This is a repository copy of The theory of classification part 13: template classes and
genericity.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79267/

Version: Published Version

Article:
Simons, A.J.H. (2004) The theory of classification part 13: template classes and genericity.
Journal of Object Technology, 3 (7). 15 - 25. ISSN 1660-1769

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

ff——

JOURNAL OF OBJECT TECHNOLOGY

Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 7, July-August 2004

The Theory of Classification
Part 13: Template Classes and
Genericity

Anthony J H Simons, Department of Computer Science, University of
Sheffield, U.K.

1 INTRODUCTION

This is the thirteenth article in a regulariee on object-orientetiype theory for non-
specialists. Previous articlésive gradually built up models of objects [1], types [2] and
classes [3] in thé&-calculus. Inheritance has bedrown to extend both type schemes [4]
and implementations [5]. The most recent &t[6] presented a model of a simple class
hierarchy, with a rooDbjectclass, and various subclassesdelling geometric concepts,
including a CartesiaRoint, an abstracBhapeclass and a concreRectangleclass. The
aim was to demonstrate howta@l intuitions about gemalisation and specialisation
could be expressed in the theoretical moldeth at the type and implementation levels.
Methods were written for abstract classes Wwiatso applied in a type-correct way to all
classes beneath them in the class hierarchy, such asgimemethod forShapeg6].

However, abstract classes are not the only wavhich generality can be expressed.
Some object-oriented languages allow theouhiiction of type parameters, standing in
place of actual types. These are knowrteasplatesin C++, orgeneric parameterin
Ada or Eiffef. The idea is that algorithms may be written without knowing full type
information about all the elements involvethe actual types are gplied later, in a
process known agstantiating the type parameters. In this article, we explore the
consequences of adding generic classes tbhbery of Classification. Firstly, we look at
some historical notions of polymorphisamd type parameters. Secondly, we examine
how to incorporate these into the typedewf the theory. Finally, we look at how
introducing or instantiatig type parameters can be condairwith the proess of deriving
subclasses by inheritance.

! At the time of writing, several proposals exist for adding generic types to Java. One is actively being
pursued for inclusion in the next revision of the language.

Cite this column as follows: Anthony J.H. Simons: “The Theory of Classification — Part 13:
Template Classes and Genericity”, in Journal of Object Technology, vol. 3, no. 7, July-August
2004, pp. 15-25. http://www.jot.fm/issues/issue 2004 07/column2

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_07/column2

OHE THEORY OF CLASSIFICATION — PART 13: TEMPLATE CLASSES AND GENERICITY

2 TYPE ABSTRACTION AND POLYMORPHISM

It is tempting to think that the object-ented family of languges was the first to
generalise the notion of type. This is incotredthough it is fair tosay that the object-
oriented family is the only group of languages to suppose dyistematicsets of
relationships exist betweetl the types (chieflythrough the type hierarchy induced by
the subtype[2] or subclass[4] relationships). The term used to describe generalisation
over types igpolymorphismcoming from the Greegoly (many) andnorphe(form). The
earliest strongly-typed programming languages weamomorphic that is, variables
were given a single type and could only be botmdalues of this type. By contrast, a
polymorphiclanguage is one in which type consttaiare systematically generalised and
variables may be bound to valuelsmore than one type. This opens the way to generic
styles of programming, in which generigatithms accept arguments of many different

types.

As long ago as the mid-1960s, Strachey and others [7, 8, 9] identified families of
types that were sufficiently similar istructure that one ould write polymorphic
functions acting over them. These weypitally the container types, such kist and
Stack for which functions likecons, append, pusiindpop could be written irrespective
of the type of element they contained.nfient [10] first proposed the use of type
parameters to abstract ovéhe unknown parts of thesgpes, giving rise to the
declaration styleStack[T] representing &tackof any element typ&. So, it was possible
to write a polymorphigushfunction that acted upon ma different types ofStack by
giving it the parameterised type signature:

push (elem : T, stk : Stack[T]) : Stack[T]

Elsewhere, Strachey noted a tendenggrogramming languages to provide polymorphic
functions in another way, simply by addimxtra overloaded definitions to existing
function names. The operator + midig used in one place to abhdegersandReals but
then also in another place to concaterftigngs and append.ists Strachey therefore
distinguished between:

e parametric polymorphism — provided Iparameterised functions acting in a
systematic way over a variety of types; and

e ad hocpolymorphism — provided by defining tex meanings for existing function
names in an undisciplined way.

Today, these two forms of polynpgrism are respectively known a&enericity (or
templatey andoverloading Strachey rejectedd hocpolymorphism on the grounds that
it was not amenable to formal analysis. $&mantic correspondes need exist between
the different definitions overloaded arsingle function name, for examplet+ y ==y +

X is true ifx, y : Integer but false ifx, y : String On the other hand, systematic
parametric polymorphic mechanisms latentered into the d&ns of functional
programming languages, such as ML [11]. In,Mbphisticated type inference is used at
runtime to propagate actual type informatiinto type parameters. Ada was the first

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 3,NO. 7

TYPE ABSTRACTION AND POLYMORPHISM O?L_/

modular language to introdugeneric packages, which hadlie instantieed explicitly

before use [12], generating a separate ¢leipmage for each instantiation. However, -
parametric polymorphism existed even befiirese languages used it systematically. For

example, in Pascal, the declaration:

myArray : ARRAY 1..10 OF Integer;

uses the ARRAY OF... special type construd¢tmbuild arrays. Such a type constructor
can be readily explained as a Tenndapkesparameterised polymorphic type:

Array[SubrangeType, ElementType]
in which the SubrangeTypend ElementTypeare type parameters. Likewise, Pascal's
SET OF... constructor can be consideradpolymorphic type. Today, parametric
polymorphism exists in all the strongly-sgb functional language including ML, Hope,
Miranda, Clean and Haskell. It is presemtmany object-oriented languages, such as
Ada-95, Eiffel and C++, which havex@icit parametricyping mechanisms.

3 A FORMAL MODEL OF POLYMORPHISM

Girard [13] and Reynolds [14] are indepenitiesredited with having provided the first
formal model of polymorphismThey extended the simply-typédcalculus to include
arguments standing for types, as well fas values. This is the (second-order)
polymorphic typed\-calculus, which we first introduceith the earlier article [3]. The
differences between the sitygyped and polymorphi@.-calculus are here explained in
more detail.

In the simply-typedi-calculus, one can write funens whose arguments accept
values that have types. For example, a function for constructing a coordinate object can
be writterf:

makelntegerCoord : Integes Integer— IntegerCoord
=A@ : Integeri(b : Integer).{x— a, y— b}
This function accepts two argumeatandb, both values of thintegertype, and returns
a record, whose andy fields map to thesktegervalues. So, for example, we can create
anintegerCoordobject at the location (2, 3) by constructing it:
makelntegerCoord(2)(3) - ie apply to value 2, then apply to value 3
=>{XP 2y 3}
The type of the resuls a record type, callebhtegerCoordin the type signature of the

function above. Technically, we should havdirted this record typebefore using it in
the function’s type signature, in the style:

IntegerCoord = {x : Intger, y : Integer}

% This style is slightly different from the previousiale [6]. Here, we introduce each argument separately.
Previously, we introduced the pair of Integers as a single argument.

VOL. 3,NO. 7 JOURNAL OF OBJECT TECHNOLOGY 17

OHE THEORY OF CLASSIFICATION — PART 13: TEMPLATE CLASSES AND GENERICITY

Let us assume now that we want to genezalisordinates so thate can construct real-
valued coordinates as well as integral-valueafrdimates. Intuitivelyywe want to abstract
over the type of the fields, and replace the hard-wimézhertype by a type parameter.
The definition ofCoord must therefore be turned inkatype constructor function:

Coord = At {x: 1,y :1}

which accepts one type parameteryWe can create actual coordinate-types by applying
this function to different argumentspresenting the type we desire for thandy fields,
for example:

IntegerCoord = Coord[Integer]{x : Integer, y : Integer}
RealCoord = Coord[Real] = {x : Real, y : Real}

It is clear, therefore, that gype constructor function in thg-calculus is the formal
equivalent of a generic typa Ada or Eiffel, and the prass of instantiating a generic
type is modelled by applying the type conostor function to amctual type argument.

In the polymorphic typed-calculus, one may write functions that acdegqth type-
argumentsand value-arguments. The convention is for the type-arguments to be
introduced before the value-arguments, mabbdgause the values might be of one of the
introduced types. The polymorphic functionr foonstructing a generic coordinate is
written:

Vvt . makeCoordt — t — Coordf]

=it AM@:1t)Ab:1){x - a, y— b}
Notice how the type declarati (the first line, above) iprefixed by the universal
quantificationvt, meaning “for all types”. Then, the rest of # declaration says that
makeCoordaccepts two arguments of thetype and constructs a Cootflfrom this.
Notice also how the implementation (the@®at line, above) expectise first argument to
be a type, and binds this to the type variabl&hereafter, the subsequent arguments
andb are expected to be values of this samype, and the result is a record whasend
y fields map to these values, so the typthefcoordinate is clearly dependent on the type
of the arguments. In the type signature rmakeCoord this type-dependency was
expressed in the result-type asoordr], because the record-type of the resulting
coordinate is actually geneea by applying the type-functicBoord to whatever type
was supplied as the first argument. We cantereaordinate instances different types
in the following way:

makeCoord[Integer](2)(3) - ie apply to the Integer type, then to 2, then to 3
=>{X 2,y 3}
makeCoord[Real](2.1)(3.4)- ie apply to the Real typthen to 2.1, then to 3.4
= {xXm— 21 y— 3.4}
This demonstrates thahakeCoordis a polymorphic function in Strachey’s original
sense, in that it can be applied uniformly téuea of different types. It is a parametric-

polymorphic function in Tennent’'s sense, grihe unknown part of ¢hcoordinate type
is modelled using a type parameter.

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 3,NO. 7

GENERIC OBJECT TYPES O?L_/

4 GENERIC OBJECT TYPES -

In a similar way, any kind of generic type damconstructed by replacing some parts of a
simple type by type parameters. In previouglas [1, 3] we haveeen that object types
are often recursive, because their methodg acaept or return objects of the same type.
A recursive, simply-typethtegerStackype can be written:

IntegerStack suo.{push : Integer~ o, pop :— o, top :— Integer,
empty: — Boolean, size-+> Integer}

In this, uc introduces the recum in the type and stands for the eventulitegerStack
in the body. We may generalise this definition to create a gedtoktype constructor
if we replace occurrences loitegerby a type parameter

Stack =At.uc.{push :t > o, pop :—> o, top :—> 1,
empty: — Boolean, size-> Integer}

Here, At introduces the parameter standing for the element-type, aheadiof which
binds the recursion. This geneBtackdefinition has the form of a type function, which
expects a type argumentiand then returns a result, a recursive record type in which
will be bound to some actual type. To see how this works, we can Spatito the
Integertype (e call Stackwith Integeras its actual type argument):

Stack[Integer] quc.{push : Integer» o, pop :— o, top :— Integer,
empty: — Boolean, size-> Integer}

to see how this yields a recursive record type exacthititegerStackabove. We could
also construcstack[Real], Stack[Booleargnd other types dbtack each with different
substitutions for the element-type

Readers who have been following ttgsries will knowthat the notatiornuo is
actually a short-hand for constting a recursive type fromrt principles, using a type
generator [1]. To define a geneftackfrom first principles, weneed a type generator
GenStack which introduces the self-type argumemtas well as the element-type
argument:

GenStack #t.Ac.{push :t > o, pop :—> o, top :—> 7,
empty: — Boolean, size-+»> Integer}

GenStackis a type function acceptingvo type arguments. The order of introduction is
significant: it is important to introduce the element-typaeefore the self-type. This is
because we want the element-typ® be in scope when the self-typas declared. As a
consequencey stands for the “whole of the self-type”.

The relationship betweeGenStackand the generiStackabove is straightforward,
but difficult to see at first. Tdnorder of parameters expegtai to supply an element type

VOL. 3,NO. 7 JOURNAL OF OBJECT TECHNOLOGY 19

OHE THEORY OF CLASSIFICATION — PART 13: TEMPLATE CLASSES AND GENERICITY

first, then to take the fixpoint of the rdsng generator. For example we can create a
fully-instantiated, recursivRealStacktype by supplying Realt} and then taking the
fixpoint:
RealStack =Y GenStack[Real])
= {push : Real> RealStack, pop-» RealStack, top-> Real,
empty: — Boolean, size > Integer}

This works becaus&enStack[Reallyields a generator of the formc.{...} whose
fixpoint can then be taken with, so bindings recursively over the st of the record. To
create the generiStack type, we somehow neei fix the recursion ofc without
replacing the element-type parametexith any actual type. Thiick is to re-introduce
the parameter on the outside of the fixpoint:

Stack =At’ . (Y GenStack{’])
=At.uo{push v > o, pop > o, top :(—> 7,
empty: — Boolean, size > Integer}
and this yields a type constructor function exactly likeSkeckconstructor above. The

only difference here is that waupplied the new parametet’/{ t} before taking the
fixpoint, instead of somactual type, as in theealStaclexample.

5 GENERIC CLASSES

The genericStackabove may best be described ageaeric type but not as @eneric
class It is only a generic type, because the raoursf the self-type is fixed and the self-
type cannot therefore evolve further under nthace. A generic class may be defined by
keeping the self-type open to extension.this and the following sections, we shall
develop a family oList classes, looking at how the typkaspects evolve, but we will
skip over the details dheir implementations, for simplicity’s sake.

Recall that a class is a family of typesich all share some common structure, a
minimum set of common methods [3, 4]. Thiass constraint is expressed using a
bounded parameter, a type parameter with @ictsh on the types which can replace it.
For example, if alNumbershave at least plus method, we can define a type generator
for this record type:

GenNumber #c.{plus : ¢ — o}

and then express the class Ndimbersusing the generator futien in the constraint,
which is known as &unction boungor F-bound[15]:

V(o <: GenNumbeH]) . o

This says, “for all types that have at least as many method&asNumbdi], o is the
entire class of numbers”. This how to express the membership of an ordinary class.

A generic class can be dedid in the same way, angf an F-bound. To define the
baseList class in the hierarchy, we first@d to declare a type generator:

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 3,NO. 7

GENERIC CLASSES O?L_/

GenList =At .Aoc.{cons :1 — o, head — 1, tail : > o, equal . — Boolean}

This is a type function with two type argumentss the element-type ansglis the self- S
type, introduced within the scope of The F-bound is constructed in a slightly more
elaborate way, which takes the element-type into account:

V1 .V(c <: GenlListf][c]) . ©

This says, “for all element-types and for all list-typess that have at least as many
methods as the typg@enLisfr][c], o is that entire class of lists”. The new aspect here is
that the F-bound is expressed in terms of ho#imdc. This is because we must apply
GenlListto two type-arguments in orderrelease the recotgipe in its body.

To validate this new kind of F-bound, debang the membership of a generic class,
we shall define an actual list type that we expedie in the class. Timake things a little
more difficult, this list type will have an extsd&zemethod, and a particular (instantiated)
element typenteger We shall call this typ&ntSzList in recognition of the above. Its full
type definition is given by:

IntSzList =pc.{cons : Integer~ o, head — Integer, tail — o,
equat ¢ — Boolean, size +> Integer}
= {cons : Integer~> IntSzList, head - Integer, tail — IntSzList,
equal IntSzList— Boolean, size —> Integer}

The real question is whethertSzListis a member of the geneligst class. To test this
conjecture, we substitutdntegert} and {IntSzListc} in the formula given above. This
simplifies to the comparison:
IntSzList <: GenList[Integer][IntSzList]
= {cons : Integer~» IntSzList, head > Integer, tail — IntSzList,
equal IntSzList— Boolean, size - Integer}
<: {cons : Integer> IntSzList, head - Integer, tail :— IntSzList
equal IntSzList— Boolean}
= true, by record subtyping.

thereby demonstrating thiitSzListis a member of the class of genduists.

6 GENERIC INHERITANCE

Is it possible to introduce and adapt gemeriasses during inh&nce? In practical
object-oriented languages that combine gergolymorphism with subclassing, you can:

e introduce a subclass with extra type parameters, especially when the need to
express genericity first ags in the hierarchy; and

e introduce a subclass with fewer type parameters, by instantiating some of the
parent’s parameters in the subclass.

The first property is necessary to allow generic classes to exist within the same class
hierarchy as ordinary classes. The second pipmenecessary to allow specific subclass

VOL. 3,NO. 7 JOURNAL OF OBJECT TECHNOLOGY 21

OHE THEORY OF CLASSIFICATION — PART 13: TEMPLATE CLASSES AND GENERICITY

instantiations of generic classes. We shalkge demonstrate bothese properties in the
model, by seeing if we can adapt generatmrgeneric classes from other generators.

First, we shall model thmtroduction of a generic cda which inherits from a non-
generic parent class. Les assume that the class hierarchy has a&dbjeictclass with an
equalmethod, as defined by the generator:

GenObject sic.{equal :c — Boolean}
V(o <: GenObject}]) . o -- is the class of all Objects

We wish to introduce ourist subclass, that is, a family of gric lists withequality. It is
relatively easy to dae the generatdGenListfor this class by adaptingenObject

GenList =At.Ac.(GenObject[s] U { cons ;1 — o, head — 1, tail : > c})
= At.Ac.(equal . — Boolean, const — o, head — r, tail : > c}
V1 .V(o <: GenlListr][c]) . -- is the class of all Lists

because the new self-type of the list, can be passed back as an argument to the
GenObjecigenerator (see bold highlight), suchttthe inherited equal method’s self-type
is adapted to the new self-type. Because we introdadedide the scope af, the new
self-type implicitly stands for the “whole diie self-type” of the list, including the fact
that it contains elements of thetype. So, we have successfully demonstrated the
introduction of a generic class.

To demonstrate the second property, we reede able to define a subclass (with
possibly extra methods) that alsistantiates the generic elent-type during inheritance.
For this, we will introduce the generatBenintSzListor a class of lists dihtegers with
an additionalsize method. This generator will be defined by adapting GenList
generator, which has the extra element-type paramgebert the subclass generator will
not have this, since it will v@ been instantiated by th&egertype.

GenIntSzList =\c.(GenList[Integer][c] v { size : — Integer})

= MAo.(equal .o — Boolean, cons : Integes o, head — Integer,
tail : —> o, size :— Integer}

V(o <: GenIntSzLisif]) . o -- is the class of all IntSzLists

The GenlIntSzLisgenerator clearly only has the selp¢ parameter, so it is no longer a
generator for a generic class. The generic parametes instantiated whentegerwas
supplied as one of the type arguments passed back @eihieistgenerator (see bold
highlight), such that the inherdepart of the record type hasn{fegert} substituted
everywhere. So, we have successfully demateddrthe removal of genericity during the
operation of inheritance. Thidose integration of generidasses with inheritance and
with old-fashioned type constructors, likesBal's SET OF... was first demonstrated by
Simons [16, 17], who also showdlde important formal property afonfluence This
property allows the same typehe derived either by instaating, then inheriting; or by
inheriting, then instantiatinthe parameters, and is an important symmetry property.

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 3,NO. 7

CONSTRAINED GENERICITY O?L_/

7 CONSTRAINED GENERICITY -

The template types of C++ are exactlhodelled by the univerig-quantified type
parameters provided in the Girard-Reynoldprapch to polymorphism. This is because

no restriction is placed on the possible types that might instantiate the parameters: the
quantificationvz literally means “for all types”. In practice, if you supply an unsuitable

type for a type parameter in C++, thisnst detected until the compiler generates a
separate image for the instantiated cdagause the compiler cannot check template
class declarations.

In Eiffel, it is possible to check at th@oint of type-substitiion whether suitable
types are being supplied for a type paraméel@is is because Eiffel also allows the
expression of constraints on thgpe parameter, of the formSortedList [T —
Comparable], meaning aSortedList of any element typel that conforms to the
Comparableclass. This is a more expressivadiof parametric polymorphism, since it
allows a compiler to check the code for a genelass, before it is instantiated. All the
calls made on variables of parametric typean be checked, because we know Thest
at least of th&€omparableype.

Fortunately, the concept of restricting a type parameter to a certain family of types is
captured exactly by an F-bound, which we havweduso far to constrain the family of
types in a class. It is particularly satisfy to find that F-bounds can also be used to
model constrained generic types [17, 18]. To defineStivtedListabove, we first need to
define a generator for thEomparableclass, assuming that this supplies the methods
lessTharandequat

GenComparable xc.{lessThan & — Boolean, equals — Boolean}

The generator for ortedListdefines the operations that ysould expect in such a list,
such as an (ordered)sert operation, andirst to extract the elemeérat the head of the
list.

GenSortedList %t .Ac.{insert :t — o, first : > t, rest .— c}

Finally, the F-bound can be constructed, to egprthe family of all those types that
belong in the class @ortedLists

V(t <: GenComparable]).V(c <: GenSortedList][c]) . c

This says, “for all those element-typas which have at least the methods of
GenComparable], and then for all those list-types that have at least the methods of
GenSortedLis$t][c], o is the entire class of sortedt§& This captures exactly Eiffel's
notion of a generic class which hasamstrained generic typgarameter.

VOL. 3,NO. 7 JOURNAL OF OBJECT TECHNOLOGY 23

OHE THEORY OF CLASSIFICATION — PART 13: TEMPLATE CLASSES AND GENERICITY

8 CONCLUSION

We have shown howarametric polymorphismalso known asemplatesin C++ and
genericity in Ada and Eiffel, can be added the Theory of Gissification. We
demonstrated how generic tyeould be created by almstting over parts of simple

types. A generic type is modelled as a tyyection expecting an actual type argument.

We then extended this to model genericssés. A generic class modelled by first
creating a special type functiorglled a type generator, which has both element-type and
self-type parameters. The notion of a genalass is formally all those types which
satisfy the F-bound, expressed using the generator. We then showed how the generators
for generic classes are well-behaved underritdree, and can be extended at the same
time as introducing, or instantiaty the generic type parameters.

F-bounds have been especially useful in #spect of the Theory of Classification.
Cook originally used F-boundsguto model the self-typesf classes and explain how
these were modified under inheritance [15n&ns integrated this use of F-bounds with
generic classes in his Theory of Classification [16, 17], findingttitmsame modelling
concept could be used everywhere. In arlatEper, he also shad how all three of
Eiffel's typing mechanisms (conformance, tygoechors and constregd genericity) could
be modelled by F-bounds, demonstrating theneoty and power of the theory [18].

REFERENCES

[1] A J H Simons, “The theory of clagsation, part 3: Ofect encodings and
recursion”, inJournal of Object Technologwol. 1, no. 4, September-October
2002, pp. 49-5Mttp://www.jot.fm/isses/issue_2002_09/column4

[2] A J H Simons, “The theory of clasgifition, part 4: Objedlypes and subtyping”,
in Journal of Object Technologyol. 1, no. 5, November-December 2002, pp. 27-
35. http://ww.jot.fm/isses/issue_2002_11/column2

[3] A J H Simons, “The theory of classificat, part 7: A class is a type family”, in
Journal of Object Technologyvol. 2, no. 3, May-June 2003, pp. 13-22.
http://www.jot.fm/issues/issue_2003_05/column2

[4] A J H Simons, “The theory of classification, part @lassification and
inheritance”, inJournal of Object Technologyol. 2, no. 4, July-August 2003,
pp. 55-64 http://www.jot.fm/issues/issue_2003_07/column4

[5] A J H Simons, “The theory of clagsation, part 9: Inheritance and self-
reference”, inJournal of Object Technologyol. 2, no. 6, November-December
2003, pp. 25-34ttp://www.jot.fm/isses/issue_2003_11/column2

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 3,NO. 7

http://www.jot.fm/issues/issue_2002_09/column4
http://ww.jot.fm/issues/issue_2002_11/column2
http://www.jot.fm/issues/issue_2003_05/column2
http://www.jot.fm/issues/issue_2003_07/column4
http://www.jot.fm/issues/issue_2003_11/column2

CONCLUSION O#—/

[6] A J H Simons, “The theory of daification, part 12: Building the class
hierarchy”, inJournal of Object Technologyol. 3, no. 5, May-June 2004p. N
13-24 .http://www.jot.fm/issues/issue_2004 05/column2

[7] C Strachey, Fundamental Concepts of Programming Languagésxford
University: Programming Research Group, 1967.

[8] C Strachey, Varieties of Programming LanguagesOxford University:
Programming Research Group, 1973.

[9] R Milne and C StracheyA Theory of Programming Language Semantics,
London: Chapman and Hall, 1976.

[10] R D TennentPrinciples of Programming Languagdentice Hall, 1981.

[11] R Milner, “A theory of typepolymorphism in programming”, id. Computer and
System Sciences, X1978), pp. 48-375.

[12] J Ichbiah, J Barnes, J Heliard,KBieg-Bruckner, O Roubine and B Wichmann,
“Rationale and design of thprogramming language Ada”, iIACM Sigplan
Notices, 14(6)(1979).

[13] J-Y Girard, “Interpétation fonctionelle et élimination des coupures de
I'arithmétique d'ordre supérieuPhD ThesisUniversité Paris VII, (1972).

[14] J Reynolds, “Towards a theory of type structufrpc. Coll. Prog., New York,
LNCS 19Berlin: Springer Verlag, 1974), pp. 408-425.

[15] P Canning, W Cook, W Hill, WOIthoff and J Mitchell, “F-bounded
polymorphism for object-origed programming”, irProc. 4th Int. Conf. Func.
Prog. Lang. and Arch(Imperial College, London, 1989), pp. 273-280.

[16] A J H Simons “A Language with Class: Th&heory of Classification
Exemplified in an Object-@ented Programming LanguagePhD Thesis
Department of Computer Scientdniversity of Sheffield (1995).

[17] A J H Simons, “A theory of class”, iRroc. 3rd Int. Conf. Object-Oriented Info.
Sys, eds. D Patel, Y Sun and S Patel, (London: Springer Verlag, 1996), pp. 44-56.

[18] A J H Simons, “Rationalisg Eiffel's type system”, inProc. 18th Conf.
Technology of Object- Orienteécinguages and Systems (TOOLS Pagiéds. C.
Mingins, R. Duke and B. Meyer (Melbourne, 1995), pp. 365-377.

About the author

Anthony Simons is a Senior Lecturer and Director of Teaching in the
Department of Computer Scienddniversity of Sheffield, where he
leads object-oriented research irrifieation and testing, type theory
and language design, developmenthods and precise notations. He
can be reached atsimons@dcs.shef.ac.uk

VOL. 3,NO. 7 JOURNAL OF OBJECT TECHNOLOGY 25

http://www.jot.fm/issues/issue_2004_05/column2
mailto:a.simons@dcs.shef.ac.uk

