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Interpretation and Utilisation of Parametric Models of Binary
Distillation Columns: Relating Plant and Control Design

J. B. Edwards and S. B. Mohd Noor

Abstract
Previously published analytical models () @ for the separation dynamics of CSTC and

" tubular packed distillation columns are rederived using common notation for detailed
‘comparison purposes. The separation and total composition equations are now

successfully separated at an early stage in the derivation which is thus simplified. The
analyses produce parametric formulae for steady-state separation and for the transfer-
functions of both columns in terms of length, relative volatility, evaporation-and
nominal vapour-rate parameters only plus column and end-vessel capacitance.

A second order, nonminimum-phase structure derived from high-and low-frequency
asymptotic behaviour is shown to fit all types and, on the basis of this, analytic stability
and critical error criteria for linear closed-loop control are derived: again requiring the
substitution only of the above mentioned plant parameters. It is shown that, for equal
parameters, tubular columns outperform CSTC types. However, matching of the two
types for separation and stability is achievable by fictitious inflation of the CSTC length
and volatility coefficient. This may permit use of an equivalent but simpler CSTC
model for unified tubular plant and control design.

Finally the CSTC column is formulated as a parametric, bilinear third-order, state-
space model having a state-dependent, input-coefficient matrix. This is derived with a
view to future application of optimal control based on the on-line Riccatti solution
method of Banks® already successfully tested on a bilinear CSTR chemical reactor
model®).

1. Introduction

Much research effort over the past 18 years within AC&SE at The University
of Sheffield has been aimed at the derivation of parametric models of binary distillation
columns of both the packed-and the tray-type. These have been derived from the basic
physical equations of the process solved ( in conjunction with the reboiler, feed and
accumulator boundary conditions) by Laplace transform methods. Both spatially-
distributed and lumped-parameter representations have been solved for large-signal
steady-state behaviour and for the small signal response to sinusoidal inputs (i. e. for
parametric transfer functions pertaining around the derived steady state operating
point). Mol-fraction compositions of the top vapour and bottom liquid product have
been the selected outputs whilst the perturbed inputs have been reboiler vapour and
reflux liquid flowrates. Feed conditions have been kept fixed.
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Since the main plant parameters and nominal quiescent input conditions appear
explicitly in the derived response formulae (both large-signal, steady-state and TFM),
these models have the potential (a) for uniting plant and control systems design and (b)
for wide-ranging, fast-adaptive control. This report is the first of a series aimed at
testing the extent to which there goals might be realised. The derivations of the
presented parametric models have been published elsewhere by members of the
Sheffield AC&SE Process Control Research Group past and present. The reader
requiring such information should consult the references cited. This report is devoted
to the response of composition separation between top and bottom products, (not to
the average or total of these compositions. Previous research showed that, for a
symmetrical column, deviations in separation and total are independently related to
input perturbations in circulating flow rate and to differential product take-off rate
respectively. With the benefit of this hindsight, the derivation of either relationship is
capable of simplification by divorcing "separation" and "total" composition dynamics at
a much earlier stage in the analysis. The resulting condensed versions for product
separation are presented here therefore.

The report then proceeds to interpret the influence of plant parameters and
operating conditions on large-signal steady state and small signal dynamic
performance. Comparisons are made between columns modelled by (a) spatially
distributed and by (b) lumped parameter representations: Using notation more
familiar to Chemical Engineers, these will be referred to as (a) Tubular columns and (b)
Continuous-stirred tank (columns): CSTC's. i.e.

(a) Tubular column means a column represented by a spatially distributed model
(b)CSTC means a column represented by a lumped parameter model

The terms long-and short columns have sometimes been used to distinguish the two
types in the past but these are abandoned here since a long column may , in principle,
be stirred whilst a CSTC process may be physically long. "Long" and "tubular" are
therefore not necessarily synonymous. Nor are "short" and "stirred" although this may
be the case often in practice. Column length (normalised) is here brought out as a
design parameter in both cases whereas this has not been done for the CSTC
representation in the past.

A purpose in considering both types of model is to ascertain in detail the extent
to which a CSTC representation might be used as an approximation to the more
difficult tubular process for the purpose of design simplification.

Section 2 deals with large-signal steady state behaviour. Small signal dynamic
behaviour is derived in Section 3. Control aspects are considered in Section 4.

The report is confined to packed columns. Tray type columns will be
considered in a later report.

2 Large Signal Behaviour
2.1. Tubular Column

2.2.1. Large Signal PDE Model

Following Edwards @) and introducing his inverted U-tube concept at the
outset, such that setting distance A’ =0 locates the accumulator and reboiler end
vessels whilst h'=L' fixes the feed position, then the following pde's describe the
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behaviour of vapour-and liquid-compositions (as mol-fractions) Y(h',t) and X'(h't)
respectively within the upper (rectifying) and lower (stripping) sections of the
distillation column:

V. oY oY, al oYy,
g._.A—T:Yt—Y:— £ —L £ (N
¢ ot k oh ot k oh
oX L oX Bl doX, aV, oxX.
d ————=X -X=-—t-—"t 2
. % Tkam e otk ok &
where normalised time 1=t/T, 3
and base time T = H/k = constant @)
The model assumes the constant molar vapour and liquid capacitanes p.u. length are
symmetrically related thus:
H =oHg =0H,=H,=H &)

where suffixes r and s denote rectifier and stripper whilst 1 and v denote liquid and
vapour. The parameter o (>1.0) is related to the relative volatility ,B, of the binary
mixture and the equilibrium relationship{i.e. B=Y(1-X)/X(1-Yo)=Y'(1-X.')/X'(1-Y")},
is approximated by piecewise linear relationships for rectifier and stripper thus

1-Y =a(l-X) (for the rectifier) (6)
and Y =X, (for the stripper) @)

* It is further assumed that column and packings are designed such that the rectifier and
stripper evaporation constants k; and kg expressed as evaporation rates p.u. length

# p.u. departure from equilibrium ( Y.-Y and X'-X,' respectively) are constant and equal;
LE:s

k =k =k ®)

Flow rates Vr, Lr, Vs and Ls and denote the bulk flows of vapour and liquid up and
down the column, suffixes r and s again denoting the rectifier and stripping zones.

2.1.2 Steady-state Equations for Symmetrical Operation

If we operate the column such that guiescently

V=al,=L=aV,=V ®)
then, setting normalised distance h such that
h=h/L, (10)
where base distance L =V /k (11)
the simple subtraction of equation (2) from (1) yields, in steady state, the simple
separation equations:
‘e %=S—S,=% (12)
where S(h)=Y(h)-X (h) (13)
) and S.(h) =Y, (h) - X.(h) (14)




[Note that a decoupled pair of equations for total gcompositions Y+X' and Y +X,'
could also be written down by adding (1) and (2)]

2.1.3 Boundary Conditions
The feedpoint boundary equations may be written (in general)

VoX.(L)+F,z=VY(L) (15)
and L{l-a+aY,(L)}+FZ=LX (L) (16)
Now as vapour feed flow  F, =V - V; (17)
and liquid feed flow F=L-L (18)
and if feed liquid composition Z=1/(1+ ) (19)
whilst feed vapour composition z=o/(1+a) (20)

(so that the feed is in equilibrium at the knee of the linearised equilibrium curve) then,
under the assumed symmetrical quiescent operating conditions (9), the separation
boundary condition at the feed point reduces to simply:

S(L)-S.(L)=2¢/(o+1) @1

where e=a+1 (22)

The end vessel boundary conditions involve accumulator and reboiler
capacitances (made equal here at H.) and are therefore differential equations rather
than algebraic equations in general (unlike the feed point equations above). They are

HoY,(0)=V,[a{l-Y,(0))-{1-Y(0)}] (23)
and H,0X,(0)=L[X (0)-0X,(0)] (24)
However, under the assumed operating conditions, in steady-state, we get simply:

al, (0)-8(0)=¢ (25)
2.1.4 Steady State Solution

Assuming a linear solution (in h):

§==2Gh+(, (26)
so that S ==20h+C,; : : 27
where G, Cj nd C, are constants, by substitution in (12),(21) and (25) we derive
2e
G= 28
(a+1)(2eL+a+1) (&2
sudl S0) [=C,] = e{e+2(a+1)L} 29)
(a+1)(2eL+a+1)

We thus have a simple formula for the separation S(0) {=Y(0)-X'(0)}between the
composition of the vapour produced at the top of the tubular column and that of the
liquid at the bottom in terms of parameter & and L (e=0t-1): i.e. in terms of o and
real column length L', evaporation parameter k and quiescent operating vapour flow V,
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since L=L'k/V. The implications of formula (29) are postponed until after the next
subsection (2.2) devoted to the CSTC column.

2.2. CSTC Column

2.2.1 Large signal DE's

In this case the rectifier vapour composition is lumped in a single zone as Y(0)
and the stripper liquid composition as X'(0). Y(1) denotes the vapour composition that
exists in equilibrium with accumulator liquid composition X(1) whilst X.'(1) is the
liquid composition in equilibrium with vapour composition Y'(1) produced by the
roboiler. The same equilibrium relationships (6) & (7) are assumed to apply generally
as for the tubular model. Following Tabrizi and Edwards @ but using symbols k; and ¢
k, here as in Section 2.1 to denote evaporation rates p. u. length and L' again to
denoted section length (i. e. k,L', kL' here=k,, kg in Tabrizi). Under the same physical
symmetry assumptions (5) and (8) as for tubular models, again using T to denote
normalised time ¢/T,, and where Ty, is given by (4), then if ¢ denotes dq/dt , the
rectifier and stripping section mass balances can be written compactly thus:

VY(0)-aVX,(0)-F,: ol {Y.(0)-Y,(1))

: = —-Y(0)=-Y = - (3
Y(0)+ o Y.(0)-Y(0)=-Y,(0) T (30)
and

X (0)4 LX Q=0LY@+(@-DL=FZ _ o)y (0)=—x,(0)- WX Q)= XD

kL kL
(31)

2. 2. 2. Terminal Boundary DE's

The feed boundary equations and those for the rectifier and stripping sections
(above) are synonymous but the end vessels again introduce additional DE's due to
their separate capacitances. There are:

Haa%l—)=vr{}’(0)—a}:(l)—a+l} (32)
and  H,ZD 1 ¥ 0)-0x.1)) (33)

dt
2.2.3. Steady-State Equations under Symmetrical Operation

Assuming the balanced flow conditions of eq". (9) and a feed mixture in
equilibrium at the knee of the linearised equilibrium curve of eq"s (19) & (20) . e.,
exactly as for the tubular column) then

(I-o)(@-1D)V a-1 _2(a-1)V

FZ-Fz—-(a-1)L = V=
(1+a) « a (aa+1)

(34)

so that subtracting eq"(31) from (30) in steady we get the large-signal separation
equation:
S(O)—S((O); 28/(a+1) - S'(O)__S(O) = Sc(l)zsr(o)

(35)
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where again normalised length L=L'/L,, and L, =V/k.,

Here S=¥=X (36)
Whilst S, =Y-X (37)

[ Again a decoupled equation for total composition rather than separation therein

could be written in addition to (35) (by adding (30) and (31)) but this is not of interest
in a report confined to separation dynamics]

The terminal boundary conditions (32) and (33) subtract in steady state, under
the same operating conditions (9), to give:

oS.(1)-S(0) =¢ (38)

- 224, Steady State Solution

Eliminating S(1) using eq™ (38) we get:
e+ S(0)(La+1)
a(L+1)
S(O)(L+1)-2¢e/(a+1)
(L-1)

5.(0)=

and also S,.(0)=

from which we obtain the CSTC column separation:

$(0) = E [(3a+1)L+a-—1
(a+1) Ba-1)L+a+1

(39)

The differences and similarities in steady-state separation characteristics
predicted by the two models (29) and (39) is explored in the next Section 2.3.

2. 3 Comparison of Steady State Separation Characteristics of the Tubular
and CSTC Column Models

2. 3.1. Comparison of Separation Surfaces

The steady state separations for packed column have been deduced as in terms
of L and « (a), for the tubular column as:
€ 2(c+1)L+¢

"o+ 2eLrosl ) @)

and (b), for the CSTC column as:
£ (Ba+1)L+¢e

S =S(0)

$=50= G Ga- L o1 i
where e=o-1 (42)
and L=Lk/V (43)

The argument h=0 is now dropped for convenience and the variable S will now be
understood to apply to the separation of composition between top and bottom of the
column.

Plotted as a function of plant parameters L and o , the S-surface, i.e. S(L,o)
for each of the two cases is graphed in Figs 1 & 2 respectively. For any given «, the




RHS of equations (40) & (41) intersect only at L=0 and, for any given L, a
combination, the separation produced by the tubular column exceeds that generated by
the CSTC. This is as might be expected since the tubular column acts as a sequence of
infinitesimal CSTC'S each feeding its neighbour with a progressively enriched
(depleted) feed mixture via the circulating vapour (liquid) streams as we move from
the column feed point, at h=L, towards the accumulator (reboiler), at h=0, along the
rectifier (stripping section). Thus, as can be seen from eq". (40),

for the tubular column, Lim | §=§,=10 (44)
Lepe

whereas, for the CSTC, Lim L | §=§, = L (45)

" (a+1)(Ba-1)
: Thus, the value of S can be raised arbitrarily towards unity (i. e. Y(0)=1.0 and
X'(0)=0.0), no matter what the value of feed parameter a (>1.0), merely by increasing

design parameter L. i.e. by increasing real lengthen L', increasing evaporation
parameter k of the packing material, or by decreasing the guiescent circulating flow V
at which the plant is operated. Increasing L by either of these means will also increase
the value of separation produced by the CSTC for a given o (>1.0) but only towards
asymptotic values, S;;<1.0, set by o and given by eq" .45. The value of S;;, increases
with o but so too does the value of Sy : the initial separation z-Z of the feed mixture
since from eq"s(19) and (20),

S, =e/(a+1) (46)
Clearly the potential improvement in separation
Lim(,-5,)=0.0 (47)

O = oo

i. e. the potential improvement becomes progressively less as the volatility of the feed
mixture increases even though (for the CSTC) S, also increases with a.

2. 3. 2. Important Note on the Effect of Changing V at the Plant Design

Stage

We have noted above that S may be increased by increase of L through, say, a
reduction in quiescent vapour flow V. This is counter-intuitive at first sight since one
would expect greater separation to by achieved by increasing the boiling (and
condensing) rate i. e. by increasing the energy throughput. This expectation assumes a
given material throughput F+F,, however which contravenes our design assumption

Vi=aL=aV=L=V (eq" 9) from which follows:

F,=F=D=W=Ve/o, (48)

where D and W denote output flow rates of top and bottom product from the column
(i. e. from the accumulator and reboiler before recycling the remaining flow). Fig 3
summarises the quiescent flow conditions in the column. Design equation (9) was
imposed to ensure even loading across the column (i. e. constant composition gradient
G in the tubular case) and resulting equation (48) requires that, if V is reduced, then so
too must be the feed and product take-off rates F,,, F;, D & W . Thus reduced material

throughput is implied at the design stage. Intuition is now satisfied since increase in S
is effectively accomplished by reduction in steady-state material throughput as well as
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by simultaneously reduced energy flow. If the material throughput rate is pre-specified
then, for a given a, V is fixed by eqn (48) i. e. by (9) and be separation can only be
modified by choice of length L' or evaporation constant k.

All this is at the design stage when guiescent levels are decided upon. This
does not prevent subsequent perturbation of input variables V and L (despite given
feed flows) in order to control S in the neighbourhood of its steady-state design value.
Such control implies small departures from the design condition (9) (whilst respecting
input & output flow balance conditions) and by this means and under these
circumstances, it will be shown in Section 3 that an increase of V (and L) can increase
S, (F,, F, D & W remaining constant meanwhile). As stated, intuition is thus

satisfied.

2.3.3. Constant Separation Loci

From a column design viewpoint, the separation formulae (40) and (41) are
better expressed in the form L(S,a) rather than S(L,a) . This is because the input
parameters to the column designer are feed specification o and column performance
specification S. At the column design stage, plant parameter L is a dependent variable
to be deduced * . For the tubular column, the relevant equation (40) readily rewritten
thus

_ S(a+12—(o-1)

= (49)
201-8)(a-1)(a+1)
which applies to all o>1.0 and to
Eleegero (50)
a+l1

Constraint (50) is trivial practically since the feed separation S¢=(a-1)/(o+1) so that
the lower limit of (50) pertains to S < feed separation: Clearly this condition has no
practical relevance. Clearly L—ee for 1.0<o.—e> which would be expected since a
mixture of @=1.0 is undistillable. L is asymptotic to -0.5 as a—< , becoming negative
only for a contravening constraint (50). Constant separation loci of L versus a are
shown in Fig 4. Fig 5 shows S versus L for selected values of o computed from

eq".(40)
For the CSTC column, separation equation (41) may be rewritten for L(S,a)

thus:
_ S(o+1) = (a-1)? 1)
Ba+)(a-1)-S(a+1)(B3a-1)
and applies practically within the limited «- range
2 _—
S+1+2vS S+1<a<S+1+2J§ (52)

31-5) 1-§

* The situation is different in the plant "rating" exercise where L and o are then the given inputs and
the expected separation performance from the existing plant is to be evaluated.
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The lower limit corresponds to S—Sy,; (i. €. L—ec) and the upper to L>0.
Outside this range of o the constraint 1.0<a and L>0 is not satisfied. As a—3vo, L
becomes asymptotic to -0.333: Of mathematical interest only! Constant separation
loci of L versus o for the CSTC column, computed from (51), within range (52), are
shown in Fig 6. Fig 7 shows S versus L for selected values of a.

The obvious conclusion from comparing Figs 4 and 6 or 5 and 7 is that the
tubular column can separate mixtures to any extent, S<1.0, no matter how small o
(>1.0) merely by appropriate choice of L. It is therefore well suited to difficult
separations, i. e. to low a feed mixtures. By contrast, the CSTC, whilst showing the
trend to increasing S with increase of L (for a given a) is capable only of a bounded <
range of S . The smaller the feed separation the less the potentially attainable output
separation, irrespective of L. The CSTC only provides a reasonable improvement in
separation for a moderate range of . '

For comparison purposes in Figs 8 and 9, lines of feed separation S¢{=€/(a+1)})
are also indicated on curves of S versus o for selected values of L for tubular and
CSTC columns respectively. These curves indicate that S>S¢ for all L at any a in the
case of the tubular column. In the case of the CSTC column, S>S; at any given a
~ provided L>1.

2. 3. 4. Matching Separations of Tubular CSTC Columns

It would be useful to find that CSTC column which is, in some sense,
equivalent to the tubular column. One criterion for matching the two types could be
equality of steady-state separation for a given feed mixture. Accordingly we can
equate S(a,L) given by eq". (40) for a tubular column of normalised length L to S(a
,L1) given by eq". (41) for a CSTC of normalised length L;. This exercise produces
the result

L=-L/(L-1) (53)
ie. L=L/(L+1) (54)

It is noteworthy (a) that this result is independent of o and (b) that matching is possible
only for the condition

L<1.0 (55)
Note again however that since feed separation
Sg=z-Z=¢/(0+1)

then, for the mbular column, eq". (40) predicts that S>S¢ (i. e. the column is only
useful) for L>0.5. Hence tubular columns of normalised length

0.5<L<1.0 (56)

are the only ones that can match CSTC columns, and from eg". (53), the latter can
occupy the normalised length range

1.0<L{<o0 (57)

Thus from both separation formulae we deduce that matching is possible only
within the limited range if separations:




e/ (a+1)(=S5,)<S<@Ba+1)e/{(Ba-1)(a+1)) (58)

For various ¢, the values of the S-ranges are therefore as follows:

a=2 0.333<S<0.467
o=3 0.500<S<0.625
o=4 0.600<5<0.709
o=5 0.667<5<0.762

Thus the separation range over which matching is possible is rather restricted
and is appropriate only to relatively high volatility feeds. The tubular column can
handle o's down to near unity (i. e. €<<1.0) and still produce output separation —
1.0 , merely by choice of L. Not so CSTC columns.

As an example, for a=3, and $=0.6, equation (49) predicts the need for
a tubular column of length L=0.875. However, equation (51) (or 53) predicts L1=7.0
i.e.Lj>>L! 7
Finally it should be noted that separation matching can be achieved for columns
of the same length L by fictitious adjustment of feed volatility in the CSTC. Setting
this again to @ in the tubular case but o in the CSTC gives equal separations if the
following formula {derived from eq™s (40) and (41)} is satisfied. viz:

2%, (o = 1)+ LB, + 1) (o — o)) + (oo, =1)(e—0,)=0 (59)
This is readily verified for the case of say $=0.508, L=5.0 for which o must be 1.225
or 0.;=2.400 (as the separation formulae confirm. ) Eq". (59) has yet to be modified (if

possible) to obtain oj(L,a) explicitly. There will be constraints on the applicability of
the formula.

3. Small Signal Dynamic Behaviour
3.1. CSTC Model

3.1.1 Derivation of Transfer Function relating Separation to Circulating
Flow

The model will be true, strictly, only for infinitesimal changes in the process
variables around the quiescent operating point which is assumed to be governed by the
design criteria of symmetry and even-loading previously set out. If prefix "d" indicates
such a change in its associated variable then let

o denote dS(o)

O denote dS.(0)

da(1) denote dSe(1)

v denote dV, and dVy , F,, and F| being kept constant.
] denote dL; and dLg, F, and F being kept constant.
f=u+

10
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y denotes dY, x'denotes dX'...etc

Thus, differentiating the original dynamic balance equations (30) and (31) for the
CSTC (i. e. before the symmetrical operation and other design constraints are
imposed), subtracting and using p to denote d/dt (i. e. Laplace transforming in p with
respect to normalised time T ) we get:

V[Y(0)-oX,(0)] /X (0)-o¥,(0)] _ &l

' P5+ (6+5)+ = - 2
=5,—8 : 60)
= —p8, -V 15, ~ 5,(1)]- HELO-X D] | a0 X, (0)-X, (D]

kL kL %3

In eq™ (60) and subsequent small signal equations, the remaining large signals V,Y(0),
X¢'(0) can be regarded as constants=the quiescent steady-state values governed by the
steady-state equations derived in Section 2, thus yielding a linear model in the small
perturbation 9, v, 1 etc. If, as in previous analyses, for symmetry we set

H=Hla=H (61)
than the small signal boundary equations (32) and (33) yield similarly:
pHoad,(1)=V[8-ad,(1)]+v[Y(0)-a¥,(d)+e]-I[X (0)-oX, ()]  (62)

where p‘ denotes d/dt. Hence:
af1+2= ]8 (D —8+—[U(Y(0) al,()+e)—/{X (0)-oX_ ()] (63)

Now if we confine attention to perturbations v+l only , i.e. in total circulating flow,
f ,whilst keeping top and bottom product flows D and W constant (i. e. v-1=0 ) then

v=Il=f/2 (64)
So that cq" (60) reduces to simply
fISO)+eS,(0]_ & _s s

p6+ (8+ 3,)+ : - .
2kL 2kL (65)
-l V5, -8, ()] of[S,(0)-S5,1)]
‘ kL 2kL
whilst boundary condition (63) becomes
1 f
5.(1 1
(1) = a7 ][5 2V{S(0) oS, ( )+E}] (66)
where T is the normalised time constant of the end vessels, i. e.:
T=H|/VT, (67)

at the quiescent rectifier vapour rate V.

The large signal steady-state relationships derived in Section 2 for the CSTC may now
be used to simplify and combine eq"s (65) and (66). In particular, recalling

L=L/L =Lk/V , (68)

11




and eq"(s) (38) et seq., rewritten here
S(0)-aoS,(1)+e=0
and S(0)+S5,(0)-2¢/(a+1)=L[S,(0)-5(0)]=S5.(1) -5,(0)

we can write eq" (65) as

pL5+a+8,+%[S(0)+as,(0)—e] = L[5, - 8]

= —pL3, +[8,(1)~8,)+ - al5,(1)=5,(0)]

and eg™ (66) simply as
8,(1)=38h,(p)/ o

~ where h(p)=1/(1+Tp)

and u=f/V (=(+D)/V)

Eq".(71) can be simplified using eq"s (69) and (70) if we first write
S§(0)+0S,(0)-¢

A=
v
p=5M=5.0)
2
and S [L+PL+1]=8L+8,(1)+ Bou

giving

pL8+8+8,+ Au= L[5, —8]=—pLd, +[8,(1)-8,1+ Bow
O, [L-11=06(pL+1+ L)+ Au
and 8 [L+pL+1]=8L+3,(1)+Bou
so that, eliminating unwanted variable 8, and using eq" (72) to remove &(1), in favour

of the wanted output variable 8, we get the 3rd order transfer function:

()___8__ [(L-1)Ba.—(pL+1+L)A]
B T I L+ L+1) + (1= L)(L+ k™))

(79)

From eq"s (69), (70) and (76), straightforward algebra shows quasi-constant
parameters A and B to be given in terms of o and L by:
_ ele+(a+1)L)
T (a+D){(a+1)+(Bo-1)L)
B= 2el
(a+D{(a+1D)+Ba-1)L)

(80)

and

(81)

3.1.2 Note on Symbolic Equivalence Between Source Reference and This
Report

In this report it has been necessary to make some changes to the significance of
certain symbols common to both this report and the source CSTC reference (2), This
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has been necessary in order that symbols have the same meaning for tubular and CSTC
column. This situation did not pertain exactly to the original tubular (1) and CSTC (2)
references. The definitions in reference () have been retained here.

The transfer-function g;(p) is identical to the version (eq" 58) given in the
original paper (2) inspection of which readily shows that the following parameter
symbols are equivalent:

Table of equivalent symbols

Tabrizi and Edwards (2) Present Report
k kL'
a L
P pL
R A
S Ba

In Tabrizi & Edwards ) a=k/V ( =kL'/V=L in the symbolism of the present
paper). The symbol 7 in Tabrizi is t/T,, where T,, there=HL'/V if H is taken to be
capacitance pu length as here. In this report T,=HL'/kL'=H/k in the present symbols.
Thus 1 (in Tabrizi)=t(here)xV/(kL")=1/L (here). Hence p (in Tabrizi)=pL (here)

3. 1. 3. CSTC Column: Gain. Transfer Function and Frequency Response

In principle the transfer function for the CSTC column can be evaluated in
terms of just p and the key parameters L, o and T from eq" (79) by using eq™.s (80)
and (81) to eliminate algebraic quantities A and B. The resulting analytic expression
for the third-order transfer function would be cumbersome and not particularly
enlightening without subsequent analysis of its asymptotic behaviour as lp | 50 and oo,
For the special case of T=0 (for end-vessels if negligible capacitance), i.e. making

h(p)=10  (T=0) (82)
reduces g;(p) to the simple second order form:
(p) = oe [ eI’ -40L-e-pL{e+(a+1)L)
AP = ad]) {a+1+Ba-DL)a+1+GBa-1)L+2a(L+1)Lp+alp]

The static gain g;(0) is, of course, independent of T in general, since h.(0)=1.0, so this
may be deduced from (83) simply by setting p=0, giving:
(V73 el?-4al-¢
g] (0) = [ 2
(a+1) {a+1+@Ba-1)L)
which will be positive for longer columns, i. e. which satisfy the condition:
el >4al+e (85)

but whose sign is clearly parameter sensitive and we note the possibility of zero gain,

] (83)

] (84)

Le.:

£1(0)=0.0 if e’ =4al +¢ (86)
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Substantial positive gain (i. e. greater separation for greater circulating flow at a given
throughput) will be an important design goal presumably. This is discussed later.

The asymptotic behaviour of g;(p) as lp | 50 and e involves dynamic terms
for which eq™ (83), being only a special case, (i. e. for T=0) is inadequate as a source
of derivation. Instead we must return to the general form of eq" (79), retaining the
general end-vessel model:

h(P)=1/(1+T,) (87)

Doing this, retaining only the two smallest powers of p in the numerator and
denominator as |p —0 and approximating their ratio accordingly shows that, in
general, g1(p) tends to a first order lag as p—0 of the form

- &
L = 88
Lim ¢ (p) T+ Tp (88)

where go=g,(0) (89)

- 2ocL(L+1)+T(L—1)+L{e+(a+1)L}
¢ Ba-1)L+a+1 el’-4al —¢

(90)

[ The special case for T=0 is readily confirmed by approximating the expression for
g:(p) in eq" (83) by considering only powers of p=p%and p! in the numerator and
denominator]

Turning attention to high frequency behaviour, a similar approach but retaining
only the powers p! and p° in the numerator and p2 and p! in the denominator of
eq" (79) yields

- —goo

‘{.;.i’?gl(p)z 1+T_p

2
Wt g = ele+(a+1)L) i 92)
(a+D{o+1+@Ba-1)LH{e+ Ba+1)I?)

T L{L(a+1)+¢)

" T H{2Ba+1)+¢)

1)

and

(93)

[g.. and T_ are independent of T since this parameter does not affect the coefficients
of the highest two powers of p in g,(p) , and eq™. s (91) the (93) could have been
derived directly from the special case eqn. (83)]

The important feature to note is that, for g,(0)>0, the asymptotic model at low
frequency is a first-order lag of positive gain (and time constant) provided L>1 of
course. The asymptotic model at high frequency is a different first order lag but this
time of pegative gain (=-g_ ). The process therefore has nonminimum-phase
properties. Its inverse Nyquist locus starts vertically into quadrant 1 from the real axis
at g,(0)', encircles the origin and approaches -jes vertically downwards in quadrant 3.
Its step response will begin negatively as that of the system -£./(1+T_p) but finish

positively as that of g,/(1+Tgp).
3.2 Tubular Column Model

3. 2. 1. Transfer Function Relating Separation to Circulating Flow
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As with the CSTC model, it is possible to segregate the small signal equations
(this time pde's) pertaining to separation change y-x' (=8) from those relating to the
change y+x' when the column is operated symmetrically. Derivation of the transfer
function relating & to circulating flow change v+l can then proceed separately to that
relating y+x' to v+l on similar lines. The derivation is not presented here but the
result is the same* as that presented in the cited reference (). The derived transfer
function is :

o= a0 =0l S gg)?fp?i?fﬁﬁ‘ﬁi&tﬁ = o4
where ¢ =p(p+2) 95)
Input u is defined as for the CSTC case (eq". 74)

i u=f/V=_>n+)/V (96)

and steady state composition gradient G is as defined in eq™s (26) and (28).

Despite the hyperbolic functions in eq". (94), inverse Nyquist loci g,'(jo) can be
derived, computed and plotted as shown in (1). As demonstrated in Section 3. 2. 2,
the asymptotic behaviour of such loci is also predictable by considering limits of g,(p)
as |p | 50 and = . This behaviour bears some resemblance to the CSTC model
behaviour already predicted by a similar process

3. 2. 2. Tubular Column: Gain and Asymptotic Frequency Response

As p—0 i. e. as qL<<1.0, sinh gL may be approximated by gL and cosh gL by
1+ p** /2 so that provided terminal capacitance T is not excessive (i. e. non-
dominant) then it is readily shown, by approximating eq" (94), that

. (e’ -(1+a)L—-¢c/2)+el’p/2
=G
Ll;f_.’;”g‘(p) a[(2€L+D'.+1)+p{EL+(CL+1)L2]+p2((1+1)L2/2

The steady state gain g,(0) is clearly given by
Gofel>?-(1+a)L—¢e/2}

| L))

0)y= 08
&(0) 2eL+0+1 8)
or, substituting our derived parametric solution (28) for gradient G,:

2e{el’ -(1+a)L-¢/2
g (0ym 200IEL (1 +0) : 99)

(o+1)(2eL+a+1)
The two gain formulae (84) and (99) ( for the CSTC and tubular column respectively )

though different, have clearly some strong similarities. In particular we note again
that g,(0) for the tubular column will be positive for longer columns, this time for a
slightly different condition compared to (85), viz:

el’>(+a)L+e/2 (100)

* Note that in the source reference (1), the symbol g (p) is defined as (y-x)V/G(v+l) whereas here it is

defined as §(= ¢ n L8

). Hence the G term in eq" (94) not appearing in ref. (1).
u (v+1)
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The realistic possibility of negative gain also exists however and indeed zero gain, i. e.:
g,(0)=0 if el =(1+a)L+e/2 (101)
Again, however, a positive g,(0) will be a design goal by suitable choice of L

provided this does not conflict with the specification for steady-state (large-signal)
separation S(0) (eq". 29)

The low frequency asymptotic transfer function (97) again reduces to a transfer
function of the form

. - 8 - 102

{;gggl(p) 1+ Tp (102)

where g = £(0) (eqn. 99) (101)
3 2

- 0=EL+(0L+1)L gl (102)

2eL+a+1  2(ell-(1+a)L-g/2)

T, will be clearly positive for longer columns L>>1.0, even when el > (1+a)L+€/2
(the g,>0 condition ) since then, L2>L. Thus, for gy positive (negative), the
asymptotic low frequency model is again a positive-(negative) going first-order lag as
with the CSTC. [The possibility of T,<0 for a limited range of L is not considered here
and awaits further examination. Likewise the effect on T, of a large T.]

The asymptotic behaviour of g;(p) for the tubular column may be deduced
from eq". (94) using the approximations as |p [—e

g—p+l1 (103)
and  coshgL—sinhgL—0.5ed- (104)

Unlike the CSTC column, in this case, the h.f. asymptotic behaviour of g,(p) is
affected by whether or not T is zero. For p>>T! (only possible if T#0) then h (p)—0
whereas h,(p) remains=1.0 if T=0. In either case we deduce

—&.

é’i’ﬁ g(p) =m (105)
as in the CSTC case, but here

8.=2G/2+a), T>0 (106)
or g.=2Ga/(a+1)}, T=0 (107)
and T.=2/Q2+a), T>0 ' (108)
or T.=2/(1+a), T=0 (109)

The predictions confirm high and low frequency characteristics of the
computed loci given in reference (1). In particular, Fig. 2.11 (b) of ref. (1) reproduced
here as Fig. 12 for a=2.0 (e=1.0) , L=5.0 and T=20, indicates a starting point
g7 (0)=0.565G"", and a high frequency asymptote for g (jw) of —(2+ jw)G™,
i.e. 2,=0.5G and T,=0.5. Equations (98), (106) and (108) predict these values.

It should be noted that in the tubular column case, (unlike the CSTC), the h.f
locus of g™ (jw) does not converge to the predicted h. f. asymptote but oscillates
about it. The oscillations are excluded from the foregoing h. f. asymptotic predictions
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which take no account of the complex nature of variable q when p is set=jw.
However, only for short tubular columns do the oscillations in g-'(jw) become a serious
control consideration since, for L>>1.0, the travelling waves (modelled by eq™ (94) but
not by the asymptotic approximations ) are rapidly attenuated giving only the
insignificant ripples and loops evident in Fig 12.

The key observation from this analysis is the presence of non-minimum
behaviour for tubular columns of positive separation-gain. In this respect CSTC and
tubular columns are similar. In respect of travelling waves their behaviour differs (as
would be expected since such waves are a pde phenomenon).

3. 3. Comparison of the Tubular and CSTC Column Gains
The static gains of the two types of column have been shown to be given by:

for the tubular column:

_20e{el’—(a+1)L-¢/2)
°T (ae+D{2eL+a+1)

(110)

and, for the CSTC:
N el -4al —¢
(a+1) {Bo-1L+a+1)

8 ] (111)
Curves of the two functions, g, versus L, for various values of o are shown in Figs 10
and 11 respectively. Clearly the gain of the tubular column exceeds that of the CSTC
very considerably for any given combination of parameters L, a. Both sets of curves
show that g, can be negative for lower ranges of L. Simultaneous matching of a CSTC
of length L,, and a tubular column of length L for gain and separation is not possible
by manipulation of parameter L, at a given o since, for separation matching this is
only possible in the range 0.5<L<1.0 (i. e. 1.0<L,<e) as shown in Section 2.3.4. With
L<1.0 however, the tubular column gain is always negative and therefore of little
practical interest.

As L—eo, eq" (111) predicts asymptotic gain values for the CSTC of 0.1250
for small o (e<<1.0) and 0.1111 for a>>1.0 . For tubular columns, eq™ (110) predicts
asymptotic gains, as L—eo , of 0.2500 for small a and 0.5000 for large o. Thus, the
range of attainable gain is (a) lower, and (b) narrower for the CSTC compared to the
tubular model. [ The opposite effects of increasing a on the gains in the two cases is
interesting.]

Matching static gains is probably not the best criterion for achieving
equivalence of dynamic control characteristics, however, since a low process gain ( g,
in this application) can be always by compensated by increasing the controller gain K.
What matters is the attainable open-loop gain Kg, { and hence closed-loop gain
Kg,/(1+Kg,) } before instability ensues. This question is pursued in the next
Section.

4. Control Implications of the Models
4. 1. Fitting a Second Order System to the Asymptotic Models
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For all cases examined, tubular and CSTC with or without significant end-
vessel capacitance, it has been shown that the asymptotic transfer functions (at p=0

and <) take the form:
. £
- 112
ﬁt_rg &(p) 1+Tp (112) (
, =
- 11
and {;Lm_‘g (p) 1+7p (113)

Where model parameters g_,T.. and T, depend on process parameters L, o and T

whilst g, depends on L and a only. For the different types of process, (tubular or

CSTC) the precise relationships between the model-and process-parameters have
_ similar mathematical structures but are not identical. [ See eq® s. (84), (90) (92) and
- (93) for the CSTC and (99),( 102) and (106) through (109) for the tubular column].

Parameter g, can be negative for shorter columns of both types but is positive
for longer processes. This latter is the case of practical interest to which we shall
confine attention here. The other parameters are all positive either invariably or under
the same conditions that g, is positive.

The minimal linear model that has the same asymptotic behaviour (given by
eqs. 112 and 113) is

2,(1-Tp)

= 114
_ 24(p) T% (T, + T)p+ TLp’ (114)
: gn(l'j;p)
€. = 115
1 gA(p) l+ﬂp+bp2 ( )
where a=T,+T, (116)
and b=TT, (117)

By matching the asymptotic behaviour of g,(p) to g,(p) it is readily shown that
the parameters of g,(p) are related to those of g,(p) thus:

go(To_T.ﬂ)
g (=T 4 T) =Ette=te) (118
Y (g ts) )
T = &ltel (119)
(g +8.)
and b (=T,5)= STz Bl &, (120)

e & t8.

For example using the parameters for the tubular column of Fig. 12 [i. e. a=2.0, |
(e=1.0), L=5.0, T=20.0 ], using eq"s. (101), (106),(102) and (108) we deduce |
g20=1.77G, g..=0.5G, T(=4.838 and T.=0.5 thus yielding the approximate transfer

function

1.77G(1-1.456 p)
1+3.382p+2.576p?

g.(p) = (121)
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The locus of g,"'(jw) is shown in Fig 13 and clearly compares favourably with that of
g,'(jw) shown in Fig. 12.

We have thus approximated the 3rd order CSTC model and the infinite-order
tubular model by a second order model. All are nonminimum phase models (if g, is

. positive). For the special case of the CSTC with zero end capacitance (i. e. with T=0),
g.(p) and g,(p) will be identical since the CSTC model itself is then only second order.

- 4. 2. Closed-Loop Stability Criterion based on g,(p)

If a simple linear proportional controller of gain K is applied to ga(p) then the
closed loop transfer function of the process will be

Kg,(1-Tip)
(1+Kg,)+ p(a—KgT,)+bp*

g.(p)= (122)

so that for closed loop stability (i. e. for a positive closed-loop damping ratio)

Kg,<alT (123)
Thus from eq"s (118) and (119) it follows that, for stability:
Kg, < &I -T.) (124)
gOTu + g-ﬂn

Thus, if K denotes the critical value of K (i. e. for critical closed-loop stability), then
K et gn (T-[] - Too)

S0

125
) Y L )

and the proportional control error E {=1/(1+Kg,) }, at critical stability will be E_,

given by: -
_ 1 _ &I+,
C1+Kg  (8.+&)T;

Equation (126) is very important since, used in conjunction with the eqPs relating g,

g.. Toand T to L, a and T, it allows analytic prediction of the maximum attainable

(proportional) control accuracy directly from a knowledge of the 3 basic process
parameters, L, a and T.

(126)

c

4. 3. Performance Parameters for Columns of Both Types: Numerical
Examples

Table 1 below sets out the steady-state quiescent and controlled performance
parameters S and Ec for several processes (a)-(f) together with the intermediate
parameters used in their calculation.

Cases (a) and (b) show that, for moderate o , even though L is made >>1.0 ( to boost
gy for the CSTC), the tubular column considerably outperforms a CSTC of the same
source parameters in terms of both separation S and critical control error E..

As case (c) illustrates, a fairly drastic " shortening" of the tubular column (from L=20
to 5) at the same value of « (=2) brings about a similar control accuracy as that of the
- longer CSTC but the tubular separation remains considerably greater than the CSTC's.
Cases (d) and (e) illustrate the comparative performance of a CSTC and tubular
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column having different L and o values, but selected to give near identical separations.
To achieve this, L for the CSTC remains considerably the larger (15 cf 4) and like-
wise o for the CSTC > the value for the tubular. This step causes the CSTC now to
considerably outperform the tubular column under closed loop control and is the result
of choosing parameters for the latter that approach the g, sign-change condition (see
eq" 101). In case (f), the normalised length of the tubular column is raised slightly
(from 4 to 6) but a reduced (from 2 to 1.6) to again cause a separation $=0.75 {as in
cases (d) and (e) }. In this case E_ is much closer to the CSTC of case (d) than was
case (e). It should clearly be possible to find matching L, o relationships between the
two types of column that give identical values of S and Ec for the two cases. i B
static and dynamic matching of CSTC and tubular models should be possible by
fictitiously inflating parameters L and o for the CSTC. The parametric formulae
involved will require careful and tedious manipulation if a possible matching criterion is
to be found analytically. Computational determination should pose no problem.

Table 1. Predicted Performance Parameters for Various Columns
Case a b £ d e f
Type | CSTC Tubular Tubular CSTC Tubular | Tubular
L 20 20 § 15 4 6
2 2 2 3 2 1.6
G - 0.0155 0.05128 - 0.06061 | 0.07444
29 0.150 0.2448 0.0750 0.0426 0.03857 0.1095
g. 0.0043 | 3.445x10* | 0.0114 | 7.567x10-* | 0.01347 | 0.02202
T, 21.410 27.783 4.838 13.476 2.4416 13.873
T, 0.4356 0.500 0.500 0.3912 0.500 0.5556
K. g, 3.249 30.62 3.512 4.70 1.435 3.976
S 0.4563 0.9380 0.7948 0.7531 0.7570 0.7488
Ec % | 23.54 3.16 22.16 17.54 41.10 20.10

4. 4. Towards Optimal Nonlinear Control

The control presupposed up to this point of the report has been linear and
based upon a dynamic model linearised about a designed quiescent operating point.
The stability and performance of such control can be predicted only in the small, and
exhaustive simulation is necessary to test the range of acceptable performance within a
large region of the state space. Nor has the control been designed designed to be
optimal.

A recent, interesting and potentially powerful approach of Banks () revolves
around the continuous and on-line solution of the Riccatti Equation using the currently
valid A and B matrices, where A and B are state-dependent, the process being
nonlinear, but its model known. The feedback coefficient matrix is thus continuously
calculated, updated and applied as the measured state of the system changes. The
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method has been shown to be stable in itself and to generate superior control for a
range of testing examples operating over a much wider range of state space than
switched linear controller can cope with. The distillation column presents a good
challenge to the method inview of its bilinearity, its small-signal nonminimum phase
characteristics, and its potential for local gain reversal. To facilitate testing *

Banks'method it is necessary first to formulate the state-dependent coefficient matrices
for the state differential equation of the process. This is done here for the CSTC

column:
We need a model of the form, say
S S
S, |=A| S, [+BV+IF (127)

S| -[s.®

where the separation functions S, S and S.(1) have their previous significance (except
that here we drop the argument "0" from S(0) and Se(0)). Matrices A, B and ] are
state dependent and yet to be found. There is only one control Vg(t) if we keep
perturbations v=l (=f/2) as throughout this report. Under there circumstances,
automatically:

L (1) = V(1) (128)
and L(t)=V.(1) (129)

as before but the original steady-state design equations V,=aL; and aV¢ =L, are not
met in transient or in general. Instead, keeping F =F=D=W=F=constant as before,

we simply have that:
V.()=V,.()+F (130)
and L(t)=L()+F (131)

Thus, subtracting eq™ (31) from (30) we get
N Vi(S+aS,)—eV.+F{S—¢e/(o+1))

S kL
=St-—S=—S,—aV5{S’_,S'(1)} b
kL
Recalling the dot e denotes d/dt, where again
1=t/T, (133)
and T =H/k (134)
and if, as before:
H=Hjo=H (135)
then the boundary equations (32) and (33) yield
5,1 = (v + S - 08,00 -e) (136)

n
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Extracting the state derivatives from eq". s (132) and (136) and recalling that
normalised length L is related to k, L' and nominal rectifier vapour rate V thus

L=kL [V (137)
where V=aF/e= constant (138)
we there obtain
[ F Lo+e
-(1+— 1 0 -
I =5
A= 1 -1 0]= 1 -1 0 (139)
0 0 0 0 0 0
E—S—aS, g-S-as,
kL o(5,(1)-5,]
B=l wli{l}~8] = ——]—=—= (140)
T[S—-aS, (1)-¢ S—aSV(l)-E
L oH T |
B B
(o+1)AL (e +1)LV
I= 0 = 0 (141)
-T.[S-as,(1)-¢] -[S-aS,(1)-¢]
oH oV

where again T is the normalised time constant of the end vessels, viz:
T=H |VT, (142)

Setting the LHS of (127) to zero and substituting the equations (139), (140)
and (141) for A, B and ] should, of course, produce the same steady state solutions as
already derived in Section 2. 2. 4 if input V, is again set to V-F (=V/a). The dynamic
matrix model should now be usable in the Banks' method.

The cost function to be minimised by the real time Riccatli eq” should take the
form:

aV,
C= J’o‘ [(S,-S)2+7L(7-1)2]dr (143)

where S, is a reference (target) separation to which the nominal rectifier vapour rate V
pertains, [i. e. the parameter L in the state space model is given by L=L'k/V, and S and
L are related by eq.(39)]. V(t) is the control. Care will be needed not to set S,
outside the attainable range specified by eq" (45). Cost weight A that will produce an
acceptable error S;-S can be estimated from a knowledge of local gain g,(0) as
indicated in P;ppcndjx 1 on the basis of equal steady-state cost rates (S,-S)> and
[lw] . Fine tuning of A may be important however. Results will be presented
in a future report ,hopefully as a preliminary to applying the method , suitably
modified, to the tubular column. The CSTC performance under the Banks controller
will be compared with the linear control predictions here derived.

5. Discussion and Conclusions
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The composition separation dynamics of CSTC and tubular symmetrical
distillation columns have been examined. Unlike previous analyses ) @ the separation
dynamics have been segregated from those pertaining to total or average product
composition at an early stage of the analytic development, thus simplifying the algebra.
Previously derived results for steady state product separation S and small signal
transfer function g;(p) [=(y-x)V/(v+])] have been derived for both columns in terms
of feed mixture volatility parameter o, normalised column length L and (in the case of
g,(p) ), normalised end-vessel capacitance, T. However, notation is now standardised

between the two types of column permitting a ready comparison and the main formulae
derived are listed in Table 2 overleaf.

Although the variation of performance parameters S and g,(0) with L and
for the two columns show similar traits, numerically the two values of both S and g,(0)
differ considerably between the two types. As might be expected, the tubular column
out performs the CSTC significantly (for given L and ) in terms of both performance
parameters.

Also derived is a second-order, nonminimum phase transfer function g,(p) that
reproduces the high-and low-frequency asymptotic behaviour of both types of column.
This has facilitated the formulation of a stability criterion for the maximum permissible
open-loop gain K g(0) and hence the minimum fractional closed loop error
E. [=1/(1+K_g(0)] achievable with stability. The formulae derived thus enables E_ to
be evaluated for any specified a and L. Together with the S-formulae, this allows the
unification of steady-state large signal design with linear controller design: An
- important goal of modern Chemical Engineering.

As regards the possible use of a CSTC model to mimic the behaviour of the
more difficult tubular column, spot numerical substitutions of L and @ in the S and E_
formulae indicate the possibility of achieving the desired match of quiescent steady-
state and dynamic control by using fictitiously inflated L and o values in the CSTC
model. So far however, although the S(L,a) formulae can be transformed into the
form L(S,a), the E (L,a) formulae have not yet been similarly transformed analytically.
Thus, whilst constant S-loci can and have been plotted from analytic formulae,
constant E -loci formulae await derivation from the known E (L,o) function. This is a
subject for further analysis, pending which constant E_-loci may be computed from the
reverse formulae here derived.

Finally, the large signal dynamic separation model for the CSTC has been
formulated as a third order state equation with state-dependent coefficient matrices A,
B and J (J is here the disturbance coefficient matrix, A and B have their usual
significance). This should permit use of the on-line Riccatti method of Banks® in
which the optimal feedback coefficient matrix is continuously updated (from A and B
matrices that are themselves recalculated continuously from state measurements via the
known analytic model). It is intended to evaluate the adaptive control emerging from
this potentially powerful approach, using the linear-control predictions (here derived)
as a yardstick.
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Table 2: Summary of Key Formulae

Tubular Columns
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Appendix 1
Cost Weighting Factor Estimation

The cost to be minimised is
= [Tres — 52 402 _1y2
c=["1es, S+ M E =1

where V is the steady-state rectifier vapour flow rate used to determine normalised
length (L=kL'/V) and which yields the designed reference separation S, according to
eq”. (39) in steady-state. Choice if this cost function ensures that C will not continue
to integrate once the desired steady state S=Sr is achieved. The virtue of ensuring
consistent input and output references (Sr and V/ct in this application) is demonstrated
in ACSE Research Report 5764). Choosing inconsistent values causes dC/dT to be
nonzero in steady-state even under optimal control leading to complications with the
Riccatti solution.

The choice of A will be clearly affected by the relative significance of the
integrand error terms Sr-S and V-aV. If there are to be of roughly equal significance
then clearly
(5. -S)yV

A= I
(oV. =V)
Now from our linear analysis of Section 3. 1
2,(0)=8/u=8V/2v
where & and v are deviations in separation and vapour rate from their steady-state
conditions. Hence, as a coarse approximation, setting

6=5 -5
and v=V/a-V,
(5,-S)V. _ (§5,-S)V &

h 0)= =
Wen B eV (Va2

Hence for roughly equal cost weighting of separation and flow errors
A=(2g,(0)/ )’

g1(0) can be obtained from eqr. (84), given values of L', k, V and o. The linear
analysis is therefore useful for generating initial estimates of A in the optimal control
design. For control over a wide range of state space, experimental tuning of the value
of A will be necessary of course.
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