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An algebraic model for free rational G-spectra

J. P. C. Greenlees and B. Shipley

Abstract

We show that for any compact Lie group G with identity component N and component group
W = G/N , the category of free rational G-spectra is equivalent to the category of torsion
modules over the twisted group ring H∗(BN)[W ]. This gives an algebraic classification of rational
G-equivariant cohomology theories on free G-spaces and a practical method for calculating the
groups of natural transformations between them.
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1. Introduction

1.1. Context

In algebraic topology, one of the basic invariants of G-spaces is an equivariant cohomology
theory, E∗

G(·) (one thinks first of various types of equivariant K-theory and equivariant
cobordism, but also of Bredon and Borel cohomology). Such a cohomology theory is, in
particular, a contravariant functor to an abelian category satisfying the Eilenberg–Steenrod
and Milnor axioms (which is to say it is homotopy invariant, is an exact functor, has a Mayer–
Vietoris sequence, and takes sums to products). In general, we impose restrictions on behaviour
under suspensions, but to simplify the situation somewhat, we restrict the cohomology theory to
free G-spaces, which makes the other restrictions unnecessary. A formal stabilization process
constructs a category (‘free G-spectra’) in which such cohomology theories are represented
by an object E in the sense that, for any based G-space X, we have E∗

G(X) = [X,E]∗G.
The category of spectra has the advantage of a much richer structure, and in particular
one can do homotopy theory in it. The spectra E correspond to cohomology theories E∗

G(·)
and spaces of natural transformations are also calculated as homotopy classes of maps:
Nat(E∗

G(·), F ∗
G(·)) = [E,F ]G∗ .
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However, the category of free G-spectra remains almost as complicated as the category of free
G-spaces, so one does not expect to have a complete global understanding in this generality. To
simplify things further we assume that the cohomology theories take values in rational vector
spaces, and these are correspondingly represented by free rational G-spectra. We prove, in this
paper, that this category is simple enough to have a purely algebraic model. Some special cases
are relatively elementary. By Serre’s early work, if G is trivial, then rational cohomology theories
correspond to graded rational vector spaces, and if G is finite, then rational cohomology theories
on free G-spaces correspond to graded QG-modules, but for infinite compact Lie groups, the
situation is more complicated.

1.2. Results

We have previously given a small and concrete model of free rational G-spectra when G is a
connected compact Lie group [2]. The main result of the present paper extends this to general
compact Lie groups, but perhaps more interesting is the new method (essentially that of [3]),
which involves fewer equivalences and better respects multiplicative structures. Furthermore,
some readers may find it helpful to see the method of [3] implemented in the present simple
context.

The case of free G-spectra has the attraction that it is rather easy to describe both the
homotopy category of free G-spectra and also the algebraic model. The homotopy category
coincides with the category of rational cohomology theories on free G-spaces; better still, on
free G-spaces an equivariant cohomology theory is the same as one in the naive sense (that is,
a contravariant functor satisfying the Eilenberg–Steenrod axioms and the wedge axiom).

To describe the algebraic model, we suppose that G has identity component N and
component group W = G/N . Note that W acts on the polynomial ring H∗(BN) by ring
isomorphisms, and we write H∗(B̃N) to advertise the W action. We may then form the twisted
group ring H∗(B̃N)[W ]. A module over this ring is said to be a torsion module if it is torsion
as a module over the polynomial ring H∗(B̃N). The algebraic model consists of differential
graded torsion modules over H∗(B̃N)[W ].

Theorem 1.1. For any compact Lie group G, with identity component N and component
group W = G/N, there is a Quillen equivalence

free-G-spectra/Q � tors-H∗(B̃N)[W ]-mod

of model categories. In particular, their derived categories are equivalent

Q-cohomology-theories-on-free-G-spaces = Ho(free-G-spectra/Q) � D(tors-H∗(B̃N)[W ]-mod)

as triangulated categories.

Note that the algebraic model does not detect the fact that the extension

1 −→ N −→ G −→W −→ 1

need not be split. For example, both free O(2)-spectra and free Pin(2)-spectra are equivalent
to torsion modules over the twisted polynomial ring Q[c][W ], where W is a group of order 2
acting to negate c. This should not be surprising, since the 2:1 map Pin(2) −→ O(2) induces a
rational equivalence on categories of free spectra.

1.3. Conventions

Certain conventions are in force throughout the paper. The most important is that everything
is rational: henceforth all spectra and homology theories are rationalized without comment.
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For example, the category of free rational G-spectra will now be denoted ‘free-G-spectra’.
We also use the standard conventions that ‘DG’ abbreviates ‘differential graded’. We focus
on homological (lower) degrees, with differentials reducing degrees; for clarity, cohomological
(upper) degrees are called codegrees and are converted to degrees by negation in the usual way.
Finally, we write H∗(X) for the unreduced cohomology of a space X with rational coefficients.

2. The proof

2.1. Organization of the paper

Most of the rest of the paper is devoted to establishing the following sequence of Quillen
equivalences, several of which are themselves zig-zags. We will repeatedly use cellularization
(right localization) to focus attention on the free part of the model, and the Cellularization
Principle of [5] (quoted in the relevant special case in Appendix). The cellularizations are all
with respect to the images of the cell G+; using the Adams spectral sequence of Section 9, these
are recognized by their homotopy, and hence behave as expected under the functors between
the different models below

free-G-spectra
(1)� cell-DEG+-mod-G-spectra

(2)� cell-DB̃N+-mod-W -spectra
(3)� cell-C∗(B̃N)[W ]-mod

(4)� cell-H∗(B̃N)[W ]-mod
(5)� tors-H∗(B̃N)[W ]-mod.

To start with, we use the G+-cellularization of spectra as a model for free G-spectra.
Now, Equivalence (1) is obtained from the change of rings adjunction arising from the map
S −→ DEG+ of ring G-spectra (where DEG+ = F (EG+, S) is the functional dual of EG+)
by cellularizing with respect to G+. This is described in Section 3.

Equivalence (2) reduces to a finite group of equivariance. It is obtained by passage to N -fixed
points; DB̃N+ is the W -spectrum (DEG+)N , with the tilde included as a reminder that W
is acting. This is a form of Eilenberg–Moore equivalence and is discussed in Sections 4 and 5
(see [4] for a more general discussion).

Equivalence (3) is the big step from topology to algebra and this step is described in Section 6
calling on the results of [11]. In this case, the ring W -spectrum DB̃N+ is an algebra over the
rational Eilenberg–MacLane spectrum, and hence equivalent to a QW -algebra, which we call
C∗(B̃N) because it is a DGA with cohomology H∗(B̃N). Since we are working over the
rationals, this may be taken to be commutative. A C∗(B̃N)-module in QW -modules is the same
as a module over the twisted group ring C∗(B̃N)[W ], and we will use language from the latter
point of view.

Equivalence (4) moves from a differential graded algebra to an ordinary graded ring by
a little formality argument described in Section 7. It is basically the usual argument that
commutative polynomial rings are intrinsically formal, but a little care is needed to deal with
the representations.

Equivalence (5) is a change of model which means that cellularization at the model category
level is replaced by the use of a more economical underlying category. This is described in
Section 8.

2.2. Relationship to other results

We should comment on the relationship between the strategy implemented here and that used
for free spectra in [2]. Both strategies start with a category of G-spectra and end with the same
purely algebraic category, and the connection in both relies on finding an intermediate category



136 J. P. C. GREENLEES AND B. SHIPLEY

that is visibly rigid in the sense that it is determined by its homotopy category (the archetype
of this is the category of modules over a commutative DGA with polynomial cohomology).
With some additional effort, the methods of [2] can be applied to prove the main equivalence
of Theorem 1.1.

The difference comes in the route taken. Roughly speaking, the strategy in [2] is to move to
non-equivariant spectra as soon as possible, whereas that adopted here is to keep working in
the ambient category of G-spectra for as long as possible. The present method appears to have
several advantages. It uses fewer steps, and (although we do not pursue it here) the monoidal
structures are visible throughout.

We present the argument as briefly as possible, so as to highlight the line of argument. The
technical ingredients can be found in [4, 5] (a more condensed account all in one place can be
found in [3]).

3. Modules over DEG+

To start we need a model for free G-spectra; there are several Quillen equivalent alternatives
(see [2, Section 3] for discussion). For definiteness, we start with orthogonal G-spectra [10],
and use the G+-cellularization of the category of S-module G-spectra, where S is a strictly
commutative model for the rationalized sphere spectrum. Next, we explain that since EG
is a G-space, we have a strictly co-commutative diagonal EG −→ EG× EG and hence the
functional dual DEG+ = F (EG+, S) becomes a commutative ring G-spectrum. The completion
map

S = F (S, S) −→ F (EG+, S) = DEG+,

then gives a map of ring spectra. Accordingly, we have a Quillen adjunction given by extension
and restriction of scalars, with counit given by the action map

DEG+ ∧X −→ X

for DEG+-modules X and unit
Y −→ DEG+ ∧ Y.

Noting that the S-module G+ is taken to DEG+ ∧G+ � G+, we continue to write G+ for the
image cell. We note that both the derived unit and counit are non-equivariant equivalences
and hence G+-equivalences. It follows from the Cellularization Principle A.1 that we have a
Quillen equivalence of cellularizations

free-G-spectra = cell-S-mod-G-spectra � cell-DEG+-mod-G-spectra.

4. Passage to N -fixed points

Now we note that since the identity component N of G is a normal subgroup, Lewis-May fixed
points give a functor from G-spectra to W -spectra. We write

DB̃N+ := (DEG+)N

for the image of DEG+. It is a ring W -spectrum with underlying non-equivariant spectrum
DBN+, and we include the tilde in the notation to emphasize that it will typically have a
non-trivial W -action.

The Lewis-May fixed point functor takes DEG+-module G-spectra to DB̃N+-module
W -spectra, and we denote this functor ΨN . It has a left adjoint given by inflation and extension
of scalars, and as usual we suppress the notation for inflation. The adjunction is discussed at
greater length in [4] or [3, Section 11].
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Once again we have a Quillen adjunction

DEG+∧DB̃N+
: DB̃N+-mod-W -spectra ��

DEG+-mod-G-spectra : ΨN�� .

The Wirthmuller equivalence (G+)N � ΣdW+ [9, II.6.3] gives the image of the cell G+ as a W -
spectrum, where d is the dimension of G, and the module structure is unique by Corollary 9.2.
By the Cellularization Principle (Proposition A.1), to see that we get a Quillen equivalence
after cellularization, we need only check that the unit and counit are derived equivalences on
the cells.

For any N -free G-space Y the counit is a map

DEG+ ∧DB̃N+
Y N � DEG+ ∧DB̃N+

ΣdY/N −→ Y,

and we are interested in the special case Y = G+. This counit is an equivalence for any N -free
Y by the Eilenberg–Moore theorem since N is a connected group, but we give the complete
proof in Section 5, since it is especially simple in the rational case. It then follows that the unit

W+ −→ (DEG+ ∧DB̃N+
W+)N � (Σ−dG+)N

is also an equivalence. By the Cellularization Principle A.1, we thus have a Quillen equivalence
on the cellularizations

cell-DEG+-mod-G-spectra � cell-DB̃N+-mod-W -spectra.

5. The Eilenberg–Moore argument

We give a self-contained argument for the Eilenberg–Moore equivalence in the previous section.

Proposition 5.1. For any N -free DEG+-module G-spectrum Y the counit of the fixed
point adjunction

DEG+ ∧DB̃N+
Y N � DEG+ ∧DB̃N+

ΣdY/N −→ Y

is a weak equivalence.

Proof. Consider the map

ε : DEG+ ∧DB̃N+
Y N −→ Y

for arbitrary DEG+-modules Y . This is a map of G-spectra, and it is a weak equivalence in
our model of free G-spectra, provided that it is a non-equivariant equivalence. This means that
it suffices to argue purely N -equivariantly in showing that the counit is a weak equivalence.
Accordingly, it is enough to argue entirely with N -spectra, which we do for the remainder of
the proof, so that we have the N -map

ε : DEN+ ∧DB̃N+
Y N −→ Y.

Now note that the class of Y for which the counit is an equivalence is closed under cofibre
sequences, retracts and arbitrary wedges. The map ε is tautologously an equivalence for the
DEN+-module Y = DEN+ itself. It follows that it suffices to show that DEN+ builds the
free cell N+, since all N -free spectra are built from N+.

It remains to show that Y = N+ is built from DEN+. The basic idea is to use the standard
Koszul resolution, but the implementation of the idea is complicated by some dualization.
We recall that R = H∗(BN) is a polynomial ring, so that if we choose polynomial generators
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x1, . . . , xr, then we may form a Koszul complex, and hence an exact sequence

0 −→ Fr −→ Fr−1 −→ · · · −→ F1 −→ F0 −→ Q −→ 0.

Here, Fs is a free module on generators corresponding to s-fold products of the generators:
Fs =

⊕
|A|=s xAR (where A runs over subsets of {1, 2, . . . , r}, and xA is simply designed to

keep track of the degrees). Of course, since πN
∗ (DEN+) = R, we can realize the modules with

DEN+-module N -spectra by taking

Fs =
∨

|A|=s

xADEN+,

so that
Fs = πN

∗ (Fs).

It is also easy to realize the maps in the exact sequence in DEN+-modules and one may go
further to realize an entire filtered spectrum in a standard way.

However, it is convenient to do a little more, and find the pre-dual. In the algebraic world,
Fs
∼= (Es)∨ for a suitable module Es; indeed we may take Es = (Fs)∨. Taking duals throughout,

we have a resolution

0←− Er ←− Er−1 ←− · · · ←− E1 ←− E0 ←− Q←− 0

by injective H∗(BN)-modules.
In the topological world πN

∗ (N+) = ΣdQ, πN
∗ (EN+) = ΣdR∨, and we may realize ΣdEs with

Es =
∨

|A|=s x−AEN+. In the usual way we form a tower

Y0

��

Y1

��

�� .�� · · · Yr−1

��

�� Yr

��

�� Yr+1
��

E0 Σ−1E1 Σ−r+1Er−1 Σ−rEr

so that Y0 = N+ and the composites Σ−s+1Es−1 −→ ΣYs −→ Σ−s+1Es are the (d-fold suspen-
sion of the) maps in the exact sequence. In more detail, we start with Y0 = N+ and find a map
N+ −→ E0 realizing Q −→ E0, and take Y1 to be the fibre. Now πN

∗ (ΣY1) = im(E0 −→ E1)
and we may realize πN

∗ (ΣY1) −→ E1 = πN
∗ (E1) by a map ΣY1 −→ E1.

Taking functional duals, we obtain the required resolution by DEN+-modules. The point
of working with pre-duals is that we have a diagram of N -free spectra. Thus, the fact that
πN
∗ (Yr+1) = 0 is sufficient to show that Yr+1 � ∗ [2, 6.1]. Now we may form the dual tower

Y 0

��

Y 1

��

�� .�� · · · Y r−1

��

�� Y r

��

�� Y r+1��

Σ1−0E0 Σ1−1E1 Σ1−r+1Er−1 Σ1−rEr

defined by the cofibre sequences
Ys −→ Y0 −→ Y s.

Here, we start with Y 0 � ∗ and build up Y r+1 � Y0 = N+ by the r + 1 cofibre sequences

Σ−sEs −→ Y s+1 −→ Y s.

Dualizing, we have a corresponding construction with DY 0 � ∗ and build up DY r+1 � DY0 �
DN+ � Σ−dN+ (using the Wirthmüller isomorphism for the last equivalence) by the r + 1
cofibre sequences

ΣsDEs ←− DY s+1 ←− DY s.
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This shows that N+ is finitely built from DEN+, which completes the proof.

6. From topology to algebra

We now have a commutative ring W -spectrum DB̃N+, and by Shipley [11, 1.2], since we
are working over the rationals, this corresponds to a commutative monoid in the category
of differential graded QW -modules. We write C∗(B̃N) for this DGA since its cohomology is
H∗(B̃N). Furthermore, we have Quillen equivalences between the categories of modules by
Shipley [11, 2.15] and between their cellularizations by Proposition A.1

cell-DB̃N+-mod-W -spectra � cell-C∗(B̃N)-mod-Q[W ]-mod.

Finally, for convenience we re-express this category of modules. Indeed, the category of
C∗(B̃N)-modules in QW -modules is the same as the category of C∗(B̃N)[W ]-modules in
Q-modules, where C∗(B̃N)[W ] is the twisted group ring, so that we have an isomorphism.

cell-C∗(B̃N)-mod-Q[W ]-mod ∼= cell-C∗(B̃N)[W ]-mod.

7. Formality

Next, we replace C∗(B̃N) by its homology. To start with, a classical result of Borel states
H∗(B̃N) is a polynomial algebra on even degree generators. Furthermore, if we regard it
as a W -module, then it is a symmetric algebra on the finite-dimensional, evenly graded
QW -submodule V = QH∗(B̃N). We will argue that there is a copy of V inside the cycles
of C∗(B̃N). This gives a chain map V −→ ZC∗(B̃N) −→ C∗(B̃N) of QW -modules. Since
C∗(B̃N) is commutative, the universal property of the symmetric algebra gives a map

H∗(B̃N) = Symm(V ) −→ ZC∗(B̃N) −→ C∗(B̃N)

of differential graded QW -algebras, and it is a homology isomorphism by construction. This
then gives a Quillen equivalence

H∗(B̃N)[W ]-mod � C∗(B̃N)[W ]-mod

and hence also an equivalence of cellularized categories by Proposition A.1, where the
generating cell QW is characterized by its homology by Corollary 9.2.

To construct the map, we work with increasing codegrees. Since V is positively cograded, we
can start with the zero map in degree 0. When we reach codegree n, we have an epimorphism

ZnC∗(B̃N) −→ Hn(B̃N) −→ QnH∗(B̃N) = V n,

of QW -modules. By Maschke’s theorem this splits to give the required QW -map V n −→
ZnC∗(B̃N). Since V is concentrated in finitely many degrees, this process will be complete in
finitely many steps.

8. Change of algebraic models

The last equivalence changes from a model with underlying category of DG H∗(B̃N)[W ]-
modules (and cellular equivalences as weak equivalences) to a model with underlying category
the DG torsion-H∗(B̃N)[W ]-modules (and homology isomorphisms as weak equivalences).

In fact, the previous Quillen equivalence leaves us with the QW -cellularization of the
projective model structure on H∗(B̃N)[W ]-modules; see [11, 2.9] or [8, Section 7]. For the next
step, we need the injective model structure on H∗(B̃N)[W ]-modules with weak equivalences
the homology isomorphisms and cofibrations the monomorphisms; see [2, Section 8.C], or more
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generally [6, 3.6]. Using the identity functors, there is a Quillen equivalence between the QW -
cellularizations of the projective and injective model structures on H∗(B̃N)[W ]-modules by
the Cellularization Principle A.1. Now if we let m denote the maximal ideal of H∗(B̃N), then
the m-power torsion functor

ΓmM := {x ∈M |msx = 0 for s	 0}
is right adjoint to the inclusion of the torsion modules:

i : tors-H∗(B̃N)[W ]-mod
��
H∗(B̃N)[W ]-modinj : Γm�� .

We next verify that this adjunction induces a Quillen equivalence between the QW -cellularized
injective model category and the injective model structure on torsion modules from [2, 8.6],
with weak equivalences the homology isomorphisms and cofibrations the monomorphisms.

First note that the inclusion of the torsion modules into the injective model structure
H∗(B̃N)[W ]-modinj (before cellularization) is a left Quillen functor since it preserves homology
isomorphisms and monomorphisms. We show in Corollary 9.2 that the generating cell QW
is characterized by its homology, so we see that the (i,Γ) adjunction preserves QW up to
equivalence. Hence, by the Cellularization Principle A.1, there is an induced Quillen equivalence
between the associated QW cellularized model structures

cell-tors-H∗(B̃N)[W ]-mod � cell-H∗(B̃N)[W ]-modinj .

The cellular weak equivalences detected by Hom(QW, ·) are precisely the homology isomor-
phisms on torsion modules, so the cellularized model structure on the torsion modules agrees
with the original injective model structure. Thus, we have direct Quillen equivalences

tors-H∗(B̃N)[W ]-mod � cell-H∗(B̃N)[W ]-modinj � cell-H∗(B̃N)[W ]-modproj .

9. The Adams spectral sequence

The homotopy groups πN
∗ may be used as the basis of an Adams spectral sequence for

calculating maps between free rational G-spectra. If X is a G-space, then W acts on πN
∗ (X),

and if X is N -free, then H∗(B̃N) acts on πN
∗ (X) = H∗(X/N) by cap product; these structures

interact to give the structure of an H∗(B̃N)[W ]-module. Finally, since homotopy elements are
supported on finite subspectra (whose homotopy is bounded below), the module is a torsion
module.

Theorem 9.1. For any free G-spectra X and Y there is a natural Adams spectral sequence

Ext∗,∗
H∗(B̃N)[W ]

(πN
∗ (X), πN

∗ (Y ))⇒ [X,Y ]G∗ .

It is a finite spectral sequence concentrated in rows 0 to r and strongly convergent for all X
and Y .

Proof. The proof is standard. First, we observe that enough torsion modules are realizable,
since πN

∗ (EG+ ∧G/N+) ∼= ΣdH∗(B̃N)[W ]∨. Next, we observe that for any free G-spectrum X

πN
∗ : [X,EG+ ∧G/N+]G∗ −→ HomH∗(B̃N)[W ](π

N
∗ (X), πN

∗ (EG+ ∧G/N+))

is an isomorphism. Indeed, we may use a change of groups isomorphism on the domain and
codomain and reduce to showing that

πN
∗ : [X,EN+]N∗ −→ HomH∗(B̃N)(π

N
∗ (X), πN

∗ (EN+))

is an isomorphism. This is a special case of [2, 6.1].
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This is enough to construct the Adams spectral sequence, and identify the E2-term. For
convergence, we need only show that if X is G-free and πN

∗ (X) = 0, then X � ∗. By Greenlees
and Shipley [2, 6.1], we know that πN

∗ (X) = 0 implies that X is N -contractible, or equivalently
that X ∧G/N+ � ∗. It follows that X ∧ EG/N+ � ∗ and hence we have equivalences

X = X ∧ S0 � X ∧ ẼG/N � ∗.
The first equivalence is because X ∧ EG/N+ � ∗ and the second is because X is G-free and
ẼG/N is non-equivariantly contractible.

Apart from giving a calculational tool, this result makes plausible the main theorem of the
present paper. Nonetheless, it appears that the only way we explicitly use the Adams spectral
sequence is in the fact that cells are characterized by their homology.

Corollary 9.2. If X is a free G-spectrum with πN
∗ (X) ∼= πN

∗ (G+) = ΣdQW, then
X � G+.

Proof. The E2-term of the Adams spectral sequence for calculating maps between G+

and X is

Ext∗,∗
H∗(B̃N)[W ]

(QW, QW ) = (ΛV )[W ]

with V = QH∗(B̃N) the indecomposables. A degree −i submodule of V gives rise to a
bicodegree (1,−i) submodule of the Ext group, and so, by degree, the bottom copy of Q[W ]
consists of infinite cycles. It follows that the identity map in πN

∗ lifts to a map between spectra.
This gives maps G+ −→ X and X −→ G+ whose composites in either order are isomorphisms
in πN

∗ . By the convergence of the Adams spectral sequence this is an equivalence.

In this paper, we often need to know how our chosen cells behave under functors between
model categories. We apply the corollary repeatedly to see that each cell maps to the obvious
object up to equivalence.

Appendix. Cellularizations

The basic reference for cellularization (or right localization) in model structures is [7]. Our
convention throughout this paper is to refer to the cellularization of a stable model category
M with respect to the set of all suspensions of an object {ΣiA}i∈Z as the cellularization of M

with respect to A and write A-cell-M. In this case, A-cell-M is again a stable model category;
see [1, 4.6].

We now recall the Cellularization Principle from [5] (or [3, Appendix A]), which we use to
produce Quillen equivalences of cellularized model categories.

Proposition A.1 [5] (The Cellularization Principle). Let M and N be right proper, stable,
cellular model categories with L : M→ N a Quillen adjunction with right adjoint R. Let L and
R denote the associated derived functors.

(1) Let A be a homotopically small object in M such that LA is homotopically small and
A→ RLA is a weak equivalence. Then L and R induce a Quillen equivalence between the
A-cellularization of M and the LA-cellularization of N

A-cell-M �Q LA-cell-N.
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(2) Let B be a homotopically small object in N such that RB is homotopically small and
LRB → B is a weak equivalence. Then L and R induce a Quillen equivalence between the
B-cellularization of N and the RB-cellularization of M

RB-cell-M �Q B-cell-N.
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