
This is a repository copy of The theory of classification part 2: the scratch-built
typechecker.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79276/

Version: Published Version

Article:

Simons, A.J.H. (2002) The theory of classification part 2: the scratch-built typechecker.
Journal of Object Technology, 1 (2). 47 - 54. ISSN 1660-1769

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/29031045?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, No. 2, July-August 2002

Cite this column as follows: Anthony J.H. Simons: The Theory of Classification, Part 2: The
Scratch-Built Typechecker, in Journal of Object Technology, Vol. 1, No. 2, July-August 2002,
pages 47-54. http://www.jot.fm/issues/issue_2002_07/column4

The Theory of Classification
Part 2: The Scratch-Built Typechecker

Anthny J. H. Simons, Depdpartment of Computer Science, University of Sheffield, UK

1 INTRODUCTION

This is the second article in a regular series on object-oriented type theory, aimed

specifically at non-theoreticians. Eventually, we aim to explain the behaviour of

languages such as Smalltalk, C++, Eiffel and Java in a consistent framework, modelling

features such as classes, inheritance, polymorphism, message passing, method

combination and templates or generic parameters. Along the way, we shall look at some

important theoretical approaches, such as subtyping, F-bounds, matching and the object

calculus. Our goal is to find a mathematical model that can describe the features of these

languages; and a proof technique that will let us reason about the model. This will be the

"Theory of Classification" of the series title.

Exact

Subtyping

Subclassing

Schemas Interfaces Algebras

1 2

5

8

4

7

3

6

9

Figure 1: Dimensions of Type Checking

The first article [1] introduced the notion of type, ranging from the programmer's

concrete perspective to the mathematician's abstract perspective, pointing out the benefits

of abstraction and precision. From these, let us choose three levels of type-checking to

consider: representation-checking (bit-schemas), interface-checking (signatures) and

behaviour-checking (algebras). Component compatibility was judged according to

whether exact type correspondence, simple subtyping or the more ambitious subclassing

 THE THEORY OF CLASSIFICATION � PART 2: THE SCRATCH-BUILT TYPECHECKER

48 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

was expected. Combining these two dimensions, there are up to nine combinations to

consider, as illustrated in figure 1. However, we shall be mostly interested in the darker

shaded areas. In this second article, we shall build a typechecker that can determine the

exact syntactic type (box 2, in figure 1) of expressions involving objects encoded as

simple records.

2 THE UNIVERSE OF VALUES AND TYPES

Rather like scratch-building a model sailing ship out of matchsticks, all mathematical

model-building approaches start from first principles. To help get off the ground, most

make some basic assumptions about the universe of values. Primitive sets, such as

Boolean, Natural and Integer are assumed to exist (although we could go back further

and construct them from first principles, in the same way as we did the Ordinal type [1];

this is quite a fascinating exercise in the λ-calculus [2]). All other kinds of concept have

to be defined using rules to say how the concept is formed, and how it is used. We shall

assume that there are:

• sets A, B, ..., corresponding to the given primitive types in the universe; and

• elements a, b, ..., of these sets, corresponding to the values in the universe; and

• set operations such as membership ∈, inclusion ⊆, and union ∪; and

• logical operations such as implication ⇒, equivalence ⇔ and entailment ѥʳˁ

With this starter-kit, we can determine whether a value belongs to a type, since: x : X ("x

is of type X") can be interpreted as x ∈ X in the model; or whether two types are related,

for example: Y <: X ("Y is a subtype of X") can be interpreted as the subset relationship

Y ⊆ X in the model [3].

3 RULES FOR PAIRS

An immediately useful construction which we do not yet have is the notion of a pair of

values, 〈n, m〉, possibly taken from different types N and M. The type of pairs is known

as a product type, or Cartesian product, since there are N × M possible parings of

elements n ∈ N, and m ∈ M. Formally, we require a rule to introduce the syntax for a

product type. This is called a type introduction rule. In its simplest form (ignoring the

notion of context, which is roughly the same idea as variable scope), the rule for forming

a product is:

 n : N, m : M
 [Product Introduction]
〈n, m〉 : N × M

Rules for pairs

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 49

This rule is expressed in the usual style of natural deduction, with the premises above the

line and the conclusions below. In longhand, it says "if n is of type N and m is of type M,

then we may conclude that a pair 〈n, m〉 has the product type N × M". The rule introduces

the syntax for writing pair-values and pair-types, but also defines the relationship

between the values and the types (the order of the values n and m determines the structure

of the type N × M).

For pair constructions to be useful, we need to know how to access the elements of a

pair, and determine their types. We define the first and second projections of a pair,

usually written in the style: π1(e), π2(e) applied to some pair-value e. The projections are

defined formally in an elimination rule, so called because it deconstructs the pair to

access its elements:

 e : N × M
 [Product Elimination]
π1(e) : N, π2(e) : M

"If e is a pair of the product type N × M, then the first projection π1(e) has the type N, and

the second projection π2(e) has the type M." Note that, in this rule, e is presented as a

single expression-variable, but we know it stands for a pair from its type N × M. In both

rules, the horizontal line has the force of an implication, which we could also write using

⇒.

4 RULES FOR FUNCTIONS

Consider an infinite set of pairs: {〈1, false〉, 〈2, true〉, 〈3, false〉, 〈4, true〉, 〈5, false〉...}.

This set is an enumeration of a relationship between Natural numbers and Boolean values

- it is in fact one possible representation of the function even(). Since functions have this

clear, natural interpretation in our model, we are justified in introducing a special syntax

for them:

 x : D ѥ e : C

 [Function Introduction]

 λx.e : D → C

"If variable x has the type D and, as a consequence, expression e has the type C, we may

conclude that a function of x with body e has the function type D → C." This rule

introduces the λ-syntax for functions and the arrow-syntax for function types. If you

happen to be a hellenophobic
1
 engineer, simply consider that: λx.e ⇔ f(x) = e. The type

1 Hellenophobe: a hater of Greek symbols.

 THE THEORY OF CLASSIFICATION � PART 2: THE SCRATCH-BUILT TYPECHECKER

50 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

signature for a function is always written as an arrow type D → C, with the function's

domain (input set) D on the left and the codomain (output set) C on the right. The

premise of this rule relates the required types of x : D, e : C using entailment ѥ, since the

type of the body expression e : C is not independent, but "follows from" the type of the

variable x : D. This is because the body expression will contain occurrences of x, the

variable. Consider that a function may return its argument - in that case, the result type is

the argument type; there is clearly a dependency.

The function elimination rule explains the type of an expression involving a function

application. In so doing, it also defines the parenthesis syntax for function application:

f : D → C, v : D
 [Function Elimination]
 f(v) : C

"If f is a function from D → C, and v is a value of type D, then the result of the function

application f(v) is of type C". This rule also expresses the notion of type-sound function

application: it allows f to be applied only to values of the domain type D (technically, the

rule allows you to deduce that the result of function application is well-typed in this

circumstance, but is otherwise undefined).

Do we need rules for multi-argument functions? Not really, because we already have

the separate product rules. The domain D in the function rules could correspond, if we so

wished, to a type that was a product: D ⇔ N × M. In this case, the argument value would

in fact be a pair v : N × M. We assume that any single type variable in one rule can be

matched against a constructed type in another rule, if we so desire.

5 RULES FOR RECORDS

Most model encodings for objects [4, 5, 6] treat them as some kind of record with a

number of labelled fields, each storing a differently-typed value. So far, we do not have a

construction for records in our model. However, consider that a record is rather like a

finite set of pairs, relating labels to values: {〈name, "John"〉, 〈surname, "Doe"〉, 〈age, 25〉,
〈married, false〉}. Since a record has this clear, natural interpretation in the model, we are

justified in introducing a special syntax. If A is the primitive type of labels:

 αi : A, ei : Ti
 for i = 1..n [Record
{α1 a e1, ..., αn a en} : {α1 : T1, ..., αn : Tn} Introduction]

"If there are n distinct labels αi, and n values ei of different corresponding types Ti then a

record, constructed by pairing the ith label with the ith value, has a record type, which is

Rules for Functions

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 51

constructed by pairing the ith label with the corresponding ith type". This rule uses the

index i to link corresponding labels, values and types. In the conclusion, the set-braces

are used for records and record types deliberately, since these are sets of pairs. The label-

to-value pairings are notated as mappings αi a ei, for visual clarity and convenience.

The corresponding record elimination rule introduces the dot or record selection

operator, defining how to deconstruct a record to select a field and then determine its

type:

e : {α1 : T1, ..., αn : Tn}
 for i = 1..n [Record Elimination]
 e.αi : Ti,

"If e has the type of a record, with n labels αi, mapping to types Ti, then the result of

selecting the ith field e.αi has the ith type Ti."

6 APPLYING THE RULES

We have a set of rules for constructing pairs, functions and records. With this, we can

model simple objects as records. Ignoring the issue of encapsulation for the moment, a

simple Cartesian point object may be modelled as a record whose field labels map to

simple values (attributes) and to functions (methods). We require a function for

constructing points:

make-point : Integer × Integer → Point

This is a type declaration, stating that make-point is a function that accepts a pair of

Integers and returns a Point type (which is so far undefined). The full definition of make-

point:

make-point = λ(e : Integer × Integer) .

 { x a π1(e), y a π2(e), equal a λ(p : Point).(π1(e) = p.x ∧ π2(e) = p.y) }

names the argument expression e supplied upon creation and returns a record having the

fields x, y and equal. The x and y fields map to simple values, projections of e; the equal

field maps to a function, representing a method. Note that make-point is built up in stages

according to the type rules. The product introduction rule can construct a pair type:

Integer × Integer from primitive Integers. The function type of equal: Point → Boolean

can be inferred from the type Point supplied as the argument, and the type of the body

expression, using the function introduction rule: the body is a logical "and" ∧ expression,

a primitive Boolean operation provided with the starter-kit. The record type Point is the

type of the value returned by make-point. Using the record introduction rule, we

determine that this is equivalent to a record type: { x : Integer, y : Integer, equal : Point

→ Boolean }, by examining the individual types of the label-value pairs supplied as its

 THE THEORY OF CLASSIFICATION � PART 2: THE SCRATCH-BUILT TYPECHECKER

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

fields. Finally, even make-point is properly constructed using the function introduction

rule, with Integer × Integer as the domain type and Point as the codomain type.

The rules permit us to deduce that objects can be constructed using make-point, and

also that they are well-typed. Let us now construct some points and expressions involving

points, to see if these are well-typed. The let ... in syntax is a way of introducing a scope

for the values p1 and p2, in which the following expressions are evaluated:

let p1 = make-point(3, 5) in

 p1.x;

Is p1.x meaningful, and does it have a type? The record elimination rule says this is so,

provided p1 is an instance of a suitable record type. Working backwards, p1 must be a

record with at least the type: {... x : X ... } for some type X. Working forwards, p1 was

constructed using make-point, so we know it has the Point type, which, when expanded,

is equivalent to the record type: { x : Integer, y : Integer, equal : Point → Boolean },

which also has a field x : Integer. Matching up the two, we can deduce that p1.x : Integer.

let p1 = make-point(3, 5), p2 = make-point(3, 7) in

 p1.equal(p2);

Is p1.equal(p2) meaningful, and does it have a type? Again, by working backwards

through the record elimination rule, we infer that p1 must have at least the type {... equal

: Y ...} for some type Y. Working forwards, we see that p1 has a field equal : Point →

Boolean, so by matching up these, we know Y ⇔ Point → Boolean. So, the result of

selecting p1.equal is a function expecting another Point. Let us refer to this function as f.

In the rest of the expression, f is applied to p2, but is this type correct? Working forwards,

p2 was defined using make-point, so has the type Point. Working backwards through the

function elimination rule, the function application f(p2) is only type-sound if f has the

type Point → Z, for some type Z. From above, we know that f : Point → Boolean, so by

matching Z ⇔ Boolean, we confirm that the expression is well-typed and also can infer

the expression's result type: p1.equal(p2) : Boolean.

7 CONCLUSION

We constructed a mathematical model for simple objects from first principles, in order to

show how it is possible to motivate the existence of something as relatively sophisticated

as an object with a (constant) state and methods, using only the most primitive elements

of set theory and Boolean logic as a starting point. The type rules presented were of two

kinds: introduction rules describe how more complex constructions, such as functions

Conclusion

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 53

and records, are formed and under what conditions they are well-typed; elimination rules

describe how these constructions may be decomposed into their simpler elements, and

what types these parts have. Both kinds of rule were used in a typechecker, which was

able to determine the syntactic correctness of method invocations. The formal style of

reasoning, chaining both forwards and backwards through the ruleset, was illustrated.

The simple model still has a number of drawbacks: there is no updating or encapsulation

of state; there are problems looming to do with recursive definitions; and we ignored the

context (scope) in which the definitions take effect. In the next article, we shall examine

some different object encodings that address some of these issues.

REFERENCES

[1] A J H Simons, Perspectives on type compatibility, Journal of Object Technology

1(1), May, 2002.

[2] A J H Simons, Appendix 1 : λ-Calculus, in: A Language with Class: the Theory

of Classification Exemplified in an Object-Oriented Language, PhD Thesis,

University of Sheffield, 1995, 220-238. See

http://www.dcs.shef.ac.uk/~ajhs/classify/.

[3] L Cardelli and P Wegner, On understanding types, data abstraction and

polymorphism, ACM Computing Surveys, 17(4), 1985, 471-521.

[4] J C Reynolds, User defined types and procedural data structures as

complementary approaches to data abstraction, in: Programming Methodology:

a Collection of Articles by IFIP WG2.3, ed. D Gries, 1975, 309-317; reprinted

from New Advances in Algorithmic Languages, ed. S A Schuman, INRIA, 1975,

157-168.

[5] W Cook, Object-oriented programming versus abstract data types, in:

Foundations of Object-Oriented Languages, LNCS 489, eds. J de Bakker et al.,

Springer Verlag, 1991, 151-178.

[6] M Abadi and L Cardelli. A Theory of Objects. Monographs in Computer Science,

Springer-Verlag, 1996.

 THE THEORY OF CLASSIFICATION � PART 2: THE SCRATCH-BUILT TYPECHECKER

54 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

About the author

Anthony Simons is a Senior Lecturer and Director of Teaching in the

Department of Computer Science, University of Sheffield, where he

leads object-oriented research in verification and testing, type theory

and language design, development methods and precise notations. He

can be reached at a.simons@dcs.shef.ac.uk

