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1 INTRODUCTION

In this letter we consider the problem of modelling multi-degree of freedom impact oscillator

systems using coefficient of restitution models. Impact oscillator systems have been studied exten-

sively in recent years following the work of Shaw & Holmes [1]. Most of this work has been focused

on models for single degree of freedom systems [2], although inevitably experimental systems stud-

ied were often multi-modal (see for example [3, 4, 5, 6]). In the majority of both mathematical

and experimental impact oscillator studies the impact process was modelled using a coefficient of

restitution rule. This rule was both effective and simple in capturing the key properties of an im-

pacting body. However, in experimental studies using an impacting beam system, Thompson et al

[7] noted that a low value of the coefficient of restitution must be used in numerical simulations of

the system in order to match dynamical behaviour. Similar results were found by Weger et al [8].

Thompson et al [7] conjectured that this reduction in value for the coefficient of restitution was

due to the transfer of energy into higher modes of vibration.

We consider here the dynamics of a multi-degree of freedom linear system, with proportional

damping and a single point of impact. An energy balance approach for a periodic impacting motion

is described. Then we derive a relationship between modal energy and the coefficient of restitution

which exists for periodic impact orbits of multi-degree of freedom systems. For certain experimental

systems this analysis can be used to estimate values for the coefficient of restitution [9]. Here we

demonstrate the effects of increased modal behaviour by modelling a multi-modal beam system

using models with one and four modes.

2 MATHEMATICAL MODEL

For a multi-modal system with N degrees of freedom such as the lumped mass model shown in

figure 1, the equations of motion can be expressed in matrix form as

[M ]ẍ + [C]ẋ + [K]x = f(τ) xN < xs, (1)

where [M ], [C], [K] are the mass, damping and stiffness matrices respectively, x = {x1, x2 . . . , xN}T

the displacement vector, xs is the distance to the impact stop and f(τ) = {f1, f2 . . . , fN}T the

external forcing vector. For a lumped mass system, the coupling between masses occurs via the

matrices [C] and [K], which are nondiagonal. The mass matrix [M ] is a diagonal matrix. For this

system, we assume that only mass N can impact. When an impact occurs, we apply a coefficient

of restitution rule, which in matrix form can be written as

ẋ(τ+) = [R]ẋ(τ−) xN = xs (2)

2



Journal of Sound and Vibration (2000) 236(1), 176–184

where τ− is the time just before impact, τ+ is the time just after impact, r ∈ [0, 1] is the coefficient

of restitution and [R] = diag{1, 1, 1, ..., 1, 1,−r}. Thus the impacting mass, mass N , has it’s velocity

reversed and reduced by r at impact. This process is assumed to be instantaneous.

As we are primarily interested in systems with uniformly distributed parameters, we consider

the case where mj = m, cj = c, kj = k for j = 1, 2, . . . , N , such that c is proportional to k.

Then we can write [C] = c[E] and [K] = k[E], where [E] is the coupling matrix [10]. Then,

by considering the undamped, unforced, (non-impacting) system the natural frequencies of the

system are given by ωnj =
√

λjk/m for j = 1, 2, . . . , N [11], where λj j = 1, 2, . . . , N are the

eigenvalues of [E]. The eigenvectors ξj corresponding to each λj normalised such that ‖ ξj ‖= 1

define the corresponding mode shapes of the system. Using these eigenvectors we can construct

a modal matrix [Ψ] = [{ξ1}, {ξ2}, . . . , {ξN}]. We can then define modal coordinates, using the

linear transform x = [Ψ]q where q = {q1, q2, . . . qN}T . Substituting this into equation 1 and

premultiplying by [Ψ]T decouples the system ([Ψ] is orthogonal such that [Ψ]T = [Ψ]−1) to give

[I]q̈ +
c

m
[Λ]q̇ +

k

m
[Λ]q =

1

m
[Ψ]T f(τ), (3)

where [Λ] is the diagonal eigenvalue matrix. We will consider only harmonic forcing of the form

f(τ) = A cos(Ωτ), A = {A1, A2, . . . , AN}T . Thus we can simplify equation 3 such that for each

mode,

q̈j + 2ζjωnj q̇j + ω2
njq =

Fj

m
cos(Ωτ), j = 1, 2, . . . , N (4)

where F = [Ψ]TA, F = {F1, F2, . . . , FN}T and ζj = (c/2)
√

λj/km is the modal damping coefficient.

However, the motion of the system is constrained such that xN < xs during excitation. If we

define the vector ψ = {ΨN1,ΨN2, . . . ,ΨNN}T , then in terms of modal coordinates an impact occurs

when ψT q = xs. Hence equation 3 is valid only for ψTq < xs which is equivalent to the condition

that xN < xs.

We are considering a linear coupled system in physical coordinates, x, with a plane of disconti-

nuity representing an impact law; the coefficient of restitution. This plane of discontinuity crosses

only a single coordinate axis xN , in phase space. Transforming this system into modal coordinates,

using the linear transform defined by the modal matrix [Ψ] decouples the equations of motion. How-

ever, transforming the discontinuity into this modal space results in all modal coordinates becoming

discontinuous. So now the system is coupled via the impact event.

3 MODAL ENERGY ANALYSIS

For a multi-degree of freedom system, energy loss occurs at impact via the coefficient of restitu-

tion rule, and during free flight due to viscous damping. Now we consider a modal energy analysis
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of a steady state vibro-impact motion of a multi-degree of freedom impact oscillator. From this

analysis we derive a relation between energy lost during impact and free flight (modal energy).

In modal space the coefficient of restitution rule, equation 2, becomes

[Ψ]q̇(τ+) = [R][Ψ]q̇(τ−), ψTq = xs. (5)

This leads to the relation for the modal velocities after impact

q̇(τ+) = [R̂]q̇(τ−), ψT q = xs, (6)

where [R̂] = [Ψ]−1[R][Ψ] is the matrix which represents a linear transform of modal velocities

just before impact to modal velocities just after impact. This transformation also represents the

discontinuous jump in velocities at impact.

Premultiplying the (modal) equation of motion for an N degree of freedom system, equation 3,

by mq̇T and integrating with respect to τ gives an expression for the energy at time τ∗

m

2
(q̇T q̇(τ∗) − q̇T q̇(τi)) +

k

2
(qT [Λ]q(τ∗) − qT [Λ]q(τi))

=

∫ τ∗

τi

q̇T F cos(Ωτ)dτ − c

∫ τ∗

τi

q̇T [Λ]q̇dτ ,

(7)

where τi < τ∗ < τi+1 is a time between two consecutive impacts, τi and τi+1. The terms on the right

hand side of this expression represent the modal forcing energy FE and modal damping energy DE

respectively. For each mode, we refer to FEj −DEj at the end of a period as the residual modal

energy, where

FEj =

∫ τ∗

τi

q̇jFj cos(Ωτ)dτ ,

DEj = c

∫ τ∗

τi

q̇jλj q̇jdτ .

(8)

This is a measure of modal energy gain during free flight, over one period of motion for each mode,

and the sum over all modes, with FE =
∑N

j=1
FEj and DE =

∑N

j=1
DEj , represents the energy

gain for the whole system.

We evaluate this expression for a period one, one impact motion, denoted P(1, 1). A numerical

simulation of such a P(1, 1) orbit is shown in figure 2 for a two degree of freedom system. The

phase portrait is plotted in both modal (2 (a)) and physical (2 (b)) coordinates.

We examine the whole period of motion between two impacts τi and τi+1 for such an orbit

by setting τ∗ = τi+1. As we are considering the system from one impact to the next, the modal

displacement will be the same at τi and τi+1, and hence the potential energy term (second term

in equation 7) is zero. For each impact τi ≡ τ+ and τi+1 ≡ τ−. The kinetic energy term (first
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term in equation 7) can be evaluated using the relations q̇(τ−) = [Ψ]−1ẋ(τ−), q̇T (τ−) = ẋT (τ−)[Ψ],

q̇(τ+) = [Ψ]−1[R]ẋ(τ−) and q̇T (τ+) = ẋT (τ−)[R][Ψ], to give

m

2
(ẋT (τ−)ẋ(τ−) − ẋT (τ−)[R][R]ẋ(τ−)), (9)

which reduces to
m

2
v2

N (1 − r2) (10)

where vN denotes the velocity of mass N at impact (τ−). Thus we can reduce equation 7 to an

energy balance expression for a P(1, 1) orbit

m

2
v2

N (1 − r2) =

N
∑

j=1

(FEj −DEj). (11)

The energy lost at impact (left hand side of equation 11) is equal to the sum of the residual energy

of all the modes in the system. In other words, the energy lost at impact, IE say, is equal to the

energy input, FE, less the energy dissipated due to viscous damping, DE. So IE = FE −DE or

FE = IE +DE for a P(1, 1) orbit.

By rearranging equation 11 we can obtain an expression for the coefficient of restitution

r =

√

√

√

√1 −
2

mv2
N

{

N
∑

j=1

(FEj −DEj)}. (12)

Then we can reduce equation 12 to

r =

√

1 −
RE

KEi

(13)

where KEi = mv2
N/2 is the kinetic energy at impact, and RE =

∑N

j=1
(FEj −DEj) is the residual

energy for all modes.

We know by definition that r ∈ [0, 1], is a real positive quantity. The kinetic energy at impact

KEi > 0 is a strictly positive quantity (excluding zero velocity impacts, which do not occur in

stable periodic motion—the case considered here). Thus we can see that for real values of r,

0 < RE < KEi. These bounds apply to P(1, 1) orbits in systems with an arbitrary N degrees

of freedom. Then from equation 13, we can see that by increasing residual energy or decreasing

kinetic energy at impact, the coefficient of restitution is reduced. This is shown in figure 3 (a) for

KEi = 1.0, and in figure 3 (b) for KEi > RE. Thus from figure 3, we see that for a multi-modal

system, it is possible to have a complete range of r values 0 ≤ r ≤ 1, dependent on the energy

balance of the system.

4 MODELLING PHYSICAL VIBRO-IMPACT PROBLEMS

The problem of estimating a value for the coefficient of restitution arises when modelling a

physical system such as an impacting beam [7, 12, 8]. In [7] a value for r was selected using
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the material type during impact, steel on steel, as the criteria. Using reference sources such as

[13] one can estimate that for steel on steel impact a coefficient of restitution value in the range

0.85− 0.95 should be chosen. As an alternative direct experimental measurements can be made of

the velocity before and after impact to find the coefficient [14]. However, in multi-modal systems

the influence of higher modes after impact may impede this process. In addition it is clear from

[13] and equation 12 that the coefficient of restitution is a nonlinear function of impact velocity as

well as material property. For a particular periodic impact motion the impact velocity is constant,

so we can consider a value for the coefficient of restitution to be constant in this case only.

As an example, we consider the vibro-impact cantilever beam system described in detail by

Thompson et al [7], see also [12, 15]. A time series taken from a typical P(1, 1) motion is shown in

figure 4. When modelling the dynamics of this system Thompson et al [7] found that a coefficient

of restitution value of 0.2 was required in order to simulate the motion of the beam for a range of

frequency values close to the first natural frequency of the beam. This simulation was carried out

using a single degree of freedom model. A simulated time series from this model is shown in figure

5 (a). We can see that this simulation captures the essential dynamics of the system, in terms of

periodicity and maximum (positive) displacement amplitude.

In order to obtain a multi modal simulation, we have used a model based on a Galerkin reduction

of the Euler-Bernoulli equation for the vibro-impacting beam system [15]. This method incorporates

an instantaneous impact rule, and assumes that the impact occurs at the free end of the beam.

The result of simulating the motion of the free end of the beam using four modal coordinates

and a coefficient of restitution value of 0.75 is shown in figure 5 (b). This value of the coefficient

of restitution is much closer to the steel on steel material range 0.85 − 0.95, which suggests that

the four degree of freedom model is a closer representation of the physical system, in terms of

both dynamical behaviour and energy transfer. The fact that the four degree of freedom system

models the dynamics of the beam more closely than the single degree of freedom model is perhaps

not surprising. However, the energy balance is distinctly different between the two models, and

demonstrates the difficulties encountered when trying to model the behaviour of these complex

systems.

As for many systems, the use of a low dimensional model may be sufficient to model the key

dynamics, the problem is that an appropriate reduced coefficient value needs to be estimated. This

can be achieved by using equation 12 in conjunction with experimentally recorded data [15, 9].
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5 CONCLUSIONS

When modelling physical phenomena such as an impacting beam, the main focus of attention is

on simulating the dynamics of the physical system. Thompson et al [7] show that for an impacting

beam (forced close to it’s first natural frequency) this can be achieved with a simple (single degree of

freedom) numerical model. However, although the simple model captures the qualitative dynamics

of the system, it fails to simulate the energy loss characteristics. These must be accounted for in

the model by reducing the coefficient of restitution value to an appropriate level to account for the

the energy dissipated due to the excitation of higher modes at impact.

Here we have shown the relationship which exists between the coefficient of restitution and

modal energy during periodic impacting motion of an arbitrary N -degree of freedom system. Using

simulations of experimental data from impacting beam experiments, we have demonstrated the

effect of using multi-modal models on the value of the coefficient of restitution.
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Figure Captions

• Figure 1: Schematic representation of an N degree of freedom impact oscillator

• Figure 2: Two degree of freedom impact oscillator numerically generated phase portraits.

Parameter values m1 = m2 = 1, k1 = k2 = 1, c1 = c2 = 0.1, xs = 0.1, A2 = 0.0, A1 = 0.5,

Ω = 0.9 and r = 0.7. (a) Modal coordinates: Solid line q1, broken line q2. (b) Physical

coordinates: Solid line x1, broken line x2.

• Figure 3: Coefficient of restitution as a function of energy for multi-degree of freedom impact

oscillators. (a) r vs RE with KEi = 1.0. (b) r as a function of RE and KEi, KEi > RE.

• Figure 4: Experimental P(1, 1) beam data. Parameter values A = 2.5 volts, xs = −0.2volts

and Ω = 138.42Hz. Sampling rate: 4000 samples/sec.

• Figure 5: Numerical simulations of the vibro-impact beam data shown in figure 4 (a) Single

degree of freedom model r = 0.2. (b) Four degree of freedom model r = 0.75.
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