-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by White Rose Research Online

This is a repository copy of The theory of classification: part 14: modification and objects
like myself.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79269/

Version: Published Version

Article:
Simons, A.J.H. (2004) The theory of classification: part 14: modification and objects like
myself. Journal of Object Technology, 3 (8). 15 - 26. ISSN 1660-1769

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A

&\ White Rose

| university consortium __D_@—e rints@whiterose.ac.uk
‘\ A Universics of Leeds, Sheffied & York https:/eprints.whiterose.ac.uk/

https://core.ac.uk/display/29031038?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

ff——

JOURNAL OF OBJECT TECHNOLOGY

Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 8, September-October 2004

The Theory of Classification
Part 14: Modification and Objects like
Myself

Anthony J H Simons, Department of Computer Science, University of
Sheffield, U.K.

1 INTRODUCTION

This is the fourteenth article in a regulseries on object-oriented theory for non-
specialists. Previous articles have built up ni®dé objects [1], types [2] and classes [3]
in the A-calculus. Inheritance has beeshown to extend both types [4] and
implementations [5, 6], in the contrastingles found in the two main families of object-
oriented languages. One group is based on (first-otgjmg andsubtyping, and includes
Java and C++, whereas the otieebased on (second-ordelasses andsubclassing, and
includes Smalltalk and Eiffel. The rsibrecent article demonstrated hgeneric types
(templates) andjeneric classes can be added to the Theory of Classification [7], using
variousSack andList container-types as examples.

The last article concentrated just on thpeful aspects of generic classes, avoiding
the tricky issue of their implementations, even thougtevious articles have
demonstrated how to model hotypes and implementatiorseparately [4, 5] and in
combination [6]. This is because many of the operations &faek or aList return
modified objects “like themselves”; and it turost that this is one of the more difficult
things to model in the Theory of Classdtion. The attentive reader will have noticed
that we have so far avoided the whole issuebjéct modification. This is, after all, quite
an important area to consider, since avfethe main benefitsof object-oriented
programming is to encapsulate state anddleastate updates in a clean fashion. In the
current article, we consider the whole aoé@nvironment modelig and the creation of
modified objects. Eventually, this leads #n extension to the theory to handle
constructor-methods, through the use of whiclobject can create another object “like
itself”.

Cite this column as follows: Anthony J.H. Simons: “The Theory of Classification, Part 14:
Modification and Objects like Myself”, in Journal of Object Technology, vol. 3, no. 8, September-
October 2004, pp. 15-26. http://www.jot.fm/issues/issue 2004 09/column2

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_09/column2

o THE THEORY OF CLASSIFICATION, PART 14: MODIFICATION AND OBJECTS LIKE MYSELF

2 THE GLOBAL ENVIRONMENT

The whole idea of object mdatiation, modelled as updates to the values stored in
attribute variables, is problematic in a functional calculus likeAttmalculus. This is
because pure functional languages do not supip@miotion of reassignment to variables.
This would be a side-effect, and pure fuactl languages are intentionally free of side-
effects, a property known asferential transparency. However, the effect of assignment
may be approximated using a globat e& variable bndings, called thesnvironment,
which is passed from function to functionthe program is executed. The environment is
an associative map from variable names to their bound values. For example, the
following map is an environment which contains two varialgésp2 which map to
records representing simple coordinates:

globalEnv = {pl—> {X > 2,y 3}, p2>{X >4,y 7}, ... }

During program execution, we may want certatatements to update the global
environment. Modifications cannot literally clggnthe state of the environment, since we
are working in a pure functional language with side-effects; instead, they construct
new environments in which appropriate rgas have been made. The environment must
therefore be passed in and ofieach function, since assigents may occur at any point
and their effect must be recorded. Every fiorcaccepts the environment as an extra first
argument. Likewise, every function returngpackaged result, which is a pair of the
environment and the function’s usual retuatue. The caller o& function must unpack
the returned result to determine the statehef environment, as well as accessing the
ordinary return value.

Initially, the environment is empty. As nables are declared and initialised, these
are added to the envirommt using a function likenv-add:

env-add : Map- Label— Value— Map
=A(env : Map)L(var : Label)A(val : Value).env® {var — val}

which takes an environment, a variable name and a value to bind to this variable in the
environment. The function returns the nemvieonment, in which the old environment

env is combined with a maplet from the varialbe to the valueval. Since the function
override operato® is used [5], this will ensure thatdr +— val} is added to the bindings

in the environment, replacing any existing bindingvar. This is useful to model both
variable declaration with initiessation, when a variable isrfit added to the environment,

and variable reassignment, when the valssociated with a variable is replaced.

At any moment, the environment contathe most recently-bound version of each
of the variables. In the body of a functi@tcess to any global variable is modelled by
looking up the value stored in the environm@ihce the environment is basically a map
(which is the same thing as a fmifunction [1]) this can be done kapplying the

16 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 8

THE GLOBAL ENVIRONMENT / O#_/

environment, like a function, to the labelsedsas variable names. For example, the
following expression looks up the valuepdfin global Env:

globalEnv (pl)= {Xx — 2,y 3}
To change the coordinate associated with variphleve may execute the expression:

env-add (globalEnv) (p1) ({®*> 5, y— 1}) -- supply 3 arguments
= globalEnv® {pl— {x > 5, y> 1}} -- the body of env-add
>{pl—>{X—5y—> 1}, p2{X—4,y—> 7} ...} --newglobalEnv

and this rebinds the e of the variablgl, returning a new revironment in whichpl
maps to a different coordinate instantkis models the notion of reassignment.

3 LOCAL AND GLOBAL UPDATES

Things are made slightly more complicatiédve want both globaand local variable
bindings. If all functions mehg had local variables, updinction exit the environment
could revert to the environment that wagyimally passed to the function. This would
ensure that the bindingstsep on entry to the functiowere forgotten and any older
bindings for the same variables were restor¢avever, we wanthe global bindings to
persist between each function call. The emvwinent passed to a function may possibly be
modified and should therefore benld@d back as part of the result.

One possible approach is to try to digtiish between the global environment, and
local variables, which are bound on entryuodtions in the usuavay. The problem with
this approach is that a local variable nshadow the name of a global variable in the
environment. When such a variable is updatee would expect thlocal copy to be
modified, since the global variable woulst hidden. Upon exit from this scope, the
global binding would be restoredowever, it is hard to imagine how we could integrate
primitive A-calculus binding with loking up variables in a cotmacted environment. In
any case, most state variables are introducddcas variables within the scope of some
object or function, so it is hard to disguish between the two rids of variables in
practice.

Another approach is to usenaultimap for the environment, that is, a kind of map
with duplicated keys, rather like thassociation list provided in Common Lisp.
Whenever a scope is entered and a navabig binding is dded, it is insertedhead of
any existing bindings for the same variabBléhenever a value is looked up, the lookup
function returns thérst bound value it finds, which hides any other older bindings found
later in the list. Whenever a scope is exi@t|ocal variables are descoped by explicitly
removing thefirst binding found for each variable, so restoring any older bindings.
Whenever a variable is reassigned, fing occurrence othe variable igebound to the
new value; and this works whether the variablglobal or local. To do this, we need a
family of functions tamanipulate the environment:

VoL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 17

o THE THEORY OF CLASSIFICATION, PART 14: MODIFICATION AND OBJECTS LIKE MYSELF

env-insert : Multimap— Label— Value— Multimap
env-remove : Multimap> Label— Multimap
env-replace : Multimap» Label— Value— Multimap
env-lookup : Multimap— Label— Value

which behave as described above. The @amantations of these functions would use
primitive list operations, such asons, head and tail to search through the lists
representing the multimaps. We defer a fulteatment of this until a later article.

4 MODELLING UPDATES AS NEW OBJECTS

For the moment, the simplest approach iagsume that objects in the theoretical model
are “pure functional objects”, that is, allodifications to objecstate do not literally
modify the state of the objeatather they create and return a new object in which the
changes are manifest. There is no funddateeason why an imperative language cannot
be approximated by a functionzdlculus in this way. The onbljifference is that all state-
modifying methods, which are typically vordethods in a concrete language, now have
to return a new instance of their owningé¢. Sequences of modiétions have to be
modelled as nested method invocations. assexample, consider the following Point

type:

Point =uc.{X : Integer, y : Integer, equab. — Boolean,
move : Integek Integer— o}

which, in addition to the usual y andequal methods, has aove method to update its
position. This method ig/ped to return anothd?oint object, reflecting the fact that the
modified position is in fact a newly-created instancamht. Issuing a sequence wbve
instructions to aPoint objectp could be represented byetHollowing nested method
invocations:

p.move(2, 3).move(4, 5).move(6, 7)

since eaclmove returns a newPoint, which becomes the receiver of the subseguomeme
message. Although, in the model, the fiRaint instance at (6, 7) is a distinct object from
the originalp : Point, we can still reason about susdgquences of update operations. But
there is a catch: while thedd sounds straightforward inipeiple, it turns out that
implementing themove method in practice is quitdifficult to accomplish in the
theoretical model. So far, none of our extij types has had thability to create new
instances “like itself”. As we shall see below, this requires yet another level of recursion,
in which objects contain thredwn object constructors.

18 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 8

CONSTRUCTORS FOR OBJECTS O#—/

5 CONSTRUCTORS FOR OBJECTS S

In an earlier article [6], we establishec thasic strategy for constructing new objects. It
involved first constructing # object type, then the jglet implementation, from
generators. The baskoint record type (without thenove method) must be constructed
from a generator, because itas to itself recursively:

GenPoint s\o.{X : Integer, y : Integer, equak: — Boolean}

and the recursion variabteis later bound to theecord type by takig the fixpoint using
Y.

Point =Y [GenPoint]
= {X : Integer, y : Integer, equal : Point Boolean} -- after unrolling
The basicpoint record instance must also be conmsted from a generator, because it
refers to itself recursively. &yped object generator is used, so that we can attach types to

the bound variables. This is the generator for a spgmiit instance, at the location (2,
3):

genPoint v (t <: GenPointf]). T —> GenPointf]
= M(t <: GenPointf]).A(self : 7).
X 2,y 3, equal> A(p : 1).(self.x = p.xa self.y = p.y)}
The recursivepoint instance is then constructed by supplying a typint as the first

type-argument, and then taking the fixpoint usiigto bind the recursion variabself
over the rest of the record:

point =Y (genPoint [Point])
= {X > 2, y— 3, equal> A(p : 1).(point.x = p.XxA point.y = p.y)}
While this works well for examples of specificints, we wanted to allow the creation of

points that were initialised to different coardtes. To do this, we extended the generator
to accept an extra initigation argument, a pair of Integers [6]:

initPoint : V(t <: GenPointf]). (Integerx Integer)— t — GenPointf]
= A(r <: GenPointf]).A(a, b : Integek Integer)A(self : 1).
{X a, y— b, equal> A(p : 1).(self.x = p.xa self.y = p.y)}
And from this, we could defina simple object constructamakePoint, which uses the

type generatorGenPoint and the extended object generataitPoint internally to
establish the recursivoint type, and the recursiymint instance, respectively:

makePoint : Integex Integer— Point
=M@, b : Integek Integer).Y (initPoint [Y GenPoint] (a, b))

VoL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 19

o THE THEORY OF CLASSIFICATION, PART 14: MODIFICATION AND OBJECTS LIKE MYSELF

An example of creating a point instaratea different location is given by:

makePoint(4, 5)
=Y (initPoint [Y GenPoint] (4, 5))
=Y (Ma, b: Integek Integer)i(self : Point).
{X > a, y— b, equal> A(p : Point).(self.x = p.x self.y = p.y)} (4, 5))
=Y (A(self : Point).
{Xm+— 4,y 5, equal> A(p : Point).(self.x = p.x self.y = p.y)})
= uself.{x— 4, y— 5, equal> A(p : Point).(self.x = p.x self.y = p.y)}
The main thing to notice about allighis that object generators likeitPoint contain
within them the structure of ¢hinstance that they create. TihéPoint function accepts
some arguments (a type argument, then a paintefers, then the value foself) and
returns, as the body, the structure ofghimt instance. The generator must logically exist
prior to the creation ofray object instance. It is there®hard to imagine how we might
create an object instance that contains it generator! This is rather like trying to pull
yourself up by your own shoelaces.

6 CREATING OBJECTS LIKE MYSELF

However, as we anticipated in section 4 above, every timexie method is invoked,
we require aPoint object to create a new instance like itself, except thak thed y
coordinates will take on different values. Thesexactly like requiring an object to have
its own constructor as one of its methods.s€e this, we shall change the definition of
the Point-type, so that it now also has move method. Defining the type is
straightforward:

GenPoint S\o.{Xx : Integer, y : Integer, equak. — Boolean,
move : Integex Integer— o}

Point =Y [GenPoint]
= {X : Integer, y : Integer, equal : Point Boolean,
move : Integek Integer— Point} -- after unrolling
However, the implementation is less straigiwfard. If we could assume that an object

constructormakePoint already existed, we could proe the extended generator for
moveable points with extra initisation arguments as the following:

initPoint : V(t <: GenPointf]). (Integerx Integer)— t — GenPointf]
=Mt <: GenPointf]).A(a, b : Integex Integer)i(self : 7).
{X > a, y— b, equal> A(p : 7).(self.x = p.xa self.y = p.y),
move— A(u, v : Integeix Integer)makePoint(u, v) }

20 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 8

CREATING OBJECTS LIKE MYSELF OVL_/

Here, the implementation of timove method has been added, in which the body simply

calls makePoint with the same pair ofnteger arguments that were given to theve -
method. This should in prirglie create and return a nd®oint instance at the desired

location.

However, the above is not yet a legal definition. The reason for this is that
makePoint must usenitPoint internally to construct the meobject instance. As a result,
the above implies a recursive definitionioitPoint. To see the recursion more clearly,
we can replace the occurrencenakePoint by its expansion intgenerators (this comes
from the body of the definition afiakePoint in section 5 above):

initPoint : V(t <: GenPointf]). (Integerx Integer)— t — GenPointf]
= A(t <: GenPointf]).A(a, b : Integek Integer)A(self : 1).
{X a, y— b, equal> A(p : 1).(self.x = p.xa self.y = p.y),
move— A(u, Vv : Integerx Integer).Y (initPoint [Y GenPoint] (u, v)) }

From the bold highlight, it is clear thatitPoint occurs both on the left and right-hand
sides of this “definition”. As readers of thesries will appreciate, a recursive definition is
not a proper definition in the-calculus [1], but merely an equation that must be solved
for some value oiitPoint.

7 CONSTRUCTOR-LEVEL RECURSION

It is interesting to note that the model nquires recursion onrke different levels:

e object-level recursion, because objects fredgyeneed to refer internally to self,
so that methods can call other methods of the same object;

e type-level recursion, becausbject types frequently fiee methods that accept
and return objects of the same type as themselves;

e constructor-level recursion, because eatg frequently have methods that
construct and return other objects like themselves.

Constructor-level recursion wasdi identified by Cook and othe[8]. In the cited paper,
they referred to this initly as “class-level” recursionLater, this was changed to
“constructor-level” recursion, tbetter reflect the facts [9].

The technique for solving constructor-levetursion is the same one we have used
for solving recursive definitions before [1], which we abstract at the point of recursion
and introduce a new variable standing for teeursively-defined thing, here the object
constructor forPoints. At first, it is tempting to think that we need to introduce a
recursion variable staling for the whole oinitPoint. However, the type-argument of this
function doesn’t enter into the constructecursion: we know in advance that we are
always going to create things of typewherer is eventually bound tBoint. The object
constructor function is somaetly that takes a pair dhtegers and returngenPoint : t —

T, a simple object generator for building recurdhaent instances after their fields have

VoL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 21

o THE THEORY OF CLASSIFICATION, PART 14: MODIFICATION AND OBJECTS LIKE MYSELF

been initialised. We shall therefordrimduce a constructaecursion variabletor, with
the type:

ctor : (Integerx Integer)— (t — 1)

standing for thé>oint constructor. We will introduce this recursion variadfier the type
argumentt (so thatt will be bound) butbefore the other arguments frommitPoint,

because we need to fix the constoudevel recursion before we accepiteger

arguments and fix the object-level recursion. The resultyiped generator for anobject

constructor, which we shall calyjenlnitPoint and which has the type signature:

geninitPoint :vV(tr <: GenPointf]).((Integerx Integer)— (t — 1)) >
(Integerx Integer)— t — GenPointf]
This looks a little daunting, bwssentially it is similato the type signature fonitPoint,

with an extra type argument in the signafug®ing the type of the recursion variable
ctor, standing for the constructor. The full definitiongehlnitPoint is given by:

genlnitPoint =\(t <: GenPointf]).A(ctor : (Integerx Integer)— (t — 1)).
M@, b : Integek Integer)r(self : 7).
{X a, y— b, equal> A(p : 1).(self.x = p.xa self.y = p.y),
move— A(u, Vv : Integerx Integer).Y (ctor (u, v)) }
In this, ctor is introduced as the extra recursion variable standing forPthet
constructor. This allows the useabr in the body of thenove method. The application
of the fixpoint finderY is essentially to bind the object-level recursion inside instances

created byctor. We shall return to this below. Note thgeninitPoint is now properly
defined, without having to fer recursively to itself.

8 OBJECTS WITH CONSTRUCTOR METHODS

Point instances, which now havbeir own constructor methaaiove, are created from
this generator in several stages. f-inee supply the desired type argumBaint:

genlinitPoint[Point] -- step 1, supply the type argument

= M(ctor : (Integerx Integer)— (Point— Point)).
M@, b : Integek Integer)d(self : Point).
{X a, y— b, equal> A(p : Point).(self.x = p.x self.y = p.y),
move— A(u, Vv : Integerx Integer).Y (ctor (u, v)) }
This yields a typedunction in which {Pointf} has been substituted throughout. The first

argument to this function is the recursion variaite. We want to bindtor recursively
over the rest of the bodysing the fixpoint findety. But first, let us consider the type

22 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 8

OBJECTS WITH CONSTRUCTOR METHODS

signature of the above function (after stBp to see whether king the fixpoint is a
legitimate operation. It has the signature:

((Integerx Integer)— (Point— Point))— (Integerx Integer)— Point— Point

in other words, it takes a first argument of tter constructor-type and then returns
something with exactly the same type sigme (if we ignore t bracketing of the
remaining types). This is useful, becausesatisfies the conditions for a generator.
Generators must always have the fogen : 1 — t, since, when they are applied to some
argument, they must return that argumenthamged [1]. So, the step-1 result is indeed a
generator-for-a-constructor, which we can now fix in step 2:

Y (genlnitPoint[Point]) -- step 2, fix the constructor recursion

= uctor.A(a, b : Integek Integer)i(self : Point).
{X > a, y— b, equal> A(p : Point).(self.x = p.x self.y = p.y),
move— A(u, Vv : Integerx Integer).Y (ctor (u, v)) }
This yields aPoint-constructor function beginningy(a, b : Integer x Integer) ... and in
whose bodyctor is recursively fixed to refer to this, the saR@nt-constructor function.
We denote this fact by prefixing the function wjibtor, according to convention [1].
Below, we must remember thetor now refers to this function, the step-2 result. In the
next step, we supply the desired coordirpasition for a particular point instance:

Y (genlnitPoint[Point]) (2, 3) -- step 3, supply instance coordinates

= A(self : Point).
X 2,y 3, equals A(p : Point).(self.x = p.x self.y = p.y),
move— A(u, v : Integerx Integer).Y (ctor (u, v)) }
This yields a function in which {2/a, 3/b} have been substitutieereby supplying the
coordinate position (2, 3) for the first pbimstance. The step-3 result is a function

beginningA(self : Paint)..., in other words, a simple @t generator, whose object-level
recursion we can fix in the usual way usiyg

Y (Y (genInitPoint[Point]) (2, 3)) -- step 4, fix the object recursion

= uself. {x+ 2, y— 3, equal> A(p : Point).(self.x = p.x self.y = p.y),
move— A(u, Vv : Integerx Integer).Y (ctor (u, v)) }

This is now a point instance, in whichlf refers recursively to this instance, artdr
refers back to the constructor which built timstance! Note how the formula for creating
an object that contains its own constructuires an additional fixpoint operation. The
above formula could be rewritten to sh@l three fixpoints, including the type-level
fixpoint:

Y (Y (genInitPointy GenPoint]) (2, 3))

VoL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 23

o THE THEORY OF CLASSIFICATION, PART 14: MODIFICATION AND OBJECTS LIKE MYSELF

In this, the innermost fixpoint:Y[GenPoint] fixes the type-level recursion, yielding the
recursivePoint type. The next outermost fixpoin¥. (geninitPoint[Y GenPoint]) fixes
the constructor-level recursion, yielding the recursit@ constructor. The outermost
fixpoint: Y (Y (genInitPoint[Y GenPoint]) (2, 3)) fixes the object-level recursion, after
the constructoctor has been applied to some initialion arguments (2, 3), yielding the
recursivepoint instance.

9 UPDATING A POINT

Let us call this initiaPoint instancepl, and construct it using the formula:
pl : Point =Y (Y (geninitPoint[Point]) (2, 3))

= {X > 2,y 3, equal> A(p : Point).(pl.x = p.x pl.y = p.y),
move— A(u, Vv : Integerx Integer).Y (ctor (u, v)) }
This object has anove method, which contains a resive reference to the object
constructorctor that was used in the building pt. We would like to see the effect of
invoking themove method oml, to see what kind of objectighreturns. We should like it
to return a newPoint instance at a different locatiosg we shall call this instange:

p2 : Point = p1.move(4, 5)
= Mu, v : Integerx Integer).Y (ctor (u, v)) (4, 5) -- select move
=Y (ctor(4,5)) -- bind {4/u, 5/v}
At this stage, we have tofee back to the definition aftor to understand how to simplify
this any further. We obtain this definition formally bgrolling the value of the variable
ctor, which was recursively bound at the emidstep 2, above. The following sidebar
shows this:

ctor = -- unroll ctor
M@, b : Integek Integer)A(self : Point).
{X > a, y— b, equal> A(p : Point).(self.x = p.x self.y = p.y),
move— A(u, Vv : Integerx Integer).Y (ctor (u, v)) }
So we can now continue the main simplificatiopbimove(4,5) with the substitution:

Y (ctor (4, 5))
= Y (A(a, b : Integek Integer)r(self : Point). -- unroll ctor
{X a, y— b, equal> A(p : Point).(self.x = p.x self.y = p.y),
move— A(u, v : Integerx Integer).Y (ctor (u, v)) } (4, 5))

24 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 8

UPDATING A POINT G#—/

=Y A(self: Point). -- bind {4/a, 5/b}
{X— 4,y 5, equal> A(p : Point).(self.x = p.x self.y = p.y), -
move— A(u, Vv : Integerx Integer).Y (ctor (u, v)) }

= uself. -- take the fixpoint
{X > 4,y 5, equal> A(p : Point).(self.x = p.x self.y = p.y),
move— A(u, v : Integerx Integer).Y (ctor (u, v)) }

This is the final result, showing thp2 is anotheiPoint instance at the coordinates (4, 5)
and with its own copy of the construcidor embedded inside it®ove method. So, we
have shown that it is posde to create obgs with their ownconstructor-methods
embedded inside them. However, it was te&oally dense and required three different
levels of fixpoints.

10 CONCLUSION

We started this article witla discussion of how to model object state updates in the
Theory of Classification. Ifi-calculus, variable reassignnias prohibited, but the same
effect may be approximated by extendiaf] functions to accept and return an
environment argument, which is some kind of majoring the currentariable bindings.
The machinery for binding and unbinding variabgegquite complex: eventually, we must
use a multimap and handle all binding, unlbmgdand lookup explicitly. Furthermore, we
need implementations ofist-methods likecons, head and tail to manipulate the
multimaps, which are essentialigsociation lists with duplicated keys.

An alternative approach is to model stafpdates as the creation of new objects. A
sequence of updates is modelled as a nesteds of method inwations. However this
requires a new level of sophistication ire ttmhodel, in which objects contain their own
constructors. The major part of thasticle was devoted to explainirgnstructor-level
recursion. This is the thdrkind of recursion, afteobject-level andtype-level recursion.
With this facility, we were able to provid@int objects with a methodnove : Integer x
Integer — Point, which returns a newPoint instance. This same facility would be
required to define theist-methodscons andtail, which both return newist instances.
So, constructor-level recursionasgenerally useful featuressential for the definition of
more complex kinds of datatyp@/ith this facility, we may now provide implementations
for the container-classes likast and Stack, which had been deferred in the previous
article [7].

VoL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 25

o THE THEORY OF CLASSIFICATION, PART 14: MODIFICATION AND OBJECTS LIKE MYSELF

REFERENCES

[1] A J H Simons: “The Theory of Classiation, Part 3: Object Encodings and
Recursion”, inJournal of Object Technology, vol. 1, no. 4, September-October
2002, pp. 49-57http://www.]ot.fm/isses/issue_2002_09/column4

[2] A JH Simons: “The Theory of Clasgiition, Part 4: Object Types and Subtyping”,
in Journal of Object Technology, vol. 1, no. 5, November-December 2002, pp. 27-
35. http://www.jot.fm/issues/issue_2002_11/column2

[3] A JH Simons: “The Theory of Classificati, Part 7: A Class ia Type Family”, in
Journal of Object Technology, vol. 2, no. 3, May-June 2003, pp. 13-22.
http://www.jot.fm/issues/issue 2003 _05/column2

[4] A J H Simons: “The Theory of Cdaification, Part 8: Classification and
Inheritance”, inJournal of Object Technology, vol. 2, no. 4, July-August 2003, pp.
55-64.http://www.jot.fm/issues/issue_2003_07/column4

[5]1 A J H Simons: “The Theory of Classiation, Part 9: Inheritance and Self-
Reference”, inJournal of Object Technology, vol. 2, no. 6, November-December
2003, pp. 25-34http://www.jot.fm/isses/issue_2003_11/column2

[6] A J H Simons: “The Theory of Cdaification, Part 12:Building the Class
Hierarchy”, inJournal of Object Technology, vol. 3, no. 5, May-June 2004, pp. 13-
24 http://www.jot.fm/issues/issue 2004 _05/column2

[7] A J H Simons: “The Theory of Classation, Part 13: Template Classes and
Genericity”, inJournal of Object Technology, vol. 3, no. 7, July-August 2004, pp.
15-25.http://www.jot.fm/issues/issue 2004 07/column2

[8] W Cook, W Hill and P Canning: fiheritance is not SubtypingProc. 17th ACM
Symp. Principles of Prog. Lang., (ACM Sigplan, 1990), pp. 125-135.

[9] W Harris, Typed Object-Oriented Programming: ABEL Project Posthumous
Report, Hewlett-Packard Laboratories (1991).

About the author

Anthony Simons is a Senior Lecturer and Director of Teaching in the
Department of Computer Scienddniversity of Sheffield, where he
leads object-oriented research irrifreation and testing, type theory
and language design, developmenthuds and precise notations. He
can be reached atsimons@dcs.shef.ac.uk

26 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 8

http://www.jot.fm/issues/issue_2002_09/column4
http://www.jot.fm/issues/issue_2002_11/column2
http://www.jot.fm/issues/issue_2003_05/column2
http://www.jot.fm/issues/issue_2003_07/column4
http://www.jot.fm/issues/issue_2003_11/column2
http://www.jot.fm/issues/issue_2004_05/column2
http://www.jot.fm/issues/issue_2004_07/column2
mailto:a.simons@dcs.shef.ac.uk

