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Abstract— Increase emphasis on Quality of Service and highly 
changing environments make management of composite 
services a time consuming and complicated task. Adaptation 
approaches aim to mitigate the management problem by 
adjusting composite services to the environment conditions, 
maintaining functional and quality levels, and reducing human 
intervention. This paper presents an adaptation approach that 
implements self-optimization based on fuzzy logic. The 
proposed optimization model performs service selection based 
on the analysis of historical and real QoS data, gathered at 
different stages during the execution of composite services. The 
use of fuzzy inference systems enables the evaluation of the 
measured QoS values, helps deciding whether adaptation is 
needed or not, and how to perform service selection. 
Experimental results show significant improvements in the 
global QoS of the use case scenario, providing reductions up to 
17.1% in response time, 17.38% in cost and 40% in energy 
consumption. 

Keywords - Web service composition; adaptation; fuzzy logic; 
optimization; Quality of Service. 

I. INTRODUCTION 

Web services are modular, self-contained and reusable 
software components that rely on open XML-based standards 
to support machine-machine interactions over distributed 
environments [1]. Some of the benefits offered by services 
include time/cost reduction during software development and 
maintenance. When a single service does not accomplish a 
consumer’s requirement, different services can be used in 
conjunction to create a new value-added service, known as 
composite service, to fulfil this requirement.  

A composite service provides a new software solution 
with specific functionalities and can be seen as an atomic 
component in other service compositions or as a final 
solution to be used by a consumer [2]. The process of 
developing a composite Web service is called service 
composition.  

In service composition, it is necessary to have a set of 
available services that offer certain functionality and also 
fulfil Quality of Service (QoS) constraints [3]. QoS 
properties refer to non-functional aspects of Web services, 
such as performance, reliability, scalability, availability and 
security [4]. By evaluating the QoS aspects of a set of Web 
services that share the same goals, a consumer could identify 
which service meets the quality requirements of the request. 

The QoS attributes of a service can be evaluated during 
design and execution time. At design time, these attributes 
help in order to build a composite service based on the QoS 

requirements of the user. While at execution time, they can 
be monitored to maintain the desired QoS level. Information 
about these attributes can be obtained from the service’s 
profile [5], nevertheless, when this information is not 
available, it can be obtained by analyzing data collected from 
past invocations [6]. 

The dynamic nature of the Web service execution 
environment generates frequent variations in the QoS offered 
to the consumers, therefore, obtaining the expected results 
while running a service is not guaranteed. Web services, 
must be capable to adapt in response to their perception of 
the environment and their own behaviour, without 
compromising their efficiency. Composite services should be 
able to adapt, also based on their components performance, 
in order to provide the consumer the expected behaviour and 
result on the request. 

Due to service composition nature and the variability of 
the environment where services are executed, different 
approaches and tools have been proposed not only to enable 
automatic-dynamic composition, but also to mitigate the 
impacts of unexpected events during the execution of 
composite services. Among them, self-adaptive proposals 
have stood out since they aim to maintain functional and 
quality levels, by dynamically adapting composite services to 
the environment conditions reducing human intervention. 

Adaptive mechanisms provide software systems with 
capabilities to self-heal, self-configure, self-optimize, self-
protect, etc., considering the objectives the system should 
achieve, the causes of adaptation, the system reaction 
towards change and the impact of adaptation upon the system 
[7]. Currently, work in self-optimization for service 
composition has been mainly focused on the selection of 
services at runtime, in order to maintain the expected QoS of 
the entire composition. However, it is only being considered 
situations where QoS decreases. 

This paper introduces a self-optimization solution for 
service composition based on fuzzy logic. Fuzzy logic is an 
approximate reasoning technique suitable to deal with 
uncertainty [8], which can be use used to support decision 
making and to evaluate imprecise parameters in software 
systems. The proposed optimization model performs service 
selection based on historical QoS data and real data, which is 
collected at runtime during different stages of the composite 
service execution. Composite services are considered to be 
workflows conformed by tasks. The QoS of each task is 
evaluated previous to the selection of the service that will be 
linked to the following task. The use of fuzzy support 
systems enables the evaluation of the measured QoS values, 



helps deciding whether adaptation is needed or not, and how 
to perform service selection. The approach has been 
implemented in a framework and was evaluated empirically 
by analyzing the execution through a use case, also 
comparing results with a non-fuzzy approach.  

The major contributions of this paper are: 
 
•  The optimization model for service composition that 

analyzes global QoS in order to determine the benefit 
of adaptation, considering situations where QoS 
values increases and/or decreases. 

•  The use of fuzzy logic as a decision making tool to 
determine the need of adaptation during composite 
service executions. 

 
The remainder of the paper is structured as follows: 

background is briefly described in Section II. Section III 
presents the approach overview. The proposed framework, 
service selection and optimization models are described in 
Section IV. Section V presents the experimental description 
and results. Section VI discusses some related work. 
Conclusions and future work are given in Section VII. 

II. BACKGROUND 

A. Adaptation in Service Composition 

To experience an expected behaviour during the 
execution of a composite service, it is important to consider 
the QoS aspects of the services involved, as their drawbacks 
will be inherited by the composite service. However, 
unexpected events occur, e.g., services become unavailable 
or exhibit discrepancies in their QoS [9], bringing the need of 
mechanisms such as adaptation, in order to restore and 
maintain the functional and quality aspects of the 
composition. Various aspects that can be considered as part 
of adaptation solutions in service composition are listed as 
follows [10]: 

 
•  Adaptation goal is the purpose of adaptation. 

Adaptation goals can be defined based on functional 
and/or non-functional (quality of service) 
requirements. 

•  Adaptation level defines those elements that will 
change in order to achieve the adaptation goal. 

•  Adaptation actions are those used to solve the 
adaptation problem.  

•  Adaptive mechanisms correspond to the approaches 
applied to implement the adaptation actions (e.g. 
agent-based [11], policy-based [12], rules-based, 
feedback-based [13], etc.). 

•  Stage of adaptation is the time when adaptation is 
performed (development time, compile/link time, 
load time and runtime).  

•  Awareness levels describe the scope of information 
that will be available in order to perform adaptation 
[14]. 

 
Besides these aspects, it is also important to consider the 

set of self-* properties that can be selected and implemented 

in adaptive SOA systems. Self-* properties are related to the 
objectives of the composition and the causes and impact of 
adaptation. Some self-* properties applied in service 
composition approaches are self-healing, self-optimizing and 
self-configuring.  

Self-healing services can monitor themselves, 
predict/detect the causes of failure and make the adjustments 
to restore their states to normal [15]. Self-healing is related to 
availability, survivability, maintainability and reliability [16]. 
Self-optimizing systems have the ability to select the best 
available services, as part of a composition, and define the 
most appropriate QoS levels in order to maximize benefits 
and reduce cost [17]. Self-optimization is related with 
efficiency and functionality [16]. Self-configuring services 
can leverage services and resources to compose an optimal 
configuration based on user requirements and the 
characteristics of the system [18]. Self-configuration is 
related to maintainability, functionality, portability, and 
usability [16].  

B. Fuzzy Logic  

Fuzzy logic is a method based on multi-valued logic 
which aims to formalize approximate reasoning [8]. It is used 
to deal with different types of uncertainty in knowledge-
based systems.  

Some of the relevant characteristics of fuzzy logic are 
fuzzy sets, linguistic variables and fuzzy rules. A fuzzy set is 
a collection of objects characterized by a membership 
function with a continuous grade of membership which can 
be ranged between zero and one [19]. A linguistic variable is 
a type of variable that uses words instead of numbers to 
represent its values (e.g. slow, medium, fast) [8]. The values 
used to define linguistic variables are called terms and the 
collection of terms is called term set.  

Fuzzy rules (IF-THEN) are used to represent human 
knowledge in fuzzy systems. A fuzzy IF-THEN rule is a 
conditional statement structured as  [20]: 

 
IF <fuzzy proposition>, THEN <fuzzy proposition>. 

 
Where a <fuzzy proposition> is a statement used to 

associate linguistic variables and terms. 
During the execution of a fuzzy system, crisp inputs are 

converted to linguistic variables, this process is known as 
fuzzification. The variables values are then evaluated using 
fuzzy rules, generating the linguistic values for the outputs. 
Finally, the defuzzification method uses these values to 
obtain crisp outputs values. 

III.  APPROACH OVERVIEW  

Adaptation mechanisms aim to target situations where the 
behaviour of a composite service is deviated from what the 
consumer is expecting. Nevertheless, triggering adaptation 
after every variation in the behaviour of the composition will 
not warranty the best possible QoS values. Reason why it is 
important to consider the following questions: Is adaptation 
needed? When does the composite service need to adapt? 
What is the benefit of adaptation? What is the cost of 
adaptation? 



Aiming to give an answer to some of these questions, in 
this work it is proposed the use of fuzzy logic as a tool to 
support the decision making process, helping determining 
whether adaptation is needed or not and how to perform the 
service selection process. 

The approach uses two fuzzy support systems. The first 
system assesses the QoS values of the composite service on 
each step of the composition, using the global QoS measured 
after the execution of the previous task and historical QoS 
data. The system takes the QoS parameters as inputs and 
based on fuzzy rules provides the benefit of adaptation. 

The second system is used to determine the weights to 
apply to the different QoS attributes during the service 
selection process. It uses the value of the benefit of 
adaptation and the errors between the estimated and the 
measured QoS as inputs, providing as a result the values for 
the weights to be used during the service selection process. 
Both systems will be explained in detail as part of the 
optimization model in the next section. 

IV. SYSTEM MODEL 

The implementation and evaluation of the proposed 
approach requires to setup an environment in which QoS 
aware and adaptive composition can be executed. The system 
model illustrated in Fig. 1 has been developed with this 
purpose. Its core components are described as follows: 

 
•  Service Binder: binds dynamically each of the tasks 

in the composition to executable services. These 
services are selected using functional and QoS 
criteria. 

•  Service Selector: by using required functional and 
quality information, this module searches in the 
service registry for those elements that fulfil 
functional and quality requirements.  

•  Predictor: obtains estimates for the QoS attributes of 
the selected services by using predictive algorithms 
and a collection of historical QoS data.  

•  Sensors: collect information about different events at 
run time and send it to the adaptation module. Events 
are related to quality aspects of the involved 
compositions’ elements. 

•  Adaptation module: monitors and analyzes the 
behaviour of composite services at runtime and 
according to its analysis, determines when it is 
needed to perform certain changes in order to 
improve/maintain the offered QoS of the 
compositions.  

•  Effectors: apply the actions provided by the 
adaptation module, enabling composite services to 
adapt at runtime. 

•  Composition engine: executes the composite services 
(processes’ definitions). 
 

Composite services are considered to consist of a series 
of abstract tasks that will be linked to executable services at 
runtime. To obtain these services, for each task the service 
binder invokes the service selector (SS) and it requests the 

desired characteristics that the component service should 
provide.  

The SS performs a search into the service registry based 
on the provided functional requirements. For each of the pre-
selected services (candidates), the SS module invokes the 
predictor to obtain its estimated QoS. The SS compares the 
results and sends the information about the service that suits 
the request to the binder. 

When the composite service is being executed, sensors 
capture information about the behaviour of the service and its 
components, QoS data is being stored in the historical 
database. Sensors send this information to the adaptation 
module, which determines if adaptation is needed and the 
appropriate adaptation strategy. Finally, it sends the actions 
to be performed to the corresponding effectors, in order to 
maintain/improve the QoS of the composition. 

It is considered that at the time of invoking a composite 
service, the system has available data from previous 
executions of the different possible components, in order to 
obtain accurate predictions about these components’ quality 
characteristics. Also, for each task of the composite service, 
there exist at least two concrete services to invoke. 

A. Service selection model 

Different QoS attributes can be associated with Web 
services [6, 21], which could be used as a differentiating 
point in the preference of consumers at the time of 
searching/selecting components for certain application. In 
this work, the quality parameters that will be considered for 
each service are response time, cost and energy consumption.  

 
•  Response time: time consumed between the 

invocation and completion of the service operation 
[22]; 

•  Cost: fee charged to the consumer when invoking a 
service [10]; 

•  Energy consumption: amount of power consumed by 
a server over a period of time [23]. 

 
Considering response time and cost enables the selection 

of faster and cheaper services, providing a competitive 
advantage [6]. Both parameters have been used in other 
approaches, like those presented in [3, 10, 22, 24].  

Figure 1. System model. 



The amount of energy used by data centres has not only 
economical but also environmental impacts. Energy 
efficiency is becoming a key topic due to high energy costs 
and governments’ pressure to reduce carbon footprints [25]. 
Energy consumption has been selected as the third parameter 
because of the importance of energy efficiency when 
managing computing infrastructure and services.  

Estimation of QoS values is a key step during service 
selection process. Estimated values are calculated using 
historical QoS data recorded from previous executions. This 
data is filtered, discarding values considered as outliers and 
the average of the last N executions of the remaining subset 
is obtained. 

Concrete services are searched in the registry by name, 
assuming that this parameter includes/describes the service’s 
functionality. The resulting set of candidate services is sorted 
according to the relationship between their estimated QoS 
values. Due to these attributes having different units of 
measure, the raw values are first normalized using the 
following formula: 

 
�� =
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 .                                (1) 

 
Where maxi and mini correspond to the maximum and 

minimum values of the evaluated QoS parameter, 
respectively; and qi correspond to the estimated value for the 
next execution. When maxi = mini, then Vi = 1.  

Results are then computed using the Simple Additive 
Weighting formula: 

 
Wi = ti (w1) + ci (w2) + ei(w3).                          (2) 

 
Where ti is the service estimated response time; ci is the 

service estimated cost; ei is the service estimated energy 
consumption; and w1, w2 and w3 correspond to assigned 
weights where w1, w2, w3 ≤ 1 and w1 + w2 + w3 = 1. 

B. Optimization Model 

Monitoring the execution of services is a critical task in 
the adaptation process. By monitoring and collecting data 
from services executions, based on their performance it is 
possible to take decisions about future actions [26]. 

As part of this work, QoS information is collected from 
service, task and process perspectives, where service 
corresponds to concrete Web services; task to elements 
within the composite service that invoke services; and 
process to the entire composition (service workflow). 

Response time is measured during each stage of the 
process, while cost and energy consumption are obtained 
from the WSDL files of the services. The QoS values of a 
task are registered as an individual invocation and as the 
accumulated QoS of the composition at the time of executing 
the task.  

The proposed optimization approach uses the service 
selection model previously described and it is based on fuzzy 
systems to asses the QoS values of the composition, in order 
to decide if adaptation is needed or not and to establish the 
weights to be used during the service selection process. 

It considers situations where a number of the accumulated 
QoS values of the previous activity in the process are better 
than expected, providing some slack that can be used while 
selecting the next service in the process, improving other 
QoS parameters. 

The idea of using fuzzy logic is to understand the 
relationship between the QoS values of the composite service 
and the need of adaptation. In this context, QoS parameters 
can be expressed using linguistic variables. 

Two inference engines have been defined to 1) obtain the 
benefit of adaptation, 2) obtain the weights to be use during 
service selection. Each of these systems uses its own 
linguistic variables and rules. 

The first system assesses the QoS values of the composite 
service during each step of the composition. It uses as inputs 
the QoS values collected from the composite service 
previous to the moment of selecting a new service.  

The defined input variables are response time, cost and 
energy consumption, which are expressed with three terms 
low, medium and high. To establish these terms for each of 
the linguistic variables, an interval is defined at runtime 
using data collected from previous executions. Historical 
data is analyzed, obtaining maximum/minimum values and 
standard deviations from each of the QoS parameters. 
Sigmoidal functions (open to the left and right) are used to 
define the low and high terms, while gauss function is used 
to define the medium term, as illustrated in Fig. 2.  

The system takes the inputs and based on the 
corresponding fuzzy rules, provides the estimated benefit of 
adaptation. Four different levels of benefit of adaptation 
(low, medium, high and very high) were established, falling 
in the interval [0, 1], and defined with gauss functions (see 
Fig. 3).  

Figure 3. Term set of the benefit of adaptation variable. 

Figure 2. Term set of an input linguistic variable. 



 
Table I shows one of the rules used to obtain the benefit 

of adaptation. Four compound rules were constructed 
combining the input variables and their relationship with the 
different levels of benefit of adaptation. These rules describe 
the scenarios that can take place at runtime.  

The second system uses the value of the benefit of 
adaptation (output of the first system) and the errors between 
the estimated and the measured QoS as inputs. The error 
value is computed per each parameter using the following 
formula: 

 

� ��� =
� ������ ���

�����
.                              (3) 

 
Where x(pi) is the estimated data; and x0(pi) is the real 

measured data.  
Input variables corresponding to the QoS errors are 

expressed with three terms, low, medium and high, falling in 
the interval [-0.5, +0.5]. Benefit of adaptation is expressed 
with four terms, as defined in the first fuzzy system. 

 

By evaluating the different errors and the benefit of 
adaptation, the system provides the values to be used as 
weights during the service selection process. Output 
variables (response time weight, cost weight and energy 
consumption weight) are expressed with five terms, very 
low, low, medium, high and very high, falling in the interval 
[0,1] and are defined using gauss functions. 

The algorithm presented in Table II describes the QoS 
evaluation method applied during optimization, which 
involves the use of the fuzzy systems previously described. 

Before selecting the new service to be invoked, QoS 
measured values of the previous task are collected and errors 
are computed (steps 1 to 9). The measured QoS values are 
used as inputs for the first fuzzy system. The benefit of 
adaptation is obtained (step 10) and evaluated (step 11); if it 
is medium or higher then there is a need of adaptation. If not, 
weights to be used during the service selection are set to 
0.333 (step 17).  

When adaptation is needed, the system determines the 
new weights to be use during the service selection process. 
This action is performed by the second fuzzy system (steps 
12 to 14). Weights are then adjusted, to fulfil the restriction 
α + β + γ = 1 (step 15). Finally, the algorithm returns the 
weight values α, β and γ (step 18).  

V. EVALUATION  

In order to asses the effectiveness of the proposed 
optimization approach, an experimental environment was 
setup and a composite service was developed as use case.  
Elements described in Section IV were deployed and 
configured within this environment.  

Experiments were carried out to address the following 
questions: 

 
•  How does the evaluation of the benefit of adaptation 

influence the adaptation process? 
•  Is there any improvement in the global QoS when 

using variable weights during service selection as 
part of a self-optimization mechanism?  
 

A. Experimental Environment 

The experimental environment consists of three nodes, 
one computer with Windows Vista, 4GB RAM and one Intel 
core2 duo 2.1GHz processor (node 1); and two virtual 
machines with lubuntu 11.10, 512 Mb RAM and one 
processor (node 2 and 3).  

Node 1 hosts the BPEL engine (Apache ODE 1.3.4), 
service registry (jUDDI 3.0.4), historical data base (MySQL 
5.1.51) and one application server (Tomcat 6.0.26). Node 2 
and 3, host one application server each (Tomcat 6.0.35). Web 
services are allocated in the application servers. 

This environment works in a Local Area Network 
(LAN). However, in further experiments it is important to 
perform a detailed analysis of the behaviour of Web services 
(e.g., faults, availability, latency) over a WAN, in order to 
obtain results closer to a realistic scenario. 

TABLE II . QOS EVALUATION ALGORITHM . 

Input:  
rt �  response time 
cost� cost 
ec � energy consumption 
eRt �  response time error 
eCost� cost error 
eEc � energy consumption error 
 
Output:  
ω � benefit of adaptation 
α � response time weight  
β �cost weight 
γ �energy consumption weight 
 
(1) Sort by response time 
(2) rt  Obtain measured response time 
(3) eRt  Obtain response time error 
(4) Sort by cost 
(5) cost  Obtain measured cost 
(6) eCost  Obtain cost error 
(7) Sort by energy consumption 
(8) ec  Obtain measured energy consumption 
(9) eEc  Obtain energy consumption error 

//fuzzy system 1 
(10) ω  Obtain benefit of adaptation 
(11) if ω >= medium then 

//fuzzy system 2 
(12) α  Obtain response time weight 
(13) β  Obtain cost weight 
(14) γ   Obtain energy consumption weight 
(15) Adjust  weights 
(16) else 
(17) α  β  γ  0.333 
return α, β and γ 

 

TABLE I. BENEFIT OF ADAPTATION RELATED RULE. 

IF (responseTime IS high AND cost IS low AND energy IS low) 
OR (responseTime IS low AND cost IS high AND energy IS low) 
OR (responseTime IS low AND cost IS low AND energy IS high) 
THEN BenefitofAdaptation IS veryhigh 

 



 

B. Dynamic QoS Parameters 

To add dynamicity to the test environment, values of the 
QoS properties must change over time, or between services’ 
executions. This helps to obtain sensible results and also 
avoids the invocation of only one service per each of the 
tasks in the composition. 

Based on the analysis of the behaviour of Web services 
found on the Internet, response time of the candidate services 
was modified by adding random delays generated with a log-
normal distribution. The distribution and its input values 
were determined after executing 5 services 1,000 times, 
collect their response times and analyze the difference 
between each execution.  

To turn the cost of the different services into dynamic 
QoS values, a model which affects cost based on demand has 
been implemented. It is assumed that higher the cost, lower 
the demand (number of times the service is invoked). The 
algorithm used to implement the cost model is described in 
Table III. 

The number of times a service has been invoked per a 
period of N minutes is evaluated continuously. Based on this 
information, and the values specified as the maximum and 
minimum number of invocations, it is possible to establish a 
new cost based on the demand. If the number of invocations 
is equal or higher than the maximum limit, the cost of the 
service is increased (3). On the other hand, when the number 
of invocations is smaller than the minimum limit, the cost of 
the service is decreased (5). 

Each of the servers, where the Web services are executed, 
is assumed to have different hardware and software 
configurations (see Table IV). Servers information and their 
characteristics were selected from the Energy Star report 
[27]. 

 

Using the model proposed in [23], which is based on the 
percentage of CPU usage, it is possible to determine an 
approximate value to the server energy consumption. 

 
��� = ���� ∙  � + 1 − �� ∙ ���� ∙  �            (4) 
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                            (5) 
 
Where P(u) is the power consumed in an instance of 

time; Pmax is the power consumed when the server is fully 
utilized; u is the utilization level; and k  is the fraction of 
power consumed by the idle server. E is the total energy 
consumed by a node over a period of time t. 

Servers’ utilization is considered to be variable over time. 
The power consumed by a server is obtained periodically and 
exposed on the WSDL files of the corresponding services; it 
is computed using (4) and the data presented in Table IV. 
The energy consumed by a server at the moment the Web 
service is running, is obtained based on the service’ 

C. Experiment Description 

The test case is a BPEL [28] service that implements a 
travel planning process. It validates a credit card, performs 
flight and hotel reservations in parallel, and finally invokes a 
car rental operation. This service is hosted and invoked from 
Node 1.  

The travel planning service is illustrated in Fig. 4. Per 
each of the tasks in the process, there are 9 candidate 
services, distributed among the servers (nodes), that fulfil the 
required functionality and offer different QoS. These services 
were previously registered into the service registry (UDDI), 
and executed several times to populate the historical data 
base and enable the estimation of their QoS attributes. 

The travel planning service was executed 50 times to 
analyze the behaviour of the optimization approach and 
evaluate its overall benefit. The benefit of adaptation is 
evaluated in order to determine whether adaptation is needed, 
or not. 

To get a clear understanding on how the evaluation of the 
benefit of adaptation and the use of variable weights 
influence the results of service selection, the use case has 
also been executed using a non-fuzzy approach, setting 
weights for the service selection as fixed values 
corresponding to 0.333.  

The experiment was executed using dynamic QoS (based 
on the dynamic QoS models previously described) and fixed 
QoS.  

 

 
Figure 4. Travel planning process. 

Server Hardware Operative 
System 

Idle 
(W) 

Load 
(W) 

Node 1 
Acer Incorporated 
Gateway GT310 
F1 

Windows 
Server 2008 R2 
64bit 

50.75 129.5 

Node 2 
Hitachi - 
HA8000/SS10 

Windows 
Server 2008 R2 

45.27 81.97 

Node 3 
IBM - System 
X3650 M3 

Red Hat 
Enterprise 
Linux 5 Update 
4 x64 Edition 

210.85 388.3 

 

TABLE IV. POWER CONSUMPTION DESCRIPTION PER NODE. 

Input:  
nInv �  number of invocations 
ω� maximum number of invocations 
φ � minimum number of invocations 
 
(1) nInv  Obtain number of invocations 
(2) if  nInv >= ω then 
(3) Increase cost  
(4) else if nInv < φ  then 
(5) Decrease cost 

 

TABLE III . COST EVALUATION ALGORITHM. 



D. Evaluation Results 

Initial results show that the proposed optimization 
approach improves the global QoS values of the 
composition. Global QoS refers to the final values of the 
different QoS properties (response time, cost and energy 
consumption).  

The following plots show a comparison between the 
proposed approach and a non-fuzzy approach for each of the 
QoS parameters. When using the proposed approach, QoS 
values are dynamic, cost and power consumption change 
over time based on the models previously described. On the 
other hand, for the non-fuzzy approach, values for cost and 
power consumption remain constant. Energy consumption is 
obtained based on power consumption and response time, 
using formula (5). For both cases, response time is dynamic. 

When analyzing the obtained response time values, it can 
be noticed that the proposed approach follows a more stable 
behaviour as compared with the non-fuzzy approach (see 
Fig. 5). This is due to the evaluation of the QoS values before 
a new service is selected. The system aims to maintain or if 
possible, improve the global QoS of the composition. 
Measured response time values of the proposed approach 
provide a mean reduction of 4.83% and a highest reduction 
of 17.1%. 

 

 

 

 
The obtained cost values are shown in Fig. 6. In 

comparison with the non-fuzzy approach, the use of the 
fuzzy-based system provides a mean reduction of 2.25% and 
a highest reduction of 17.38%.  

Results also indicate that there is a significant reduction 
in the values of energy consumption, as illustrated in Fig. 7, 
providing a mean reduction of 40%. One important factor to 
consider is that energy consumption is not only based in 
power consumption, but also in time. A small response time 
value may generate a small energy consumption value.  

Summarized results of the experiments are presented in 
Table V. These data was collected using a non-fuzzy 
approach, and the proposed optimization model with fixed 
and dynamic QoS values. 

 

QoS/Approach Non Fuzzy Fuzzy with 
fixed QoS 

Fuzzy with 
dynamic 

QoS 

Response 
time (ms) 

Max. 16970 17031 15725 

Min. 13732 13892 13166 

Avg. 15037 15258 14281 

Std. 
Dev. 

5.32% 5.07% 4.68% 

Cost 

Max. 420 400 445 

Min. 385 355 320 

Avg. 390.4 363 381.16 

Std. 
Dev. 

2.58% 2.91% 6.22% 

Energy 
consumption 

(Wsec) 

Max. 359.25 556.73 338.22 

Min. 166.24 261.09 71.44 

Avg. 264.81 421.73 148.25 

Std. 
Dev. 

13.43% 12.53% 50.2% 

 

TABLE V. POWER CONSUMPTION DESCRIPTION PER NODE. 

Figure 7. Energy consumption comparison between 
non-fuzzy and fuzzy approaches. 

Figure 6. Cost comparison between non-fuzzy and fuzzy 
approaches. 

Figure 5. Response time comparison between non-fuzzy 
and fuzzy approaches. 



 
When comparing the obtained results, it can be noticed 

that use of dynamic QoS has a strong influence in the final 
QoS of the composite service. Values corresponding to the 
proposed approach with dynamic QoS present the highest 
standard deviations for cost and energy consumption. This 
behaviour is due to the inserted dynamicity. Even though the 
highest cost is found in the proposed approach column, 
when it comes to average values, it is still lower than the 
non-fuzzy results. 

The values of benefit of adaptation (BoA) collected per 
each task of the different executions of the process are 
illustrated in Fig. 8. These values were obtained using the 
proposed optimization model with dynamic QoS. For the 
first task of the process (card validation), as there is no QoS 
information from previous tasks, the BoA is equal to 0, 
setting the weights for service selection equal to 0.33. Hotel 
reservation and flight reservation are executed in parallel 
after card validation, reason why their BoA values are the 
same.  

Adaptation is performed per task when BoA is larger 
than 0.4, which is the highest value for the medium term 
defined in the fuzzy system. It was noticed that in most of 
the cases where BoA was higher than 0.45 for hotel 
reservation/flight reservation tasks, BoA values were lower 
than medium for the last task of the process, therefore, 
adaptation was not needed. 

VI. RELATED WORK 

The importance of QoS management in service 
environments has brought the need of QoS aware solutions 
for service composition. Different approaches have been 
presented to evaluate QoS attributes, aiming to select a set of 
components that optimize the global QoS. Some of these 
approaches are based on the works described in [6] and [21], 
which proposed mathematical models to compute QoS of 
composite services based on the QoS of their components 
and consider time, cost, reliability, availability and reputation 
as the quality criteria to evaluate. 

By using self-* properties, systems are enabled with 
capabilities to deal with the dynamicity of the Web service 
execution environment, providing the consumer with the 

expected QoS levels and functional results. These properties 
allow composite services to function despite of 
environmental changes, detect and react to components that 
not satisfy the service requirements, and select partners that 
increase the benefits of the composition. 

According to the objectives of the composition and the 
causes and impact of adaptation, different self-* properties 
can be selected and implemented. The most used properties 
in service composition approaches are self-healing [15], self-
configuration [18] and self-optimization [17]. 

Approaches like those presented in [11, 13, 22, 24, 29-
32] apply self-healing mechanisms, where new services are 
selected and invoked after a functional failure or a QoS 
constraint violation. An adaptation solution that uses self-
configuring features is described in [33], where service 
composition is performed by searching for an optimal 
configuration of components based upon initial constraints. 
Adaptation capabilities include runtime reconfiguration, and 
resource assignment. 

On the other hand, mechanisms that implement self-
optimization are closely related to the selection of services at 
runtime, in order to maintain the expected QoS of the entire 
composition. Examples of works belonging to this category 
are described in [10, 32-34].  

A framework for QoS driven adaptation for service 
composition is presented in [10]. Adaptation is performed 
using service selection and coordination patterns. The 
framework uses an optimization engine to analyze the 
behaviour, determine an adaptation policy and ensure the 
composition meets the QoS goals. The solution presented in 
[32] proposes a QoS-aware binding approach based on 
Genetic Algorithms. It searches for the best possible set of 
services to invoke, however, at runtime the bindings can be 
reconsidered and sections of the composition can change. 
The framework described in [34] enables designers to 
develop BPEL workflows, in which they can define at design 
time the information required to adapt at runtime, including a 
set of candidate services and constraints. The framework 
selects the best available services for executing the process 
and defines the most appropriate QoS levels for delivering 
them. 

Although these approaches are closely related with the 
work described in this paper, there are significant 
differences. Firstly, the proposed optimization approach 
takes into consideration the benefit of adaptation, obtained 
from the measured QoS values, to determine whether 
adaptation is needed or not. Secondly, optimization of QoS is 
also considered when the measured QoS values at certain 
point of the composite service execution is better than 
expected, enabling the improvement of other QoS attributes.   

Because of the nature of fuzzy logic for solving problems 
and producing solutions for management purposes, it has 
been applied in different fields like networks, control 
systems and mobile applications. In the area of Web services, 
it has been used as a support tool for service selection, 
discovery and composition [35-38].  

The approach presented in [35] uses two fuzzy systems to 
select adaptation strategies based on the overall QoS values, 
importance of QoS and cost of service substitution. A 

Figure 8. Benefit of adaptation per each task in the 
travel planning process. 



framework that performs matchmaking tasks for dynamic 
service discovery based on fuzzy logic is described in [36]. 
In [37], it is presented a fuzzy decision making model to 
locate and select services based on customer’s preference or 
satisfaction degree. A generic model for representing and 
evaluating non-functional service properties is proposed in 
[38]. It aims to enable the selection of service compositions 
fitting the user’s requirements. 

The main difference between these approaches and the 
work presented in this paper is the purpose of the use of 
fuzzy logic. In the proposed approach, fuzzy logic is used as 
a tool to evaluate the measured QoS values in order to 
determine the benefit of performing adaptation. 

VII.  CONCLUSIONS AND FUTURE WORK 

This paper presents an adaptation approach for service 
composition that implements a self-optimization mechanism, 
which aims to improve the global QoS values of composite 
services. The mechanism is based on service selection and 
fuzzy logic. Fuzzy logic has demonstrated to be a useful tool 
in the evaluation process of the QoS attributes. 

At runtime, the QoS values of the composition are 
monitored and evaluated in order to obtain the benefit of 
adaptation. Optimization is triggered if the benefit is 
considered to be medium or higher. It is applied in situations 
with QoS decrease, and also where a number of the 
accumulated QoS values are better than expected, providing 
some slack that can be used while selecting the next service 
in the process, improving other QoS parameters. 

In summary, evaluation results indicate that by using the 
proposed approach, there can be achieved significant 
improvements in the global QoS of composite services. By 
obtaining and analyzing the benefit of adaptation, adaptation 
is not carried out each time a QoS value changes. Service 
selection is performed using variable weights, which 
influence the preferences on component services and have an 
impact on the global QoS of the composition. 

This paper is part of an ongoing research. Future work 
includes the analysis of different self-adaptive properties and 
the extension of the actual framework, in order to increase 
the coverage of events that can occur at runtime. Also, it is 
planned to investigate different decision support tools and 
their efficiency when used to evaluate the benefit of 
adaptation. 
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