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The first observation of guanidine-CO2 ‘activa

in solution using ATR-FTIR is reported.

guanidines TBD and MTBD form stable

complexes with CO2, other guanidines and terti

not. Correlation with catalytic activi10

amines/guanidines in reaction between

propargylamines indicated that the basicity

rather than its ability to form complexes wi

origin of catalytic activity.

The thermodynamic stability of carbon dioxide (CO15

the main obstacles in developing practical proce
man made CO2 into useful chemicals. However,
between organic bases and CO2 to give carbonate
salts are well-known and have long been em
scrubbing,2 and, more recently, switchable pol20

Although these are equilibria, they do not requ
reactants to effect reactions with CO2. When trisub
are employed, the products are zwitterionic comp
carbamate salts (Scheme 1).4

Scheme 1 Reactions between CO2 and N-b25

Villiers isolated and characterized the firs
product of this type between 1,5,7-triazabicyclo[
(TBD) and CO2 in the solid state,5 and suggested
allow activation of CO2 for catalytic conversion
chemicals.4, 6, 7 Similar complexes have also bee30

North and co-workers to explain improved cata
their cyclic carbonate production process in t
tributylamine.8

Guanidines, such as 7-methyl-1,5,7-triaza-bicyc
ene (MTBD), have been reported to catalyse rea35

CO2 and propargylamines (Scheme 2).9 The propo
involves deprotonation of the substrate by a sup
guanidine, rather than formation of a guanidine
Importantly, guanidines and amidines are both
strong nucleophiles,10 and the mechanisms outlin40

are equally probable. In addition, ab initio,
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Scheme 2 Reaction between CO2 and propa

mechanisms with/without CO2 ‘a

Understanding ‘CO2 activation’, particularl
is fundamental to sustainable CO2 ca
processes.12 Solid state NMR data on DBU
complexes has been previously reported
Villiers.5 However, attempts to detect a65

complexes in solution and to evaluate thei
catalytic processes using 13C NMR have
While equilibrium constants of some ami
in pentane have been measured by Johnston
even qualitative, is currently available w70

communication, we report the first
guanidine-CO2 complexation in solution
implications in reactions between propargy
Table 1 Basicity and nucleophilicity of amines/
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pKa
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(THF)[a]

1 TBD 26.010 21.015

2 MTBD 25.410 17.915

3 DBU 23.910 16.815

4 TMG 23.310 15.315a

5 TEA 18.518 12.519

6 DABCO 18.321
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Fig. 1 Time evolution of ATR-FTIR spectra of reaction be
water (2 x 6.6 eq.) and (c) TMG (8 mM), TEA (7

‘Activation’ of CO2 with guanidines and amines

ATR-FTIR has been proven as an useful tool5

chemical and physical processes involving CO2.
23 I

of monitoring amine/guanidine and CO2 com
solution, it is the ideal technique, exploiting the C=
frequencies of CO2 (2300 cm-1) and of the zwitterion
(1600-1700 cm-1).10

Solutions of TBD, MTBD, TMG, DABCO and
1) in anhydrous THF were treated with CO2 at 1 at
the reaction progress was monitored by measuring t
over time. These organic bases were chosen to in
catalysts (TBD, MTBD, TMG) for the reaction in15

and strong nucleophiles which are weaker bases (DA
THF was chosen as solvent due to the poor solu
zwitterionic complexes in MeCN, the preferred
catalytic reactions. In all cases, introduction of CO2

resulted in rapid saturation of CO2 in solution20

seconds), as observed by the growth of its
frequencies at ~2300 cm-1 (stretching) and 660 cm-1

Formation of two new sets of peaks in the carb
was observed with TBD in THF (Fig. 1a). These are
TBD.CO2 complex (1683 cm-1 (C=O) and 1564 cm25

[TBDH][HCO3] (1595 cm-1 (C=O) and 1657 cm-1

presence of these two species is consistent with ob
Pérez González and Jessop by solid state NMR, g
strictly-anhydrous operational conditions of our
equipment.7d, 25 The assigned frequencies are also30

with solid data, i.e. 1712 and 1605 cm-1 for TBD.CO
and 1600 cm-1 for [TBDH][HCO3].

5 The difference
frequencies of TBD.CO2 in the solid state and in
could be attributed to solvation effects, which are sig
zwitterionic structures.2635

Treatment of MTBD with CO2 in THF in a simila
resulted in rapid formation of two broad peaks in
region (Figure 1b). A small decrease in the inten
peaks was observed after 30 seconds, accompanied
of a white precipitate. These were attributed to the f40

saturated solution of MTBD.CO2, albeit with a sma
[MTBDH][HCO3] due to the presence of moisture a
Portion-wise addition of water to the solution led
hydrolysis of the complex MTBD.CO2 to [MTBD
Consequently the frequencies were assigned to MTBD45
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Table 2 Vibrational frequencies of guanidine

Guanidine Frequency (cm-1)
TBD 1683

1564
MTBD 1648

1602

Surprisingly, no new peak in the carbonyl
was observed when solutions of TMG, TEA
treated with CO2 (Figure 1c). This indic
complexation between these amines and TM
or acetonitrile. While a low value equili80

0.046) has been reported for TEA.CO2,
14 T
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optimised structures of TBD.CO2 and MTBD90

significant charge delocalisation on the guan
with computational work by Villiers,5 which
stability.
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reaction was reported to work well with TBD, MT
DBU as catalysts at 100-110 ºC, 10 bar CO2

supercritical CO2 or under neat conditions. Im
reaction also works in water using a bulky guani
and sodium bicarbonate as the source of CO2. In5

solvents of widely different polarity and
capability (DMSO, MeCN, EtOH, THF and
examined. Lower pressure of CO2 (5 bar) and tem
ºC) were deliberately chosen to lower the eff
catalysts for better comparison.10

Preliminary experiments with the five solvent
50 ºC gave little to no catalytic activity for DABCO
or for reactions using THF and toluene as solv
strong complexation between CO2 and MTBD
described above (supporting information, Ta15

relevance of guanidine-CO2 complexes in this ty
reactions is consequently questioned. Subsequent
performed at 75 ºC and 5 bar of high purity CO2.
catalyst scopes were narrowed to MeCN/DM
MTBD/TMG (Table 3). Despite its activity, DBU20

considered in this study due to our focus on com
complexation and poor chemical compatibility bet
our equipment.

While MTBD showed excellent catalytic activ
10 mol% as reported by Costa et. al.,9b only 8%25

observed at 1 mol% catalyst loading (Table 3, e
TMG is a poorer catalyst in MeCN and EtOH
showed equal catalytic performance to MTBD/M
(Table 3, entries 3 and 7). The lack of evidence
complex in THF and the observed catalytic activi30

than in DMSO, in a protic solvent such as EtOH
guanidine-CO2 complexes may not be crucial for
demonstrated with ATR-FTIR, addition of EtOH
MTBD.CO2 and [MTBDH][HCO3] in THF le
disappearance of IR peaks belonging to M35

supporting information).
The observed catalytic activity can be ex

basicity-controlled mechanism. TMG is a weaker
and MTBD in acetonitrile. However, DMSO
strongly polar solvents which can effectively sta40

The use of these solvents therefore enables TMG
active catalyst. In order to verify this hypothesis
catalytic activity in these reactions, catalytic
MTBD/MeCN, TMG/EtOH and TMG/DMSO com
performed again in the presence of a small amou45

mL of H2O in 3.0 mL of organic solvent, Table 3
and 8).

Table 3 Conversion (%) of 1a to 2a using MTBD or TM

No. Catalyst
Loading
(mol%)

Solvent

MeCN EtOH

1 MTBD 10 100 29

2c MTBD 10 99

mistry [year] Journal Name, [yea

MTBD, TMG and

2 in acetonitrile,
Importantly, the

anidine as catalyst
In this study, five
proton-donating

nd toluene) were
emperature (50–75
efficiency of the

ents at 5 bar CO2,
BCO and DMAP,
lvent, despite the
BD/TBD in THF
Table S1). The
s type of catalytic
ent reactions were
. The solvent and

DMSO/EtOH and
BU was not further
omparison to CO2

between DBU and

ctivity in MeCN at
% conversion was
, entries 1 and 5).

(Table S1) but
/MeCN in DMSO
nce for TMG.CO2

tivity, albeit lower
OH suggested that
or the reaction. As
H to a solution of
led to complete
MTBD.CO2 (see

explained with a
er base than TBD
O and EtOH are
stabilize TMGH+.
MG to be a more
is on the origin of
c reactions using
combinations were
ount of water (0.1
3, entries 2, 4, 6

TMG as catalyst[a,b]

DMSO

54

3 TMG 10 19

4c TMG 10

5 MTBD 1 8

6c MTBD 1 8

7 TMG 1

8c TMG 1

[a] Reaction were performed using 0.866 mmol

mL of the specified solvent under 5 bar of CO2 a

Conversion was determined using 1H NMR of th55

Reaction performed in the presence of 0.1 mL H

In all cases, no loss of catalytic a
compared to the corresponding reacti
conditions, further ruling out guanidin
intermediates. Interestingly, the addition of65

times increase in product yield using TMG
1 mol% catalyst loading (Table 3, e
catalyst/solvent combination gave a f
performance compared to the optim
combination in the literature at 5 bar CO2, 770

Conclusions

The first observation of cyclic guanidi
solution by ATR-FTIR is reported, alo
evidence for observable complexes with T
amines. Correlation between these observa
activity of these nitrogen bases in85

propargylamines and CO2 did not support
this mode of complexation. Instead, the b
has been shown to be important to
Consequently, polar solvents (e.g. DMSO
guanidinium cation, are beneficial to the re90

reactivity, i.e. via generation of strong n
direct activation of CO2, has also been pr
Hölscher in reaction of rhodium-alkyl c
Finally, a novel catalyst/solvent combinatio
with superior catalytic activity at low cat95

discovered. This may lead to much more s
propargylamines to cyclic carbamates u
available and much less expensive catalyst.
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