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Parametric variation of a coupled pendulum-oscillator system

using real-time dynamic substructuring

A. Gonzalez-Buelga, D.J. Wagg,∗and S.A. Neild.

Department of Mechanical Engineering, University of Bristol, Queen’s Building, University Walk, Bristol,

BS8 1TR, UK.

SUMMARY

In this paper we present results from real-time dynamic substructuring tests used to model the

dynamics of a coupled pendulum-oscillator system. The substructuring technique is particularly

suitable for systems where the nonlinear and linear parts of the system can be separated. The nonlinear

part is built full size and tested physically (the substructure) while the linear part is simulated

numerically. Then, in order to replicate the dynamics of the complete system the substructure and the

numerical model must be coupled in real-time. In this study we demonstrate how real-time dynamic

substructure testing can be used to model systems with strongly nonlinear behavior using parametric

variation. We show that the substructuring results give good qualitative and quantitative agreement

with purely numerical simulations of the complete system for a range of parameters values. This

includes single parameter bifurcation diagrams, some of which cannot be obtained from a full physical

experiment. We also briefly discuss the effects of delay and noise on the stability of the substructured

system, and how these effects can be mitigated. Copyright c© 2000 John Wiley & Sons, Ltd.

∗Correspondence to: David.Wagg@bristol.ac.uk, Tel: +44 (117) 9289736, Fax : +44 (117) 929 4423
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1. Introduction

In this paper we consider using real time dynamic substructuring to model the dynamics

of a well known nonlinear dynamic system. The system chosen is a pendulum coupled to a

mass-spring-damper system, which has well known autoparametric resonance behavior [1, 2].

This system, and related mathematical representations, have been studied in depth — see for

example [1–5] and references therein. A range of experimental studies of this type of system

have also been carried out [6–9]. In addition, this system also has strong relevance to cable-

stayed bridge structures, where autoparametric resonances are a significant effect [10, 11].

The connection with structural dynamics is relevant to the work presented in this paper,

because it was work in this field that originally motivated the development of dynamic

substructure testing. Traditional scaled experimental testing techniques in structural dynamics

— such as shaking table testing — have severe limitations when elements of the structure

exhibit nonlinear behavior [12]. Engineers have partially overcome this by testing (parts

of) full scale structures using delayed time scales, known as pseudodynamic testing (see for

example [13–20]). More recently, considerable efforts have been made to develop methods for

testing both at large scale and in real time — real time substructuring testing and effective

force testing [21–24].

The concept underlying these methods is that only the nonlinear component of interest

is tested experimentally, while the remaining part of the structure is computed numerically.

In simple systems — such as the one studied in this paper — we can map the linear and
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2 GONZALEZ-BUELGA ET. AL.

nonlinear parts directly onto the numerical and experimental division. So the pendulum is the

nonlinear experimental substructure, and the mass-spring-damper is computed numerically. In

structural dynamics testing, this approach allows the single nonlinear element of interest to

be tested experimentally, often at full scale. It also allows parameters in the computer model

to be varied to undertake parametric testing.

The interface between the nonlinear component and the numerical model is provided by a set

of transfer systems, which are typically electric or hydraulic actuators. These actuators apply

displacements to the nonlinear component via a control system which is designed so that the

transfer system follows the appropriate output from the numerical model [22]. Simultaneously,

the force required to impose these displacements is measured and fed back into the numerical

model to give a two way coupling. The transfer system introduces undesirable dynamics into

the system — primarily a phase delay. For accurate results these dynamics, which may (for

certain systems) be approximated as a fixed delay, must be compensated for. A variety of

compensation mechanisms have been proposed to achieve this [25–28] — we note that related

delay compensation techniques have been developed in relation to active control systems for

structural control [29–32].

Bifurcation diagrams can normally be generated from a full numerical model of a particular

system [33]. However, if the system contains a nonlinear element which cannot be modelled

accurately then experimental bifurcation diagrams are the only potential source of information.

Unfortunately, designing full scale experiments so that step by step parametric variation can

be achieved is non-trivial. Substructuring offers the possibility of experimentally testing the

nonlinear element in combination with the appropriate numerical model(s). This has the

potential to create hybrid bifurcation diagrams using parameter variation of the numerical

Copyright c© 2000 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2000; 00:0–0
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REAL-TIME SUBSTRUCTURING OF A PENDULUM-OSCILLATOR SYSTEM 3

model parameters — which are far easier to vary than experimental parameters.

The purpose of this study is to demonstrate how real time dynamic substructure testing

can be used to model systems with strongly nonlinear behavior while parameters are varied to

produce bifurcation diagrams [33]. This validation is presented in the later part of this paper

where we will assess how well the substructured system compares with a purely numerical

simulation of the coupled system. To allow validation of this technique a relatively well known

system has been chosen for the study — the coupled pendulum-oscillator system. This system

also has the additional benefits of: (i) it can be divided into linear and nonlinear subsystems,

(ii) purely numerical solutions can easily be computed to compare with the substructuring test

results, (iii) the system has a modelling link to cable-stay bridges, which is an active area of

research for substructure testing [34].

Previous experimental studies of autoparametric systems [6–9] have focused on building a

complete physical experiment, which can then be compared with analytical and numerical

models. Dynamic substructure (also know as hybrid numerical-experimental) testing offers a

powerful new versatility — an infinite number of different emulated systems can be tested

and studied by varying parameters in the numerical part of the substructuring model. We will

show examples of bifurcation diagrams, some of which could not be obtained from full physical

experiments.

In the first part of the paper we will discuss the effect of actuator delay and noise. Recent

work has shown that even for simple linear substructure elements, the effect of the actuator

delay can produce complex dynamics, which can be modelled using delay differential equations

(DDE’s) [35]. Using a similar approach for the pendulum-mass-spring-damper system leads

to neutral differential equations modelling the system [36]. This study demonstrated how the
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Prepared using stcauth.cls



4 GONZALEZ-BUELGA ET. AL.

experimental pendulum mount has a significant effect on the stability boundaries of the system.

We show how these effects can be taken into account using phase margin techniques.

We also briefly discuss how the effects of delay and noise can be mitigated using polynomial

delay compensation filtering techniques. These combined effects have an influence on accuracy,

and in the final part of the paper we discuss how some quantitative measures of how accuracy

may be obtained.

2. Description of the system

2.1. Equations of motion

The complete (sometimes referred to as emulated) system that we wish to model is shown

schematically in Fig. 1. This system consists of a pendulum mounted with it’s pivot point in

the center of the mass, M , belonging to the mass-spring-damper. The pendulum mass, m is

assumed to act at a single point, a distance l from the pivot point. The equations of motion

for the complete system are given by

(M +m)ÿ + Cẏ +Ky +ml[θ̈ sin θ + θ̇2 cos θ] = Fe, (1)

ml2θ̈ + b1sgn(θ̇) + b2θ̇ + b3(θ̇)
2sgn(θ̇) +mgl sin(θ) +mlÿ sin(θ) = 0, (2)

where y is the displacement of the mass M , θ is the angular displacement of the pendulum

which has mass m and length l, C and K are the damping and stiffness of the mass-spring-

damper respectively, b1, b2 and b3 represent the Coulomb, viscous and air resistance damping

of the pendulum respectively, g is acceleration due to gravity, Fe is the external exciting force

and sgn(·) is the signum function.

The natural frequency of the pendulum is ωp =
√

g/l, the natural frequency of the complete

Copyright c© 2000 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2000; 00:0–0
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REAL-TIME SUBSTRUCTURING OF A PENDULUM-OSCILLATOR SYSTEM 5

system when θ = θ̇ = 0, ωnm =
√

K/(M +m) and the frequency of the external driving force

is ωe = 2πfe, where Fe = α sin(2πfet) and α is the forcing amplitude in Newtons and fe

is the forcing frequency in cycles per second.. The natural frequencies of the system are ωp

and ωnm. The mass-spring-damper acts as a parametric excitation of the pendulum, and for

particular sets of parameter values, the pendulum affects the mass-spring-damper by either

adding energy to or absorbing energy from it [1, 37].

The inclusion of three damping terms for the pendulum (corresponding to terms with the

coefficients b1, b2 and b3) is to obtain a high degree of correlation between experimental and

numerical results. Results from a set of free swinging pendulum tests are shown in Fig. 2. The

coefficients b1, b2 and b3 have been selected (see appendix) to give the best fit damping model

across a range of both large and small θ values. The result is a maximum error of 2 % or less

across the angle range tested.

In the following discussion, y and θ will represent the complete (or emulated) system

coordinates. The substructuring model coordinates are denoted by, y∗, which represents the

numerical model displacement; x is the experimentally measured pivot motion and θx is the

experimentally measured angle.

2.2. The real time dynamic substructuring test system

The dynamics of the emulated system shown in Fig. 1 will be studied using real time dynamic

substructuring [21]. To achieve this the system is divided into two subsystems. The pendulum is

taken to be the physical substructure and the mass-spring-damper is the numerical model. The

pendulum pivot point represents the interface between the physical and numerical subsystems.

A real-time substructuring strategy consists of the following steps. The numerical model

Copyright c© 2000 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2000; 00:0–0
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6 GONZALEZ-BUELGA ET. AL.

is used to calculate the displacement at the interface (pivot) due to some external excitation

force, Fe. This displacement is applied to the physical substructure in real-time using a electro-

mechanical actuator (the transfer system). The force acting on the physical substructure, Fs

is measured via a load cell and fed back into the numerical model. The feedback force acting

on the numerical model, F = Fe − Fs, is used to calculate the displacement at the interface

for the next time step. This process is then repeated until the end of the test.

During the preliminary testing it was found that the platform on which the pendulum pivot

is mounted had a significant effect of the substructuring test results. The platform is a mass

which has two linear bearings which allow it to move along two parallel rods which can be

seen in figure 4. In fact the linear bearing have quite a significant damping effect, estimated to

be approximately 10kg/s (Table IV). As the platform is free to move on bearings it effectively

has zero stiffness. Therefore, to accurately capture this behavior the mass M is split into two

components M1 and M2, such that M = M1 +M2. Now the numerical mass component is M1

and mass M2 represents the physical mass of the mounting platform. A similar effect occurs

with the viscous damping parameter C, so this too is divided such that C = C1 + C2, where

C2 corresponds to the physical damping in the mounting platform. A schematic representation

of the complete substructuring testing process is shown in Fig. 3.

Including the mounting platform effects, the dynamics of the numerical model as shown in

Fig. 3 can be written as

M1ÿ
∗ + C1ẏ

∗ +Ky∗ = F, (3)

where F = Fe − Fs. The substructuring force, Fs, can be expressed as a combination of the

testing platform and pendulum dynamics, such that

Fs = (M2 +m)ẍ+ C2ẋ+ml[θ̈x sin θx + θ̇x

2

cos θx]. (4)

Copyright c© 2000 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2000; 00:0–0
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REAL-TIME SUBSTRUCTURING OF A PENDULUM-OSCILLATOR SYSTEM 7

where ẍ is the actual acceleration acting on the pivot point and θx, θ̇x and θ̈x are the

measured angle, angular velocity and angular acceleration of the pendulum respectively. When

considering the the semi-trivial solution θ = θ̇ = 0, equation (4) simplifies to

Fs = (M2 +m)ẍ+ C2ẋ. (5)

Physically this corresponds to the case when the pendulum is not moving while the pivot point

is subject to an oscillatory motion. Fig. 4 shows a photograph of the experimental pendulum

subsystem, actuator and measurement instrumentation. Additional details of the experimental

implementation and calibration are given in the appendix.

2.3. Substructuring controller

Under exact matching conditions, the experimentally measured variables, x, and θx, would

exactly match the emulated variables, y, and, θ, such that y = y∗ = x and θ = θx. Such

perfect matching cannot be achieved in practice. Instead the objective of the controller is to

achieve as high a level of synchronization between y∗ and x as possible. Note that we have no

direct control over θx — in most cases as y∗ → x then y∗ → y and θx → θ. Exceptions to this

are discussed in section 3.

This control problem is typically divided into two parts. First is the basic tracking control,

which in this experiment is undertaken by the proprietary proportional controller. We define

the transfer system as the actuator and proportional controller combined. The second control

task is to use a delay compensation technique, to remove the delay introduced by the transfer

system. This technique will be described in detail in section 2.5. This control approach can be

considered as a combination of an inner loop controller, which deals with the basic tracking,

and an outer loop controller which provides the delay compensation.

Copyright c© 2000 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2000; 00:0–0
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8 GONZALEZ-BUELGA ET. AL.

2.4. Stability of the real-time dynamic substructuring system

In order to be able to perform successful substructuring tests the coupled real-time

substructuring algorithm must remain stable throughout the test. The numerical model, which

in this case is a mass-spring-damper, can become unstable due to delays in the transfer

system which introduce a negative damping effect [22, 25]. For mass-spring-damper systems

this instability has been modelled using delay differential equations [35], where the stability

boundary corresponds to a locus of Hopf bifurcations corresponding to zero effective damping

in the system [38].

Noise encountered in the experimental system is another effect known to reduce the stability

of the system. In fact the problems of delay and noise are strongly related. For example the

usual way to reduce delay is to use a forward prediction technique [22,25,28] and this in turn

can produce a noise amplification effect. If filtering is used to reduce the noise the signal delay

will be increased since filters always cause a change in phase. In other words trying to solve

one of the problems often has a detrimental effect on the other. The robustness of lightly

damped substucturing systems has been considered by [39], where the authors demonstrate

how increased robustness can be obtained at the expense of simulation accuracy.

The effect of transfer system delay has been studied by many authors (see for example

[25, 26, 35] and references therein). These effects have been considered in detail in a study

by [36] for the pendulum-oscillator system considered here. It is worth noting that the

effects of damping and inertia in the experimental pendulum mount are significant. Using

the same approach as in [36], we model the actuator dynamics as a fixed delay τ , such that

Copyright c© 2000 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2000; 00:0–0
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REAL-TIME SUBSTRUCTURING OF A PENDULUM-OSCILLATOR SYSTEM 9

x(t) = y∗(t− τ). Then by combining equations 3 and 5 we obtain

M1ÿ∗ + C1ẏ∗ +Ky∗ +msÿ
∗(t− τ) + C2ẏ

∗(t− τ) = Fe, (6)

where ms = M2 + m. From this expression the characteristic equation (or complementary

function) of the system is found by substituting y∗ = Âe−iωt so that

−ω2 [M1 +ms cos(ωτ)] + iω[C1 +msω sin(ωτ) + C2 cos(ωτ)] + [K + C2ω sin(ωτ)] = 0. (7)

Equation (7) indicates how actuator delay can potentially cause changes in the effective values

of mass, damping and stiffness. However, this case is not easily solved using the DDE analysis

discussed by [36]. Instead, we present a more direct approach to studying the stability of the

numerical model using Bode diagrams and the concept of phase margin [40].

To do this the dynamics of the numerical model displacement are written using Laplace

transform as:

Y ∗(s) =
Nm(s)Fe(s)

1 + Fs(s)Nm(s)T (s)
, (8)

where Fs(s) = mss
2 + C2s, Nm(s) =

1

M1s2 + C1s+K
, T (s) = e−sτ (representing the delay

due to the transfer system) and s is the Laplace variable.

The transfer function between input Fe(s) and output Y ∗(s) can now be studied as a

typical closed loop system. The stability of the system can be examined via the closed-loop-

characteristic-equation (CLCE) given by

1 + Fs(s)Nm(s)T (s) = 0 (9)

which corresponds to the complementary function given by equation 7. The phase margin for a

CLCE gives a measure of the amount of phase shift necessary to make the closed loop system

unstable – i.e. the Nyquist contour just crosses the -1 point. By plotting the Bode diagram of

Copyright c© 2000 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2000; 00:0–0
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10 GONZALEZ-BUELGA ET. AL.

Fs(s)Nm(s) we can estimate the phase margin by measuring the difference between the phase

curve and -180 degrees at the point corresponding to the frequency that gives 0dB gain. The

phase margin relates directly to the maximum allowable delay (via T (s)) before the system

becomes unstable. An example is shown in Fig. 5, from which we see that, in this case, the

maximum phase delay before stability loss is approximately 0.223 seconds. Using this approach

for a particular set of parameter values the phase margin can be calculated and from this the

maximum delay and its associated instability frequency can be found using the Bode diagram.

As an illustration of this stability analysis, we show stability charts computed for the

pendulum-oscillator system showing the maximum phase delays at which the system goes

unstable. This example is shown in Fig. 6 where we demonstrate the effects on the stability

boundary as the parameters ms is varied for two different C2 cases. The solid line in Fig. 6

corresponds to the stability chart calculated for the case when C2 = 0 with ωn = 10rad/s and

ζ = 0.05. The theoretical stability boundary which occurs when C2/C1 = 1 is plotted as a

dashed line. In Fig. 7 we show a comparison between these two cases and experimental results

from the substructuring tests, where C2/C1 = 1. This shows that a very close agreement

exists between the experimental results and the case when C2/C1 = 1 — indicating why

the effect of damping feedback, C2 is significant. The experimental points were obtained by

adding additional masses to the end of the pendulum to change the mass ratio p = ms/M1.

The stability boundary points were then located by artificially increasing the delay (by holding

the signal sent to the actuator during the experiment) until the instability frequency appears.

As expected for each mass configuration there is a corresponding change in maximum delay

and instability frequency.

Copyright c© 2000 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2000; 00:0–0
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REAL-TIME SUBSTRUCTURING OF A PENDULUM-OSCILLATOR SYSTEM 11

2.5. Delay compensation

It is clear that delays present in the experimental system have a significant effect on the

stability of the coupled substructuring system. The effect of delay on accuracy will be discussed

in section 4. One way to try to eliminate (or at least reduce) the delay is to forward predict

the relevant signals, [22,25,28]. This is achieved by first estimating the delay, τ , present in the

system. Then instead of sending the target, y∗(t) signal to the transfer system, an estimation of

y∗(t+τ) is sent. The delay present in the transfer system can be measured in real time by using

synchronization subspace plots [28] which are described in subsection 4. If the experimental

substructure is linear and there is no significant noise, the desired displacement, can be achieved

by using a polynomial forward prediction technique — typically polynomials of fourth order

or more have been shown to give effective results [25, 35].

In the presence of nonlinearities or noise, as in this case, high order polynomial fitting is not

desirable due to the tendency for these methods to amplify noise. For the substructuring tests

in this paper a first order polynomial technique, following the approach described by [28], has

been found to give an acceptable trade off between noise amplification and accuracy. Good

results have been achieved by recording 5 points which are fitted to a straight line. This

method is simple and highly effective provided that the time steps are small enough — in

the experimental results presented in this work the time step was 1ms and the actuator delay

approximately 18ms.

2.6. Dealing with unmodeled dynamics and noise

The primary source of noise occurs when measuring the force feedback signal, Fs, from the

physical substructure. In the experimental system considered here the noise is primarily caused

Copyright c© 2000 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2000; 00:0–0
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12 GONZALEZ-BUELGA ET. AL.

by a combination of the following two effects. First there are high frequency mechanical

vibrations induced by the actuator servo motor. This makes the experimental testing platform

vibrate in odd harmonics of the actuator target signal. Secondly electrical noise is present

in the experimental testing area. Despite isolating the measurement transducers there is still

a significant level of electrical noise in the force transducer signal. The fact that the system

is part inertial and that acceleration is highly sensitive to noise only increases these effects.

In most of the substructuring testing cases studied here the system can deal with the noise

present in this signal. In fact the mass-spring-damper (numerical model) acts like a filter of its

input force and depending on the parameter values damps out a proportion of the undesired

frequencies.

Introducing additional filtering will also introduce additional delay. So where possible,

additional filtering of signals during real time testing should generally be avoided. However

for a range of numerical model parameters values the numerical model can lose stability due

to the unmodeled dynamics present in the system. The system is particularly susceptible to

this when the phase margin (computed via equation 8) is small and the feedback force Fs, is

significantly larger than the external force Fe. This type of instability (which is essentially due

to insufficient robustness) manifests itself as the sudden appearance of high frequencies in the

actuator displacement, x. Figure 7 (a) shows an experimental recorded example of instability

due to unmodeled dynamics, where the maximum permissible phase delay is only 9ms.

In this study, we are primarily interested in a small range of frequencies, where the

parametric resonances occur and the nonlinear and chaotic pendulum behavior appears. As

a result a narrow band filter can be designed, with cut-off frequencies dependent on each

particular case to mitigate the effect of noise in the feedback force signal. This filter is

Copyright c© 2000 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2000; 00:0–0
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REAL-TIME SUBSTRUCTURING OF A PENDULUM-OSCILLATOR SYSTEM 13

characterized by a flat unity magnitude response in the passband, the change in phase that

the filter causes to the primitive signal is treated as delay. An example is shown in Fig. 7 (b).

In this example at 2.2 Hz, the difference in phase caused by the filter at the given frequency is

-0.2185rad which is equivalent to a delay of τ=0.0158s. To compensate for the delay induced

by the filter, the signal is predicted forward before being sent to the numerical model.

3. Substructuring test results

We start this section by considering substructuring tests without parameter variation. Previous

experimental studies of autoparametric systems [6–9] have focused on building a complete

physical experiment, which can then be compared with analytical and numerical models. Thus

the first step in this process is to show that substructure models can capture the full range

of dynamical behavior typically encountered by our example system. Beyond this, we will

demonstrate in this section how the methods can be extended to include parametric variations,

leading to bifurcation diagrams. In fact, substructuring offers a powerful new versatility — an

infinite number of different emulated systems can be tested and studied by varying parameters

in the numerical part of the substructure model. We will demonstrate this with results from

the pendulum-oscillator system.

3.1. Modelling typical dynamics of the pendulum oscillator system

In this subsection we will briefly demonstrate that the substructuring system can capture

a range of dynamics typical of the pendulum-mass-spring-damper system, by choosing some

specific examples. The first case we consider occurs when the mass-spring-damper (or primary

system) is in 2:1 resonance with the pendulum (or secondary system), such that ωe = ωnm =

Copyright c© 2000 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2000; 00:0–0
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14 GONZALEZ-BUELGA ET. AL.

2ωp. This example is well known and has been studied in detail, comprehensive summaries can

be found in [1,2]. At this 2:1 ratio of frequencies it is possible for certain parameter values that

energy from the mass-spring-damper is transferred to the pendulum, which acts as a vibration

absorber — sometimes called the strongly quenched solution. Two coexisting solutions exist

with maximum amplitudes given by

y1max =
a

√

(ω2
nm − ω2

e)2 + (κωe)2
and y2max = 2l

√

(

ω2
p

ω2
e

−
1

4

)2

. (10)

where κ = C(M +m), and a = α/(M +m), see [2] for further details.

This energy transfer behavior was simulated using the substructuring testing rig and the

results are shown in Fig. 8. . In this example the parameters are α = 2N and fe = 2.25Hz (where

ωe = 2πfe), M = M1 +M2 = 10.9kg, C = C1 + C2 = 20kg/s, and K = 1910N/m. For these

parameters, the theoretical maximum amplitude, y1max = 0.0041m, is in close agreement with

the corresponding substructuring test value of maximum amplitude measured experimentally

as x1max = 0.004m. The theoretical maximum amplitude for y2max = 4.2 × 10−4m is also

in close agreement with the corresponding substructuring test value of maximum amplitude

measured experimentally as x2 = 5 × 10−4m. This example shows a high level of agreement

between the substructuring results and the theoretically computed values.

In Fig. 9 we show two further examples of typical steady-state motions of the pendulum-

oscillator system. In this figure the substructuring test results are shown as a solid line. This

can be compared with a fully numerical simulation of the complete system, which is shown as

a dashed line The full numerical simulation was computed by simulating Eq.s (1) and (2) in

Copyright c© 2000 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2000; 00:0–0
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REAL-TIME SUBSTRUCTURING OF A PENDULUM-OSCILLATOR SYSTEM 15

first order form with z1 = y, z2 = ẏ, z3 = θ, z4 = θ̇, such that
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(11)

where fd = b1sgn(z4)+b2z4+b3z
2

4
sgn(z4), represents the damping in the pendulum. This state

space model is solved numerically using a 4th order Runge-Kutta integration method. The time

step used was 1ms, identical to the sampling time used in the substructuring tests. For each

fixed step the signum function was evaluated to give the damping force, fd. Fig 10 shows two

different orbits with a ωn/ωp = 1.8687 frequency ratio between the pendulum and mass-spring-

damper and a ω̂ = ωe/2ωp = 0.9757 frequency ratio between the pendulum and the external

exciting force. Fig. 9 (a) shows a periodic orbit which exists when the external force amplitude

is α = 5N . In this case very close agreement exists between the substructuring results and the

full numerical simulations. In Fig. 9 (b) a comparison between a substructured chaotic orbit

and it’s numerically computed version is shown, in this case the external force amplitude is

α = 12N . Due to sensitivity of initial conditions it is not possible to achieve a high level of

quantitative agreement when comparing the chaotic time series — although this is also the

case for full physical experiments. Qualitatively we observe that both substructured and fully

numerical simulations exhibit chaotic motion under the action of the same external excitation

force. The divergence of the trajectories is due primarily to the noise present and difficulties

in setting the initial conditions in the experiment to match the full numerical simulation.
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3.2. Parametric variation

We now consider comparing the substructuring test results to full numerical simulations for

ranges of system parameter values. The first example we consider is the point at which semi-

trivial solution has a Hopf bifurcation. These points form a boundary in a two dimensional

parameter space (forcing amplitude and forcing frequency) which defines where the semi-trivial

solution ceases to exist — we will call it the Hopf bifurcation boundary. In fact, for the case

where ωe is close to 2ωp and b1 = b3 = 0 an analytical relationship for the Hopf bifurcation

boundary of the semi-trivial solution can be developed (see [2] and references therein). For the

parameters in our example this can be expressed as

α2 ≤ l2ω4

e(M +m)2

[

(

κ

ωe

)2

+ σ2

][

(

κp

ωe

)2

+ σ2

p

]

, (12)

where κp = b2/(ml
2), σ = [(ωnm/ωe)

2 − 1] and σp = 2[(ωp/ωe)
2 − 1/4].

From the substructuring tests the Hopf bifurcation boundary was plotted in (α, ω̂) parameter

space, where ω̂ = ωe/(2ωp) and α is the magnitude of the external exciting force. This was

compared with the Hopf bifurcation boundary given by Eq. (12), and the results are shown in

Fig. 10 (a). In these substructure tests for each value of ω̂ the amplitude of the external force

is increased until the pendulum starts moving — indicating that the semitrivial solution has

reached the Hopf bifurcation boundary. Fig. 10 (a) shows that there is very good agreement

between the substructuring experimental results and the analytical boundary given by Eq.

(12) for the selected parameter range. In addition, the position of the periodic orbit (PO) and

chaotic example (CO) shown in Fig. 9 are marked on Fig. 10 (a).

The structure of the substructuring testing algorithm means that it is straight forward

to vary parameters in the numerical subsystem. As a result we can consider how the Hopf

bifurcation boundary in (α, ω̂) space changes as an additional parameter is varied. An example
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of this is shown in Fig. 10 (b), where four different values of M have been selected, and the

Hopf bifurcation boundary of the semi-trivial solution computed for each case. For clarity, only

the substructuring experimental results are shown in Fig. 10 (b), but in each case a similar

level of agreement with the analytical solution as that shown in Fig. 10 (a) is found.

The final example we show in this section are single parameter bifurcation diagrams. For

the substructuring tests these are computed by allowing 100 transient periods to decay before

recording maximum amplitudes for 20 steady state periods of motion for each parameter step.

The results from these tests are shown in Fig. 11. Fig. 11 (a1) shows a single parameter

bifurcation diagram for the system as the forcing amplitude is varied through the range

0 ≤ α ≤ 45N. This figure follows the line of cross-section A shown on Fig. 10 (a). For α < 15N

the semi-trivial solution is stable, and θmax = 0rad. At α ≈ 16N the semi-trivial crosses

the Hopf bifurcation boundary, and there is a small region of quasi-periodic motion before a

period-2 motion becomes established. The periodic motion lasts until α ≈ 39N before a jump

to chaos occurs. Fig. 11 (a2) shows the parameter bifurcation diagram obtained from a full

numerical simulation. There is a close agreement between the substructured and full numerical

simulations across the parameter range considered.

So far all the results we have shown could have been obtained by constructing a complete

physical experiment of the system, and varying the forcing amplitude and frequency. To obtain

the results shown in Fig. 10 (b) from a complete experimental system, the mass M would need

to be physically adjusted for each set of tests — impractical but not impossible. In this final

example mass is varied through a parameter range – a simulation which could not practically

be obtained from a full physical experiment, but can be obtained using a substructured model

(and, of course, also by a full numerical model). This is a single parameter bifurcation diagram
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for 0 ≤M ≤ 13kg and the results are shown in Fig. 11 (b1). Again we see a progression from the

stable semi-trivial solution through quasi-periodic and periodic motion to a window of chaotic

motion. Fig. 11 (b2) shows the corresponding parameter bifurcation diagram obtained when

from fully numerical simulation. As with the previous case, there is a close agreement between

the substructured and full numerical simulations across the parameter range considered.

As M is then increased further, periodic motion is encountered before a return to the semi-

trivial solution occurs. This example highlights how real time dynamic substructure testing

may be exploited to obtain results which cannot be found from a full physical experiment.

4. Accuracy of the real time dynamic substructure test results

Estimating the accuracy (how close our result is to the emulated system values) of substructure

testing is currently an active area of research [35, 41]. The most straightforward way of

measuring accuracy is comparison with a purely numerical simulation, which we have

demonstrated in the previous sections. This can be done recognizing that the numerical

simulation will have its own limitations — although the pendulum-oscillator system is such a

simple and well known example that we can have a high degree of confidence that the numerical

simulations give a good model of the dynamics. For more complex systems, complete simulation

is not always possible due to limitations of the relevant mathematical models. In this case other

methods for measuring accuracy must be used, and in this section we will describe a method

based on synchronization subspace techniques [28,41]. In particular we will assess the accuracy

of our experiments by studying the synchronization error [28]. Alternative energy methods have

been discussed by [13, 41].

Using the synchronization subspace approach, the synchronization error — target
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displacement (calculated through the analytical model) minus the measured displacement —

is monitored in order to detect sources of systematic error. Here we consider systematic errors

to be those which come from non-random sources. Random errors — such as electrical noise

— can usually be mitigated by using averaged measurements. Systematic errors however, can

have a serious affect on the accuracy of the experiment. When monitoring experimental error,

deviations from broadband random noise can indicate the presence of systematic errors. The

synchronization approach is based on the techniques of synchronization subspace as defined

by [42] and extended for substructuring by [28].

To carry out the error assessment, a graph consisting of target versus measured displacement

is plotted. The synchronization subspace is defined as the manifold on which x = y∗,

which in this case is a straight 45 degree gradient line. If the plotted trajectory lies

on the synchronization subspace, this indicates perfect correlation. Deviations from the

synchronization subspace indicate poor performance of the control method, and can give an

indication of the type of systematic error present [28].

A good level of correlation between target and measured displacements was noted for all the

tests performed — an example is shown in Fig. 12 (a). Here all the experimental points are

very close to the 45 degree gradient indicating qualitatively that the accuracy obtained was

high. Fig. 12 (b) shows the synchronization error (y∗−x) as a time series, for the periodic and

chaotic motions shown in Fig. 9. This information gives a limited quantitative measure of error

for each test. In Fig. 12 (c) the power spectral densities of the synchronization error signal

have been plotted in order to detect any pattern present in the error signals. For both tests

this shows that the predominant frequency in the error signal is similar to the external driving

frequency, which can clearly be seen in Fig. 12 (b). The largest source of systematic errors at
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the forcing frequency are amplitude and phase errors in the control process and Fig. 12 shows

the residual errors after the control and delay compensation methods have been applied. It

should be noted that the amplitudes of all the errors shown in Fig. 12 are small relative to the

amplitude of displacement of the signals — for example in Fig. 9.

Motion Maximum synchronization error [m] Maximum target [m] ratio [%]

PO 0.0007 0.0181 3.9

CO 0.0016 0.0405 3.9

Table I. Relative synchronization errors

In fact, a way to measure the effect of the synchronization error on the experiment results is

by comparing maximum synchronization error with maximum target displacement [41]. The

results of this for the two time series shown in Fig 9 are shown in table 1, where the relative

error in both cases is below 5 percent. Although this is a quantitative measure, how this level

of error propagates into global errors between the emulated and substructuring results depends

on the sensitivity of the system to small perturbations. This was clearly the effect shown in

Fig. 9, where periodic motion is robust to small perturbations, whereas the chaotic orbit is

highly sensitive (see [43] for a recent discussion on error growth in nonlinear models).

5. Conclusions

In this paper we have presented results from a real-time dynamic substructuring model of a

pendulum-oscillator system — a system which is known to exhibit a range of nonlinear behavior

such as autoparametric resonance. The main purpose of this study was to demonstrate how

substructure testing could be used to model systems with strongly nonlinear behavior and
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parametric variation. In the substructure model, the experimental test piece was a pendulum,

and the mass-spring-damper was modelled numerically. The two parts of the model were

coupled together using real time control, and forward prediction techniques.

We have briefly discussed the effects of delay and noise on the stability of the substructuring

system. In particular we noted how both the inertia and damping in the experimental pendulum

mount had a significant effect on the system stability — which could be estimated using phase

margin techniques. The effect of delays in the transfer system were minimized by using a

polynomial forward prediction technique. The effect of noise was mitigated using a filtering

technique. This was required to increase the system robustness when the phase margin was

small, in which case, without filtering the noise would destabilize the system.

Using these techniques the substructuring modelling results were shown to give good

qualitative agreement with purely numerical simulations of the complete system. Examples

of quenching and the Hopf bifurcation boundary of the semitrivial solution were used to show

this comparison. In addition we have shown results for single parameter bifurcation tests.

By using the numerical parameters in the substructured system, we showed how examples of

bifurcation diagrams can be found which could not be obtained from a full physical experiment.

Finally we have discussed how some quantitative measures of accuracy can be assessed from

synchronization subspace plots.

Real-time dynamic substructuring is highly significant for structural dynamics testing. In

this small scale study of a pendulum-oscillator system we have demonstrated how real-time

dynamic substructuring can be used to model parameter variation leading to bifurcation

diagrams. We anticipate that this approach can be applied to larger scale structural tests with

nonlinear elements where accurate numerical modelling of the entire system is not possible..
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Appendix: Experimental implementation and calibration

To implement the real-time tasks a dSpace DS1104 RD controller board was used.

MATLAB/Simulink was used to build the substructuring model shown in Fig. 3. In particular

the numerical model of the mass-spring-damper was implemented here, which once downloaded

to the dSpace board provides real time computations. The displacement output from the

numerical model was computed using a 4th order Runge-Kutta type explicit integration

scheme. The dSpace module ControlDesk is used for on line analysis and control. All

these elements together provide one integrated tool to manage the real-time substructuring

experiments.

The transfer system consists of an electrically driven ball-screw actuator with an in line

mounted synchronous servo motor controlled by a servo drive which applies a displacement

to the pendulum pivot point in the vertical direction. Figure 4 shows a photograph of the

experimental apparatus. The instrumentation used consists of a load cell to measure the force

acting at the pendulum pivot, a LVDT displacement transducer connected to the platform

to be able to track and control the actuator movement and a digital incremental encoder

used to record both angular displacement and angular velocity of the pendulum. Table
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III shows the calibration constants for the used sensors. The experimental rig is mounted

vertically on a heavy steel frame to limit external vibration. The fixed test rig parameters

were measured/estimated and are shown in Table IV. The other system parameters M1, K

and C1 are set in the numerical model code.

The experimental pendulum damping values were estimated as follows: we select a set of

initial values for b1, b2 and b3. As air resistance is known to be small we use an initial value

of b3 = 0. For small angles Coulomb damping is dominant, so we estimate an initial value

for b2 from a linear fit of the data shown in Fig. 2 (a). For large angles viscous damping is

dominant, so we estimate an initial value for b1 from an exponential of the data shown in Fig.

2 (b). The three initial values are then updated to obtain a best fit over the full angle range

using a sensitivity matrix approach [44].

p 0.2250 0.2925 0.4550 0.6175

Experimental 32 34 40 45

Theoretical 31 32 37 44

Table II. Theoretical versus experimental instability frequencies, [rad/s] for the inertial plus viscous

damping force feedback case. The p ratio was adjusted experimentally by adding mass to the pendulum

in increments of 650g.

LVDT Load cell Encoder

range 150mm 250N 1.26×105rad

sensitivity 32.31mV/mm 0.0402V/N 0.0013 rad/pulse

Table III. Measuring devices characteristics
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m l b1 b2 b3 ωp 2fp M2 C2

kg m kgm2/s2 kgm2/s kgm2 rad/s Hz kg kg/s

0.27 0.1955 3.01411× 10−4 4.5067× 10−5 9.17 × 10−7 7.0837 2.2548 0.9 10

Table IV. Test rig parameters
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Figure captions

• Figure 1 Schematic representation of the complete pendulum-mass-spring-damper

system.

• Figure 2 Pendulum damping identification from free swinging pendulum tests; (a)

Coulomb damping for small angles, estimating b2; (b) Viscous damping for large angles,

estimating b1; (c) Combined damping contributions b1, b2 and b3 adjusted by using

a sensitivity matrix iterative updating method [44], giving the closest match between

numerical and experimental data. For clarity, only the envelope (i.e. max/min values) of

the numerical simulation is shown in comparison with experimental data..

• Figure 3 A schematic representation of the real time dynamic substructure testing

method for the pendulum-oscillator system.

• Figure 4 Photograph of the physical substructure tested in the laboratory.

• Figure 5 Phase margin calculation. The difference in phase between the phase curve

and -180 degree line at the point corresponding to the frequency that gives 0dB gain.

Parameters values for the example: M1 = 20kg, C1 = 20kg/s, K = 2000N/m, m = 10kg,

C2 = 20kg/s. Phase margins: ω1 = 14.1rad/s, ψ1 = 180degrees, ω2 = 8.16rad/s,

ψ2 = 332.5degrees. First stability switch
ψ2π

ω2180
= 0.223s, second stability switch

ψ1π

ω1180
= 0.711s.

• Figure 6 Effects of the viscous delayed feedback in the stability chart showing

experimental versus theoretical results. The experimental points are compared with the

two C2 cases. Numerical model parameters: M1 = 4kg, C1 = 10kg/s and K = 3000N/m,

C2/C1 = 1.

• Figure 7 Filtering a noisy force signal. Numerical model parameters: M1 = 1kg,
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C1 = 5kg/s andK = 12000N/m. Maximum delay allowed from the phase margin analysis

τmax = 0.009s. (a) The substructuring system becomes unstable due to noise; (b) A

narrow filter designed around the frequency range of interest is designed. The filter is

characterized by a flat unity magnitude response in the passband and a change in phase

that is treated as a delay. This delay will be compensated for by using a prediction

forward technique. In the example shown here, for ω = 2.2Hz the additional delay is

found to be τ=0.0158s.

• Figure 8 Real time dynamic substructuring example showing the energy transfer

between solutions when ωe ≈ ωnm ≈ 2ωp, ST: semitrivial solution, NT: nontrivial

solution. Numerical model parameters: M1 = 10kg, C1 = 10kg/s and K = 1910N/m.

External exciting force α = 2N fe = 2.25Hz. Experimentally the transition is instigated

by perturbing the pendulum by θ=0.1rad.

• Figure 9 Real time dynamic substructuring results compared with full numerical

simulations. Parameters values: M = 10.9kg, C = 20kg/s, K = 1910N/m; (a) α = 5N

fe = 2.20Hz, ω̂ = 0.9757, Pendulum periodic, shown as PO on figure 9(a); (b) α = 12N

fe = 2.20Hz, ω̂ = 0.9757, Pendulum chaotic, shown as CO on figure 9(a).

• Figure 10 Semitrivial solution stability in 2-dimensional parameter space α vs ω̂.

(a) Real time dynamic substructuring versus analytical results. Grey line: theoretical

stability border. Stars: substructuring experimental Hopf bifurcation boundary. Crosses:

position of the examples shown in figure 9. Vertical dotted line: cross section A shown in

figure 11(a1). Parameters: M = 10.9kg, C = 20kg/s, K = 1910N/m; (b) substructuring

experimental results showing the boundary of the semitrivial solution for a range of

5.9 ≤M ≤ 20.9kg. Fixed values C = 20kg/s, K = 1910N/m.
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• Figure 11 Experimental bifurcation diagrams: θxmax steady state values (a1) as the

amplitude of the external exciting force is varied (a2) full numerical simulation of the

bifurcation diagram with a parameter increment of 0.5N. Other parameters in (a1) and

(a2): M = 10.9kg, C = 20kg/s, K = 1910N/m, fe = 2.5Hz. (b1) substructuring

bifurcation diagram using the numerical model mass M1 (M = M1 + M2) as the

bifurcation parameter; (b2) full numerical simulation of the bifurcation diagram shown in

(b1) using a parameter interval of 0.1kg. Other parameters: C = 20kg/s, K = 1910N/m,

fe = 2.5Hz, α = 17N. θxmax and θmax axis limits (−π, π).

• Figure 12 Synchronization error, showing the measured accuracy of the results depicted

in Figure 8. (a) Synchronization subspace for the PO example; (b) Synchronization error

time series for both PO and CO examples; (c) Synchronization error power spectral

density, PO and CO examples: the predominant frequency is the external driving

frequency fe = 2.20Hz.
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Figure 1.
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Figure 3.
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Figure 4.
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