
This is a repository copy of Fuzzy logic based qos optimization mechanism for service
composition.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79907/

Version: Draft Version

Proceedings Paper:
De Gyvés Avila, S and Djemame, K (2013) Fuzzy logic based qos optimization mechanism
for service composition. In: Proceedings - 2013 IEEE 7th International Symposium on
Service-Oriented System Engineering, SOSE 2013. 2013 IEEE 7th International
Symposium on Service Oriented System Engineering (SOSE), 25-28 March 2013,
Redwood City. IEEE , 182 - 191. ISBN 978-1-4673-5659-6

https://doi.org/10.1109/SOSE.2013.28

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Fuzzy Logic Based QoS Optimization Mechanism for Service Composition

Silvana De Gyvés Avila, Karim Djemame
School of Computing
University of Leeds

Leeds, UK
e-mail: {scsdga, scskd}@leeds.ac.uk

Abstract— Increase emphasis on Quality of Service and highly
changing environments make management of composite
services a time consuming and complicated task. Adaptation
approaches aim to mitigate the management problem by
adjusting composite services to the environment conditions,
maintaining functional and quality levels, and reducing human
intervention. This paper presents an adaptation approach that
implements self-optimization based on fuzzy logic. The
proposed optimization model performs service selection based
on the analysis of historical and real QoS data, gathered at
different stages during the execution of composite services. The
use of fuzzy inference systems enables the evaluation of the
measured QoS values, helps deciding whether adaptation is
needed or not, and how to perform service selection.
Experimental results show significant improvements in the
global QoS of the use case scenario, providing reductions up to
17.1% in response time, 17.38% in cost and 40% in energy
consumption.

Keywords - Web service composition; adaptation; fuzzy logic;
optimization; Quality of Service.

I. INTRODUCTION

Web services are modular, self-contained and reusable
software components that rely on open XML-based standards
to support machine-machine interactions over distributed
environments [1]. Some of the benefits offered by services
include time/cost reduction during software development and
maintenance. When a single service does not accomplish a
consumer’s requirement, different services can be used in
conjunction to create a new value-added service, known as
composite service, to fulfil this requirement.

A composite service provides a new software solution
with specific functionalities and can be seen as an atomic
component in other service compositions or as a final
solution to be used by a consumer [2]. The process of
developing a composite Web service is called service
composition.

In service composition, it is necessary to have a set of
available services that offer certain functionality and also
fulfil Quality of Service (QoS) constraints [3]. QoS
properties refer to non-functional aspects of Web services,
such as performance, reliability, scalability, availability and
security [4]. By evaluating the QoS aspects of a set of Web
services that share the same goals, a consumer could identify
which service meets the quality requirements of the request.

The QoS attributes of a service can be evaluated during
design and execution time. At design time, these attributes
help in order to build a composite service based on the QoS

requirements of the user. While at execution time, they can
be monitored to maintain the desired QoS level. Information
about these attributes can be obtained from the service’s
profile [5], nevertheless, when this information is not
available, it can be obtained by analyzing data collected from
past invocations [6].

The dynamic nature of the Web service execution
environment generates frequent variations in the QoS offered
to the consumers, therefore, obtaining the expected results
while running a service is not guaranteed. Web services,
must be capable to adapt in response to their perception of
the environment and their own behaviour, without
compromising their efficiency. Composite services should be
able to adapt, also based on their components performance,
in order to provide the consumer the expected behaviour and
result on the request.

Due to service composition nature and the variability of
the environment where services are executed, different
approaches and tools have been proposed not only to enable
automatic-dynamic composition, but also to mitigate the
impacts of unexpected events during the execution of
composite services. Among them, self-adaptive proposals
have stood out since they aim to maintain functional and
quality levels, by dynamically adapting composite services to
the environment conditions reducing human intervention.

Adaptive mechanisms provide software systems with
capabilities to self-heal, self-configure, self-optimize, self-
protect, etc., considering the objectives the system should
achieve, the causes of adaptation, the system reaction
towards change and the impact of adaptation upon the system
[7]. Currently, work in self-optimization for service
composition has been mainly focused on the selection of
services at runtime, in order to maintain the expected QoS of
the entire composition. However, it is only being considered
situations where QoS decreases.

This paper introduces a self-optimization solution for
service composition based on fuzzy logic. Fuzzy logic is an
approximate reasoning technique suitable to deal with
uncertainty [8], which can be use used to support decision
making and to evaluate imprecise parameters in software
systems. The proposed optimization model performs service
selection based on historical QoS data and real data, which is
collected at runtime during different stages of the composite
service execution. Composite services are considered to be
workflows conformed by tasks. The QoS of each task is
evaluated previous to the selection of the service that will be
linked to the following task. The use of fuzzy support
systems enables the evaluation of the measured QoS values,

helps deciding whether adaptation is needed or not, and how
to perform service selection. The approach has been
implemented in a framework and was evaluated empirically
by analyzing the execution through a use case, also
comparing results with a non-fuzzy approach.

The major contributions of this paper are:

• The optimization model for service composition that

analyzes global QoS in order to determine the benefit
of adaptation, considering situations where QoS
values increases and/or decreases.

• The use of fuzzy logic as a decision making tool to
determine the need of adaptation during composite
service executions.

The remainder of the paper is structured as follows:

background is briefly described in Section II. Section III
presents the approach overview. The proposed framework,
service selection and optimization models are described in
Section IV. Section V presents the experimental description
and results. Section VI discusses some related work.
Conclusions and future work are given in Section VII.

II. BACKGROUND

A. Adaptation in Service Composition

To experience an expected behaviour during the
execution of a composite service, it is important to consider
the QoS aspects of the services involved, as their drawbacks
will be inherited by the composite service. However,
unexpected events occur, e.g., services become unavailable
or exhibit discrepancies in their QoS [9], bringing the need of
mechanisms such as adaptation, in order to restore and
maintain the functional and quality aspects of the
composition. Various aspects that can be considered as part
of adaptation solutions in service composition are listed as
follows [10]:

• Adaptation goal is the purpose of adaptation.

Adaptation goals can be defined based on functional
and/or non-functional (quality of service)
requirements.

• Adaptation level defines those elements that will
change in order to achieve the adaptation goal.

• Adaptation actions are those used to solve the
adaptation problem.

• Adaptive mechanisms correspond to the approaches
applied to implement the adaptation actions (e.g.
agent-based [11], policy-based [12], rules-based,
feedback-based [13], etc.).

• Stage of adaptation is the time when adaptation is
performed (development time, compile/link time,
load time and runtime).

• Awareness levels describe the scope of information
that will be available in order to perform adaptation
[14].

Besides these aspects, it is also important to consider the

set of self-* properties that can be selected and implemented

in adaptive SOA systems. Self-* properties are related to the
objectives of the composition and the causes and impact of
adaptation. Some self-* properties applied in service
composition approaches are self-healing, self-optimizing and
self-configuring.

Self-healing services can monitor themselves,
predict/detect the causes of failure and make the adjustments
to restore their states to normal [15]. Self-healing is related to
availability, survivability, maintainability and reliability [16].
Self-optimizing systems have the ability to select the best
available services, as part of a composition, and define the
most appropriate QoS levels in order to maximize benefits
and reduce cost [17]. Self-optimization is related with
efficiency and functionality [16]. Self-configuring services
can leverage services and resources to compose an optimal
configuration based on user requirements and the
characteristics of the system [18]. Self-configuration is
related to maintainability, functionality, portability, and
usability [16].

B. Fuzzy Logic

Fuzzy logic is a method based on multi-valued logic
which aims to formalize approximate reasoning [8]. It is used
to deal with different types of uncertainty in knowledge-
based systems.

Some of the relevant characteristics of fuzzy logic are
fuzzy sets, linguistic variables and fuzzy rules. A fuzzy set is
a collection of objects characterized by a membership
function with a continuous grade of membership which can
be ranged between zero and one [19]. A linguistic variable is
a type of variable that uses words instead of numbers to
represent its values (e.g. slow, medium, fast) [8]. The values
used to define linguistic variables are called terms and the
collection of terms is called term set.

Fuzzy rules (IF-THEN) are used to represent human
knowledge in fuzzy systems. A fuzzy IF-THEN rule is a
conditional statement structured as [20]:

IF <fuzzy proposition>, THEN <fuzzy proposition>.

Where a <fuzzy proposition> is a statement used to

associate linguistic variables and terms.
During the execution of a fuzzy system, crisp inputs are

converted to linguistic variables, this process is known as
fuzzification. The variables values are then evaluated using
fuzzy rules, generating the linguistic values for the outputs.
Finally, the defuzzification method uses these values to
obtain crisp outputs values.

III. APPROACH OVERVIEW

Adaptation mechanisms aim to target situations where the
behaviour of a composite service is deviated from what the
consumer is expecting. Nevertheless, triggering adaptation
after every variation in the behaviour of the composition will
not warranty the best possible QoS values. Reason why it is
important to consider the following questions: Is adaptation
needed? When does the composite service need to adapt?
What is the benefit of adaptation? What is the cost of
adaptation?

Aiming to give an answer to some of these questions, in
this work it is proposed the use of fuzzy logic as a tool to
support the decision making process, helping determining
whether adaptation is needed or not and how to perform the
service selection process.

The approach uses two fuzzy support systems. The first
system assesses the QoS values of the composite service on
each step of the composition, using the global QoS measured
after the execution of the previous task and historical QoS
data. The system takes the QoS parameters as inputs and
based on fuzzy rules provides the benefit of adaptation.

The second system is used to determine the weights to
apply to the different QoS attributes during the service
selection process. It uses the value of the benefit of
adaptation and the errors between the estimated and the
measured QoS as inputs, providing as a result the values for
the weights to be used during the service selection process.
Both systems will be explained in detail as part of the
optimization model in the next section.

IV. SYSTEM MODEL

The implementation and evaluation of the proposed
approach requires to setup an environment in which QoS
aware and adaptive composition can be executed. The system
model illustrated in Fig. 1 has been developed with this
purpose. Its core components are described as follows:

• Service Binder: binds dynamically each of the tasks

in the composition to executable services. These
services are selected using functional and QoS
criteria.

• Service Selector: by using required functional and
quality information, this module searches in the
service registry for those elements that fulfil
functional and quality requirements.

• Predictor: obtains estimates for the QoS attributes of
the selected services by using predictive algorithms
and a collection of historical QoS data.

• Sensors: collect information about different events at
run time and send it to the adaptation module. Events
are related to quality aspects of the involved
compositions’ elements.

• Adaptation module: monitors and analyzes the
behaviour of composite services at runtime and
according to its analysis, determines when it is
needed to perform certain changes in order to
improve/maintain the offered QoS of the
compositions.

• Effectors: apply the actions provided by the
adaptation module, enabling composite services to
adapt at runtime.

• Composition engine: executes the composite services
(processes’ definitions).

Composite services are considered to consist of a series
of abstract tasks that will be linked to executable services at
runtime. To obtain these services, for each task the service
binder invokes the service selector (SS) and it requests the

desired characteristics that the component service should
provide.

The SS performs a search into the service registry based
on the provided functional requirements. For each of the pre-
selected services (candidates), the SS module invokes the
predictor to obtain its estimated QoS. The SS compares the
results and sends the information about the service that suits
the request to the binder.

When the composite service is being executed, sensors
capture information about the behaviour of the service and its
components, QoS data is being stored in the historical
database. Sensors send this information to the adaptation
module, which determines if adaptation is needed and the
appropriate adaptation strategy. Finally, it sends the actions
to be performed to the corresponding effectors, in order to
maintain/improve the QoS of the composition.

It is considered that at the time of invoking a composite
service, the system has available data from previous
executions of the different possible components, in order to
obtain accurate predictions about these components’ quality
characteristics. Also, for each task of the composite service,
there exist at least two concrete services to invoke.

A. Service selection model

Different QoS attributes can be associated with Web
services [6, 21], which could be used as a differentiating
point in the preference of consumers at the time of
searching/selecting components for certain application. In
this work, the quality parameters that will be considered for
each service are response time, cost and energy consumption.

• Response time: time consumed between the

invocation and completion of the service operation
[22];

• Cost: fee charged to the consumer when invoking a
service [10];

• Energy consumption: amount of power consumed by
a server over a period of time [23].

Considering response time and cost enables the selection

of faster and cheaper services, providing a competitive
advantage [6]. Both parameters have been used in other
approaches, like those presented in [3, 10, 22, 24].

Figure 1. System model.

The amount of energy used by data centres has not only
economical but also environmental impacts. Energy
efficiency is becoming a key topic due to high energy costs
and governments’ pressure to reduce carbon footprints [25].
Energy consumption has been selected as the third parameter
because of the importance of energy efficiency when
managing computing infrastructure and services.

Estimation of QoS values is a key step during service
selection process. Estimated values are calculated using
historical QoS data recorded from previous executions. This
data is filtered, discarding values considered as outliers and
the average of the last N executions of the remaining subset
is obtained.

Concrete services are searched in the registry by name,
assuming that this parameter includes/describes the service’s
functionality. The resulting set of candidate services is sorted
according to the relationship between their estimated QoS
values. Due to these attributes having different units of
measure, the raw values are first normalized using the
following formula:

�� =

�����	�

���������
 . (1)

Where maxi and mini correspond to the maximum and

minimum values of the evaluated QoS parameter,
respectively; and qi correspond to the estimated value for the
next execution. When maxi = mini, then Vi = 1.

Results are then computed using the Simple Additive
Weighting formula:

Wi = ti (w1) + ci (w2) + ei(w3). (2)

Where ti is the service estimated response time; ci is the

service estimated cost; ei is the service estimated energy
consumption; and w1, w2 and w3 correspond to assigned
weights where w1, w2, w3 ≤ 1 and w1 + w2 + w3 = 1.

B. Optimization Model

Monitoring the execution of services is a critical task in
the adaptation process. By monitoring and collecting data
from services executions, based on their performance it is
possible to take decisions about future actions [26].

As part of this work, QoS information is collected from
service, task and process perspectives, where service
corresponds to concrete Web services; task to elements
within the composite service that invoke services; and
process to the entire composition (service workflow).

Response time is measured during each stage of the
process, while cost and energy consumption are obtained
from the WSDL files of the services. The QoS values of a
task are registered as an individual invocation and as the
accumulated QoS of the composition at the time of executing
the task.

The proposed optimization approach uses the service
selection model previously described and it is based on fuzzy
systems to asses the QoS values of the composition, in order
to decide if adaptation is needed or not and to establish the
weights to be used during the service selection process.

It considers situations where a number of the accumulated
QoS values of the previous activity in the process are better
than expected, providing some slack that can be used while
selecting the next service in the process, improving other
QoS parameters.

The idea of using fuzzy logic is to understand the
relationship between the QoS values of the composite service
and the need of adaptation. In this context, QoS parameters
can be expressed using linguistic variables.

Two inference engines have been defined to 1) obtain the
benefit of adaptation, 2) obtain the weights to be use during
service selection. Each of these systems uses its own
linguistic variables and rules.

The first system assesses the QoS values of the composite
service during each step of the composition. It uses as inputs
the QoS values collected from the composite service
previous to the moment of selecting a new service.

The defined input variables are response time, cost and
energy consumption, which are expressed with three terms
low, medium and high. To establish these terms for each of
the linguistic variables, an interval is defined at runtime
using data collected from previous executions. Historical
data is analyzed, obtaining maximum/minimum values and
standard deviations from each of the QoS parameters.
Sigmoidal functions (open to the left and right) are used to
define the low and high terms, while gauss function is used
to define the medium term, as illustrated in Fig. 2.

The system takes the inputs and based on the
corresponding fuzzy rules, provides the estimated benefit of
adaptation. Four different levels of benefit of adaptation
(low, medium, high and very high) were established, falling
in the interval [0, 1], and defined with gauss functions (see
Fig. 3).

Figure 3. Term set of the benefit of adaptation variable.

Figure 2. Term set of an input linguistic variable.

Table I shows one of the rules used to obtain the benefit

of adaptation. Four compound rules were constructed
combining the input variables and their relationship with the
different levels of benefit of adaptation. These rules describe
the scenarios that can take place at runtime.

The second system uses the value of the benefit of
adaptation (output of the first system) and the errors between
the estimated and the measured QoS as inputs. The error
value is computed per each parameter using the following
formula:

� ��� =
� ������ ���

�����
. (3)

Where x(pi) is the estimated data; and x0(pi) is the real

measured data.
Input variables corresponding to the QoS errors are

expressed with three terms, low, medium and high, falling in
the interval [-0.5, +0.5]. Benefit of adaptation is expressed
with four terms, as defined in the first fuzzy system.

By evaluating the different errors and the benefit of
adaptation, the system provides the values to be used as
weights during the service selection process. Output
variables (response time weight, cost weight and energy
consumption weight) are expressed with five terms, very
low, low, medium, high and very high, falling in the interval
[0,1] and are defined using gauss functions.

The algorithm presented in Table II describes the QoS
evaluation method applied during optimization, which
involves the use of the fuzzy systems previously described.

Before selecting the new service to be invoked, QoS
measured values of the previous task are collected and errors
are computed (steps 1 to 9). The measured QoS values are
used as inputs for the first fuzzy system. The benefit of
adaptation is obtained (step 10) and evaluated (step 11); if it
is medium or higher then there is a need of adaptation. If not,
weights to be used during the service selection are set to
0.333 (step 17).

When adaptation is needed, the system determines the
new weights to be use during the service selection process.
This action is performed by the second fuzzy system (steps
12 to 14). Weights are then adjusted, to fulfil the restriction
α + β + γ = 1 (step 15). Finally, the algorithm returns the
weight values α, β and γ (step 18).

V. EVALUATION

In order to asses the effectiveness of the proposed
optimization approach, an experimental environment was
setup and a composite service was developed as use case.
Elements described in Section IV were deployed and
configured within this environment.

Experiments were carried out to address the following
questions:

• How does the evaluation of the benefit of adaptation

influence the adaptation process?
• Is there any improvement in the global QoS when

using variable weights during service selection as
part of a self-optimization mechanism?

A. Experimental Environment

The experimental environment consists of three nodes,
one computer with Windows Vista, 4GB RAM and one Intel
core2 duo 2.1GHz processor (node 1); and two virtual
machines with lubuntu 11.10, 512 Mb RAM and one
processor (node 2 and 3).

Node 1 hosts the BPEL engine (Apache ODE 1.3.4),
service registry (jUDDI 3.0.4), historical data base (MySQL
5.1.51) and one application server (Tomcat 6.0.26). Node 2
and 3, host one application server each (Tomcat 6.0.35). Web
services are allocated in the application servers.

This environment works in a Local Area Network
(LAN). However, in further experiments it is important to
perform a detailed analysis of the behaviour of Web services
(e.g., faults, availability, latency) over a WAN, in order to
obtain results closer to a realistic scenario.

TABLE II . QOS EVALUATION ALGORITHM .

Input:
rt � response time
cost� cost
ec � energy consumption
eRt � response time error
eCost� cost error
eEc � energy consumption error

Output:
ω � benefit of adaptation
α � response time weight
β �cost weight
γ �energy consumption weight

(1) Sort by response time
(2) rt Obtain measured response time
(3) eRt Obtain response time error
(4) Sort by cost
(5) cost Obtain measured cost
(6) eCost Obtain cost error
(7) Sort by energy consumption
(8) ec Obtain measured energy consumption
(9) eEc Obtain energy consumption error

//fuzzy system 1
(10) ω Obtain benefit of adaptation
(11) if ω >= medium then

//fuzzy system 2
(12) α Obtain response time weight
(13) β Obtain cost weight
(14) γ Obtain energy consumption weight
(15) Adjust weights
(16) else
(17) α β γ 0.333
return α, β and γ

TABLE I. BENEFIT OF ADAPTATION RELATED RULE.

IF (responseTime IS high AND cost IS low AND energy IS low)
OR (responseTime IS low AND cost IS high AND energy IS low)
OR (responseTime IS low AND cost IS low AND energy IS high)
THEN BenefitofAdaptation IS veryhigh

B. Dynamic QoS Parameters

To add dynamicity to the test environment, values of the
QoS properties must change over time, or between services’
executions. This helps to obtain sensible results and also
avoids the invocation of only one service per each of the
tasks in the composition.

Based on the analysis of the behaviour of Web services
found on the Internet, response time of the candidate services
was modified by adding random delays generated with a log-
normal distribution. The distribution and its input values
were determined after executing 5 services 1,000 times,
collect their response times and analyze the difference
between each execution.

To turn the cost of the different services into dynamic
QoS values, a model which affects cost based on demand has
been implemented. It is assumed that higher the cost, lower
the demand (number of times the service is invoked). The
algorithm used to implement the cost model is described in
Table III.

The number of times a service has been invoked per a
period of N minutes is evaluated continuously. Based on this
information, and the values specified as the maximum and
minimum number of invocations, it is possible to establish a
new cost based on the demand. If the number of invocations
is equal or higher than the maximum limit, the cost of the
service is increased (3). On the other hand, when the number
of invocations is smaller than the minimum limit, the cost of
the service is decreased (5).

Each of the servers, where the Web services are executed,
is assumed to have different hardware and software
configurations (see Table IV). Servers information and their
characteristics were selected from the Energy Star report
[27].

Using the model proposed in [23], which is based on the
percentage of CPU usage, it is possible to determine an
approximate value to the server energy consumption.

��� = ���� ∙ � + 1 − �� ∙ ���� ∙ � (4)

� = � �����
�

 (5)

Where P(u) is the power consumed in an instance of

time; Pmax is the power consumed when the server is fully
utilized; u is the utilization level; and k is the fraction of
power consumed by the idle server. E is the total energy
consumed by a node over a period of time t.

Servers’ utilization is considered to be variable over time.
The power consumed by a server is obtained periodically and
exposed on the WSDL files of the corresponding services; it
is computed using (4) and the data presented in Table IV.
The energy consumed by a server at the moment the Web
service is running, is obtained based on the service’

C. Experiment Description

The test case is a BPEL [28] service that implements a
travel planning process. It validates a credit card, performs
flight and hotel reservations in parallel, and finally invokes a
car rental operation. This service is hosted and invoked from
Node 1.

The travel planning service is illustrated in Fig. 4. Per
each of the tasks in the process, there are 9 candidate
services, distributed among the servers (nodes), that fulfil the
required functionality and offer different QoS. These services
were previously registered into the service registry (UDDI),
and executed several times to populate the historical data
base and enable the estimation of their QoS attributes.

The travel planning service was executed 50 times to
analyze the behaviour of the optimization approach and
evaluate its overall benefit. The benefit of adaptation is
evaluated in order to determine whether adaptation is needed,
or not.

To get a clear understanding on how the evaluation of the
benefit of adaptation and the use of variable weights
influence the results of service selection, the use case has
also been executed using a non-fuzzy approach, setting
weights for the service selection as fixed values
corresponding to 0.333.

The experiment was executed using dynamic QoS (based
on the dynamic QoS models previously described) and fixed
QoS.

Figure 4. Travel planning process.

Server Hardware Operative
System

Idle
(W)

Load
(W)

Node 1
Acer Incorporated
Gateway GT310
F1

Windows
Server 2008 R2
64bit

50.75 129.5

Node 2
Hitachi -
HA8000/SS10

Windows
Server 2008 R2

45.27 81.97

Node 3
IBM - System
X3650 M3

Red Hat
Enterprise
Linux 5 Update
4 x64 Edition

210.85 388.3

TABLE IV. POWER CONSUMPTION DESCRIPTION PER NODE.

Input:
nInv � number of invocations
ω� maximum number of invocations
φ � minimum number of invocations

(1) nInv Obtain number of invocations
(2) if nInv >= ω then
(3) Increase cost
(4) else if nInv < φ then
(5) Decrease cost

TABLE III . COST EVALUATION ALGORITHM.

D. Evaluation Results

Initial results show that the proposed optimization
approach improves the global QoS values of the
composition. Global QoS refers to the final values of the
different QoS properties (response time, cost and energy
consumption).

The following plots show a comparison between the
proposed approach and a non-fuzzy approach for each of the
QoS parameters. When using the proposed approach, QoS
values are dynamic, cost and power consumption change
over time based on the models previously described. On the
other hand, for the non-fuzzy approach, values for cost and
power consumption remain constant. Energy consumption is
obtained based on power consumption and response time,
using formula (5). For both cases, response time is dynamic.

When analyzing the obtained response time values, it can
be noticed that the proposed approach follows a more stable
behaviour as compared with the non-fuzzy approach (see
Fig. 5). This is due to the evaluation of the QoS values before
a new service is selected. The system aims to maintain or if
possible, improve the global QoS of the composition.
Measured response time values of the proposed approach
provide a mean reduction of 4.83% and a highest reduction
of 17.1%.

The obtained cost values are shown in Fig. 6. In

comparison with the non-fuzzy approach, the use of the
fuzzy-based system provides a mean reduction of 2.25% and
a highest reduction of 17.38%.

Results also indicate that there is a significant reduction
in the values of energy consumption, as illustrated in Fig. 7,
providing a mean reduction of 40%. One important factor to
consider is that energy consumption is not only based in
power consumption, but also in time. A small response time
value may generate a small energy consumption value.

Summarized results of the experiments are presented in
Table V. These data was collected using a non-fuzzy
approach, and the proposed optimization model with fixed
and dynamic QoS values.

QoS/Approach Non Fuzzy Fuzzy with
fixed QoS

Fuzzy with
dynamic

QoS

Response
time (ms)

Max. 16970 17031 15725

Min. 13732 13892 13166

Avg. 15037 15258 14281

Std.
Dev.

5.32% 5.07% 4.68%

Cost

Max. 420 400 445

Min. 385 355 320

Avg. 390.4 363 381.16

Std.
Dev.

2.58% 2.91% 6.22%

Energy
consumption

(Wsec)

Max. 359.25 556.73 338.22

Min. 166.24 261.09 71.44

Avg. 264.81 421.73 148.25

Std.
Dev.

13.43% 12.53% 50.2%

TABLE V. POWER CONSUMPTION DESCRIPTION PER NODE.

Figure 7. Energy consumption comparison between
non-fuzzy and fuzzy approaches.

Figure 6. Cost comparison between non-fuzzy and fuzzy
approaches.

Figure 5. Response time comparison between non-fuzzy
and fuzzy approaches.

When comparing the obtained results, it can be noticed

that use of dynamic QoS has a strong influence in the final
QoS of the composite service. Values corresponding to the
proposed approach with dynamic QoS present the highest
standard deviations for cost and energy consumption. This
behaviour is due to the inserted dynamicity. Even though the
highest cost is found in the proposed approach column,
when it comes to average values, it is still lower than the
non-fuzzy results.

The values of benefit of adaptation (BoA) collected per
each task of the different executions of the process are
illustrated in Fig. 8. These values were obtained using the
proposed optimization model with dynamic QoS. For the
first task of the process (card validation), as there is no QoS
information from previous tasks, the BoA is equal to 0,
setting the weights for service selection equal to 0.33. Hotel
reservation and flight reservation are executed in parallel
after card validation, reason why their BoA values are the
same.

Adaptation is performed per task when BoA is larger
than 0.4, which is the highest value for the medium term
defined in the fuzzy system. It was noticed that in most of
the cases where BoA was higher than 0.45 for hotel
reservation/flight reservation tasks, BoA values were lower
than medium for the last task of the process, therefore,
adaptation was not needed.

VI. RELATED WORK

The importance of QoS management in service
environments has brought the need of QoS aware solutions
for service composition. Different approaches have been
presented to evaluate QoS attributes, aiming to select a set of
components that optimize the global QoS. Some of these
approaches are based on the works described in [6] and [21],
which proposed mathematical models to compute QoS of
composite services based on the QoS of their components
and consider time, cost, reliability, availability and reputation
as the quality criteria to evaluate.

By using self-* properties, systems are enabled with
capabilities to deal with the dynamicity of the Web service
execution environment, providing the consumer with the

expected QoS levels and functional results. These properties
allow composite services to function despite of
environmental changes, detect and react to components that
not satisfy the service requirements, and select partners that
increase the benefits of the composition.

According to the objectives of the composition and the
causes and impact of adaptation, different self-* properties
can be selected and implemented. The most used properties
in service composition approaches are self-healing [15], self-
configuration [18] and self-optimization [17].

Approaches like those presented in [11, 13, 22, 24, 29-
32] apply self-healing mechanisms, where new services are
selected and invoked after a functional failure or a QoS
constraint violation. An adaptation solution that uses self-
configuring features is described in [33], where service
composition is performed by searching for an optimal
configuration of components based upon initial constraints.
Adaptation capabilities include runtime reconfiguration, and
resource assignment.

On the other hand, mechanisms that implement self-
optimization are closely related to the selection of services at
runtime, in order to maintain the expected QoS of the entire
composition. Examples of works belonging to this category
are described in [10, 32-34].

A framework for QoS driven adaptation for service
composition is presented in [10]. Adaptation is performed
using service selection and coordination patterns. The
framework uses an optimization engine to analyze the
behaviour, determine an adaptation policy and ensure the
composition meets the QoS goals. The solution presented in
[32] proposes a QoS-aware binding approach based on
Genetic Algorithms. It searches for the best possible set of
services to invoke, however, at runtime the bindings can be
reconsidered and sections of the composition can change.
The framework described in [34] enables designers to
develop BPEL workflows, in which they can define at design
time the information required to adapt at runtime, including a
set of candidate services and constraints. The framework
selects the best available services for executing the process
and defines the most appropriate QoS levels for delivering
them.

Although these approaches are closely related with the
work described in this paper, there are significant
differences. Firstly, the proposed optimization approach
takes into consideration the benefit of adaptation, obtained
from the measured QoS values, to determine whether
adaptation is needed or not. Secondly, optimization of QoS is
also considered when the measured QoS values at certain
point of the composite service execution is better than
expected, enabling the improvement of other QoS attributes.

Because of the nature of fuzzy logic for solving problems
and producing solutions for management purposes, it has
been applied in different fields like networks, control
systems and mobile applications. In the area of Web services,
it has been used as a support tool for service selection,
discovery and composition [35-38].

The approach presented in [35] uses two fuzzy systems to
select adaptation strategies based on the overall QoS values,
importance of QoS and cost of service substitution. A

Figure 8. Benefit of adaptation per each task in the
travel planning process.

framework that performs matchmaking tasks for dynamic
service discovery based on fuzzy logic is described in [36].
In [37], it is presented a fuzzy decision making model to
locate and select services based on customer’s preference or
satisfaction degree. A generic model for representing and
evaluating non-functional service properties is proposed in
[38]. It aims to enable the selection of service compositions
fitting the user’s requirements.

The main difference between these approaches and the
work presented in this paper is the purpose of the use of
fuzzy logic. In the proposed approach, fuzzy logic is used as
a tool to evaluate the measured QoS values in order to
determine the benefit of performing adaptation.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents an adaptation approach for service
composition that implements a self-optimization mechanism,
which aims to improve the global QoS values of composite
services. The mechanism is based on service selection and
fuzzy logic. Fuzzy logic has demonstrated to be a useful tool
in the evaluation process of the QoS attributes.

At runtime, the QoS values of the composition are
monitored and evaluated in order to obtain the benefit of
adaptation. Optimization is triggered if the benefit is
considered to be medium or higher. It is applied in situations
with QoS decrease, and also where a number of the
accumulated QoS values are better than expected, providing
some slack that can be used while selecting the next service
in the process, improving other QoS parameters.

In summary, evaluation results indicate that by using the
proposed approach, there can be achieved significant
improvements in the global QoS of composite services. By
obtaining and analyzing the benefit of adaptation, adaptation
is not carried out each time a QoS value changes. Service
selection is performed using variable weights, which
influence the preferences on component services and have an
impact on the global QoS of the composition.

This paper is part of an ongoing research. Future work
includes the analysis of different self-adaptive properties and
the extension of the actual framework, in order to increase
the coverage of events that can occur at runtime. Also, it is
planned to investigate different decision support tools and
their efficiency when used to evaluate the benefit of
adaptation.

REFERENCES
[1] W3C Working Group. (2004, May, 2012). Web Services

Architecture. Available: http://www.w3.org/TR/ws-arch/

[2] S. Dustdar and W. Schreiner, "A survey on web services
composition," International Journal of Web and Grid Services, vol. 1,
pp. 1–30, 2005.

[3] D. Ardagna and R. Mirandola, "Per-flow optimal service selection for
Web services based processes," Journal of Systems and Software, vol.
83, pp. 1512-1523, 2010.

[4] W3C Working Group. (2003, July 2010). QoS for Web Services:
Requirements and Possible Approaches. Available:
http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/

[5] S.-Y. Hwang, et al., "A probabilistic approach to modeling and
estimating the QoS of web-services-based workflows," Information
Sciences, vol. 177, pp. 5484-5503, 2007.

[6] J. Cardoso, et al., "Quality of service for workflows and Web service
processes," Web Semantics: Science, Services and Agents on the
World Wide Web, vol. 1, pp. 281-308, 2004.

[7] B. H. Cheng, et al., "Software Engineering for Self-Adaptive
Systems: A Research Roadmap," Software Engineering for Self-
Adaptive Systems, Lecture Notes In Computer Science, vol. 5525, pp.
1-26 2009.

[8] L. A. Zadeh, "The role of fuzzy logic in modeling, identification and
control," Modeling, Identification and Control (MIC), vol. 15, pp.
191-203, 1994.

[9] P. Châtel, et al., "QoS-based Late-Binding of Service Invocations in
Adaptive Business Processes," in Proceedings of the 2010 IEEE
International Conference on Web Services, Miami, USA, 2010, pp.
227-234.

[10] V. Cardellini, et al., "MOSES: A Framework for QoS Driven Runtime
Adaptation of Service-Oriented Systems," Software Engineering,
IEEE Transactions on, vol. PP, 2011.

[11] L. Wenjuan, et al., "A framework to improve adaptability in web
service composition," in Proceedings of the 2nd International
Conference on Computer Engineering and Technology (ICCET),
Chengdu, China, 2010.

[12] A. Erradi, et al., "Policy-driven middleware for self-adaptation of web
services compositions," in Proceedings of the ACM/IFIP/USENIX
2006 International Conference on Middleware, Melbourne, Australia,
2006, pp. 62-80.

[13] D. Bianculli, et al., "Automated Dynamic Maintenance of Composite
Services Based on Service Reputation," in Proceedings of the 5th
international conference on Service-Oriented Computing (ICSOC),
Vienna, Austria, 2007, pp. 449-455.

[14] S. Dustdar, et al., "A roadmap towards sustainable self-aware service
systems," in Proceedings of the 2010 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, Cape Town,
South Africa, 2010, pp. 10-19.

[15] WS-Diamond Team, "WS-DIAMOND: Web Services-
DiAgnosability, MONitoring and Diagnosis," MIT press, pp. 213-
239, 2009.

[16] M. Salehie and L. Tahvildari, "Self-adaptive software: Landscape and
research challenges," ACM Transactions on Autonomous and
Adaptive Systems, vol. 4, pp. 1-42, 2009.

[17] M. P. Papazoglou, et al., "Service-Oriented Computing: A Research
Roadmap," International Journal of Cooperative Information Systems,
vol. 17, pp. 223-255, 2008.

[18] A. C. Huang and P. Steenkiste, "Building Self-Configuring Services
Using Service-Specific Knowledge," in Proceedings of the 13th IEEE
International Symposium on High Performance Distributed
Computing, 2004, pp. 45-54.

[19] L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, pp. 338-
353, 1965.

[20] Li-Xin Wang, A course in fuzzy systems and control: Prentice Hall,
1997.

[21] L. Zeng, et al., "QoS-Aware Middleware for Web Services
Composition," IEEE Transactions on Software Engineering, vol. 30,
pp. 311-327, 2004.

[22] Y. Dai, et al., "QoS-Driven Self-Healing Web Service Composition
Based on Performance Prediction," Journal of Computer Science and
Technology, vol. 24, pp. 250-261, March 2009.

[23] R. Buyya, et al., "Energy-Efficient Management of Data Center
Resources for Cloud Computing: A Vision, Architectural Elements,
and Open Challenges," in Proceedings of the 2010 International
Conference on Parallel and Distributed Processing Techniques and
Applications, las Vegas, USA, 2010.

[24] Y. Ying, et al., "A Self-healing composite Web service model," in
Proceedings of the IEEE Asia-Pacific Services Computing
Conference (APSCC), Biopolis, Singapore, 2009, pp. 307-312.

[25] J. Kaplan, et al., "Revolutionizing Data Center Energy Efficiency,"
McKinsey,July 2009.

[26] A. Erradi, et al., "WS-Policy based Monitoring of Composite Web
Services," in Proceedings of the 5th IEEE European Conference on
Web Services, Halle, Germany, 2007, pp. 99-108.

[27] Energy Star, "Computer Servers Product List - Families," August,
2012.

[28] OASIS. (2007, June 2010). Web Services Business Process Execution
Language Version 2.0. Available: http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[29] G. Wu, et al., "Towards self-healing Web Services Composition," in
Proceedings of the First Asia-Pacific Symposium on Internetware,
Beijing, China, 2009.

[30] D. Ardagna, et al., "A Service-Based Framework for Flexible
Business Processes," IEEE Software, vol. 28, pp. 61-67, 2011.

[31] A. Erradi and P. Maheshwari, "Dynamic Binding Framework for
Adaptive Web Services," in Proceedings of the 2008 Third
International Conference on Internet and Web Applications and
Services, Athens, Greece, 2008, pp. 162-167.

[32] G. Canfora, et al., "A framework for QoS-aware binding and re-
binding of composite web services," The Journal of Systems and
Software, vol. 81, pp. 1754-1769, 2008.

[33] R. Calinescu, et al., "Dynamic QoS Management and Optimization in
Service-Based Systems," IEEE Transactions on Software
Engineering, vol. 37, pp. 387-409, 2011.

[34] D. Ardagna, et al., "PAWS: A Framework for Executing Adaptive
Web-Service Processes," IEEE Software, vol. 24, pp. 39-46, 2007.

[35] B. Pernici and S. H. Siadat, "Selection of Service Adaptation
Strategies Based on Fuzzy Logic," in Proceedings of the 2011 IEEE
World Congress on Services (SERVICES), Washington DC, USA,
2011, pp. 99-106.

[36] C. Kuo-Ming, et al., "Fuzzy matchmaking for Web services," in
Proceedings of the 19th International Conference on Advanced
Information Networking and Applications (AINA), Tamkang
University, Taiwan, 2005, pp. 721-726 vol.2.

[37] P. Wang, et al., "A Fuzzy Model for Selection of QoS-Aware Web
Services," in Proceedings of the IEEE International Conference on e-
Business Engineering (ICEBE), Shanghai, China, 2006, pp. 585-593.

[38] H. Pfeffer, et al., "A Fuzzy Logic Based Model for Representing and
Evaluating Service Composition Properties," in Proceedings of the
3rd International Conference on Systems and Networks
Communications (ICSNC), Sliema, Malta, 2008, pp. 335-342.

