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Abstract—  This report examines the feasibility of the fuzzy ARTMAP neural
network for classifying statistical data and analyses the results according to
the Bayes decision criterion. A binary decision with single observation
classification problem is chosen to demonstrate and assess the performance of
Juzzy ARTMAP. In this task, fuzzy ARTMAP is used to categorise two classes
of Gaussian-distributed continuous-valued random variables autonomously
and on-line. Various configurations of the task have been investigated by
varying the source (mean) separation, prior probabilities and variances of the
two Gaussian sources. The results illustrate the limitations of fuzzy ARTMAP
in this context. This in turn leads to a modification to the algorithm of Sfuzzy
ARTMAP.  Together with a proposed category selection scheme, Suzzy
ARTMAP is better able to approach the Bayes optimal classification rates Jor
a binary decision domain.

1 Introduction
Pattern classification is an active research area in neural networks. Cybenko (1989)
argued that network architectures using logistic functions are able to approximate any
function with arbitrary accuracy. A similar finding is also concluded for radial basis
function networks, e.g. Poggio & Girosi (1990) and Light (1992) showed that a radial
basis function network can approximate any multivariate continuous functions with a
sufficient number of radial basis function units. This is an essential characteristic for
establishing nonlinear decision boundary surfaces by neural networks in pattern
classification. Recently, many neural networks have been used as classifiers and their
outputs have been interpreted as estimates of the Bayesian posterior probabilities
(White 1989, Wan 1990). Some of the neural networks are developed based on the
Bayes strategy for pattern classification (Specht 1990, Hrycej 1992, Musavi ef al
1993). Simulation results from multilayer perceptron network trained with back-
propagation, radial basis function network and higher order polynomial network have

shown that the network outputs provide good estimates of the Bayesian peste) or
probabilities (Richard & Lippmann 1991). /2

When developing a neural network classifier, we typically proceed by gathe =

data to train the network. Information is encoded during the training ¢ the
adjustment of weights. After that, the network is put into operation and nb
adaptation (learning) is permitted. Moreover, when the network is presented with=a—
previously unseen input pattern, there is generally no built-in mechanism for the
network to recognise the novelty. Thus, if we wish to add new information to the
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network, we would have to re-train the network using the new data together with all
previous data. This is the major drawback suffered by most neural network
architectures and is expressed by the stability-plasticity dilemma (Carpenter &
Grossberg 1988). It poses the questions: how can a learning system remain plastic or
adaptive in response to significant events and yet remain stable in response to irrelevant
events? How can a system adapt to new information without corrupting or forgetting
previously learned information? In response to this dilemma, Carpenter, Grossberg and
colleagues have developed a family of neural network architectures called Adaptive
Resonance Theory (ART).

ART is implemented in various versions : ART1, ART2, ART3 and fuzzy ART for
unsupervised learning; ARTMAP and fuzzy ARTMAP for supervised learning
(Carpenter ef al 1987a, 1987b, 1990, 1991a, 1991b, 1992). ARTMAP has been
reported to be able to classify binary and analog patterns in real-time and nonstationary
environments (Carpenter ef al 1991b, 1992). However, its performance is yet to be
examined in classifying statistical data and to interpret the results according to
probability theory. This work investigates the feasibility of fuzzy ARTMAP in
separating two classes of Gaussian distributed random variables and compares the
results with the Bayes decision criterion. The limitations of fuzzy ARTMAP in this
context are explained and a novel modification is proposed which enables fuzzy
ARTMAP to better approach the Bayes optimal classification rates autonomously and
on-line.

Section 2 reviews some criteria for designing binary decision rules. Section 3 presents
a summarised description of ART and, in particular, fuzzy ARTMAP together with the
modifications to its algorithm. Section 4 reports and discusses the simulation results
and a conclusion follows.

2 Binary Decision

Binary decision with single observation is the simplest case in any decision-making
process. Despite its simplicity, binary decision problems illustrate most of the
fundamental concepts underlying all statistical decision theories. By binary decision, we
mean that there are two classes of message, ¢, and c,, corresponding to two decisions,
d, and d,, i.e,, if c, is selected, then d, is the decision; and if c, is selected, then d, is the
decision. The problem is that given an observation or input x from the input space, a
decision rule d(x) has to be determined such that x is mapped into the decision space in
some optimal manners (Melsa & Cohn, 1978). The mapping criterion is usually related
to the minimisation of misclassification. Figure 1 illustrates a schematic diagram of a
binary decision classification problem. Since there are only two decisions, this is
equivalent to dividing the input space into two decision regions, X, and X,, such that
dx)=d, ifxe X, and d(x) =d, ifx € X,.

The task of separating two Gaussian sources can be viewed as a binary decision
problem. The two messages correspond to the two classes, ¢, and c,, of Gaussian
distributed random variables with, in general, differing means, variances and prior
probabilities. The observation or input corresponds to a continuous-valued random
variable, x, which may belong to one of the two classes. The objective is, therefore, to
choose the decision boundary which minimises the probability of misclassification.




X, decision boundary X,

p(xlg)

p(x|c; )

area of\ misclassification

X

d1<"‘"""""'"""""">d2

Figure 1 A binary decision problem. The decision rule d, is chosen when the
conditional probability density p(x|c,) > p(x|c,) and vice versa. This is
equivalent to dividing the input space into X, and X,.

2.1 Maximum Likelihood Decision Criterion

Before illustrating the formalism of the Bayes decision criterion, first examine the
simplest technique for designing a binary decision rule, i.e., the maximum likelihood
criterion. Consider the two-class problem where an input x is known to be either in c,
or ¢,. The maximum likelihood criterion states that we should decide d(x) = d, if it is
more likely that c, generated x than c, generated x,

d, i p(xle,)>p(xlcs)
d(x)=

d, if p(xlc;)>p(xc,)
where p(x|c,) is the conditional probability density of x givenc,, i=1, 2.

As depicted in figure 1, any binary decision problem is equivalent to dividing the input
space into two decision regions, X; and X,, i.e.

X, ={x:p(xlc,)> p(xlcz)} (1)
X,= {x:p(xlcz) > p(xlc, )} (2)

Define the likelihood ratio A(x) as

_ pxlcy)
Al = p(xic,)

then equations (1) and (2) become

X, ={x:A(x)<1}
X, ={x:A(x)>1}




d,

or A(x) Z 1 3)
d,

Note that from equation (3) the maximum likelihood criterion makes a decision by
comparing the likelihood ratio with unity. This simplicity often seems inadequate to
represent some realistic problems. For instance, in a medical diagnosis situation,
several symptoms have been observed to determine if a patient has disease A or B.
Assume that the symptoms have probability x associated with disease A and probability
y associated with disease B. Based on the maximum likelihood criterion, if x >y, the
patient would be diagnosed to have disease A. However, if disease A is rare and
disease B is common, then the decision does not reflect the real statistical information
about the disease. In other words, the prior probability of an event plays a role in
determining the decision rule.

2.2 Bayes Decision Criterion

A traditional goal for decision strategies used in classification is that they minimise the
"expected risk" (Dunteman 1984, Fu 1982). The Bayes decision criterion employs a
systematic procedure of assigning a cost to each correct and incorrect decision and then
minimising the total average or expected cost. Let C;, be the cost of making decision d;
when ¢, is correct. For a binary decision problem, the expected cost is

E(C,)= C,P{d lc,}P{c,}+C,P(d,lc,}Plc,}+
C,,P{d,lc,)P{c,}+C,,P{d,lc,}P{c,} 4)

where P{c;} is the prior probability of class c;, i = 1,2 and P{d;lc;} is the probability of
making decision d, when G is true, i=1,2, j=1,2. Note that

P(d,lc;) =P(xe X lc)}= [ p(xlc,)dx ()
P{d,Ic,}=1-P{d,lc,) (6)
P(d,lc,} =1-P{d,Ic,} )

From equations (5), (6) and (7), equation (4) becomes
E(Cy)= C,Plc,)+(Cy—C,,)Pld,lc,)P(c,}+
C,,P{c,}-(C,, —C,,)P(d,lc,}Pic,)
E{C,)= C,Plc,}+C,,P(c,)+(C,, —C“)P{c,]Lz p(xlc,)dx —
(Cp =~ C)Plc,) plxlc,)dx
E(C,; )= C“P{cl}+C12P{c2}+_[xz[(C2,-C“)P{c‘}p(xlc,)—
(€, _sz)P{CZ)P(chz)]dx (3)




The Bayes decision criterion states that we should select the decision region X, such
that the expected cost E{C;,} given by equation (8) is minimised. Since the first two
terms in equation (8) are not a function of X, to minimise the expected cost the
integral must be

(C,, —C,,)Plc,}p(xlc,) = (Cy; —Cy)Pic, Ip(xic,) < 0

and the decision rule would be
d,

>
(C;, —Ca)Plcslp(xley) _ (Cy —Cy)Pley)p(xlcy)

d,
d;
> (Cy =Cy)P{c,}
= Al (Cy; =Cp)P{c,} ©
d

By inspecting equations (3) and (9), instead of comparing the likelihood ratio with unity
as in the maximum likelihood decision, the Bayes decision criterion takes into account
the ratio of prior probability of each class associated with their respective costs in the
likelihood ratio test.

2.3  Error and Accuracy
In this work, we decided to assign unit cost for misclassification and no cost for correct
decision, i.e.,

C,;=C,=0
€ =Cy =1

The likelihood ratio test in equation (9) reduces to the ratio of prior probability of the
two classes.

d,
> Pc,)
< Plc,)
dl.

A(x)

The misclassification rate or the probability-of-error is calculated as
P. =P{d,lc,}P{c,}+P(d,lc,}P{c,)
P = P[cl}jx: p(xic,)dx +P(c,) L' p(xlc,)dx

and the classification accuracy is defined as

Accuracy =1-P,
Percentage of Accuracy =(1-P,)x100%




3 Adaptive Resonance Theory

This section starts with a typical pattern-matching scenario in ART and a summarised
description on fuzzy ART and fuzzy ARTMAP. It then explains the problem of one-to-
many mapping in ARTMAP. The problem was revealed when attempting to establish
one-to-many classification during the experiment. This in turn led to a mod_iﬁcation to
the fuzzy ARTMAP algorithm and the motivation of incorporating a frequency measure
scheme to the prototypes in an ART system.

3.1 Pattern-matching in ART

ART is a self-organising neural network architecture capable of categorising input
patterns into different recognition categories (Carpenter ef al, 1987a). Figure 2
illustrates the main components of an ART module. It consists of two parts: the
attentional subsystem and the orienting subsystem. The attentional subsystem has two
layers, F, and F,, of processing neurons called nodes and a gain control to each layer.
The orienting subsystem has a reset circuit which plays an important role in determining
the classification results. Notice that there are three possible input sources to F, and F,.
The nodes in F, and F, obey the 2/3 rule, i.e., they become active only if at least two of
the three sources are active (Carpenter ef al, 1987a).

F_ layer

Gain control F; Tyt T

|

Input vector , 1

Attentional subsystem Orienting subsystem

Figure 2 A general schematic diagram for an ART system. Nodes in F1 and F2
are fully interconnected. A (+) indicates an excitatory connection
whereas a (-) indicates an inhibitory connection.

Figure 3 presents a typical pattern-matching cycle in ART. An input vector I registers
itself as a pattern in the F, layer. A pattern of activation X, i.e., the Short Term
Memory (STM) activity, is produced across F;. The appearance of STM results in an
output pattern U to be transmitted from F, and F, via the adaptive bottom-up weights,
or Long Term Memory (LTM) traces. Each F, node receives the entire vector U
weighted by the LTM and makes a response to this stimulus. Due to the internal
competition dynamics of self-reinforcement and lateral inhibition (on-center off-
surround competition), the node in F, which responds with the largest activation is




chosen to be the winner (winner-take-all). A STM pattern Y is formed across F, while
other nodes are shut down. The winning node then sends its prototype vector P to F,
via the top-down LTM traces. This in turn leads to a new pattern of STM, X*, in F,.
The similarity between the STM vector, X*, and the input vector, I, is tested by the
reset circuit against the vigilance threshold p. If the vigilance test fails to meet the
criterion, a signal is sent by the reset circuit to inhibit the winning F, node for the rest of
the pattern-matching cycle. Now, I is reinstated at F, and the search continues until an
F, node satisfies the vigilance test. If no such node exists, a new node is created in F,
to code the input pattern.

Winning Node

Top-down Weights

\

Input Vector, 1 Input Vector, 1

(2) (b)

Top-down Weights Bottom-Up Weights

Input Vector, I Input Vector,1
(©) G))
Figure 3 A typical pattern matching scenario in an ART network. (a) An input

vector I goes to F, and induces a STM pattern which results in a
stimulus to be transmitted to F, via the bottom-up LTM traces. (b)
Based on the responses, a winning node in F, is selected and a prototype
is sent to F, via the top-down LTM traces. (c) Mismatch between the
prototype and the input initiates a reset signal to deactivate the winning
node. (d) The input vector is re-applied to F, to start a new search.

3.2 Fuzzy ART

Fuzzy ART (Carpenter ef al 1991a) is a generalisation of ART1 (Carpenter &
Grossberg 1987a) for unsupervised learning. It incorporates fuzzy set theory into ART1
by replacing the intersection operator (N) in ART1 by the fuzzy MIN operator (A).
The MIN operator reduces to the intersection operator in binary cases and thus enables
fuzzy ART to handle analog, binary and fuzzy input patterns.




In general, the algorithm of fuzzy ART can be divided into the following phases:

(a) [Initialisation

Referring to figure 2, a fuzzy ART system has two layers, F, and F,. F, receives an
input vector I=(},...,Iy) in the manner that each vector component goes to one node.
Each component I, for i = 1 to M, should be in the interval [0,1]. F, is a layer
containing the category prototypes, i.e., each node representing a cluster of input
patterns. Note that this is a dynamical field where nodes can be created when
necessary, thus allowing the number of category prototypes to grow arbitrarily.
Associated with each F, node (indexed by j, for j = 1, 2,...) is a vector of weights
representing the LTM traces. The weight vector is initialised as

w; (0)=...= wy (0)=1 (10)

The weight vectors w subsume both the bottom-up and top-down LTM traces of
ARTI. Initially, each F, node is uncommitted. When it learns a category prototype, it
becomes committed by modifying its weight vector to code the input pattern.

There are three parameters which control the dynamics of fuzzy ART, i.e., a choice
parameter o > 0, a learning parameter 8 € [0,1], and a vigilance parameter p € [0,1].
The choice parameter o should take a small value. If o is large, there is a tendency to
choose an uncommitted node before going into a deeper search for previously
committed F, nodes (Carpenter & Grossberg 1987a). Hence, a0 — 0 is known as the
conservative limit which tends to minimise recoding of prototypes during learning. The
learning parameter affects how learning takes place, e.g. fast learning or fast-commit
slow-recode learning. The vigilance parameter determines the coarseness of the
classification, i.e., how "similar" do we want a cluster of input patterns to be?

(b) Propagation
The input vector activates a STM pattern, X, across F, and an output vector U is sent
to F,. The vector U is the same as the input vector,

U=I

(¢)  Recognition
Each F, node responds differently to the input vector according to a choice function
IAw,

L=l

The fuzzy MIN operator and the norm || is defined as

(a Ab)i = min(ai,bi)

al =

i=l




The choice function measures the match between the input vector and the weight vector
according to the fuzzy subsethood theory (Zadeh 1965). The node with the highest
response, denoted as the Jth node, is selected as the winner while all other nodes are
shut down. A STM pattern in F, is formed, i.e.,

1 if y i° =max{Tj:j=1,2,...}
;=
0 otherwise

If there is a tie in T;, the smallest index j is chosen. The winning node is now required
to send its stored prototype back to F,.

(d) Feedback
The prototype vector P is actually the weight vector of the winning F, node, w;.

P=w,

Tt induces a new STM activity, X*, across F, as defined by

X*=1Aw,

(¢) Comparison
Both the F, STM vector, X*, and the input vector, I, are passed to the reset circuit to
test their resemblance. This vigilance test is governed by a match function,

|x_*l=[1f\w,| s,

-

Resonance is said to occur if the vigilance criterion is met, and learning ensues.

U] Search
However, if the vigilance test fails, i.e.,

MsllAwJ[<

-

a reset signal is sent to F,. The winning F, node is disabled and the choice function is
set to zero. This has a twofold effect: the node is prevented from entering any further
best-match competitions for the current input pattern, and the F, layer is reset to allow
new activity. The input vector is now re-applied to F, and the pattern-matching cycle
continues. This process is repeated, consecutively disabling nodes in F,, until a
category is found that satisfies the vigilance test. If no such node exists, a new node is
created in F, to code the input vector.

(g0 Learning
Once search ends, learning takes place by adjusting the weight vector w, according to

wgnew) — B(IAw(Juld))_’_ (1 _ﬂ)w:"‘d)




Fast learning corresponds to setting = 1. However, for efficient coding of noisy input
sets, it is useful to employ the fast-commit slow-recode learning rule (Carpenter ef al,
1991a). Then, learning is accomplished by setting B = 1 when J is an uncommitted
node and P < 1 after the node is committed.

3.2.1 Complement Coding

Moore (1989) reported that ART1 could be subjected to a category proliferation
problem. As a result, Carpenter ef al (1991a) proposed a normalisation method to the
input vectors called complement coding so that the category proliferation problem is
avoided. Complement coding is a normalisation rule that preserves amplitude
information. It represents both the on-response and the off-response to an input vector.
To represent such a code in its simplest form, let an incoming vector a represents the
on-response and the complement of a, denoted as a¢, represents the off-response, where

Thus, the complement coded input I to the F, field is a 2M-dimensional vector,
Y= {8,8)=0(8yy: + Bpys8ls - =s831)

with each component [, in the interval [0, 1] and the norm of I

M M
[I[=I(a,a°) =S, +(M-Ya)=M
i=1

i=1
When complement coding is used, the initial condition of equation (10) is replaced by

wi(0)=. . .=wju(0)=1

3.3  Fuzzy ARTMAP

While fuzzy ART is an unsupervised learning system, fuzzy ARTMAP (Carpenter et al,
1992) is a supervised learning system capable of classifying binary, analog and fuzzy
input patterns into recognition categories autonomously based on predictive success.
Fuzzy ARTMAP consists of a pair of fuzzy ART modules, ART, and ART,, that are
linked by an inter-ART module called the map field. Figure 4 depicts the main
components of a fuzzy ARTMAP system.

During operation, ART, reads an input pattern a and ART, reads another pattern b
where b is the correct/target output of a. Each fuzzy ART module self-organises in
response to their input vectors. A map field controls the learning of an associative map
from ART, recognition categories (ART, F, layer) to ART, recognition categories
(ART, F, layer). However, this map field does not directly associate input a with b,
but rather links the compressed and symbolic representations of the prototypes of a and
b (Carpenter ef al, 1991b) We now concentrate on how the two modules of fuzzy
ART are connected by the map field to operate as a supervised learning system.

10




Target vector b

ap field +,
fgain control

Input vector _a
Figure 4 A schematic diagram of an ARTMAP network. It consists of a pair of

ART modules interconnected via a map field.

3.3.1 The Map Field

Figure 5 illustrates the main components of the map field. F,, is the F, layer of ART,,
F,, is the F, layer of ART, and F,, is the map field layer. Letj,j=l, 2, ..., be the index
for the nodes in F,, and k, k = 1, 2,..., be the index for the nodes in F,,. The number of
nodes in F,, is the same as the number of nodes in F,,. Note that there is a one-to-one
permanent link between the nodes in F,, and F,. But, F,, is linked to F, via an
adaptive pathway of map field weight vectors.

(a)  Map field initialisation
The map field weight vectors are initialised to

w, (0)=1

These weight values imply that every node in F,, can be linked to every node in F,, via
F,,, i.e., no predictive association exists initially.

(b) Map field association

ART, and ART, categorise their input vectors separately and independently. After
resonance occurs in each module, there is an active category prototype (winning node)
in F,, and F,, (denoted as node J and node K). F,, and F,, both send their signals, y,
and y,, to the map field. An association is formed by setting the map field STM x,, to

X =Y AWapoy (11
when both F,, and F,, are active. Note that w,,, is the map field weight vector

associated with the Jth winning node in F,,. If the prediction (w,.;) is disconfirmed by
F,, (v,), then x,, = 0. This triggers a match tracking activity.

11




F,,, layer

|Map Field K
gain contro

match-tracking

signal

F,. laver

Figure 5§ A permanent one-to-one connection exists from ART, F, (F,,) to the
map field (F,); whereas ART, F, (F,,) is connected to F, via an
adaptive pathway of map field LTM traces (w,,). When both ART, and
ART, are active, the map field receives a predicted signal y,; from the
jth node in F,, and an answer y,, from the kth node in F,,. If the
prediction is disconfirmed, a match-tracking signal is sent to ART, to
start a search.

()  Map field reset and match-tracking

The mismatch event resets the map field and activates the control strategy called match-
tracking. Match-tracking regulates p, (ART, vigilance parameter) in such a way as to
keep the system from making repeated errors. Initially, for a new input pattern p, is
relaxed to a baseline vigilance. When a predictive error occurs, i.e.,

lxabl < pnblel

where p,, is the map field vigilance parameter, p, is increased to a value just enough to
trigger a search in the ART, module. Thus p, should be raised to a value slightly
greater than |a A w,, |/]a] to cause the ART, vigilance test to fail, i.e.,

<p,lal

lﬂ AW,

By increasing p, match-tracking provides a means to select a node in F,, which fulfils
both

|a A w-—]l Z pa|a|
Ixnbl 2 PanYb|

If no such node exists, F,, is shut down for the rest of the input presentation and the
input pattern is ignored.

12




(d) Map field learning
When a node J in F,, successfully predicts a node K in Fy, learning is carried out by

linking node J to node K according to
wlh—l = xnh (12)

From equation (11) and (12), w,, = 1 for all time, indicating that a permanent
association is made to allow node J to predict node K in future.

3.4  One-to-Many Mapping

In general, there are two types of neural network-based classifiers (Ryan 1988) :

(1)  networks with interconnection weights that can be interpreted as
cluster/category prototypes.

(2)  networks with weights that interpolate the decision surfaces separating pattern
clusters/categories.

ART is an example of the first type whereas networks using, say, back-propagation
learning fall into the second type.

As explained in section 3.1, ART employs the "winner-take-all" competition scheme in
the F, layer. The input pattern is compared with all category prototypes (committed
nodes) in F, and the one that best matches the input pattern is selected as the winner.
Other nodes are shut down. Hence, the predictive results of fuzzy ARTMAP depend
heavily on the category prototypes in the F, layers of ART, and ART,, Note that each
category is in fact the prototype of a cluster of patterns defined by the vigilance
threshold (Burke 1991, Moore 1989).

In the paper by Carpenter ef al (1991b), it is stated that one-to-many learning is
possible in ART. An example of associating the taste of bananas with different features
is given. It is argued that an input pattern can be associated with many learned
category prototypes, each representing a feature of the input pattern. This is carried
out by using predictive feedback during the hypothesis testing cycle where attention
can be shifted to new recognition category without recoding previously learned
categories. Eventually, an ART system will select the one that best describes the input
pattern to be the representative prototype. Hence, one-to-many recognition and
prediction codes can be formed through time.

However, this one-to-many learning scheme is confined to single ART modules, and in
ARTMAP it does not mean that a prototype in F,, can be linked to many prototypes in
F,, via the map field. The reason for this is to avoid any confusion of mapping, and
hence the prediction, from F,, recognition categories to Fy, predictive answers. In
other words, it is not known which category in F,, should be selected as the output if
more than one association exists. This phenomenon is clearly stated in the papers on
ARTMAP and fuzzy ARTMAP (Carpenter ef al 1991b, 1992). During the match-
tracking activity (i.e., the current winning ART, category fails to match the active ART,
category), the vigilance parameter of ART, is increased to a value that causes the
vigilance test to fail. This process leads either to the activation of another ART,

13




category which is able to satisfy both ART, and map field vigilance tests or to the
shutdown of F,, until the input pattern is removed.

In a pattern classification task, the probability density functions of the data can
sometimes be densely overlapped. In this experiment, input to ART, is a random
number x and input to ART, is the target class of x. ART, will segregate the input
range of x into several sub-ranges and assign one node to code a prototype of each sub-
range. The allowable "width" of the sub-ranges is defined by the vigilance parameter.
Figure 6 depicts one of the possible sub-ranges denoted by broken lines. For any x that
fall within that sub-range, it may belong to either ¢, or c,. In view of this, it is desirable
to establish one prototype that can be mapped to either c, or c,, thus a one-to-many
mapping. This problem motivated the modification of the fuzzy ARTMAP algorithm to
enable a one-to-many mapping.

X;  decisionboundary X,

p(xlq)

X

Figure 6 For the overlapped region, the prototype x; should be able to predict
both ¢, and c,. One-to-many mapping attempts to associate this
prototype with different predicted outputs.

3.5 Modified Fuzzy ARTMAP

One way to accomplish a one-to-many mapping is proposed as follows. We shall work
through an example to illustrate the method. Referring to figure 6, first assume that the
input pair is x; and c, presented in complement coded format. A prototype of the
vector x; will be set up in F,, which is linked to predict ¢, in Fy, i.e.,

Wy =X (13)
where w, is the weight vector of the Jth winning node in F,, .
Then, an input pair of x; and c, arrives. w, is selected and the predicted class is c;.
However, this prediction is disconfirmed by ART, because the actual class is c,, and
hence match-tracking is triggered. Since it is a perfect match of the input and the

prototype, the vigilance parameter of ART, (p,) is increased to a value slightly greater
than

14




|xiAw,|=l
X.

(14)

From equation (13) and (14), we can see that no other nodes, even a new uncommitted
node, in F,, can satisfy the vigilance test because p, is greater than unity. So, the input
pattern will be ignored.

Instead of increasing the baseline vigilance to a value greater than 1, it is set to 1. This
implies that a new uncommitted node will be selected to code the input pattern x; and

associate it with c,.

By generalising this idea, during match-tracking the ART, vigilance parameter is
constrained by

|aAw,|

lal

where a is the current input vector to ART, and w;, is the Jth winning node in F,,.

0<p, <min(l,

) (13)

According to equation (15), if no committed node in F,, is able to satisfy the vigilance
test, a new node is selected to code the input vector. By using this approach, it is
possible to create two "similar" (within the range of vigilance), if not identical,
prototypes which map to different recognition categories in F,,, thus implementing a
one-to-many mapping.

There are two main disadvantages with this approach.

(1). Redundancy of Category Prototypes

It s obvious that two or more prototypes are produced to map an input cluster to
different outputs. This will increase the number of nodes in F,, but many of the
prototypes will be redundant.

(2).  Selection of Category Prototypes

Assume that there are two identical prototypes in F,,. When an input pattern arrives,
which prototype should be selected as the winner? In the present implementation, a
prototype in F,, is selected in sequence i.e., 1,2,... . In the above example, let node 5 in
F,, be the prototype of x; associated with ¢, and node 8 be the prototype of x;
associated with c, . Hence, ¢, will always be the predicted output because 5 precedes
8. Consequently, the misclassification rate is increased because the conditional
probability density p(x|c,) is greater than p(x|c,) for that particular sub-range.

3.6 A Frequency Measure for ART Prototypes

The problem of prototype selection motivates the introduction of a frequency measure
for the learned prototypes to facilitate the selection between "tied" nodes. The
approach measures the frequency of each prototype being associated with a predicted
answer.
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In general, the operation of fuzzy ARTMAP on-line classification can be divided into
two phases: the prediction phase and the learning phase. First, an input vector is
presented to ART,. A winning node is selected in F,, which makes a prediction to
ART, via the map field. The actual output is then fed to ART,,. The predicted output
is compared with the actual output to determine its correctness. This gives a result for
the classification. If the prediction is confirmed, the frequency count of the winning F,,
node is incremented by one. However, if the prediction is incorrect, the frequency
count is reduced by one.

The same procedure applies in the learning phase. If the predicted category is
disconfirmed by ART,, match-tracking is triggered and a search in ART, is initiated.
When a category prototype in F,, correctly predicts an output in ART,, its frequency
count is incremented by one. Similarly, the frequency count of the winning F,,
prototype is reduced by one if the predicted answer turns out to be incorrect.

By this reward-penalty scheme, statistical information about the learning and the
prediction accuracy from all prototypes in F,, to ART, outputs is built up. This
consequently gives a measure of how many times a particular category prototype has
accurately participated in the learning and prediction phases.

decision boundary X,

1

PEETT X
000
C1€
Figure 7 The effects of the frequency measure scheme. c, prototypes are denoted

by * whereas ¢, prototypes are denoted by o. In the X, region, because
p(x|c,) > p(x|c,), ¢, prototypes should have a higher frequency count
than ¢, prototypes and would be selected to predict c, as the output.
The same happens in X,. Thus, this looks as if the decision boundary
has divided the prototypes into two groups with ¢, prototypes
associated with X, and c, prototypes associated with X,.

For the Gaussian experiment, as depicted in figure 7, because the conditional
probability density p(x|c,) > p(x|c,) in X, the number of x belonging to c, is greater
than the number of x belonging to c,. In other words, more input pairs of x and c,
occur in the X, region. Hence, by the above scheme, those prototypes of ¢, in X,
should have a higher frequency count than those prototypes of c,. The same argument
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applies to the X, region. As a consequence, when x € X, ¢, prototypes should be
selected and similarly when x € X,, ¢, prototypes should be selected.

As explained in section 3.2(c), the prototype in F,, is selected in sequence 1,2,...
Assume that for a particular sub-range in X, a c, prototype is established before a c,
prototype. Then any x falling into that sub-range would generate a predicted output of
c,. With the above scheme, fuzzy ARTMAP is able to select the c, prototype based on
the frequency count information. This in turn reduces the misclassification rate
remarkably, as demonstrated in the experiment.

However, for prototypes adjacent to the decision boundary, the frequency count
information may not be reliable because p(x|c,) is close to p(x|c;). A large amount of
data has, therefore, to be employed in order to obtain accurate frequency information
relative to the conditional probability densities.

4 Simulation Studies

4.1  Motivation of Experiment

In statistical decision theory, the general model for pattern recognition is based on the
minimisation of misclassification such as the average/expected cost function formulated
in Bayes decision criterion (Fu 1982). For a neural network classifier, it is desirable if
the network outputs can be treated as estimates of the Bayesian posterior probabilities
and thus operate as an optimal Bayes classifier. Besides, interpretation of network
outputs as Bayesian posterior probabilities also allows multiple networks to be
combined in hierarchy for higher level decision making (Richard & Lippmann 1991).

Unlike some probability-based neural networks (Specht 1990, Musavi e al 1993),
fuzzy ARTMAP is not designed according to probabilistic arguments. It is not obvious
how well fuzzy ARTMAP can perform in classifying statistical data where the class
distributions are densely intersected. The task of classifying Gaussian distributed
random variables has often been considered as a benchmark problem in statistical
pattern recognition. It has been used to analyse the performance of several neural
network classifiers (Kohonen ef al 1988, Yair & Gersho 1990, Richard & Lippmann
1991). In view of this, the experiment of separating Gaussian distributed random
variables is chosen. For the sake of simplicity, it is restricted to a single dimensional
two-class problem. Thus, it is a binary decision with single observation problem. The
difficulty of the task ranges from hard (two densely overlapped classes) to easy (two
well-separated classes) by varying the mean value of the two classes. In addition, the
effects of different variances and prior probabilities have also been evaluated.

The main purpose of these experiments is to assess the performance of fuzzy ARTMAP
as a classifier in classifying statistical data and to examine whether the results from
fuzzy ARTMAP and the modified version can approach the Bayes optimal results for a
binary decision problem. This work concentrates on the statistical accuracy of the
results without taking into account other factors such as network complexity and
computational speed.
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4.2 Experimental Procedure

Two classes of Gaussian distributed random numbers were generated and normalised
between 0 and 1. All input samples were presented in pairs: the random number to
ART, and its target class to ART,. Complement coding was used. As an example,

Input vector to fuzzy ART, = (x, 1-x) -- sample x
Input vector to fuzzy ART, = (c, 1-¢) -- target class

Note that class 1 (c,) was represented by c=0 whereas class 2 (c,) was represented by
c=1. The objective of the experiment was to learn to place an input sample, x, into
categories ¢, or c, by using the fuzzy ARTMAP on-line classification approach.

Three experiments were carried out:

(1)  Two-class classification with different source (mean) separation (equal prior
probabilities and fixed variances)

(2)  Two-class classification with different prior probabilities (fixed means and equal
variances)

(3)  Two-class classification with different variances (fixed means and equal prior
probabilities)

All experiments employed the single-epoch on-line strategy with fast learning (i.e.
learning parameter, B = 1) (Carpenter ef al, 1991b). On-line learning has the advantage
of imitating the conditions of a human operating in a natural environment. The
operational cycle proceeds as follows. First, an input sample x was presented to ART,.
In order to implement a one-to-many mapping as explained in section 3.4, the two
nodes with the highest response in F,, were chosen. Based on the frequency
information, the one with a higher frequency count was selected as the winner to give a
predicted output at ART,. The output was then compared with x's target class to
determine its correctness. This produced a result for the classification accuracy
(prediction phase). Learning then ensued to associate the input vector with the target
vector (learning phase).

For all experiments, 5000 samples were generated. The first 200 samples were used to
"prime" the blank network initially. Performance of the network was evaluated for the
remaining 4800 samples. This ensured that early poor predictions did not bias the
overall performance unduly.

Fuzzy ARTMAP can be very sensitive to its parameters, especially the vigilance
parameters. After some trial-and-error, the network parameters were set to:

ART, : Learning parameter = 1.0 (fast learning)
Baseline vigilance =038
Choice parameter =0.01

ART, : Learning parameter = 1.0 (fast learning)
Vigilance parameter - =1.0
Choice parameter =0.01

Map Field : Vigilance parameter =09
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4.3 Experimental Results and Analysis
43.1 Experiment I -  Two-class Classification with Different Source
Separation

This experiment investigated the performance of fuzzy ARTMAP in classifying two
Gaussian sources with different source separation. The source separation was defined
as the absolute difference between the means of the two classes, i.e., Iu, uzl The
source separation was changed from 0, 1,..., 9 by varying the means away from the y-
axis in both positive and negative directions i.e., from two identical sources (mean p, =
,=0.0) to two distinct sources (4,;=-4.0, 4,=4.0). Hence, the two classes of random
numbers were symmetrical to the y-axis. The two sources were equnprobab!e (prior
probability P{c, }= P{c,}=0.5) with their variances fixed to 1.0 (0! =03 =1.0).

All input values to ART, were normalised between 0 and 1 by a logistic/sigmoidal
function (1/(1+e*)). This sigmoidal normalisation technique has the advantage of
covering the input range from negative infinity to positive infinity.

4.3.1.1 Experimental Results

Source Bayes Fuzzy ARTMAP Modified Fuzzy ARTMAP
Separation| Limit | Average | ARTa Average (without | Average (with| ARTa

Categories freq. measure) | freq. measure) | Categories
0 50 50.03 589 50 49.57 620
1]  69.15 58.12 499 58.05 66.35 531
2 84.13 73.06 356 73.17 82.42 373
3] 9332 87.79 178 87.87 92.99 189
4 97.72 95.58 77 95.62 97.3 80
5 99.38 98.84 34 08.84 99.25 34
6] 99.87 99.71 12 99.71 99.79 12
71 99.98 99.94 8 99.94 99.94 8
8 100 100 4 100 100 4

Table 1 Classification results (average of 5 runs), expressed as percentages, for

different source separations

Table 1 summarises the average results of 5 runs. In general, fuzzy ARTMAP and
modified fuzzy ARTMAP (without frequency measure) gave very similar results. The
greatest difference was only 0.11% for source separation = 2. For comparison, we
would concentrate on the performance of fuzzy ARTMAP and modified fuzzy
ARTMAP (with frequency measure).

Figure 8(a) depicts the Bayes limit and the average results of fuzzy ARTMAP and
modified fuzzy ARTMAP (with frequency measure). We can see that modified fuzzy
ARTMAP (with frequency measure) showed an improvement on the classification
results. All its results were within 2.8% of the Bayes limit. From table 1 and figure
8(a), the results can be interpreted in 3 groups: source separation = 0 as a special case;
source separation = 1, 2, 3, 4 as "hard tasks"; and source separation = 5, 6,7, 8 as
"easy tasks".
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Figure 8 (a) The classification results are bounded by the best and worst results

for each source separation. (b) On-line classification accuracy plotted
against increasing number of samples and parameterised by source
separation.

Source separation = 0 is a special case where all the results were similar to the Bayes
limit. This phenomenon will be explained in the discussion. However, for the "hard
tasks" a significant improvement was achieved by modified fuzzy ARTMAP (with
frequency measure) in approaching the Bayes limits. An increase of 9.36% from fuzzy
ARTMAP result was obtained for source separation = 2. For the "easy tasks", both
modified fuzzy ARTMAP results and fuzzy ARTMAP results could approach the Bayes
limit to within 0.6% since the sources were already well separated.

As expected, for the "hard tasks" modified fuzzy ARTMAP created more categories in
ART, because of the prototype redundancy problem. However, this problem is
compensated by the improvements achieved in the results. As a comparison between
fuzzy ARTMAP and modified fuzzy ARTMAP (with frequency measure) results, for
source separation = 1, there was a 6.41% increase in the number of ART, categories
but the improvement in accuracy was 8.23%. Similarly for source separation = 2, the
number of ART, categories was increased by 4.78% whereas the accuracy was
increased by 9.36%.

Figure 8(b) shows a typical on-line classification accuracy plotted against increasing

number of input samples. The performance of fuzzy ARTMAP is stable. The results
fluctuated at the beginning stage, as expected, and settled to a stable value very rapidly.

20




432 Experiment I - Two-class Classification with Different Prior
Probabilities

Further tests were carried out to investigate the effects on performance by varying the

prior probabilities of the two classes. These experiments were carried out with source

separations fixed to 1 (1,=-0.5 & p,=0.5), 2 (1;=-1.0 & p,=1.0)and 3 (u=-15&p

,=1.5). All variances were fixed to 1.0.

For each source separation, the prior probabilities were varied for the following five
cases: '

(1) P{c,}=0.1, P{c,}=0.9
2 P{c,}=0.2, P{c,}=0.8
(3) P{c,}=0.3, P{c,}=0.7
(4) P{c,}=0.4, P{c,}=0.6
(5)  P{c;}=P{c,}=0.5

4.3.2.1 Experimental Results

P{cl}/P{c2}| Bayes Fuzzy ARTMAP Modified Fuzzy ARTMAP
Limit | Average | ARTa Average (without | Average (with| ARTa

Categories freq. measure) | freq. measure) | Categories

0.11 90.13 78.08 312 78.2 89.23 336

0.25 81.38 68.32 384 68.52 79.73 410

0.43 74.7 62.6 457 62.68 72.66 500

0.67 70.55 57.9 504 58.05 68.07 534

1 69.15 57.96 495 57.91 66.72 518

(a) Source Separation = 1

P{c1}/P{c2}| Bayes | Fuzzy ARTMAP Modified Fuzzy ARTMAP
Limit | Average | ARTa Average (without | Average (with| ARTa
Categories freq. measure) | freq. measure) | Categories
0.11 93.35 86.05 204 86.18 92.24 215
0.25 88.79 80.09 282 80.36 87.83 295
0.43 86.12 75.95 302 76 84.56 323
0.67 84.62 74.18 343 74.23 83.34 364
1 84.13 72.82 362 72.95 82.48 383
(b) Source Separation = 2
P{c1}/P{c2}| Bayes Fuzzy ARTMAP Modified Fuzzy ARTMAP
Limit | Average | ARTa Average (without | Average (with| ARTa
Categories freq. measure) | freq. measure) | Categories
0.11 96.63 93.67 125 93.72 96.39 131
0.25 95.02 89.75 156 89.79 94.4 163
0.43 94.04 88.49 179 88.69 93.32 184
0.67 93.49 88.11 165 88.19 93.01 171
1 93.32 87.77 168 88.04 92.9 176

(c) Source Separation =3

Table 2 Classification results (average of 5 runs), expressed in percentages, for
different prior probabilities .
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Figure 9 These graphs show the ratio of prior probabilities against the
classification accuracy. All the results are bounded by the best and

worst results of 5 runs.

Table 2 shows all the classification results. The average results (bounded by the best
and worst results) of fuzzy ARTMAP and modified fuzzy ARTMAP (with frequency
measure) are shown graphically in figure 9. Again, modified fuzzy ARTMAP (with
frequency measure) outperformed fuzzy ARTMAP in all cases. All the results from
modified fuzzy ARTMAP (with frequency measure) were within 2.5% of the Bayes
limit. Moreover, it showed an improvement in excess of 10% over fuzzy ARTMAP
results in some tests for source separation = 1 (a "hard task").

4.3.3 Experiment ITI - Two-class Classification with Different Variances

In this experiment, the source separation was fixed to 1, 2 and 3 (as in Experiment II)
with the prior probabilities P{c,}=P{c,}=0.5. The standard deviation of each class
was set to:

22



(1) o©,=05,0,=45
2 o06,-1.0,0,4.0
3) o©,=15,0,=35
4 0,=2.0,0,=3.0
(5) o©=0,=25

Higher values of standard deviations were used (thus the variances) so that intersection
between the two classes could still occur when the source separation was fixed to 1, 2,
3.

4.3.3.1 Experimental Results

All the classification results are tabulated in table 3. Figure 10 depicts the average
accuracies plotted against the ratio of standard deviations 6,/,. As expected, modified
fuzzy ARTMAP (with frequency measure) gave a better performance than fuzzy
ARTMAP. For instance, for source separation = 1 (a "hard task") an improvement of
9.66% was achieved for 6,/c, = 0.25. All the results of modified fuzzy ARTMAP
(with frequency measure) approximated the Bayes optimal limits to better than 3.6%.

Stdev1/Stdev2 | Bayes Fuzzy ARTMAP Modified Fuzzy ARTMAP
Limit | Average | ARTa Average (without | Average (with| ARTa
Categories freq. measure) | freq. measure) | Categories
0.11 89.26 80.3 251 80.37 88.8 269
0.25 79.17 67.88 437 68.03 77.54 453
0.43 70.18 59.55 503 59.32 67.15 542
0.67 61.89 53.52 536 53.68 58.56 561
1 57.93 51.32 587 51.23 54.41 616
(a) Source Separation = 1
Stdevl/Stdev2 | Bayes Fuzzy ARTMAP Modified Fuzzvy ARTMAP
Limit | Average | ARTa Average (without | Average (with| ARTa
Categories freq. measure) | freq. measure) | Categories
0.11 89.87 80.58 259 80.8 88.78 281
0.25 81.06 69.86 368 69.96 78.99 387
0.43 73.04 61.69 461 61.92 70.38 489
0.67 67.16 57.05 531 57.23 64 569
1 65.54 54.31 540 54.48 62.23 562
(b) Source Separation =2
Stdevl/Stdev2 | Bayes Fuzzy ARTMAP Modified Fuzzy ARTMAP
Limit | Average | ARTa Average (without | Average (with| ARTa
Categories freq. measure) | freq. measure) | Categories
0.11 90.9 82.03 250 82.3 89.12 269
0.25 83.44 72.11 330 72.01 80.99 344
0.43 77.23 65.26 425 65.42 74.66 449
0.67 73.55 61.85 471 61.9 71.48 498
1 72.58 60.46 509 60.68 70.68 558
(c) Source Separation =3
Table 3 Classification results (average of 5 runs), expressed in percentages, for

different variances .
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Figure 10 Classification results from differing the ratio of the two variances. The
average results of 5 runs are bounded by the best and worst

performance.

4.4  Discussion

From Experiment I, several observations can be made. One interesting point is the
result for the two identical sources, i.e., source separation = 0. The performance of
fuzzy ARTMAP and modified fuzzy ARTMAP (both versions) was close to the Bayes
optimal limit of 50% accuracy. The result can be explained by a coin-flipping example.
Let us select a prototype of either head or tail. We flip a coin and compare the
outcome with our prototype to determine the result. Because the probability of getting
a head (Prob(head)) is the same as the probability of getting a tail (Prob(tail)),
eventually we should reach an accuracy of 50%. Therefore, when a coin is flipped and
the outcome is compared with a prototype, the probability is always approaching 50%
regardless either prototype of head or tail is used. The same principle applies here.
Referring to figure 11, p(x|c,) = p(x|c,) for every input x. For every sub-range, the
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likelihood that c, generated x and c, generated x is the same, just like Prob(head) =
Prob(tail). Since it is a 50%-50% case, it is not important which class prototype in F,,
is chosen to predict the output. This phenomenon was reflected in the experiment
where the original fuzzy ARTMAP result could closely approach the Bayes limit

p(xlg) . p(x|c; )

Ll Ll
[}
[}
(B}

C1 ¥ k% k k¥
000000 ¢,

Figure 11 For two identical sources, p(x|c,) = p(x|c,) for the entire input range.
Prototype selection becomes insignificant because the probability of x
belonging to c, is the same as the probability of x belonging to c,.

However, prototype selection becomes critical for separated cases because their
conditional probability densities are no longer identical. This could be observed from
those "hard tasks" (source separation = 1, 2, 3 & 4) where the results of fuzzy
ARTMAP degraded seriously. For source separations of 1 and 2, the results were 11%
away from the Bayes limit. This problem was overcome by the frequency measure
approach. Because p(x|c,) > p(x|c,) for xe X, (figure 7), this information should be
reflected in the frequency count which in turn enabled ¢, prototypes to be chosen. The
same argument applies for xe X,. When "similar prototypes" (which were linked to
different outputs) occurred in X,, modified fuzzy ARTMAP (with frequency measure)
would select the one with a higher frequency count and hence minimise the
misclassification rate. An improvement of 8-9% in accuracy was shown for source
separations of 1 and 2.

For the "easy tasks" (source separation = 5, 6, 7 & 8), all the results were able to
approach the Bayes limit to within 1% accuracy. When the sources are well-separated,
their distributions do not densely overlap each other. Thus, modified fuzzy ARTMAP
(both versions) and fuzzy ARTMAP could accurately classify almost all input samples
by establishing appropriate prototypes which reflected their respective conditional
probability densities.

A different learning strategy has also been investigated. We experimented on the "hard
tasks" using the fast-commit slow-recode learning rule (Carpenter ef al, 1992). All
other parameters were as given in section 4.2 except that the learning parameter, B, was
set to 0.5 for committed nodes. However, very similar classification results as those
from the fast-learning cases (Experiment I) were obtained. As an instance, for source
separation = 2, the average (5 runs) accuracy of fuzzy ARTMAP was 72.65%;
whereas the average (5 runs) accuracy of fuzzy ARTMAP (with frequency measure)
was 82.27%. The absolute differences for all the average results were within 1% of the
results from Experiment 1.
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To evaluate further the classification ability of modified fuzzy ARTMAP (with
frequency measure) in producing outputs which approximate the Bayes optimal results,
various configurations of the Gaussian problem have been examined. Experiment II
investigated the effects of differing the prior probabilities of the two classes; whereas
Experiment I1I investigated the effects of differing their variances. Again, all the results
were able to approach the Bayes limit to within 3.6% at worst.

By inspecting the modified fuzzy ARTMAP (with frequency measure) results, we
notice that very infrequently individual run results exceed the Bayes optimal limit. This
could be due to the prototypes adjacent to the decision boundary of the two classes. As
explained in section 3.6, because p(x|c,) is close to p(x|c,) the frequency count
information may not reflect the actual conditional probability densities of the two
classes. A lot of data should be used in order to give a higher frequency count for c,
prototypes in X, and vice versa.

As explained earlier, modified fuzzy ARTMAP creates redundant prototypes in ART,
as a side-effect of the implementation of the one-to-many mapping. The number of
nodes in F,, was increased, especially for the "hard tasks". However, the improvements
achieved in the classification results mitigated this effect. Nevertheless, such redundant
prototypes should be eliminated or reduced. One suggestion is to incorporate a
forgetting factor or a decaying function to each F,, node. Then, rarely-activated or
spurious prototypes would gradually fade away until they re-enter the pool of
uncommitted nodes. An alternative is to transfer the frequency count information from
the F,, layer to the map field so that each ART, and ART, module could maintain its
original clustering algorithm. These suggestions are the subject of further work.

5 Conclusion

This work investigates the performance of fuzzy ARTMAP in classifying statistical data
autonomously and on-line. It highlights the problem of one-to-many mapping in fuzzy
ARTMAP. A modification to the fuzzy ARTMAP algorithm is proposed to enable the
implementation of one-to-many mapping. In addition, a frequency measure scheme is
also suggested to relate how many times a particular category prototype has accurately
predicted an output in the on-line operation. The modified algorithm with a frequency
measure has empirically shown a significant improvement over the original algorithm in
approaching the Bayes optimal classification rates for a binary decision problem, i.e.,
separating two classes of Gaussian distributed continuous-valued random variables. As
demonstrated in the experiments, various configurations of the problem have been
investigated by varying the source separation, prior probabilities and variances of the
two classes. In all cases, modified fuzzy ARTMAP with a frequency measure
outperformed fuzzy ARTMAP to better approach the Bayes optimal results.

Acknowledgements

C. P. Lim gratefully acknowledges the financial support of the Committee of Vice-
Chancellors and Principals (CVCP), UK and the Department of Automatic Control and
Systems Engineering, University of Sheffield, UK.

26




REFERENCES

Burke, L.I. (1991). Clustering Characterization of Adaptive Resonance. Newral
Networks, 4, pp 485-491.

Carpenter, G.A, (1987a). A Massively Parallel Architecture for a Self-Organizing
Neural Pattern Recognition Machine. Computer Vision, Graphics and Image
Processing, 37, pp 54-115.

Carpenter, G.A. (1987b). ART 2: Stable Self-Organizing of Pattern Recognition Codes
for Analog Input Patterns. Applied Optics, 26, pp. 4919-4930.

Carpenter, G.A., Grossberg, S., (1988). The ART of Adaptive Pattern Recognition by a
Self-Organizing Neural Network, JEEE Computer, pp. 77-88.

Carpenter, G.A., Grossberg, S., (1990). ART 3: Hierarchical Search using Chemical
Transmitters in Self-Organizing Pattern Recognition Architectures. Neural
Networks, 3, pp. 129-152.

Carpenter, G.A., Grossberg, S., Rosen, D.B. (1991a). Fuzzy ART : Fast Stable
Learning and Categorization of Analog Patterns by an Adaptive Resonance System.
Neural Networks, 4 pp 759-771.

Carpenter, G.A., Grossberg, S., Reynolds, J.H. (1991b). ARTMAP: Supervised Real-
Time Learning and Classification of Nonstationary Data by a Self-Organizing
Neural Network. Neural Networks, 4, pp 565-588.

Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., Rosen, D.B. (1992)
Fuzzy ARTMAP: A Neural Network Architecture for Incremental Supervised
Leamning of Analog Multidimensional Maps. IEEE Trans. on Neural Networks,
3(5), pp 698-712.

Cybenko, G. (1989). Approximation by Superposition of a Sigmoidal Function,
Mathematics of Control, Signals and Systems, 2, pp 303-314.

Dunteman, G.H. (1984). Introduction to Multivariate Analysis. Beverly Hills, USA:
Sage Publications. PN

(ZAELD

%ﬁfk e qif A?“‘-a_':"'“
(& B\
Fu, K.S. (1982). Applications of Pattern Recognition. Boca Raton, I{’K @EQﬁféﬂs: :

‘%%..:s} P/

L]
N




Hrycej, T. (1992) Loss Function Based Neural Classifiers. Proc. of Int. Conf. on
Artificial Neural Networks (ICANN-92), Brighton. 2, pp 1135-1138.

Kohonen,T., Barna, G., Chirsley, R. (1988). Statistical Pattern Recognition with Neural
Networks: Benchmarking Studies. Proc. IEEE Int. Conf. on Neural Networks, San
Diego. pp 161-68.

Light, W.A. (1992) Some Aspects of Radial Basis Function Approximation.
Approximation Theory, Spline Functions and Applications. 356, pp 163-190.

Melsa,J.L., Cohn,D.L. (1978). Decision and Estimation Theory. Tokyo:McGraw-Hill.

Moore, B. (1989). ART1 and Pattern Clustering. In Touretzky, D., Hinton, G., &
Sejnowski, T. (Eds.) Proc. 1988 Connectionist Models Summer School. pp 174-
185. San Mateo, CA: Morgan Kaufmann Publishers.

Musavi, M.T., Kalantri, K., Ahmed, W_, Chan, K.H. (1993) A Minimum Error Neural
Network (MNN). Newral Networks, 6, pp 397-407.

Poggio, T., Girosi, F. (1990) Network Approximation and Learning, Proceeding of
IEEE, 78, 9, pp 1481-1497.

Richard, M.D., Lippmann,R.P. (1991). Neural Network Classifiers Estimate Bayesian a
posteriori Probabilities. Newral Computation, 3, pp 461-483.

Ryan, T.W. (1988). The Resonance Correlation Network. Proc. IEEE Int. Conf. on
Neural Networks, San Diego. pp 1673-680.

Specht, D.F. (1990) Probabilistic Neural Networks. Neural Networks, 3, pp 109-118.

Wan, E.A. (1990). Neural Network Classification: A Bayesian Interpretation. JEEE
Trans. on Neural Networks, 1(4), pp 303-305.

White, H. (1989). Learning in Artificial Neural Networks: A Statistical Perspective.
Neural Computation, 1, pp 425-464.




Yair, E., Gersho, A. (1990). The Boltzmann Perceptron Network: A Soft Classifier.
Neural Networks, 3, pp 203-221.

Zadeh, L, (1965) Fuzzy Sets. Information and Control, 8, pp 338-353.




