
This is a repository copy of The theory of classification part 13: template classes and 
genericity.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79267/

Version: Published Version

Article:

Simons, A.J.H. (2004) The theory of classification part 13: template classes and genericity.
Journal of Object Technology, 3 (7). 15 - 25. ISSN 1660-1769 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


JOURNAL OF OBJECT TECHNOLOGY 
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004 

 
Vol. 3, No. 7, July-August 2004 

 
 
 
 

 
Cite this column as follows: Anthony J.H. Simons: “The Theory of Classification – Part 13: 
Template Classes and Genericity”, in Journal of Object Technology, vol. 3, no. 7, July-August 
2004, pp. 15-25. http://www.jot.fm/issues/issue_2004_07/column2  

The Theory of Classification 
Part 13: Template Classes and 
Genericity 

Anthony J H Simons, Department of Computer Science, University of 
Sheffield, U.K. 

1 INTRODUCTION 

This is the thirteenth article in a regular series on object-oriented type theory for non-
specialists. Previous articles have gradually built up models of objects [1], types [2] and 
classes [3] in the λ-calculus. Inheritance has been shown to extend both type schemes [4] 
and implementations [5]. The most recent article [6] presented a model of a simple class 
hierarchy, with a root Object class, and various subclasses modelling geometric concepts, 
including a Cartesian Point, an abstract Shape class and a concrete Rectangle class. The 
aim was to demonstrate how natural intuitions about generalisation and specialisation 
could be expressed in the theoretical model, both at the type and implementation levels. 
Methods were written for abstract classes which also applied in a type-correct way to all 
classes beneath them in the class hierarchy, such as the origin method for Shapes [6]. 

However, abstract classes are not the only way in which generality can be expressed. 
Some object-oriented languages allow the introduction of type parameters, standing in 
place of actual types. These are known as templates in C++, or generic parameters in 
Ada or Eiffel1. The idea is that algorithms may be written without knowing full type 
information about all the elements involved. The actual types are supplied later, in a 
process known as instantiating the type parameters. In this article, we explore the 
consequences of adding generic classes to the Theory of Classification. Firstly, we look at 
some historical notions of polymorphism and type parameters. Secondly, we examine 
how to incorporate these into the type-level of the theory. Finally, we look at how 
introducing or instantiating type parameters can be combined with the process of deriving 
subclasses by inheritance. 

                                                           
1 At the time of writing, several proposals exist for adding generic types to Java.  One is actively being 
pursued for inclusion in the next revision of the language. 

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_07/column2


 
THE THEORY OF CLASSIFICATION – PART 13: TEMPLATE CLASSES AND GENERICITY 

 
 
 
 

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7 

2 TYPE ABSTRACTION AND POLYMORPHISM 

It is tempting to think that the object-oriented family of languages was the first to 
generalise the notion of type. This is incorrect, although it is fair to say that the object-
oriented family is the only group of languages to suppose that systematic sets of 
relationships exist between all the types (chiefly through the type hierarchy induced by 
the subtype [2] or subclass [4] relationships). The term used to describe generalisation 
over types is polymorphism, coming from the Greek poly (many) and morphe (form). The 
earliest strongly-typed programming languages were monomorphic, that is, variables 
were given a single type and could only be bound to values of this type. By contrast, a 
polymorphic language is one in which type constraints are systematically generalised and 
variables may be bound to values of more than one type. This opens the way to generic 
styles of programming, in which generic algorithms accept arguments of many different 
types. 

As long ago as the mid-1960s, Strachey and others [7, 8, 9] identified families of 
types that were sufficiently similar in structure that one could write polymorphic 
functions acting over them. These were typically the container types, such as List and 
Stack, for which functions like cons, append, push and pop could be written irrespective 
of the type of element they contained. Tennent [10] first proposed the use of type 
parameters to abstract over the unknown parts of these types, giving rise to the 
declaration style: Stack[T] representing a Stack of any element type T. So, it was possible 
to write a polymorphic push function that acted upon many different types of Stack, by 
giving it the parameterised type signature: 

push (elem : T, stk : Stack[T]) : Stack[T] 

Elsewhere, Strachey noted a tendency in programming languages to provide polymorphic 
functions in another way, simply by adding extra overloaded definitions to existing 
function names. The operator + might be used in one place to add Integers and Reals, but 
then also in another place to concatenate Strings and append Lists. Strachey therefore 
distinguished between: 

• parametric polymorphism – provided by parameterised functions acting in a 
systematic way over a variety of types; and 

• ad hoc polymorphism – provided by defining extra meanings for existing function 
names in an undisciplined way. 

Today, these two forms of polymorphism are respectively known as genericity (or 
templates) and overloading. Strachey rejected ad hoc polymorphism on the grounds that 
it was not amenable to formal analysis. No semantic correspondence need exist between 
the different definitions overloaded on a single function name, for example: x + y == y + 
x  is true if x, y : Integer, but false if x, y : String. On the other hand, systematic 
parametric polymorphic mechanisms later entered into the designs of functional 
programming languages, such as ML [11]. In ML, sophisticated type inference is used at 
runtime to propagate actual type information into type parameters. Ada was the first 



 
TYPE ABSTRACTION AND POLYMORPHISM 
 
 
 
 

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 17 

modular language to introduce generic packages, which had to be instantiated explicitly 
before use [12], generating a separate compiled image for each instantiation. However, 
parametric polymorphism existed even before these languages used it systematically. For 
example, in Pascal, the declaration: 

myArray : ARRAY 1..10 OF Integer; 

uses the ARRAY OF… special type constructor to build arrays. Such a type constructor 
can be readily explained as a Tennent-style parameterised polymorphic type: 

Array[SubrangeType, ElementType] 

in which the SubrangeType and ElementType are type parameters. Likewise, Pascal’s 
SET OF… constructor can be considered a polymorphic type. Today, parametric 
polymorphism exists in all the strongly-typed functional languages, including ML, Hope, 
Miranda, Clean and Haskell. It is present in many object-oriented languages, such as 
Ada-95, Eiffel and C++, which have explicit parametric typing mechanisms. 

3 A FORMAL MODEL OF POLYMORPHISM 

Girard [13] and Reynolds [14] are independently credited with having provided the first 
formal model of polymorphism. They extended the simply-typed λ-calculus to include 
arguments standing for types, as well as for values. This is the (second-order) 
polymorphic typed λ-calculus, which we first introduced in the earlier article [3]. The 
differences between the simply-typed and polymorphic λ-calculus are here explained in 
more detail. 

In the simply-typed λ-calculus, one can write functions whose arguments accept 
values that have types. For example, a function for constructing a coordinate object can 
be written2: 

makeIntegerCoord : Integer → Integer → IntegerCoord 
= λ(a : Integer).λ(b : Integer).{x a a, y a b} 

This function accepts two arguments a and b, both values of the Integer type, and returns 
a record, whose x and y fields map to these Integer values. So, for example, we can create 
an IntegerCoord object at the location (2, 3) by constructing it: 

makeIntegerCoord(2)(3)  - ie apply to value 2, then apply to value 3 
⇒ {x a 2, y a 3} 

The type of the result is a record type, called IntegerCoord in the type signature of the 
function above. Technically, we should have defined this record type, before using it in 
the function’s type signature, in the style: 

IntegerCoord = {x : Integer, y : Integer} 

                                                           
2 This style is slightly different from the previous article [6].  Here, we introduce each argument separately.  
Previously, we introduced the pair of Integers as a single argument. 



 
THE THEORY OF CLASSIFICATION – PART 13: TEMPLATE CLASSES AND GENERICITY 

 
 
 
 

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7 

Let us assume now that we want to generalise coordinates so that we can construct real-
valued coordinates as well as integral-valued coordinates. Intuitively, we want to abstract 
over the type of the fields, and replace the hard-wired Integer type by a type parameter. 
The definition of Coord must therefore be turned into a type constructor function: 

Coord = λτ.{x : τ, y : τ}  

which accepts one type parameter, τ. We can create actual coordinate-types by applying 
this function to different arguments representing the type we desire for the x and y fields, 
for example: 

IntegerCoord = Coord[Integer] = {x : Integer, y : Integer} 
RealCoord = Coord[Real] = {x : Real, y : Real} 

It is clear, therefore, that a type constructor function in the λ-calculus is the formal 
equivalent of a generic type in Ada or Eiffel, and the process of instantiating a generic 
type is modelled by applying the type constructor function to an actual type argument. 

In the polymorphic typed λ-calculus, one may write functions that accept both type-
arguments and value-arguments. The convention is for the type-arguments to be 
introduced before the value-arguments, mainly because the values might be of one of the 
introduced types. The polymorphic function for constructing a generic coordinate is 
written: 

∀τ . makeCoord : τ → τ → Coord[τ] 
= λτ .λ(a : τ).λ(b : τ).{x a a, y a b} 

Notice how the type declaration (the first line, above) is prefixed by the universal 
quantification ∀τ, meaning “for all types τ”. Then, the rest of the declaration says that 
makeCoord accepts two arguments of the τ type and constructs a Coord[τ] from this. 
Notice also how the implementation (the second line, above) expects the first argument to 
be a type, and binds this to the type variable τ. Thereafter, the subsequent arguments a 
and b are expected to be values of this same τ type, and the result is a record whose x and 
y fields map to these values, so the type of the coordinate is clearly dependent on the type 
of the arguments. In the type signature of makeCoord, this type-dependency was 
expressed in the result-type as: Coord[τ], because the record-type of the resulting 
coordinate is actually generated by applying the type-function Coord to whatever type τ 
was supplied as the first argument. We can create coordinate instances of different types 
in the following way: 

makeCoord[Integer](2)(3)  - ie apply to the Integer type, then to 2, then to 3 
⇒ {x a 2, y a 3} 
makeCoord[Real](2.1)(3.4) - ie apply to the Real type, then to 2.1, then to 3.4 
⇒ {x a 2.1, y a 3.4} 

This demonstrates that makeCoord is a polymorphic function in Strachey’s original 
sense, in that it can be applied uniformly to values of different types. It is a parametric-
polymorphic function in Tennent’s sense, since the unknown part of the coordinate type 
is modelled using a type parameter. 



 
GENERIC OBJECT TYPES 
 
 
 
 

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 19 

4 GENERIC OBJECT TYPES 

In a similar way, any kind of generic type can be constructed by replacing some parts of a 
simple type by type parameters. In previous articles [1, 3] we have seen that object types 
are often recursive, because their methods may accept or return objects of the same type. 
A recursive, simply-typed IntegerStack type can be written: 

IntegerStack = µσ.{push : Integer → σ,  pop : → σ,  top : → Integer,   
   empty : → Boolean,  size : → Integer} 

In this, µσ introduces the recursion in the type and σ stands for the eventual IntegerStack, 
in the body. We may generalise this definition to create a generic Stack type constructor 
if we replace occurrences of Integer by a type parameter τ: 

Stack = λτ.µσ.{push : τ → σ,  pop : → σ,  top : → τ,   
   empty : → Boolean,  size : → Integer} 

Here, λτ introduces the parameter τ, standing for the element-type, ahead of µσ, which 
binds the recursion. This generic Stack definition has the form of a type function, which 
expects a type argument: τ and then returns a result, a recursive record type in which τ 
will be bound to some actual type. To see how this works, we can apply Stack to the 
Integer type (ie call Stack with Integer as its actual type argument): 

Stack[Integer] = µσ.{push : Integer → σ,  pop : → σ,  top : → Integer,   
   empty : → Boolean,  size : → Integer} 

to see how this yields a recursive record type exactly like IntegerStack, above. We could 
also construct Stack[Real], Stack[Boolean] and other types of Stack, each with different 
substitutions for the element-type τ. 

Readers who have been following this series will know that the notation µσ is 
actually a short-hand for constructing a recursive type from first principles, using a type 
generator [1]. To define a generic Stack from first principles, we need a type generator 
GenStack, which introduces the self-type argument σ as well as the element-type 
argument τ: 

GenStack = λτ.λσ.{push : τ → σ,  pop : → σ,  top : → τ,   
   empty : → Boolean,  size : → Integer} 

GenStack is a type function accepting two type arguments. The order of introduction is 
significant: it is important to introduce the element-type τ before the self-type σ. This is 
because we want the element-type τ to be in scope when the self-type σ is declared. As a 
consequence, σ stands for the “whole of the self-type”. 

The relationship between GenStack and the generic Stack above is straightforward, 
but difficult to see at first. The order of parameters expects you to supply an element type 



 
THE THEORY OF CLASSIFICATION – PART 13: TEMPLATE CLASSES AND GENERICITY 

 
 
 
 

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7 

first, then to take the fixpoint of the resulting generator. For example we can create a 
fully-instantiated, recursive RealStack type by supplying {Real/τ} and then taking the 
fixpoint: 

RealStack = (Y GenStack[Real]) 
 ⇒ {push : Real → RealStack,  pop : → RealStack,  top : → Real,   
   empty : → Boolean,  size : → Integer} 

This works because GenStack[Real] yields a generator of the form: λσ.{…} whose 
fixpoint can then be taken with Y, so binding σ recursively over the rest of the record. To 
create the generic Stack type, we somehow need to fix the recursion of σ without 
replacing the element-type parameter τ with any actual type. The trick is to re-introduce 
the parameter on the outside of the fixpoint: 

Stack = λτ’ . (Y GenStack[τ’]) 
  = λτ’.µσ.{push : τ’ → σ,  pop : → σ,  top : → τ’,   
   empty : → Boolean,  size : → Integer} 

and this yields a type constructor function exactly like the Stack constructor above. The 
only difference here is that we supplied the new parameter {τ’/ τ} before taking the 
fixpoint, instead of some actual type, as in the RealStack example. 

5 GENERIC CLASSES 

The generic Stack above may best be described as a generic type, but not as a generic 
class. It is only a generic type, because the recursion of the self-type is fixed and the self-
type cannot therefore evolve further under inheritance. A generic class may be defined by 
keeping the self-type open to extension. In this and the following sections, we shall 
develop a family of List classes, looking at how the typeful aspects evolve, but we will 
skip over the details of their implementations, for simplicity’s sake.  

Recall that a class is a family of types which all share some common structure, a 
minimum set of common methods [3, 4]. The class constraint is expressed using a 
bounded parameter, a type parameter with a restriction on the types which can replace it. 
For example, if all Numbers have at least a plus method, we can define a type generator 
for this record type: 

GenNumber = λσ.{plus : σ → σ} 

and then express the class of Numbers using the generator function in the constraint, 
which is known as a function bound, or F-bound [15]: 

∀(σ <: GenNumber[σ]) . σ 

This says, “for all types σ that have at least as many methods as GenNumber[σ], σ is the 
entire class of numbers”. This is how to express the membership of an ordinary class. 

A generic class can be defined in the same way, using an F-bound. To define the 
base List class in the hierarchy, we first need to declare a type generator: 



 
GENERIC CLASSES 
 
 
 
 

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 21 

GenList = λτ .λσ.{cons : τ → σ, head : → τ, tail : → σ, equal : σ → Boolean} 

This is a type function with two type arguments: τ is the element-type and σ is the self-
type, introduced within the scope of τ. The F-bound is constructed in a slightly more 
elaborate way, which takes the element-type into account: 

∀τ .∀(σ <: GenList[τ][σ]) . σ 

This says, “for all element-types τ, and for all list-types σ that have at least as many 
methods as the type GenList[τ][σ], σ is that entire class of lists”. The new aspect here is 
that the F-bound is expressed in terms of both τ and σ. This is because we must apply 
GenList to two type-arguments in order to release the record type in its body. 

To validate this new kind of F-bound, describing the membership of a generic class, 
we shall define an actual list type that we expect to be in the class. To make things a little 
more difficult, this list type will have an extra size method, and a particular (instantiated) 
element type Integer. We shall call this type IntSzList, in recognition of the above. Its full 
type definition is given by: 

IntSzList = µσ.{cons : Integer → σ, head : → Integer, tail : → σ, 
     equal : σ → Boolean, size : → Integer} 
⇒ {cons : Integer → IntSzList, head : → Integer, tail : → IntSzList, 
    equal : IntSzList → Boolean, size : → Integer} 

The real question is whether IntSzList is a member of the generic List class. To test this 
conjecture, we substitute {Integer/τ} and {IntSzList/σ} in the formula given above. This 
simplifies to the comparison: 

IntSzList <: GenList[Integer][IntSzList] 
⇒  {cons : Integer → IntSzList, head : → Integer, tail : → IntSzList, 
    equal : IntSzList → Boolean, size : → Integer} 
  <:  {cons : Integer → IntSzList, head : → Integer, tail : → IntSzList 
    equal : IntSzList → Boolean} 
⇒  true, by record subtyping. 

thereby demonstrating that IntSzList is a member of the class of generic Lists. 

6 GENERIC INHERITANCE 

Is it possible to introduce and adapt generic classes during inheritance? In practical 
object-oriented languages that combine generic polymorphism with subclassing, you can: 

• introduce a subclass with extra type parameters, especially when the need to 
express genericity first arises in the hierarchy; and 

• introduce a subclass with fewer type parameters, by instantiating some of the 
parent’s parameters in the subclass. 

The first property is necessary to allow generic classes to exist within the same class 
hierarchy as ordinary classes. The second property is necessary to allow specific subclass 



 
THE THEORY OF CLASSIFICATION – PART 13: TEMPLATE CLASSES AND GENERICITY 

 
 
 
 

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7 

instantiations of generic classes. We shall seek to demonstrate both these properties in the 
model, by seeing if we can adapt generators for generic classes from other generators. 

First, we shall model the introduction of a generic class which inherits from a non-
generic parent class. Let us assume that the class hierarchy has a root Object class with an 
equal method, as defined by the generator: 

GenObject = λσ.{equal : σ → Boolean} 
∀(σ <: GenObject[σ]) . σ   -- is the class of all Objects 

We wish to introduce our List subclass, that is, a family of generic lists with equality. It is 
relatively easy to define the generator GenList for this class by adapting GenObject: 

GenList = λτ.λσ.(GenObject[σ] ∪ { cons : τ → σ, head : → τ, tail : → σ}) 
⇒  λτ.λσ.(equal : σ → Boolean, cons : τ → σ, head : → τ, tail : → σ} 
∀τ .∀(σ <: GenList[τ][σ]) . σ   -- is the class of all Lists 

because the new self-type of the list, σ, can be passed back as an argument to the 
GenObject generator (see bold highlight), such that the inherited equal method’s self-type 
is adapted to the new self-type. Because we introduced σ inside the scope of τ, the new 
self-type implicitly stands for the “whole of the self-type” of the list, including the fact 
that it contains elements of the τ type. So, we have successfully demonstrated the 
introduction of a generic class. 

To demonstrate the second property, we need to be able to define a subclass (with 
possibly extra methods) that also instantiates the generic element-type during inheritance. 
For this, we will introduce the generator GenIntSzList for a class of lists of Integers, with 
an additional size method. This generator will be defined by adapting the GenList 
generator, which has the extra element-type parameter τ, but the subclass generator will 
not have this, since it will have been instantiated by the Integer type. 

GenIntSzList = λσ.(GenList[Integer][σ] ∪ { size : → Integer}) 
⇒  λσ.(equal : σ → Boolean, cons : Integer → σ, head : → Integer,  
   tail : → σ, size : → Integer} 
∀(σ <: GenIntSzList[σ]) . σ  -- is the class of all IntSzLists 

The GenIntSzList generator clearly only has the self-type parameter, so it is no longer a 
generator for a generic class. The generic parameter τ was instantiated when Integer was 
supplied as one of the type arguments passed back to the GenList generator (see bold 
highlight), such that the inherited part of the record type has {Integer/τ} substituted 
everywhere. So, we have successfully demonstrated the removal of genericity during the 
operation of inheritance. This close integration of generic classes with inheritance and 
with old-fashioned type constructors, like Pascal’s SET OF... was first demonstrated by 
Simons [16, 17], who also showed the important formal property of confluence. This 
property allows the same type to be derived either by instantiating, then inheriting; or by 
inheriting, then instantiating the parameters, and is an important symmetry property. 



 
CONSTRAINED GENERICITY 
 
 
 
 

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 23 

7 CONSTRAINED GENERICITY 

The template types of C++ are exactly modelled by the universally-quantified type 
parameters provided in the Girard-Reynolds approach to polymorphism. This is because 
no restriction is placed on the possible types that might instantiate the parameters: the 
quantification ∀τ literally means “for all types τ”. In practice, if you supply an unsuitable 
type for a type parameter in C++, this is not detected until the compiler generates a 
separate image for the instantiated code, because the compiler cannot check template 
class declarations. 

In Eiffel, it is possible to check at the point of type-substitution whether suitable 
types are being supplied for a type parameter. This is because Eiffel also allows the 
expression of constraints on the type parameter, of the form: SortedList [T → 
Comparable], meaning a SortedList of any element type T that conforms to the 
Comparable class. This is a more expressive kind of parametric polymorphism, since it 
allows a compiler to check the code for a generic class, before it is instantiated. All the 
calls made on variables of parametric type T can be checked, because we know that T is 
at least of the Comparable type. 

Fortunately, the concept of restricting a type parameter to a certain family of types is 
captured exactly by an F-bound, which we have used so far to constrain the family of 
types in a class. It is particularly satisfying to find that F-bounds can also be used to 
model constrained generic types [17, 18]. To define the SortedList above, we first need to 
define a generator for the Comparable class, assuming that this supplies the methods 
lessThan and equal: 

GenComparable = λσ.{lessThan : σ → Boolean, equal : σ → Boolean} 

The generator for a SortedList defines the operations that you would expect in such a list, 
such as an (ordered) insert operation, and first to extract the element at the head of the 
list. 

GenSortedList = λτ .λσ.{insert : τ → σ, first : → τ, rest : → σ} 

Finally, the F-bound can be constructed, to express the family of all those types that 
belong in the class of SortedLists: 

∀(τ <: GenComparable[τ]).∀(σ <: GenSortedList[τ][σ]) . σ 

This says, “for all those element-types τ which have at least the methods of 
GenComparable[τ], and then for all those list-types that have at least the methods of 
GenSortedList[τ][σ], σ is the entire class of sorted lists”. This captures exactly Eiffel’s 
notion of a generic class which has a constrained generic type parameter. 



 
THE THEORY OF CLASSIFICATION – PART 13: TEMPLATE CLASSES AND GENERICITY 

 
 
 
 

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7 

8 CONCLUSION 

We have shown how parametric polymorphism, also known as templates in C++ and 
genericity in Ada and Eiffel, can be added to the Theory of Classification. We 
demonstrated how generic types could be created by abstracting over parts of simple 
types. A generic type is modelled as a type function expecting an actual type argument. 
We then extended this to model generic classes. A generic class is modelled by first 
creating a special type function, called a type generator, which has both element-type and 
self-type parameters. The notion of a generic class is formally all those types which 
satisfy the F-bound, expressed using the generator. We then showed how the generators 
for generic classes are well-behaved under inheritance, and can be extended at the same 
time as introducing, or instantiating the generic type parameters. 

F-bounds have been especially useful in this aspect of the Theory of Classification. 
Cook originally used F-bounds just to model the self-types of classes and explain how 
these were modified under inheritance [15]. Simons integrated this use of F-bounds with 
generic classes in his Theory of Classification [16, 17], finding that the same modelling 
concept could be used everywhere. In a later paper, he also showed how all three of 
Eiffel’s typing mechanisms (conformance, type anchors and constrained genericity) could 
be modelled by F-bounds, demonstrating the economy and power of the theory [18]. 

REFERENCES 

[1] A J H Simons, “The theory of classification, part 3: Object encodings and 
recursion”, in Journal of Object Technology, vol. 1, no. 4, September-October 
2002, pp. 49-57. http://www.jot.fm/issues/issue_2002_09/column4  

[2] A J H Simons, “The theory of classification, part 4: Object types and subtyping”, 
in Journal of Object Technology, vol. 1, no. 5, November-December 2002, pp. 27-
35. http://ww.jot.fm/issues/issue_2002_11/column2  

[3] A J H Simons, “The theory of classification, part 7: A class is a type family”, in 
Journal of Object Technology, vol. 2, no. 3, May-June 2003, pp. 13-22. 
http://www.jot.fm/issues/issue_2003_05/column2  

[4] A J H Simons, “The theory of classification, part 8: Classification and 
inheritance”, in Journal of Object Technology, vol. 2, no. 4, July-August 2003, 
pp. 55-64. http://www.jot.fm/issues/issue_2003_07/column4  

[5] A J H Simons, “The theory of classification, part 9: Inheritance and self-
reference”, in Journal of Object Technology, vol. 2, no. 6, November-December 
2003, pp. 25-34. http://www.jot.fm/issues/issue_2003_11/column2  

http://www.jot.fm/issues/issue_2002_09/column4
http://ww.jot.fm/issues/issue_2002_11/column2
http://www.jot.fm/issues/issue_2003_05/column2
http://www.jot.fm/issues/issue_2003_07/column4
http://www.jot.fm/issues/issue_2003_11/column2


 
CONCLUSION 
 
 
 
 

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 25 

[6] A J H Simons, “The theory of classification, part 12: Building the class 
hierarchy”, in Journal of Object Technology, vol. 3, no. 5, May-June 2004, pp. 
13-24. http://www.jot.fm/issues/issue_2004_05/column2  

[7] C Strachey, Fundamental Concepts of Programming Languages, Oxford 
University: Programming Research Group, 1967. 

[8] C Strachey, Varieties of Programming Languages, Oxford University: 
Programming Research Group, 1973. 

[9] R Milne and C Strachey, A Theory of Programming Language Semantics, 
London: Chapman and Hall, 1976. 

[10] R D Tennent, Principles of Programming Languages, Prentice Hall, 1981. 

[11] R Milner, “A theory of type polymorphism in programming”, in J. Computer and 
System Sciences, 17, (1978), pp. 48-375. 

 [12] J Ichbiah, J Barnes, J Heliard, B Krieg-Bruckner, O Roubine and B Wichmann, 
“Rationale and design of the programming language Ada”, in ACM Sigplan 
Notices, 14(6), (1979). 

[13] J-Y Girard, “Interprétation fonctionelle et élimination des coupures de 
l'arithmétique d'ordre supérieur“, PhD Thesis, Université Paris VII, (1972). 

[14] J Reynolds, “Towards a theory of type structure”, Proc. Coll. Prog., New York, 
LNCS 19 (Berlin: Springer Verlag, 1974), pp. 408-425. 

[15] P Canning, W Cook, W Hill, W Olthoff and J Mitchell, “F-bounded 
polymorphism for object-oriented programming”, in Proc. 4th Int. Conf. Func. 
Prog. Lang. and Arch. (Imperial College, London, 1989), pp. 273-280. 

[16] A J H Simons, “ A Language with Class: The Theory of Classification 
Exemplified in an Object-Oriented Programming Language”, PhD Thesis, 
Department of Computer Science, University of Sheffield (1995). 

[17] A J H Simons, “A theory of class”, in Proc. 3rd Int. Conf. Object-Oriented Info. 
Sys., eds. D Patel, Y Sun and S Patel, (London: Springer Verlag, 1996), pp. 44-56. 

[18] A J H Simons, “Rationalising Eiffel's type system”, in Proc. 18th Conf. 
Technology of Object- Oriented Languages and Systems (TOOLS Pacific), eds. C. 
Mingins, R. Duke and B. Meyer (Melbourne, 1995), pp. 365-377. 

 

About the author 

Anthony Simons is a Senior Lecturer and Director of Teaching in the 
Department of Computer Science, University of Sheffield, where he 
leads object-oriented research in verification and testing, type theory 
and language design, development methods and precise notations. He 
can be reached at a.simons@dcs.shef.ac.uk. 

http://www.jot.fm/issues/issue_2004_05/column2
mailto:a.simons@dcs.shef.ac.uk

