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Abstract

An orthogonal estimation algorithm is derived for the estimation of parameters associated
with the complex autoregressive boundary model of two-dimensional shapes. Itis shown that
the coefficients of the orthogonal model and the original system parameters are invariant to
rotation around the origin, to the choice of starting point in tracing the boundary, and to
scale and translation. The error reduction ratios derived from the estimation algorithm can
be used to detect which terms should be included in the system model, and classification
based on the orthogonal parameters is shown to be less susceptible to incorrect model order
specification. ~ Classification based on orthogonal data sets is also derived and it is
demonstrated that this approach can avoid some problems associated with classification based
on the model parameters alone.
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1. Introduction

Closed boundary analysis and shape recognition are basic problems in pattern recognition.
Many shape descriptors have been developed (Pavlidis 1980) and Fourer descriptors (Zahn
and Roskies 1972), smoothed curvature functions, moments (Dundani et al. 1977), and chord
length distributions (You and Jain 1984) are very popular for describing boundaries of
different patterns. Recently, Kashyap and Chellappa (1981), Dubois and Glanz (1986)
proposed the autoregressive (AR) model approach of analyzing and recognizing two-
dimensional shapes which is invariant to rotation, size and translation of the object. In the
AR approach, the boundary is approximated by angularly equispaced radius vectors between
the boundary and the centroid and an AR model is estimated based on the sequence of radius
vectors. Recognition is then performed based on the AR model parameters. However,
problems can arise because some boundaries can yield multivalues for some radius vectors
(Dubois and Glanz 1986). Furthermore, even though the lengths of the vectors are ordered
according to the tracing of the boundary, there is the possibility that different radius shapes
give the same ordered lengths (Dubois and Glanz 1936).

To circumvent these problems, Sekita et al. (1992) proposed the complex AR model
approach to model the boundary and to recognise the shape based on the complex AR
parameters. However the success rate in the recognition of two-dimensional shapes is
heavily dependent upon the order of the complex AR model and the number of boundary data
points used. Too low or too high a model order might give erroneous results. For example
if the number of boundary data points is too large, the estimation algorithm may suffer from
numerical problems. However, by adapting the orthogonal estimation algorithm developed
by Tsang and Billings (1992) to this problem, the order of the complex AR model can readily
be detected using the error reduction ratio. Because of the orthogonality property of the
algorithm the fitted orthogonal model parameters will also be invariant to the actual system
model order. Hence recognition based on the orthogonal parameters is more robust than with
the raw AR model parameters. If the order of the orthogonal parameters is insufficient to
capture the characteristics of the boundary data points, more lagged terms can be added to
the model with the advantage that the newly introduced parameters will not affect the
previously estimated parameters. Hence with the orthogonal parameters and the error
reduction ratios, a minimum set of feature vectors can be derived and this will considerably
reduce the computational time for the classification of two-dimensional shapes.

The estimation of AR and complex AR models based on the ordinary least squares estimation
algorithm can suffer from problems of numerical ill-conditioning if the boundary elements
are too close that is if the number of sampled boundary points becomes too large. The




success rate in the recognition of shapes can also start to degrade. Conversely coarse
sampling of the boundary data points will lead to a loss offt e{?hapes there will be large
fluctuations in the model parameters and the parameters might be dependent upon the starting
point of the boundary tracing. The implementation of the new orthogonal estimation
algorithm avoids most of these numerical problems.

To supplement the problem of insufficient characteristics captured by the complex AR
parameters, a recognition procedure based on the orthogonal data set is also derived. Itis
shown that the ratio of the sum of the magnitudes of the orthogonal data vector between the
tested and reference patterns provides a useful tool for classifying patterns. Similar shapes
give similar magnitude ratios and this ratio test is immune to the sampling interval of the
boundary data records as long as the data records capture the essential features of the pattern.

2. Complex autoregressive model representation of boundary

Let {X(t),Y(1)} denote the continuous closed boundary of a two-dimensional shape and let
{X(k),Y(k),k=0,1,...,N-1} be a sequence of N closed boundary points obtained by sampling
{X(1),Y(1)} according to the order of tracing the boundary. For a closed boundary the
relationships X(k)=X(N+kj and Ytk)=Y(N+k) hold. The arc length between any two
consecutive sampled boundary points is fixed at D and defined as

total length of the boundary
N

D = (1)

Hence if the continuous closed boundary is obtained from a frame-grabbler, scanner or
computer image, {X(1),Y(1),t=0,1,...,M-1} will denote a sequence of M pixels describing
the closed boundary and eqn.(1) can be approximated by

i) = IX@ - Xe=DP + Y@ - Ye-1P

(2)
X-D=-XM~1) , Xi=l=JXM=0
and
M-1
3 d 3)
D = t=0
N

The procedure to sample a sequence of equally spaced boundary points
{X(k),Y(k),k=0,1,...,N-1} from {X(),Y(®,t=0,1,...,M-1} can be approximated by the
following procedures:-
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Set Y0 = YO
X(0) = X
k=1
Arc_Length = D
Distance_Travel = 0
Fort =0toM -1
Distance_Travel = Distance_Travel + d(z)
If Distance Travel > Arc_Length
X&) = X(1) - [X(1) - X(t-1)]*[Distance_Travel - Arc_Length] / d(1)
Yk) = Y() - [Y() - Y(t-D]*[Distance_Travel - Arc_Length] / dft)
k=k + 1
Arc_Length = Arc_Length + D

End
End

From the above procedures, a sequence of data records can be collected and an AR model
can be fitted to the sampled records {X(k), Y(k),k=0,1,...,N-1}. The fitted AR models based
on the raw data records will be dependent upon transformations of the boundary such as
translation, scale, rotation and choice of a starting point in tracing the boundary. To
circumvent this, the sampled means are subtracted from the data records to give

x(k) = X(k) - X(k)

(4)
y(k) = Y(k) - Y(k)
and a complex variable z(k) is constructed based on x/k) and y(k) such that
2(k) = x(k) ~ jy(k) (5)

Hence z(k) will be a sequence of complex numbers that correspond to the boundary points
(Fig.1). For the sequence of complex boundary points z(k), a complex AR model of order
n is formed by a linear combination of preceding n boundary points as

k) = Y azk-i) + e(k) (6)
=1

where e(k) is a complex white noise sequence and {a,i=1,..., n} are n complex coefficients
associated with the lagged boundary points z(k-i). The objective is to identify the unknown
coefficients @, and extract information for pattern analysis.

3. The complex orthogonal estimation algorithm

Sekita et al. (1992) proposed the use of the ordinary least squares estimation algorithm to
identify the unknown AR coefficients g, However the ordinary least squares estimation




algorithm suffers from numerical instability as the sampled boundary data records get close
and the estimated AR coefficients are dependent on the specified model order. The
orthogonal least squares estimation algorithm (Korenberg et al. 1988, Billings €t al. 1988)
has been found to be an effective procedure for identifying unknown linear and nonlinear
systems. It is numerically robust and the error reduction ratio test, which is incorporated as
part of the algorithm, provides an effective way of identifying the model structure. Tsang
and Billings (1992) further extended this algorithm to cover complex number systems.

The complex orthogonal estimation algorithm involves transforming eqn.(6) into an auxiliary
equation,

n

2k) = Y gw(k) + ek) (7)

i=1
where {g,i=1,..., n} are some constant complex coefficients associated with the orthogonal
data set w;(k) and

wo(bw(k) =0 , xk =i (8)

where * denotes complex conjugate and the overbar denotes time averaging. A set of
orthogonal data records can be constructed by using the formulae

wk) = z(k-1)

=1
wk) = k=D - Y aw ) , K< i
= ©)
ag = w2tk [ owllw®) k= 1oz
g, = ww K / w w0 =l

Notice that the orthogonal coefficients g, only depend upon the previously fitted orthogonal
parameters and will not be affected by the newly included terms. The orthogonal parameters
will therefore be invariant to the specified model order. Once g, have been estimated, the
original AR coefficients g, can be recovered as

a, = &

n (10)
a, = g, - Y aa » e =n-ll

i=x+l
Equations (9) and (10) define the complex orthogonal least squares estimation algorithm for
the analysis of boundary models encoded by complex numbers. The algorithm is remarkably
simple and easy to implement and retains all the properties of the original orthogonal Jeast
squares algorithm. In fact the transformation of the orthogonal parameters back to the AR




parameters, eqn.(10), may prove to be unnecessary as the characterisation and classification
of patterns can be based wholly on the orthogonal parameters. The orthogonal parameters
are more robust because they are invariant to the order of the AR. model. Hence
identification and classification of two-dimensional shapes based on the orthogonal parameters
will be investigated. Notice that when the direction (clockwise or counterclockwise) of
tracing the boundary data points is different, the complex AR coefficients or the complex
orthogonal parameters become complex conjugates of the each other (Sekita et al. 1992).

The error reduction ratio (Tsang and Billings 1992) which is a by-product of the orthogonal
least squares estimator, can provide information regarding both the significance of variables
in the system model and the adequacy of the fitted model. The percentage reduction in the

output variance as a result of including the term gw(k) into the fitted model can be
expressed in terms of the error reduction ratio (Tsang and Billings 1992)

eRR, = 100 x grg{' w,.'(k)wl.(k) /;(T):(IS ORY)
Hence if the value of the eRR, is large, this would imply that the term gw (k) is a good
candidate to characterise the boundary model and if eRR, is less than a certain threshold, say

0.01, the term can be excluded from the estimation. Also if the sum of the eRR, values for

the selected candidate terms is closed to a 100, this would be an indication that the
orthogonal model adequately represents the sampled boundary data points.

4. Properties of the complex orthogonal estimation algorithm

Combining the complex orthogonal estimation algorithm with the complex AR model
produces some desirable invariant properties. If the boundary is sampled sufficient finely
and the boundary is closed, the time averaging values of egn.(9) will approach the

expectation values. Hence «_ and g, will be invariant to the starting point in tracing the
boundary because the sequences are cyclic. If z(k) is represented in polar form
2(k) = r(k)e’®®  where r(k) and 6(k) are the radius and angle vectors respectively, then
rotation about the origin by an angle ¢ and scaling by a factor of y can be expressed as

i) = yz(k)e® = yr(k)e/t@® = F (ke ®® (12)

where z/(k) is the new transformed coordinate. Applying the orthogonalisation procedure

of eqn.(9) to z/(k) produces

n




w, (k)

z/(k-1) = ye*z(k-1)

i=1
wi® = k=) - ¥ aww (k)
x=1
i-1
= ye® (z(k—i) -y, a,’dw:(k)} Lk <
k=1

(13)

-~

ay = W)U ) w0 W)

= w02 ) ¥ w W B = ag s k= it

gl = ZW0E) ] i) W B

= 2 z(Bw; (k) / v wowk) =g ., i=1..n
and hence the parameters & and g, are invariant to scaling and rotation about the origin.

From eqn.(13), the scaling factor y can be recovered from the orthogonal data set as

N-1 N-1
y = ¥ w®dl) Y Iwm® (14)
k=0 k=0

Since the starting point of the data sequence is arbitrary and in order to identify the angle of
rotation of an object. the alignment of the tested sequence with the reference sequence 1S
required. A cyclic correlation is therefore performed on the radius vector of the tested

sequence r'(k) and the reference radius vector r(k) to give
N-1
. (0) = % Y ey PR = PR R = i (1)
k=0

¥, (v) will be a maximum if the two sequence are aligned. Once the alignment <, 1S

found, the angle of rotation can be evaluated as
0'(k) - Blk+t_,) = ¢ (16)

Hence an estimate of the angle of rotation can be obtained from the orthogonal data records
as

N-

—

- i} : (2wl - £ wikrny) ) (17)

Normally, the angle of rotation is obtained from the first orthogonal data set w,(k) because

higher orthogonal data sets are more susceptibie to high frequency varnations.




5. Methods of recognising shapes using the complex orthogonal parameters

The concept of “shape" is invariant to any similarly transformation of a pattern. A similarity
transformation of a pattern consists of translation, rotation around the centroid and scaling.
As mentioned in section 4, the orthogonal parameters are invariant to scale, rotation around
the origin and choice of starting point for tracing of the boundary. The orthogonal
parameters will be invariant to translation of a boundary if the origin is set at the boundary
centroid. To make the orthogonal parameters invariant to the scale of a boundary, the
number of boundary points is fixed to a constant N and the boundary points are divided into
N segments of equal arc length. It is expected that the orthogonal parameters for the same
shape will be identical because they are theoretically invariant to the similarity
transformation. Thus shapes could be classified simply by using the Euclidean distance

/ .
between the tested parameter vector g, against the reference vector lgf; e=1;.,C} such ag

the feature weighting method or the rotated coordinate system method (Dubois and Glanz
1986) where C is the number of different classes of patterns. The tested boundary points

2’(k) are classified as belonging to the class Q if the Euclidean distance between the feature
vectors is a minimum

n

Y lg/ - gl =min{ Y I - &l c=1,---,C} - Zkeq U8
1=1

i=1
It has been found that if the sampling interval between the data points is small, most of the
minor features can be captured by the sampled data points with the drawback that the
variations in the orthogonal or the AR parameters will be insufficient to act as pattern

classifiers. For example, the z-transform of the two signals e " and e ¥ are 7/(z-0.999) and
z/(z-0.998) respectively if the sampling time is 0.001s. There is little difference between

the two pulse transfer functions. Hence recognition of two-dimensional shapes based on the
system pole locations or the corresponding AR or orthogonal parameters will be difficult if

the sampling interval is too small. However, from the magnitude ratio of eqn.(14), the ratioy

is invariant to the sampling interval. In fact smaller sampling intervals will provide better

estimates of y. Hence classification based on the magnitude ratio test is introduced to act
as a supplement to feature vector classification.

Define the magnitude ratio for the orthogonal data sets as

N-1 N-1
vi =Y Wl Y w® . islen (19)
k=0 k=0

where w, (k) represents the orthogonal data of the reference data sets. Taking the mean of




the magnitude ratio as a reference, an object is classified as belonging to the class Q if

n Q _—Q n .- ¥°

< - Yi 20
1 3y [ ___Y = min 1 Z "-—:_l ,c=1,.,C (=2 € Q .
no-1 YQ noi=1 YC

where y¢ is the mean value of v;.

6. Experiments and results

The effectiveness of the complex orthogonal estimation algorithm for object recognition will
be investigated using several examples. The experiments are principally concerned with non-
overlapping simply connected planar shapes which are completely known. However, a set
of partially occluded shapes are also tested to further illustrate the effectiveness of the new
algorithms. The images are binary, and the boundaries are located using a simple boundary
following technique (Gonzalez and Wintz 1985). The shapes used to demonstrate
classification accuracy are similar to those considered by Dubois and Glanz (1986).

6.1 Data acquisition and description

The shapes used for the experimental portion are illustrated in Figs. 2, 3 and 4. Samples
with various sizes, translational and rotational positions were collected. The different sizes
were obtained by photocopying and the sizes varied by factors of 0.6, 0.8 and 1.0. The

rotation was over the range 0 to 2mrad. Shape set A of Fig. 2 is composed of 9 S's of
different sizes and orientations which were used to investigate the effects of the number of
sampled data points on the orthogonal parameters and magnitude ratio tests. The error
reduction ratio tests as a model order detection tool was also investigated. Shape set B, Fig.
3, is composed of four convex shapes which are relatively similar and serve to test the
sensitivity of the shape model to small variations in object shape. Shape set C, Fig. 4,
contains eight different objects adopted from industrial shapes. These shapes are relatively
complicated, and serve to test the performance of the complex model when used to classify
a larger number of classes. The objects were digitised using a HP scanner, different sizes
and orientations were obtained by photocopying the images at a scale of 1.0, 0.8 and 0.6.
The objects were rotated by arbitrary angles and shifted arbitrarily within the image plane.




6.2 Classification results and discussion

To investigate the effects of the number of sampled points, the starting point of the boundary
tracing, translation, size and rotation on the orthogonal parameters and magnitude ratio test,
nine pictures obtained from the same pattern with different orientations and sizes were used
(Fig. 2). The scaling for pictures (1), (2) and (3) was 1, pictures (4), (5) and (6) were scaled
by 0.8 and pictures (7), (8) and (9) by 0.6 respectively. Boundary samples of 20, 50, 100
and 200 points were obtained from the nine pictures and the orthogonal parameter estimation
algorithm was applied. Tables 1, 2, 3, and 4 illustrate the first three orthogonal parameters,
the corresponding error reduction ratios and the magnitude ratio tests where picture (1) of
shape set A was taken as the reference. Table 1 indicates that when the number of data
points is small the orthogonal parameters are dependent upon the boundary tracing starting
point because the parameters for all nine pictures exhibit large fluctuations especially g, and
g, when N=20. From the error reduction ratio test, the first three orthogonal terms captured
around 92 to 95% of the total output information when N=20 indicating around 5 to 8% of
the information was not captured by the fitted model. As the number of data records were
increased, there was an improvement in the error reduction tests. For N=50, the first three
orthogonal parameters captured around 99.7% of the total output indicating that the first three
terms were sufficient to describe the pattern as demonstrated by Table 2. As the number was
increased to 100 and then 200, the first two orthogonal coefficients were sufficient to capture
the characteristics of the pattern because they captured more than 99.97% of the total output.
The third orthogonal terms could therefore be excluded from the estimation because these
provide a negligible contribution to the total output (Tables 3 and 4). Moreover, as the
sampling interval was decreased and the number of sampling boundary points N was
increased, the orthogonal parameters were more consistent as illustrated by Tables 2, 3 and
4. The orthogonal coefficients are consistent for large N but they may not discriminate
between the patterns because of small differences between different patterns. The parameters
will tend to cluster together when the number of data records becomes large. An inspection
of the magnitude ratio tests of Tables 1, 2, 3 and 4 however indicates that these are very
consistent and are largely invariant to the number of sampled data points. With picture (1)
of shape set A taken as reference, the estimated magnitude ratios for all the tested shapes
were comparable to the actual values of 1.0, 0.8 and 0.6.

In order to estimate the angle of rotation of an object, picture (9) was selected for the
analysis and picture (1) of shape set A Fig. 2 was taken as the reference. The actual scaling
of picture (9) compared to picture (1) is 0.6. 200 sampled data points were used for the
analysis. From Table 4, picture (9) was found to have a scale of 0.60045 which was the




average magnitude ratios for the first two orthogonal data sets. To evaluate the angle of
rotation, a cyclic correlation was performed on the radius vector of pictures (9) and (1) using

eqn.(15) and the correlation function is shown in Fig.5. When t = 190, the correlation
function is a maximum and from eqn.(17) the angle of rotation can be evaluated as

199
¢ = Y owi) - Lw (k+190) | = -0.3636 rad

1
200 k=0
Figure 6 illustrates the transformed sampled boundary data points of picture (9) superimposed
on the reference picture (1) after scaling by a factor of 1/0.60045 and a phase correction of
_0.3636 radians. A very close match between the two pictures has clearly been obtained and
the accuracy of the magnitude ratio tests and the estimated angle of rotation has been
demonstrated.

Shape set B of Fig. 3 is composed of four convex shapes which are relatively similar and
serve to test the sensitivity of the shape model and magnitude ratio test to small vanations
in object shapes. 100 boundary data points were collected from each of the shapes shown
in Fig. 3 as the reference data. The estimated orthogonal parameters for the four patterns
are presented in Table 5. The error reduction ratio tests indicated that a second order model
was sufficient to capture the characteristics of the four patterns as sum of the error reduction
ratios for all models was over 99.98%. The Euclidean distances between the four orthogonal
parameter vectors are shown in Table 6. Clearly, as the sampling interval is reduced the
difference in the orthogonal parameters is insufficient to act as a pattern classifier because

the difference between the four patterns becomes very small especially between pictures (1)
and (4).

Introduction of noise on the collected data may easily corrupt the parameter estimates and
result in misclassification. Table 7 shows the result after the magnitude ratio tests were
applied to the orthogonal data set where the labelled patterns on each row were taken as the
reference. The classification, apart from the test between patterns (2) and (4), based on the
magnitude ratio tests is more noticeable in this case because there are large differences in the
classification criterion if the object is misplaced. Hence the results obtained by the
magnitude ratios tests can supplement the weakness of the orthogonal parameters in pattern
classification. Even patterns (2) and (4) which have similar magnitude ratios can be correctly
classified if the Euclidean distance of Table 6 is re-applied. Hence coupling the magnitude
ratio tests with the orthogonal parameters can form a very powerful pattern classifier.

For the four patterns shown in Fig. 3, 36 patterns of different sizes ranging from 1 to 0.6,
rotations and translations were generated and the selection rule of egn.(20) was coupled with
egn.(15) to perform the pattern classification. All generated patterns were successfully
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classified and this clearly demonstrated the effectiveness of the magnitude ratio tests and the
orthogonal parameters as pattern classifiers.

Shape set C of Fig. 4 contains eight different objects. These shapes are relatively
complicated and serve to test the performance of the orthogonal parameters and the
magnitude ratio tests when used to classify a larger number of patterns. 100 boundary points
were collected from each pattern shown in Fig. 4 and the first two estimated orthogonal
parameters are shown in Table 8. The Euclidean distances between the eight orthogonal
parameter vectors are shown in Table 9 and these indicate a similarity between patterns (1)
and (3), (1) and (8), (3) and (8), and (6) and (7) because the Euclidean distances between
these parameter vectors were small. The magnitude ratio criterion Table 10 indicated that
the patterns (1) and (3), (4) and (5), (4) and (8), and (5) and (8) were very similar because
the magnitude ratio tests were less than 0.05. A cross reference between the Euclidean
distances and the magnitude ratio tests eliminated most of these discrepancies and only
patterns (1) and (3) were similar both by the Euclidean distance of the parameter vectors and
the magnitude ratio tests. 72 patterns of different sizes, orientations and rotations created
from Fig.4 were used to test the classification rule based on the magnitude ratio criterion and
the orthogonal parameters. The proposed algorithm correctly classified all the patterns.

The effectiveness of the estimation algorithm in the analysis and classification of partly
covered objects was also investigated. Figure 7 shows 32 slightly to moderately covered
objects created from the shape set C. 100 boundary data points for each pattern were
collected for the analysis. The estimated orthogonal parameters of Table 8 and the
magnitude ratio tests of Table 9 for shape set C were taken as reference. Tabie 11 indicates
the Euclidean distances between the 32 estimated parameter Vvectors and the reference
vectors. The minimum Euclidean distance between the tested vector and the reference
vectors for each test sample was highlighted by underlining the value and a pattern number
with a tagged asterisk indicated that the pattern was incorrectly classified. Table 11 indicates
that 8 out of the 32 samples were incorrectly classified and the classification was poor when
dealing with patterns (3), (4) and (7). The magnitude ratio test in Table 12 misclassified 12
out of the 32 samples and as above the minimum magnitude criterion for each test sample
was underlined. The performance of the magnitude ratio test was particularly poor when
dealing with patterns (3), (4) and (8). However taking the magnitude ratio tests as a
reference, if the magnitude ratio criterion was higher than 0.1, which is roughly equal to a
10% deviation in the magnitude ratio tests, the test sample should be marked as bad and
rejected for further processing. For the remaining test samples, the case which gave the
minimum Euclidean distance was therefore considered to be the correct class. This

procedure improved the success rate of classification and the misclassified samples were
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reduced to 5 as indicated by Table 13. This suggested that the magnitude ratio tests coupled
with the orthogonal parameters provide a feasible solution to the classification of slightly
covered objects.

7. Conclusions

The complex orthogonal estimation algorithm provides an easy to implement and effective
approach for estimating the complex boundary model of two-dimensional shapes. The
estimated orthogonal parameters are invariant to model order, size, rotation, translation and
starting point in tracing the boundary model. The appropriate model order can also be
identified using the error reduction ratio test. The magnitude ratio test derived from the
estimation algorithm was shown to overcome some of the weakness associated with just using
the orthogonal parameters as pattern classifiers. Coupling the magnitude ratio test with the
orthogonal parameters produces a promising way of analysing and classifying two-
dimensional non-overlapping and slightly covered objects.
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pattern & &2 €RR, €RR, LeRR
1 .9980+.05981 -.9656-.0155i 99.9526 0.0442 99.9968
2 .9978 +.05641 | -.9486+.0116i 99.8801 0.1079 99.9880
3 .9980+.0627i | -.7117+.0767i 09.9968 0.0016 99.9984
4 .9977+.05951 | -.9760-.0147i 99.8855 0.1053 99.9948

Table 5. Estimated orthogonal parameters and error reductio ratios for shape set B, N=100

pattern 1 2 3 4
1 0.0000| 0.0010 | 0.0730 {0.0001
2 0.0010| 0.0000 | 0.0604 |0.0015
3 0.0730 0.0604 | 0.0000 | 0.0782
4 0.0001 | 0.0015 | 0.0782 {0.0000

Table 6. Euclidean distances between different pictures of shape set B, N=100

pattern 1 2 3 4
1 1.0000 0.0000 1.1022 (12235 1.0%96 0.6168 1.1935 0.1918
1.0000 1.7368 0.2606 1.7599
2 0.9073 0.2235 1.0000 0.0000 0.9977 0.7386 1.0828 0.0332
0.5758 1.0000 0.1500 1.0133
3 0.9094 0.6168 1.0023 0.7386 1.0000 0.0000 1.0854 0.7231
3.8375 6.6650 1.0000 6.7538
4 0.8379 0.1918 0%.9235 0.0332 0.9214 0.7231 1.0000 0.0000
0.5682 0.9869 0.1481 1.0000
R
14|73
Y2 i ¥

Table 7. Magnitude ratios for shape set B, N=100
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pattern

&

8:

0.9952+0.0531i

-.9120+0.02891

0.9879 +0.06051

-.7542-0.04501

0.9950+0.0522i

-.9235+0.00701

0.9969 +0.04601

-.8823+0.00761

0.9973 +0.0474i

-.9866-0.022%

0.9967 +0.06301

-.8268 +0.05611

0.9976 +0.0608i

-.8229+0.06801

0.9973 +0.0395i

-.9269+0.0050i

Table 8. Estimated orthogonal parameters for shape set C, N=100

pattern 1 2 3 4 b 6 7 8
1 0.0000 0.0311 0.0006 0.0014 0.0083 0.0081 0.0095 0.0010
2 0.0311 0.0000 0.0319 0.0199 0.0550 0.0164 0.0185 0.0333
3 0.0006 0.0319 0.0000 0.0017 0.0049 0.0119 0.0139 0.0002
4 0.0014 0.0199 0.0017 0.0000 0.0118 0.0057 0.0074 0.0020
3 0.0083 0.0330 0.0049 0.0118 0.0000 0.0320 0.0352 0.0044
6 0.0081 0.0164 0.0119 0.0057 0.0320 0.0000 0.0002 0.0132
4 0.0095 0.0185 0.0139 0.0074 0.0352 0.0002 0.0000 0.0152
g 0.0010 0.0333 0.0002 0.0020 0.0044 0.0132 0.0152 0.0000

Table 9. Euclidean distances between the orthogonal parameters for shape set C, N=100




pattern 1 2 3 4 5 6 7 8
1 0.0000 0.2862 0.0285 0.1131 0.1786 0.3399 0.4870 0.1175
2 0.2862 0.0000 0.2598 0.3867 0.4422 0.5705 0.6786 0.3906
3 0.0285 0.2598 0.0000 0.1411 0.2061 0.3648 0.5085 0.1455
4 0.1131 0.3867 0.1411 0.0000 0.0669 0.2358 0.3957 0.0045
5 0.1786 0.4422 0.2061 0.0669 0.0000 0.1716 0.3378 0.0624
6 0.3399 0.5705 0.3648 0.2358 0.1716 0.0000 0.1764 0.2316
7 0.4870 0.6786 0.5085 0.3957 0.3378 0.1764 0.0000 0.3919
g 0.1175 L 0.3906 0.1455 0.0045 0.0624 0.2316 0.39919 | 0.0000

Table 10. Magnitude ratio criterion for shape set C, N=100




pattern 1 2 3 < 5 6 7 8
Lol 0.00015 | 0.03000 | 0.00130 | 0.00140 | 0.01060 | 0.00640 | 0.00750 | 0.00180
1.2 0.00004 | 0.03160 | 0.00036 0.00140 0.00730 0.00900 0.01060 | 0.00065
13 0.00030 | 0.03580 | 0.00035 | 0.00240 | 0.00570 | 0.01150 | 0.01310 | 0.00046
1.4 0.00007 | 0.03000 | 0.00110 | 0.00130 | 0.00980 | 0.00680 | 0.00810 0.00150
2.1 0.03350 | 0.00012 | 0.03480 | 0.02200 | 0.05940 | 0.01650 | 0.01880 0.03620
2.2 0.02320 | 0.00006 | 0.02410 | 0.01370 | 0.04530 | 0.01140 | 0.01340 | 0.02530
2.3 0.03090 | 0.00045 | 0.03270 | 0.02000 | 0.05790 | 0.01380 | 0.01540 | 0.03420
2.4 0.01620 | 0.00270 | 0.01620 | 0.00840 | 0.03320 | 0.00980 | 0.01210 | 0.01710
Fa1* 0.00002 | 0.03140 | 0.00079 | 0.00150 | 0.00870 | 0.00790 | 0.00920 0.00110
3.2 0.00075 | 0.03450 | 0.00016 | 0.00260 | 0.00450 | 0.01270 | 0.01480 | 0.00056
343 0.00110 | 0.03410 | 0.00009 | 0.00240 | 0.00370 0.0140 0.01620 | 0.00014
3.4% 0.00009 | 0.03200 | 0.00032 | 0.00150 | 0.00700 | 0.00950 | 0.01110 0.00050
4.1 0.00089 | 0.02340 0.00240 0.00068 0.01400 0.00380 0.00490 | 0.00290
4.2 0.00083 | 0.02440 | 0.00068 | 0.00031 | 0.00840 | 0.00830 | 0.01010 | 0.00077
4.3% 0.00096 | 0.02660 | 0.00030 | 0.00081 | 0.00650 | 0.01030 | 0.01240 | 0.00041
4.4* 0.00058 0.02720 0.00024 0.00072 0.00680 0.00950 0.01150 | 0.00038
3l 0.00530 | 0.05030 0.00280 0.00870 0.00037 0.02610 0.02890 | 0.00250
5.2 0.00510 | 0.04880 | 0.00260 | 0.00820 | 0.00041 | 0.02550 | 0.02830 | 0.00220
5.3 0.00800 | 0.052%90 0.00460 0.01100 0.00004 0.03110 0.03440 | 0.00400
5.4 0.00440 | 0.05070 0.00250 0.00830 0.00083 0.02440 0.02700 | 0.00230
6.1 0.00740 | 0.01570 | 0.01090 | 0.00500 | 0.03040 | 0.00003 | 0.00033 | 0.01220
6.2%* 0.00220 | 0.01910 0.00390 0.00110 0.01750 0.00220 0.00330 | 0.00480
6.3 0.00650 | 0.01380 | 0.00930 | 0.00360 | 0.02770 | 0.00035 | 0.00098 | 0.01050
6.4 0.00680 | 0.01430 | 0.00980 | 0.00410 | 0.02860 | 0.00022 | 0.00075 | 0.01100
T L% 0.00016 | 0.02730 0.00095 0.00086 0.01000 0.00640 0.00780 | 0.00150
7.2 0.00480 | 0.01930 | 0.00790 | 0.00350 | 0.02520 | 0.00046 | 0.00085 { 0.00900
7.3 0.01230 | 0.01910 0.01730 0.009%0 0.04050 0.00062 0.00018 | 0.01870
7.4 0.01060 | 0.02700 | 0.01600 | 0.01020 | 0.03760 | 0.00150 | 0.00082 | 0.01730
8.1 0.00260 | 0.0400 0.00091 | 0.00450 | 0.00150 | 0.01890 | 0.02130 | 0.00052
8.2 0.00130 | 0.03970 | 0.00047 | 0.00370 | 0.00320 | 0.01560 | 0.01760 | 0.00034
8.3 0.00250 | 0.03920 | 0.00084 | 0.00420 | 0.00220 | 0.01830 | 0.02070 | 0.00043
8.4% 0.00056 | 0.03810 | 0.00072 | 0.00290 | 0.00580 | 0.01220 | 0.01370 0.00062

Table 11. Euclidean distances between the tested orthogonal parameter vectors of shape set D and

reference parameter vectors for shape set C, N=100
(* - incorrectly classified sample)




pattern 1 2 3 4 5 6 7 8
1.l 0.0168 0.3016 0.0453 0.0964 0.1623 0.3249 0.4741 0.1009
1.2 0.0100 0.2770 0.0185 0.1229 0.1883 0.3486 0.4946 | 0.1273
1.3 0.0024 0.2839 0.0261 0.1155 0.1810 0.3420 0.4889 0.1199
1.4% 0.0630 0.3429 0.0913 0.0505 0.1170 0.2830 0.4375 | 0.0550
2.1 0.2570 0.0315 0.2302 0.3596 0.4165 0.5489 0.6612 | 0.3635
2.2 0.2558 0.0327 0.2290 0.3585 0.4135 0.5480 0.6605 0.3624
2.3 0.2424 0.0470 0.2154 0.3460 0.4036 0.5380 0.6524 | 0.3500
2.4 0.2340 0.0559 0.2069 0.3381 0.3961 0.5316 0.6472 0.3421
3.1%* 0.0041 0.2824 0.0244 0.1171 0.1826 0.3435 0.4501 0.1216
3.2% 0.0740 0.3527 0.1022 0.03594 0.1061 0.2727 0.4285 0.0439
3.3~ 0.0095 0.2774 0.0190 0.1224 0.1878 0.3482 0.4942 0.1269
3.4 0.0621 0.2281 0.0337 0.1740 0.2381 0.3936 0.5330 0.1783
4.1* 0.1618 0.4281 0.1894 0.0456 0.0174 0.1884 0.3531 0.0451
4.2% 0.1341 0.4047 0.1620 0.0213 0.0456 0.2136 0.3776 0.0165
4.3* 0.1234 0.3956 0.1513 0.0104 0.0563 0.2259 0.3869 0.0059
4.4% 0.1170 0.3901 0.1450 0.0040 0.0629 0.2320 0.3923 0.0005
54 0.1961 0.4566 0.2233 0.0849 0.01= 0.1540 0.3217 0.0804
5.2 0.1648 0.4307 1924 0.0527 0.0142 0.1854 0.3503 0.0482
5.3% 0.1398 0.4095 1676 0.0271 0.0359 0.2101 0.3726 0.0226
5.4 0.2399 0.4922 2665 0.1303 0.0640 0.1089 0.2799 0.1259
6.1 0.3544 0.5816 0.3790 0.2513 0.1876 0.0165 0.1603 0.2471
6.2 0.4063 0.6203 0.4298 0.3073 0.2454 0.0771 0.1007 0.3032
6.3 0.2707 0.5168 0.2969 0.1626 0.0967 0.0762 0.2492 0.1382
6.4 0.4001 0.6158 0.4237 0.3006 0.2385 0.0697 0.1080 0.2965
Tod 0.4178 0.6288 0.4411 0.3198 0.2585 0.0909 0.0869 0.3158
7.2 0.5284 0.7076 0.5487 0.4417 0.3863 0.2299 0.0558 0.4381
7.3 0.4931 0.6829% 0.5144 0.4025 0.3448 0.1841 0.0080 0.3987
7.4 0.4253 0.6342 0.4483 0.3279 0.2669 0.0958 0.0779 0.3239
8. 1* 0.1536 0.4212 0.1812 0.0412 0.0258 0.1966 0.3604 0.0367
B.2* 0.1589 0.4257 0.1866 0.0467 0.0203 0.1913 0.3556 0.0422
8.3 0.0926 0.3650 0.1207 0.0207 0.0875 0.2553 0.4131 0.0252
8.4 0.1235 0.3956 0.1514 0.0105 0.0564 0.2259 0.3868 0.0060

Table 12. Magnitude ratio criterion for shape set D, N=100
(* - incorrectly classified sample)




pattern 1 2 3 4 3 6 7 8
1.1 0.00015 0.00130 | 0.00140 0.00180
1.2 0.00004 0.00036
1.3 0.00030 0.00035
1.4 0.00007 0.00110 | 0.00130 0.00150
2.1 0.00012
2.2 0.00006
2.3 0.00045
2.4 0.00270
3.1% 0.00002 0.00079
32 0.00075 0.00016 | 0.00260 | 0.00450 0.00056
3.3 0.00110 0.00009
3.4% 0.00009 0.00032
4.1 0.00068 0.01400 0.00290
4.2 0.00031 0.00840 0.00077

4.3* 0.00081 0.00650 0.00041
4.4% 0.00072 0.00680 0.00038
5.1 0.00870 | 0.00037 0.00250
3.2 0.00820 0.00041 0.00220
5.3 0.01100 | 0.00004 0.00400
5.4 0.00083 | 0.02440

6.1 0.00003

6.2 0.00220 | 0.00330

6.3 0.02770 | 0.00035

6.4 0.00022 0.00075

7.1% 0.00640 | 0.00780

7.2 0.00085

7.3 0.00018

7.4 0.00150 | 0.00082

8.1 0.00450 0.00190 0.00052
8.2 0.00370 | 0.00320 0.00034
8.3 0.00250 0.00420 0.00220 0.00043
8.4 0.00290 | 0.00580 0.00062

Table 13. Cross reference test for shape set D

(* - incorrectly classified sample)




Figure 1. Complex boundary coordinates
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Figure 2. Shape set A
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Figure 3. Shape set B
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Figure 5. Cross-correlation function plot
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