where shape rules were used to ensure
that the plaiting patterns in the generated shapes complied
with the style that characterizes Celtic knots. The focus of
the system is on the implementation of shape grammars that

Fig. 4. A screenshot from the SGI(2) system. Reprinted from “Shape grammar interpreter for rectilinear forms,” by T. Trescak, M. Esteva,
and I. Rodriguez, 2010, Proc. 4th Int. Conf. Design Computing and Cognition. Copyright 2010. Reprinted with permission. [A color
version of this figure can be viewed online at http://journals.cambridge.org/aie]

A. McKay et al.150

Fig. 5. The three-dimensional spatial grammar interpreter for computer-aided design showing rule definition including parametric rela-
tions. [A color version of this figure can be viewed online at http://journals.cambridge.org/aie]

Fig. 6. A screenshot from the QI system. Reprinted from “QI—A Shape Grammar Interpreter for Curved Shapes,” I. Jowers and C.F. Earl,
2010, Proc. 4th Int. Conf. Design Computing and Cognition. Copyright 2010. Reprinted with permission. [A color version of this figure can
be viewed online at http://journals.cambridge.org/aie]

Spatial grammar implementation 151

can operate on complex curves; as such integration of the sys-
tem into design and product development processes is prema-
ture. In principle, however, the incorporation of a DXF-like
interface, of the kind developed by Li et al. (2009) would
be feasible.

3.5. Spatial grammar implementation for machining
planning

Shea et al. (2010) and Ertelt and Shea (2010) introduced the
spatial grammar machining planning (SGMP) system. SGMP
uses spatial grammars for the creation of a machining plan, or
sequence of fabrication operations, from a given geometric
model. This combination allows spatial grammars to automat-
ically generate designs, possibly complex 3-D shapes, and
also the necessary fabrication plans to produce them. In this
work, knowledge of machine capabilities, specifically com-
puter numerical control milling, has been encoded in a spatial
grammar that operates on points, lines, and solids. The capa-
bilities are represented in terms of which volumes can be re-
moved from a work piece or unmachined material. The para-
metrically defined vocabulary of the grammar represents the
volumes that can be removed by a machine motion and tool
combination, in U33, also including the tool path in U13 and
labeled points in U03 for controlling the process, that is, to
maintain continuity of the cutting process. Further (process)
constraints are defined outside the scope of the grammar
rules, for example, to avoid collisions between the cutting
tool and work piece, and can be dynamically linked to rules.
Further rules are developed to generate machining operations

in the plan, such as repositioning of a cutting tool, that do not
change the geometry of the work piece. During rule applica-
tion the control code for the machine tool is instantiated,
G-code, as it is defined parametrically in the vocabulary.
The generation of machining plans from a given STEP-based
representation of part and work piece models is implemented
using a two-layer search to determine the best sequence of
rules, or machining operations, and an inner loop search
that finds the best parameters for a given rule application. A
future step is the automated generation of the vocabulary
given the available machine capabilities, such as the axes of
motion, and available cutting tools, for example, with differ-
ent diameters. The long-term goal is to enable a machine tool
to be able to reason about its current capabilities and plan its
own actions to fabricate a given, previously unknown, part.
This application is unique not only for its application in man-
ufacturing but also the “live” use of spatial grammars in a
hardware-based implementation.

Like Hoisl and Shea’s (2011) spatial grammar interpreter,
SGMP is implemented using the open source geometric ker-
nel OpenCASCADE. The geometric kernel is used to provide
the geometric representations, in this case B-reps, and to pro-
vide the functionality to manipulate the geometric models
through Boolean operations (Fig. 7).

3.6. Shape grammar implementation with vision

Jowers et al. (2010) describe the Subshape Detector 2 (SD2)
system that operates on U02 bitmaps. The focus of the system
is on the integration of shape grammars into the early stages

Fig. 7. Spatial grammar machining planning: spatial grammar to automatically generate computer numerical control machining plans for
parts including executable G-code. [A color version of this figure can be viewed online at http://journals.cambridge.org/aie]

A. McKay et al.152

of product development processes when designers are work-
ing with hand-drawn and digital 2-D sketches. At this stage of
a product development process a potential benefit of spatial
grammars lies in their ability to support users in seeing and
working with emergent shapes from 2-D work. The GUI
for this system is illustrated in Figure 8. The system uses com-
puter vision technology to enable the detection of given sub-
shapes within a target shape under defined tolerances; these
are needed to accommodate the reduced precision found in
early design sketches when compared to more formally de-
fined shapes such as those used in the SG development,
SGI, and QI systems. Integration of the resulting design
shapes into downstream applications is not addressed al-
though is technically feasible with some human intervention
using the import and trace functions of sketch-based inter-
faces to contemporary CAD systems such as the autotrace
function in Solidworks.2

3.7. MALAG: A discursive grammar interpreter for
the online generation of mass customized housing

MALAG is a discursive grammar interpreter for the genera-
tion of mass customized housing online (Duarte, 2005). Sim-
ilar to Hoisl and Shea (2011), it supports U33 shapes but was
developed for this particular application. It is composed of
two modules: PROGRAMA and DESIGNA. PROGRAMA

is a description grammar interpreter that produces the design
brief from given user and site data (see Fig. 9a). Constraints
are checked dynamically during this description process.
Using this design brief, DESIGNA (see Fig. 9b), computes
a set of housing designs according to a defined architectural
style.

PROGRAMA is written in Java and deployed as an applet
running in a web browser. The shape grammar rules are en-
coded using Jess, a rule engine for the Java platform, so that
a Jess-based reasoner can be used to select and apply shape
rules. The shape grammar implementation in DESIGNA is
based on the work of Heisserman (1994). Its initial version
used indexed lists as the data structure of the solid modeler
controlled by the shape grammar rules. A new version under
development (Correia et al., 2010) uses Computational Geom-
etry Algorithms Library (CGAL) that is an efficient library of
data structures and algorithms for geometry-based problem
solving. Given that MALAG is mainly developed in Java,
CGAL’s graph-based boundary representation of solids is
wrapped in a Java library, thus allowing Jess rules to match
and operate on CGAL’s solid models, which also facilitates
the implementation of various grammars. In order to visualize
the generated geometries, it is planned to use HTML5 capabil-
ities, in particular, the WebGL-capable canvas element. This
will allow the user to have immediate visual feedback.

This section has introduced representative spatial grammar
implementations that were presented in the DCC’10 work-
shop on which this paper is based. A common feature of all
these systems is that they are early research prototypes; there

Fig. 8. A screenshot from the SD2 system. Reprinted from “Shape Detection With Vision: Implementing Shape Grammars in Conceptual
Design,” by I. Jowers, D.C. Hogg, A. McKay, H.H. Chau, and A. de Pennington, 2010, Research in Engineering Design, 21(4), 235–247.
Copyright 2010 by Springer. Reprinted with permission. [A color version of this figure can be viewed online at http://journals.cambridge.
org/aie]

2 A video demonstration of the Solidworks auto trace function is available
at http://www.youtube.com/watch?v¼kH_W7R9HdWc

Spatial grammar implementation 153

Fig. 9. The MALAG grammar interpreter (a) as a screenshot from the PROGRAMA module and (b) as a screenshot from the DESIGNA
module. [A color version of this figure can be viewed online at http://journals.cambridge.org/aie]

is still a long way to go to make a significant impact on indus-
try methods using grammar-based approaches. However, key
progress illustrated includes implementations that support
emergence in 2-D and those that support solids. Key aspects
of “designerly” systems include integration with design and
production processes, user friendly interfaces (with new
methods of user interaction being explored), and representa-
tions that facilitate creation and manipulation of designs in
a flexible manner suited to a designer’s requirements. Finally,
implementations are also now more sophisticated in terms of
their software engineering basis, for example, by making use
of common software libraries and integration with common
CAD model data formats and tools.

4. DISCUSSION

This section builds on the discussion at the DCC’10 work-
shop with issues and questions arising from consideration
of past and current grammar-based tools. The following ques-
tions and ongoing issues were discussed by both the authors
of the systems presented in Section 3 and other participants.

1. How can we evaluate implementations of spatial gram-
mar based tools?

2. Can we identify a set of benchmark problems for spatial
grammar implementations?

3. How can shape grammar implementations be integrated
into the current software toolset (e.g., illustration and
sketching software, CAD, computer-aided engineering)?

4. How might spatial grammar implementations change
product development processes?

5. How can designers articulate shape grammars (i.e., vo-
cabulary and rules) in software implementations?

Table 4 provides a summary of the presentations with respect
to questions 2–5.

4.1. How can we evaluate implementations of spatial
grammar based tools?

The evaluation of prototype systems should reflect their rea-
sons for being. Such systems are typically developed for one
of two reasons: to demonstrate underlying theories or poten-
tial application areas. Criteria from Iordanova and Mueller
(2010) could be used to evaluate systems, as could the re-
quirements for spatial grammar based conceptual design sys-
tems introduced in Table 2. In both cases benchmark concep-
tual design synthesis problems would be useful in allowing
implementations to be evaluated with respect to each other.

4.2. Can we identify a set of benchmark problems for
spatial grammar implementations?

Benchmark problems are needed for the two kinds of valida-
tion identified in Section 4.1: to exercise underlying theories
and to demonstrate potential application areas. The latter case

indicates a need for the establishment of use cases for differ-
ent kinds of users doing different kinds of task; this, in turn,
led to the identification of a need to understand who might
use shape grammar-based systems and for what purposes.
Examples of potential uses included design generation and
evaluation, possibly with respect to a style, comparison of de-
sign alternatives, exploration and navigation of design spaces,
and style development activities. Further, there are issues to
consider concerning the support and integration of different
working methods and representations between disciplines
or users and design tasks, for example, industrial designers
versus architects versus mechanical designers versus manu-
facturing engineers.

4.3. How can shape grammar implementations be
integrated into the current software toolset?

A key difference between the development of solid modeling
and computational design synthesis systems lies in the nature
of the computational environments into which they will be in-
corporated. In the 1980s and 1990s, when solid modeling sys-
tems were first introduced, typical product development
processes involved, if any, a small number of stand-alone
packages that supported individual activities within the pro-
cess. The role of the solid modeling system was seen, in
this context, as being to provide product definition data as in-
put to these stand-alone systems. This is reflected in the sys-
tem architectures presented by Requicha and Voelcker (1983)
where the solid modeling system was the source of the
product definition that was used, through auxiliary repre-
sentations, to drive other processes, both computational and
manual. In contrast, computational design synthesis systems
will need to integrate with existing solid modeling systems
and other applications that are nowadays routinely used
within product development activities. From the systems re-
viewed in this paper, some progress has been made in this
area. For example, Li’s DXF interface allows results of a syn-
thesis episode to be exported to solid modeling systems, Hoisl
and Shea’s (2011) implementation is embedded in an open-
source CAD tool and Ertelt and Shea’s (2010) implementa-
tion uses grammars to support the generation of manufactur-
ing information from 3-D models represented as STEP mod-
els. A key challenge to be addressed in realizing “whole”
computational design synthesis systems that could be used
in real-life design processes lies in improved understanding
of how such systems might be integrated with current sys-
tems, both architecturally and across software packages
from both theoretical and practical perspectives. In essence,
we need to revisit what Requicha and Voelcker (1983) pre-
sented as their “contemporary congenial marriage of technol-
ogies.” The Design Compiler 43 (Alber & Rudolph, 2003) is
a general, Eclipse-based, platform for solving design synthe-
sis problems based on the graph, rather than shape, grammars.
However, this system provides some direction on the question
of integration since its key advantage is the many interfaces
provided to transform design graphs into analysis models, al-

Spatial grammar implementation 155

Table 4. Summary of presentations with respect to Questions (2–4)

Question 2: Question 3: Question 4: Question 5:
Can we identify a set of benchmark problems for

spatial grammar implementations?
How can shape grammar implementations be
integrated into the current software toolset?

How might spatial grammar implementations
change product development processes?

How can designers articulate shape grammars
(i.e. vocabulary and rules) in software

implementations?

Jowers et al.
(2010)

Demonstration used overlapping squares as the
example and could operate on emergent
shapes

The software is based on a bitmap representation;
shapes can be input/output to bitmap-based
systems such as MS-Paint.

The system can work from designers’ sketches or
bitmaps.
It could be used to promote creative thinking
largely in the early stages of a PDP.

Users sketch the left- and right-hand sides of the
rules or import bitmaps from other
applications

Jowers & Earl
(2010)

Demonstration generated (and so operated on)
Celtic knot designs

Not addressed, the demonstration focused on a
solution for Bézier curves.

Not applicable. The system is an early
experimental prototype to explore subshape
detection for curved shapes. The focus of the
research is on the underlying mathematics
rather than PDP.

Rules are defined using mouse input: all shapes
(in rules and generated shapes) are Bézier
curves.

Li et al. (2010) The demonstration package includes a number of
sample grammars; all are based on straight
lines in 3-D.

Generated designs can be output for further
development in CAD and 3-D printing. The
STEP interface is available.

Designers would be developing their own
grammars.
Generated designs can be output for further
development in CAD and 3-D printing.

The system focuses on supporting designers
creating their own grammars in the context of
a generate-test cycle.

Trescak et al.
(2010)

The demonstrator operates on rectilinear designs,
based on two overlapping squares, and
labeled grammars.

The software is object oriented and open source;
it operates on shapes where a SHAPEa [is a
collection of] POLYLINESa [is a collection of]
LINESa (straight labeled lines) in a 2-D space,
so, in principle, input and output could
interface with CAD.
Grammars and generated shapes are stored in
XML.

Not addressed in the demonstration Users to create rectilinear grammars and then
generate shapes from them

Hoisl & Shea
(2011)

The Demonstration used a parametric version of
the kindergarten grammar.

The software is built on FreeCAD and so the
OpenCASCADE geometric modeling kernel.
The grammars are 3-D spatial grammars in
U33 space.

The system uses concepts and interfaces that are
familiar to practicing designers.

Users create grammars based on parametric 3-D
CAD primitives; blocks were demonstrated
but the system also supports spherical,
toroidal, ellipsoidal, cylindrical- and conical
shapes

Ertelt & Shea
(2010)

The machining of pockets from solid blocks was
demonstrated. The desired part shape and the
shape of the stock were used as input. The
output is a computer numerical control
program that can be run on a machine tool.

The software is built on the OpenCASCADE
geometric modeling kernel. The grammars are
3-D spatial grammars in U33 space.

The approach could be used by production/
manufacturing planners to generate process
plans. In addition, it could be used by
designers to evaluate design alternatives
(during CAD detailing) with respect to
manufacturing resources/capabilities that are
available at the manufacturer. Different
grammars could be used to capture different
resources/capabilities available at different
manufacturers.

Rules are defined in the C++ source code of the
software. The grammars encode
manufacturing information that can be applied
to subshapes in 3-D models

Correia
et al. (2010)

The demonstration showed 3-D shapes with
straight edges and planar surfaces represented
as an underlying geometric representation.

The software is implemented using Java and Jess
(http://www.jessrules.com/) and run as an
applet in a web browser.

The design brief would be developed early in the
PDP and used to drive later stages where the
overall form of the building is established.

Users input design parameters for a house and the
site it will occupy and a symbolic design brief
that complies with Portuguese regulations is
generated. This is used as input to a module
that generates designs in an architectural style.

Note: PDP, product development process.
aAll objects in capital and small capital are identifiable.

A
.M

cK
ay

et
al.

156

lowing for integration with common tools such as CAD and
simulation.

4.4. How might spatial grammar implementations
change product development processes?

In moving forward to the realization of computational design
synthesis systems that can be used by design practitioners in
ways that will improve the effectiveness and efficiency of
their activities, a second key area for development lies in un-
derstanding how such systems might be incorporated into de-
sign practices that already include multiple approaches and
computational solutions. Given that design paradigms are un-
likely to change, especially in the short term, to reflect the
needs of grammar-based technologies, the first usable com-
putational design synthesis systems will need flexible user in-
terfaces in order that they can be tuned or adapted to suit the
needs of individual designers and their design processes and
practices. Chase (2002) identified a range of levels of automa-
tion (see Fig. 10) for the integration of shape grammar based
systems with users with a focus on the capabilities of gram-
mar-based systems. This included an architecture for user inter-
faces of shape grammar based design systems that divides a
grammar’s use into stages (development, application, evalu-
ation) and actors (e.g., developer, user–designer) with the po-
tential for either a human or computer to assume these roles.
Appropriate user interfaces for design will also need to be fo-
cused on the needs arising from the human-driven design
processes and practices rather than underlying computational
design synthesis technology. In addition, they will need to
support users in providing information needed to drive the sys-

tem. This will include supporting the definition and develop-
ment of the grammars themselves (both vocabularies and rules)
and their application to design problems. Finally, achieving
usable computational design synthesis systems requires atten-
tion to be directed toward system architectures so that compu-
tational design synthesis systems can be embedded in product
design and development processes, both as providers of infor-
mation and users of information from other systems. For exam-
ple, point clouds might be used for similarity checking and the
automatic derivation of new grammars that reflect the shape
characteristics of groups of current designs.

4.5. How can designers articulate shape grammars
(i.e., vocabulary and rules) in software
implementations?

There was general agreement that the process of defining a
grammar could be used as a means of understanding a design
problem but their benefits need to be made more obvious to
potential users. A useful area for further development would
be to think about typical learning curves for users and identify
key points/stages on these curves. In addition, there is a need
for more methodological support for guiding a user in the de-
sign of a grammar. For example, what constitutes a “good”
rule and how might “good” rule formulation be supported?

5. CONCLUSIONS

The goal of this paper was to provide a framework for discus-
sions around a next generation of design systems based on imple-
mentations of spatial grammars. Our discussion has touched

Fig. 10. The architecture for shape grammar based design systems. Adapted from “A Model for User Interaction in Grammar-Based
Design Systems,” by S.C. Chase, 2002, Automation in Construction, 11, 161–172. Copyright 2002 by Elsevier. Adapted with permission.
[A color version of this figure can be viewed online at http://journals.cambridge.org/aie]

Spatial grammar implementation 157

on shape representation schemes, associated computation
systems, and the product development activities (including
design synthesis and fabrication) that such systems might
be used within. We anticipate the role of designers and en-
gineers changing to include the development of grammars
from which shapes could be computed in generate-test cycles.
System users would design, develop, and use their own gram-
mars to generate designs in, for example, a given style or to
suit the capabilities of particular fabrication process with
associated constraints. Similarly, if the language of a fabrica-
tion process were captured in a grammar then it becomes
feasible to automatically revise a design to suit different
fabrication processes while maintaining functional require-
ments. In the longer term we anticipate grammar-based sys-
tems that, given a collection of designs, will be able to gener-
ate a grammar from which designs in the given set, and so a
language of their designs, could be generated. In the work-
shop, the need to invest substantial effort to understand gram-
matical approaches before they can be used effectively was
recognized. In particular, key aspects identified were the
need for “modern” interfaces aligned with capabilities of
current CAD software and the need to determine unique
properties compared to say scripting and generative CAD.
Current implementations have made significant progress
but substantially more is needed if these aspirations are to
be achieved.

The first 3-D solid modeling systems became commer-
cially available in the early 1980s (Requicha & Voelcker,
1983). These systems were built on theoretical models estab-
lished through research prototypes that emerged in the late
1970s. By the late 1990s, systems built on these models
had become ubiquitous in industrial product design and de-
velopment processes. If a similar path were anticipated for
the development of computational design synthesis tools
then, from the implementations reviewed in this paper, we
are presently in a stage of computational design synthesis sys-
tem development comparable to that of 3-D solid modeling
systems in the late 1970s. All of the systems reviewed are de-
monstrable and the majority are available as downloadable
software for researchers to use in design experiments. To in-
corporate computational design synthesis systems into
product development processes on an industrial scale, two
key aspects require further development: integration with ex-
isting computer-based design systems and integration into the
processes of design practice. Once in use by early adopters,
deeper understanding of the requirements outlined in Section
3 will be developed and so commercially viable computa-
tional design synthesis systems will emerge.

ACKNOWLEDGMENTS

This paper is based on demonstrations and discussions at a DCC’10
workshop on shape grammar implementation. The authors thank the
workshop committee and participants for their contributions.

REFERENCES

Agarwal, M., & Cagan, J. (1998). A blend of different tastes: the language of
coffee makers. Environment and Planning B: Planning and Design 25,
205–226.

Alber, R., & Rudolph, S. (2003). “43”—A generic approach for engineering
design grammars. AAAI Technical Report SS-03-02, Computational
synthesis. Proc. AAAI Spring Symp. Stanford, CA.

Carlson, C. (1993). Grammatical programming: an algebraic approach to
the description of design spaces. PhD Thesis. Carnegie Mellon Univer-
sity, Department of Architecture.

Chase, S.C. (2002). A model for user interaction in grammar-based design
systems. Automation in Construction 11, 161–172.

Chase, S.C. (2010). Shape grammar implementations: the last 35 years. Proc.
4th Int. Conf. Design Computing and Cognition, Stuttgart, July 11,
2010. Accessed at http://www2.mech-eng.leeds.ac.uk/users/men6am/
documents/DCC2010grammarsworkshop-Chase-revised.pdf

Chau, H.H., Chen, X.J., McKay, A., & de Pennington, A. (2004). Evaluation
of a 3D shape grammar implementation. In Design Computing and Cog-
nition ’04: Proc. 1st Int. Conf. Design Computing and Cognition (Gero,
J.S., Ed.), pp. 357–376. Dordrecht: Kluwer.

Correia, R.C., Duarte, J.P., & Leitão, A.M. (2010). MALAG: a discursive
grammar interpreter for the online generation of mass customized hous-
ing. Proc. 4th Int. Conf. Design Computing and Cognition, Stuttgart,
July 11, 2010. Accessed at http://www2.mech-eng.leeds.ac.uk/users/
men6am/DCC-10-SG-Implementation-Workshop-Agenda.htm

DCC10-grammars. (2010). Shape grammar implementation: from theory to
useable software. Proc. 4th Int. Conf. Design Computing and Cognition,
Stuttgart, July 11, 2010. Accessed at http://www2.mech-eng.leeds.ac.uk/
users/men6am/DCC10-SG-Implementation-Workshop.htm

Duarte, J.P. (2005). A discursive grammar for customizing mass housing: the
case of Siza’s houses at Malagueira. Automation in Construction 14(2),
265–275.

Ertelt, C., & Shea, K. (2010). Shape grammar implementation for machining
planning. Proc. 4th Int. Conf. Design Computing and Cognition, Stutt-
gart, July 11, 2010. Accessed at http://www2.mech-eng.leeds.ac.uk/
users/men6am/DCC-10-SG-Implementation-Workshop-Agenda.htm

Gips, J. (1999). Computer implementation of shape grammars. Proc. Work-
shop on Shape Computation, MIT. Accessed at http://www.shapegrammar.
org/implement.pdf

Heisserman, J. (1991). Generative geometric design and boundary solid
grammars. PhD Thesis. Carnegie Mellon University.

Heisserman, J. (1994). Generative geometric design. IEEE Computer
Graphics and Applications 14, 37–45.

Heisserman, J., Mattikalli, R., & Callahan, S. (2004). A grammatical ap-
proach to design generation and its application to aircraft systems.
Proc. Generative CAD Systems Symp. ‘04, Pittsburgh, PA.

Hoisl, F., & Shea, K. (2011). An interactive, visual approach to developing
and applying parametric 3-D spatial grammars. Artificial Intelligence
for Engineering Design, Analysis and Manufacturing 25, 333–356.

Iordanova, I., & Mueller, V. (2010). Conceptual computational design tools.
Proc. 4th Int. Conf. Design Computing and Cognition, Stuttgart, July 11,
2010. Accessed at http://www.grcao.umontreal.ca/DCC2010-WS/WS2010-
concept-compu-tools.htm

ISO. (1994). ISO10303-1: Industrial Automation Systems and Integration—
Product Data Representation and Exchange—Part 1: Overview and Fun-
damental Principles. Geneva: ISO.

Jowers, I. (2006). Computation with curved shapes: towards freeform shape
generation in design. PhD Thesis. Open University.

Jowers, I., & Earl, C.F. (2010). QI—a shape grammar interpreter for curved
shapes. Proc. 4th Int. Conf. Design Computing and Cognition, Stuttgart,
July 11, 2010. Accessed at http://www2.mech-eng.leeds.ac.uk/users/
men6am/DCC-10-SG-Implementation-Workshop-Agenda.htm

Jowers, I., Hogg, D.C., McKay, A., Chau, H.H., & de Pennington, A. (2010).
Shape detection with vision: implementing shape grammars in concep-
tual design. Research in Engineering Design 21(4), 235–247.

Krishnamurti, R., & Stouffs, R. (1993). Spatial grammars: motivation, com-
parison, and new results. CAAD Futures ‘93: Proc. 5th Int. Conf. Com-
puter-Aided Architectural Design Futures. Amsterdam: North-Holland.

Li, A.I.-K., Chau, H.H., Chen, L., & Wang, Y. (2009). A prototype system for
developing two- and three-dimensional shape grammars. Proc. 14th Int.
Conf. Computer-Aided Architectural Design Research in Asia, pp. 717–
726. Yunlin, Taiwan: CAADRIA.

A. McKay et al.158

McKay, A., Chase, S.C., Garner, S.W., Jowers, I., Prats, M., Hogg, D.C.,
Chau, H.H., de Pennington, A., Earl, C.F., & Lim, S. (2009). Design syn-
thesis and shape generation. In Designing for the 21st Century: Interdis-
ciplinary Methods and Findings (Inns, T., Ed.), pp. 304–321. Aldershot:
Gower Publishing.

Pugliese, M., & Cagan, J. (2001). Capturing a rebel: modeling the Harley–
Davidson brand through a motorcycle shape grammar. Research in Engi-
neering Design 13, 139–156.

Requicha, A.A.G., & Voelcker, H.B. (1983). Solid modeling: current status
and research directions. IEEE Computer Graphics and Applications 3,
25–37.

Shea, K., Ertelt, C., Gmeiner, T., & Ameri, F. (2010). Design-to-fabrication
automation for the cognitive machine shop. Advanced Engineering Infor-
matics 24, 251–268.

Stiny, G. (1991). The algebras of design. Research in Engineering Design 2,
171–181.

Tapia, M. (1999). A visual implementation of a shape grammar system. Envi-
ronment and Planning B: Planning and Design 26, 59–73.

Trescak, T., Esteva, M., & Rodriguez, I. (2010). Shape grammar inter-
preter for rectilinear forms. Proc. 4th Int. Conf. Design Computing and
Cognition, Stuttgart, July 11, 2010. Accessed at http://www2.mech-
eng.leeds.ac.uk/users/men6am/DCC-10-SG-Implementation-Workshop-
Agenda.htm

APPENDIX A

Alison McKay is a Professor of design systems at the Univer-
sity of Leeds. Her research interests are in next-generation
CAD systems; sociotechnical perspectives on new product in-
troduction systems, including extended enterprise supply net-
works, through life knowledge and information management;
and needs-driven product design. She was a founding mem-
ber of the Leeds Socio-Technical Centre and led the develop-
ment of a multidisciplinary undergraduate program in product
design where she teaches design studio and design research
modules. She is a chartered engineer and a Fellow of the In-
stitution of Mechanical Engineers.

Scott Chase is a Professor with special responsibilities in
digital design in the Department of Architecture, Design,
and Media Technology at Aalborg University. Dr. Chase
holds degrees in Architecture from MIT and UCLA. His in-
dustry employment has included Bechtel, IBM, and NIST’s
Manufacturing Engineering Laboratory. Previous academic
appointments were in architecture and design, manufacture,
and engineering management at the University of Strathclyde
and the Faculty of Architecture at the University of Sydney.
His research interests lie in formal generative design systems,
building information modeling and virtual worlds. He is a
member of eCAADe, ACM, Sigma Xi, and a Fellow of the
Higher Education Academy.

Kristina Shea is a Professor for virtual product development
at the Technische Universität München. She studied mechan-
ical engineering at Carnegie Mellon University, where she
completed her PhD in 1997. She has held appointments as
a Postdoctoral Researcher at EPFL, Switzerland, and as a
University Lecturer at Cambridge University. Her research
interests are in new computational models, methods, and
tools for product development with a focus on supporting
early stages, design synthesis, optimization, and fabrication.
Specific topics include formal, integrated product models,
graph and shape grammars, multiobjective and multidiscipli-
nary optimization and development of cognitive products,
and cognitive fabrication systems.

Hau Hing Chau is a member of the Institute for Engineering
Systems and Design within the School of Mechanical Engi-
neering at the University of Leeds. He attained his PhD in
2002 from the University of Leeds on the preservation of
brand identity in engineering design using a grammatical ap-
proach. Since then, his research has focused on shape compu-
tation and the implementation of 3-D shape grammar-based
design systems for use in the consumer product development
processes.

Sources and URLs of downloadable software prototypes used

Authors
Title of DCC’10

Presentation

URL to
Downloadable

Software

Andrew I-Kang Li,
Hau Hing Chau,
Liang Chen, & Yang
Wang

A prototype system for
developing two- and
three-dimensional
shape grammars

http://andrew.li/
downloads/sgde-
package.zip

Tomas Trescak, Marc
Esteva, & Inmaculada
Rodriguez

Shape grammar
interpreter for
rectilinear forms

http://sourceforge.net/
projects/
sginterpreter/

Frank Hoisl &
Kristina Shea

A 3D spatial grammar
interpreter applet

http://sourceforge.net/
projects/spapper/

Iestyn Jowers & Chris
Earl

QI—a shape grammar
interpreter for
curved shapes

Not available

Christoph Ertelt &
Kristina Shea

Shape grammar
implementation for
machining planning

Not available

Iestyn Jowers, D.C.
Hogg, Alison McKay,
Hau Hing Chou, &
A. Pennington

Shape grammar
implementation with
vision

http://www.
engineering.leeds.
ac.uk/dssg/
downloads/
requestForm.php

Rodrigo Coutinho
Correia, José Pinto
Duarte, & António
Menezes Leitão

MALAG: a discursive
grammar
interpreter for the
online generation of
mass customized
housing

Not available

Spatial grammar implementation 159

