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ABSTRACT

This paper presents the implementation of an efficient motion planner for a two-robot system
operating in a unified environment. The distributed formulation of the planner is mapped on a
network of T800 transputers and caters for the needs of minimum-time and collision free robot
motion in real-time. Practical implementation of the planner is reported for two co-ordinated
RTX robots, and performance results are given of an execution run.

1. INTRODUCTION

The concepts of multiple robots operating in a common environment is very attractive to
industry where increased productivity is required. Therefore, the design and implementation of
advanced control structures for such environments has been high on the agenda of research and
development institutions over the last few years.

Implementing a multi-robot system incorporates many complexities ranging between
high-level sensory based data detection and processing, general task planning and co-ordinated
motion planning, and lower level motion tracking and individual joint control. All the above
tasks, in particular co-ordinated motion planning, require substantial computational
performance in real-time [1].

Parallel processing and distributed algorithms have been identified as a potential
approach to achieving real-time performance for the above systems [2] supported by the rapid
availability of computer architectures, such as the INMOS transputer, which can be used as a
basic element in the multi-processor network. Nonetheless, the issue of recasting the algorithms
in an efficient distributed formulation remains open, where different approaches can be
followed ranging between fine-parallelism (e.g. systolic arrays and neural networks) and gross-
parallelism (e.g. transputer networks), and including a mixture of both.

This paper reports on the implementation of a multi-robot motion planner on a network
of 6 transputers. Considering a functional decomposition of the mathematical procedures, an
efficient minimum-time and collision-free distributed planning algorithm is produced. Due to
the very heavy computational burdens inherent within the algorithm, the gross-parallelism
approach is seen as appropriate for implementing the system on the available transputers.
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2. THE MULTI-ROBOT MOTION PLANNER
The motion planner consists of two main procedures, where the first procedure supplies
minimum time motion (MTM) history for both robots while the second procedure ensures a

collision free (CF) path exists in the shared environment to execute the required task.

2.1 FUNCTIONAL DECOMPOSITION OF PROCEDURES

The planning algorithm works as follows. Starting from rest, the system detects a first via-point
for both robots to move to, and the MTM planning of both robot motions is performed
simultaneously, providing a level of parallelism. Once time histories of possible motions are
available for both robots, the best CF motion is detected and sent to the controller to execute.
The MTM procedure used treats every joint on each arm individually, thus providing for
another level of parallelism. The CF procedure is only activated after the MTM terminates and
checks different motion options concurrently.

The above functional decomposition is illustrated in Figure (1). In Figure (1), the
planning for both robots is computed in parallel, where the MTM is activated first for all n
joints of each arm producing different motion options. Then, the CF is activated checking all
possible options presented by the MTM and choosing an optimum one. Nonetheless, certain
communications need to take place between the two robot modules, as described in the
following section. A further insight into the mathematical formulations of different MTM and
CF procedures is reported earlier [3,4] while this paper concentrates on the implementation.

3. MAPPING ON THE TRANSPUTERS

The decomposed procedures of Figure (1) are mapped efficiently on a network of 6 T800
transputers which are available for this project. The programmes were adopted for two RTX
robot arms with 6 joints on each. Initially, three transputers are reserved for each robot, with
the MTM and CF modules operating successively. Thus, the planning will be performed in two
phases.

1. Phase 1: Each transputer, in a set of three associated with a robot, computes all possible
minimum-time motion (MTM) segments of two joints of the robot. Then, all options of all
six joints are stored one transputer, and all six MTM modules are terminated.

2. Phase 2: The two transputers holding the total MTM results of both robots exchange the
data. Thus, sets of multi-robot motion options will be checked successively on all six
transputers, until a CF option is found. Once a feasible motion option is detected, all six CF
modules are terminated and the choice sent back to the supervisory control module.

The mapping of all MTM and CF modules on the six-transputer network is shown in Figure
(2). Considering the structure described above and making use of the transputer abilities to run
simultaneous tasks, up to four separate modules were initiated simultaneously on a single
transputer. However, as only one module is activated at a time, no resources sharing is
encountered.

To illustrate the system operation, consider the modules on the master transputer shown
in Figure (2). The Control module initiates the MTM module on its transputer and subsequently
all other processors then become idle. Once the MTM module receives all data, it



communicates it back to Control and halts. Control then activates the CF module and waits for
its results. Once CF transmits the data and halts, Control passes it to the host for execution. For
the overall software structure, a total of 19 modules are running in parallel on 6 processors. To
facilitate communication between different sets of MTM and CF modules, a
multiplexer/demultiplexer software module is present on each transputer.

4. PRACTICAL IMPLEMENTATION

4.1 THE COMPLETE SYSTEM

The motion time history produced by the CF-MTM network is downloaded to the actual
robot's joints via an interface system. The hardware/software interface system is implemented
on a network of 4 T414 transputers and is reported earlier in the literature [5], along with the
software adaptation to augment it with the CFMTM network [6]. Both the planning network
(CFMTM) consisting of six T800s and the interface network (RTXLINK) consisting of four
T414s are programmed in parallel ANSI-C and hosted by a Sun SPARC-IPC workstation as
shown in Figure (3). The X-windows environment running under Unix provides a powerful tool
for handling the transputer networks.

When the multi-arm systems control script is activated from within the X-windows
environment, two shells are executed creating two windows one each for the RTXLINK and
the CFMTM networks, and downloading the appropriate executable codes. The RTXLINK
initiates the two robots and starts polling the CFMTM requesting motion data. Once the
CFMTM is ready it communicates the planned motion to the RTXLINK interface to execute it,
while the CFMTM goes back to planning another segment. Interaction between the two
networks is maintained via flag data files. The windows-based multi-robot environment is
shown in Figure (4).

4.1 RESULTS OF A CASE STUDY

The multi-arm motion planner was tested for a sample motion, where a comparison between
execution times on a single transputer and on the network is reported in Table (1). From Table
(1), the CF is shown to impose a more intense computational burden due to the vast
computations involved. The distributed formulation shows a reduction ratio in extection time of
about 1:6 when compared to the sequential algorithm.

Module 1 Transputer 6 Transputers
MTM 4.32 1.02
CF 295.80 47.09
Total 300.12 48.11
Table (1): Execution Times Comparison (seconds)
5. FUTURE WORK

This practical system can be used as a development platform for augmenting other distributed
structures of different related problems, as described in section 1. Efficient transputer
implementation of robot dynamics and Kinematics as well as sophisticated adaptive control
schemes [7] can be plugged on and tested. One further research possibility is augmenting the



gross-parallelism approach used with a fine-parallelism algorithm implemented by a neural
structure. Although efficient simulations can be found [8], a realisation of such a hybrid system
is rather difficult due to practical implementation difficulties.

6. CONCLUSIONS

The complexity of planning a co-ordinated motion of two robot manipulators in real-time is
overcomed in this paper by introducing an efficient distributed formulation on a network of 6
processors. In addition, a practical implementation of the algorithm is reported for two RTX
manipulators working in a common environment. The total system hardware comprises a
network of 10 transputers hosted by a Unix-based SPARC-IPC workstation, where in addition
to the planning algorithm reported here, an additional 4 transputers are used to interface to the
two robots. Making use of the ability of the Unix operating system to initiate different shells
within its window environment, both the planning and interface networks are activated
simultaneously by downloading the appropriate booting codes. The system is seen as a
development tool for further phases of advanced robotics research.
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Figure (2): CF-MTM Configuration on the Transputer Network
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