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The Theory of Classification 
Part 2: The Scratch-Built Typechecker 

 

Anthny J. H. Simons, Depdpartment of Computer Science, University of Sheffield, UK 

1 INTRODUCTION 

This is the second article in a regular series on object-oriented type theory, aimed 

specifically at non-theoreticians. Eventually, we aim to explain the behaviour of 

languages such as Smalltalk, C++, Eiffel and Java in a consistent framework, modelling 

features such as classes, inheritance, polymorphism, message passing, method 

combination and templates or generic parameters. Along the way, we shall look at some 

important theoretical approaches, such as subtyping, F-bounds, matching and the object 

calculus. Our goal is to find a mathematical model that can describe the features of these 

languages; and a proof technique that will let us reason about the model. This will be the 

"Theory of Classification" of the series title. 
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Figure 1:  Dimensions of Type Checking 

 

The first article [1] introduced the notion of type, ranging from the programmer's 

concrete perspective to the mathematician's abstract perspective, pointing out the benefits 

of abstraction and precision.  From these, let us choose three levels of type-checking to 

consider: representation-checking (bit-schemas), interface-checking (signatures) and 

behaviour-checking (algebras). Component compatibility was judged according to 

whether exact type correspondence, simple subtyping or the more ambitious subclassing 
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was expected. Combining these two dimensions, there are up to nine combinations to 

consider, as illustrated in figure 1. However, we shall be mostly interested in the darker 

shaded areas. In this second article, we shall build a typechecker that can determine the 

exact syntactic type (box 2, in figure 1) of expressions involving objects encoded as 

simple records. 

2 THE UNIVERSE OF VALUES AND TYPES 

Rather like scratch-building a model sailing ship out of matchsticks, all mathematical 

model-building approaches start from first principles. To help get off the ground, most 

make some basic assumptions about the universe of values. Primitive sets, such as 

Boolean, Natural and Integer are assumed to exist (although we could go back further 

and construct them from first principles, in the same way as we did the Ordinal type [1];  

this is quite a fascinating exercise in the λ-calculus [2]). All other kinds of concept have 

to be defined using rules to say how the concept is formed, and how it is used. We shall 

assume that there are: 

• sets A, B, ..., corresponding to the given primitive types in the universe;  and 

• elements a, b, ..., of these sets, corresponding to the values in the universe;  and 

• set operations such as membership ∈, inclusion ⊆, and union ∪;  and 

• logical operations such as implication ⇒, equivalence ⇔ and entailment ѥʳˁ 

With this starter-kit, we can determine whether a value belongs to a type, since: x : X ("x 

is of type X") can be interpreted as x ∈ X in the model;  or whether two types are related, 

for example: Y <: X  ("Y is a subtype of X") can be interpreted as the subset relationship 

Y ⊆ X in the model [3]. 

3 RULES FOR PAIRS 

An immediately useful construction which we do not yet have is the notion of a pair of 

values, 〈n, m〉, possibly taken from different types N and M. The type of pairs is known 

as a product type, or Cartesian product, since there are N × M possible parings of 

elements n ∈ N, and m ∈ M.  Formally, we require a rule to introduce the syntax for a 

product type. This is called a type introduction rule. In its simplest form (ignoring the 

notion of context, which is roughly the same idea as variable scope), the rule for forming 

a product is: 

 n : N,  m : M 
 [Product Introduction] 
〈n, m〉 : N × M 
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This rule is expressed in the usual style of natural deduction, with the premises above the 

line  and the conclusions below. In longhand, it says "if n is of type N and m is of type M, 

then we may conclude that a pair 〈n, m〉 has the product type N × M". The rule introduces 

the syntax for writing pair-values and pair-types, but also defines the relationship 

between the values and the types (the order of the values n and m determines the structure 

of the type N × M). 

For pair constructions to be useful, we need to know how to access the elements of a 

pair, and determine their types. We define the first and second projections of a pair, 

usually written in the style: π1(e), π2(e) applied to some pair-value e. The projections are 

defined formally in an elimination rule, so called because it deconstructs the pair to 

access its elements: 

       e : N × M 
 [Product Elimination] 
π1(e) : N, π2(e) : M 

 

"If e is a pair of the product type N × M, then the first projection π1(e) has the type N, and 

the second projection π2(e) has the type M."  Note that, in this rule, e is presented as a 

single expression-variable, but we know it stands for a pair from its type N × M. In both 

rules, the horizontal line has the force of an implication, which we could also write using 

⇒.

4 RULES FOR FUNCTIONS 

Consider an infinite set of pairs: {〈1, false〉, 〈2, true〉, 〈3, false〉, 〈4, true〉, 〈5, false〉...}. 

This set is an enumeration of a relationship between Natural numbers and Boolean values 

- it is in fact one possible representation of the function even(). Since functions have this 

clear, natural interpretation in our model, we are justified in introducing a special syntax 

for them: 

 x : D  ѥ  e : C 

 [Function Introduction] 

 λx.e : D → C 

 

"If variable x has the type D and, as a consequence, expression e has the type C, we may 

conclude that a function of x with body e has the function type D → C." This rule 

introduces the λ-syntax for functions and the arrow-syntax for function types. If you 

happen to be a hellenophobic
1
 engineer, simply consider that:  λx.e  ⇔  f(x) = e. The type 

                                                           
1 Hellenophobe: a hater of Greek symbols. 
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signature for a function is always written as an arrow type D → C, with the function's 

domain (input set) D on the left and the codomain (output set) C on the right. The 

premise of this rule relates the required types of x : D, e : C using entailment ѥ, since the 

type of the body expression e : C is not independent, but "follows from" the type of the 

variable x : D. This is because the body expression will contain occurrences of x, the 

variable. Consider that a function may return its argument - in that case, the result type is 

the argument type; there is clearly a dependency. 

The function elimination rule explains the type of an expression involving a function 

application.  In so doing, it also defines the parenthesis syntax for function application: 

f : D → C,  v : D 
 [Function Elimination] 
      f(v) : C 

 

"If f is a function from D → C, and v is a value of type D, then the result of the function 

application f(v) is of type C". This rule also expresses the notion of type-sound function 

application:  it allows f to be applied only to values of the domain type D (technically, the 

rule allows you to deduce that the result of function application is well-typed in this 

circumstance, but is otherwise undefined). 

Do we need rules for multi-argument functions? Not really, because we already have 

the separate product rules. The domain D in the function rules could correspond, if we so 

wished, to a type that was a product: D ⇔ N × M.  In this case, the argument value would 

in fact be a pair v : N × M. We assume that any single type variable in one rule can be 

matched against a constructed type in another rule, if we so desire. 

5 RULES FOR RECORDS 

Most model encodings for objects [4, 5, 6] treat them as some kind of record with a 

number of labelled fields, each storing a differently-typed value. So far, we do not have a 

construction for records in our model. However, consider that a record is rather like a 

finite set of pairs, relating labels to values:  {〈name, "John"〉, 〈surname, "Doe"〉, 〈age, 25〉, 
〈married, false〉}. Since a record has this clear, natural interpretation in the model, we are 

justified in introducing a special syntax. If A is the primitive type of labels: 

                     αi : A,        ei : Ti 
   for i = 1..n [Record  
{α1 a e1, ..., αn a en} : {α1 : T1, ..., αn : Tn}    Introduction] 
 

"If there are n distinct labels αi, and n values ei of different corresponding types Ti then a 

record, constructed by pairing the ith label with the ith value, has a record type, which is 
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constructed by pairing the ith label with the corresponding ith type". This rule uses the 

index i to link corresponding labels, values and types. In the conclusion, the set-braces 

are used for records and record types deliberately, since these are sets of pairs. The label-

to-value pairings are notated as mappings αi a ei, for visual clarity and convenience. 

The corresponding record elimination rule introduces the dot or record selection 

operator, defining how to deconstruct a record to select a field and then determine its 

type: 

e : {α1 : T1, ..., αn : Tn}    
   for i = 1..n [Record Elimination] 
           e.αi : Ti, 

"If e has the type of a record, with n labels αi, mapping to types Ti, then the result of 

selecting the ith field e.αi has the ith type Ti." 

6 APPLYING THE RULES  

We have a set of rules for constructing pairs, functions and records. With this, we can 

model simple objects as records. Ignoring the issue of encapsulation for the moment, a 

simple Cartesian point object may be modelled as a record whose field labels map to 

simple values (attributes) and to functions (methods). We require a function for 

constructing points: 

make-point : Integer × Integer → Point 

This is a type declaration, stating that make-point is a function that accepts a pair of 

Integers and returns a Point type (which is so far undefined). The full definition of make-

point: 

make-point = λ(e : Integer × Integer) . 

 { x a π1(e), y a π2(e), equal a λ(p : Point).(π1(e) = p.x ∧ π2(e) = p.y) } 

names the argument expression e supplied upon creation and returns a record having the 

fields x, y and equal. The x and y fields map to simple values, projections of e; the equal 

field maps to a function, representing a method. Note that make-point is built up in stages 

according to the type rules. The product introduction rule can construct a pair type: 

Integer × Integer from primitive Integers. The function type of equal:  Point → Boolean 

can be inferred from the type Point supplied as the argument, and the type of the body 

expression, using the function introduction rule: the body is a logical "and" ∧ expression, 

a primitive Boolean operation provided with the starter-kit. The record type Point is the 

type of the value returned by make-point. Using the record introduction rule, we 

determine that this is equivalent to a record type: { x : Integer, y : Integer, equal : Point 

→ Boolean }, by examining the individual types of the label-value pairs supplied as its 
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fields. Finally, even make-point is properly constructed using the function introduction 

rule, with Integer × Integer as the domain type and Point as the codomain type. 

The rules permit us to deduce that objects can be constructed using make-point, and 

also that they are well-typed. Let us now construct some points and expressions involving 

points, to see if these are well-typed. The let ... in syntax is a way of introducing a scope 

for the values p1 and p2, in which the following expressions are evaluated: 

 

let p1 = make-point(3, 5) in 

     p1.x; 

 

Is p1.x meaningful, and does it have a type? The record elimination rule says this is so, 

provided p1 is an instance of a suitable record type. Working backwards, p1 must be a 

record with at least the type: {... x : X ... } for some type X. Working forwards, p1 was 

constructed using make-point, so we know it has the Point type, which, when expanded, 

is equivalent to the record type: { x : Integer, y : Integer, equal : Point → Boolean }, 

which also has a field x : Integer. Matching up the two, we can deduce that p1.x : Integer. 

 

let p1 = make-point(3, 5), p2 = make-point(3, 7) in 

     p1.equal(p2); 

 

Is p1.equal(p2) meaningful, and does it have a type? Again, by working backwards 

through the record elimination rule, we infer that p1 must have at least the type {... equal 

: Y ...} for some type Y. Working forwards, we see that p1 has a field equal : Point → 

Boolean, so by matching up these, we know Y ⇔ Point → Boolean. So, the result of 

selecting p1.equal is a function expecting another Point.  Let us refer to this function as f.  

In the rest of the expression, f is applied to p2, but is this type correct? Working forwards, 

p2 was defined using make-point, so has the type Point. Working backwards through the 

function elimination rule, the function application f(p2) is only type-sound if f has the 

type Point → Z, for some type Z. From above, we know that f : Point → Boolean, so by 

matching Z ⇔ Boolean, we confirm that the expression is well-typed and also can infer 

the expression's result type: p1.equal(p2) : Boolean. 

7 CONCLUSION 

We constructed a mathematical model for simple objects from first principles, in order to 

show how it is possible to motivate the existence of something as relatively sophisticated 

as an object with a (constant) state and methods, using only the most primitive elements 

of set theory and Boolean logic as a starting point. The type rules presented were of two 

kinds:  introduction rules describe how more complex constructions, such as functions 
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and records, are formed and under what conditions they are well-typed;  elimination rules 

describe how these constructions may be decomposed into their simpler elements, and 

what types these parts have.  Both kinds of rule were used in a typechecker, which was 

able to determine the syntactic correctness of method invocations.  The formal style of 

reasoning, chaining both forwards and backwards through the ruleset, was illustrated.  

The simple model still has a number of drawbacks:  there is no updating or encapsulation 

of state;  there are problems looming to do with recursive definitions;  and we ignored the 

context (scope) in which the definitions take effect. In the next article, we shall examine 

some different object encodings that address some of these issues. 
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