The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of The theory of classification - part 10: method combination and
super-reference.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79264/

Version: Published Version

Article:
Simons, A.J.H. (2004) The theory of classification - part 10: method combination and
super-reference. Journal of Object Technology, 3 (1). 43 - 53. ISSN 1660-1769

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

ff——

JOURNAL OF OBJECT TECHNOLOGY

Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 1, January-February 2004

The Theory of Classification
Part 10: Method Combination and
Super-Reference

Anthony J H Simons, Department of Computer Science, University of
Sheffield, U.K.

1 INTRODUCTION

This is the tenth article in a regular series on object-oriented type theory, aimed
specifically at non-theoreticians. Recenticdes have presented a formal model of
classification that differs from the convemial model of typesra subtyping [1, 2]. The
popular object-oriented languages fall intatgroups — those based on simple types and
subtyping, such as C++ and Java, ahdse based on polymorphic classes and
subclassing, such as Smalltalk and Eiffel [2, 3]. A programmer’s class has a formal
interpretation at the typeful level [2] and a concrete interpretation the implementation
level [3]. In the theory, we have been careful to distinguitdssification from
inheritance

Classification is the hierardal relationship between clsss, whereby one class is
judged to be a subclass of another, acogrdo type rules governing subclassing [2].
Inheritance, on the other hand, is a shortehanechanism for defining a new class in
relation to an existing classpecifying what is new or different, and otherwigeeriting
all existing features [3]. This presents aterasting formal challegge. If inheritance is
indeed merely a short-hand, we should bé& d@b prove in our theory that a class
constructed by inheritance is equivalent toassldefined as a wholeom first principles
[3]. This challenge is made more complicated by the possibilitpyedthod combinatign
the merging of local and inherited versiarisa method. Furthermore, Smalltalk and Java
can invoke inherited versions of rhetls through a pseudo-variable cakegber So, our

! Popular books on object-oriented programming sometimes confuse these notions, referring to the
hierarchical relationship as “inheritzat’. Strictly speaking, inheritance is just the extension mechanism.
However, an inheriting class will typically be a sulsslabut only by virtue of obeying the rules about
classification [2].

Cite this column as follows: Anthony J.H. Simons: “The Theory of Classification, Part 10: Method
Combination and Super-Reference”, in Journal of Object Technology, vol. 3, no. 1, January-
February 2004, pp. 43-53. http://www.jot.fm/issues/issue 2004 01/column4

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_01/column4

v#—/ THE THEORY OF CLASSIFICATION, PART 10:
o METHOD COMBINATION AND SUPER REFERENCE

theory must be able texplain the meaning oduper and show how super-method
invocations are eventuglequivalent to ordinary method invocations.

2 METHOD COMBINATION

So far, our treatment of inheritance améthod overriding has assumed that individual
methods are always replaced as a whole. For example, in the previous article [3] we
replaced amrqualmethod of a two-dimensional point:

equal— Ap.(self.x = p.xa self.y = p.y)

in which self refers to a Point2D instance, by aqual method of a three-dimensional
point:

equal— Ap.(self.x = p.xa self.y = p.ya self.z = p.z)

in which selfrefers to a Point3D instance. Or thurface, the overriding method appears
to be syntactically gte similar to the method that wasplaced. In most object-oriented
languages, programmers don’'t have to wotg such replacement methods long-hand;
instead the languages offer a short-hand mesimafor adapting the inherited version of
the method. The idea is thie overriding method may sohmw reuse the code body of
the inherited method and need only specify vauatitional computatins take place. This
is known asnethod combinatian

In C++ and Eiffel, method combination a&hieved simply by naming the local and
inherited versions of the method differgntin C++ it is alwayspossible to qualify
method names globally by their oimg class, in the styleParentClass::methocgnd
ChildClass::method So, the redefined body of th€hild's method may invoke
ParentClass::metho@xplicitly, by referring to its global name. In Eiffel, the name of a
method may be locally renamed whins inherited, in the styleclass Child inherit
Parentrename methodas old_method ..end. Then, the body o€Child's methodmay
invoke old_method In both of these cas, invoking an inherited method inside a
redefined version is no different fromvoking any other differently-named method.

Smalltalk and Java achieve method corabon in a much more interesting way.
These languages have seudo-variable calleduper which somehow allows a
programmer to invoke an inherited versionaofmethod inside the redefined version of
the same method, without renaming the methothéntheoretical model, we can express
Point3D’sequalmethod more simply as:

equal— Ap.(super.equal(p) self.z = p.z)

In this, supersomehow stands for the current objecthe context of the parent class.
Whereas an invocatioeelf.equal(...)would call the local versionsuper.equal(...)s
deemed to call the inheritedrgeon of the same method.i$tquite difficult to understand
exactly what objecsuperrefers to! By the end of this article, we hope to answer this

44 JOURNAL OF OBJECT TECHNOLOGY VoL. 3,NO. 1

important question. However, one coms@tion is that the sub-expression:
super.equal(p)ynust eventually be shown to be egiéent to the portion of code in the

long-hand version of the methogelf.x = p.xA self.y = p.y

3 RENAMING METHODS

To handle method combination in C++ and Ejfige must first consider how to rename
methods in the theoretical mddin C++, we could eithedecide that the global names
exist permanently as altetna, duplicate names for theame methods, or we could
introduce them on demand, when we want to combine methods. In Eiffel, however, we
must allow methods to be renamed locatiy, demand, during inheritae. Recall that
inheritance is modelled as record combination in the theoretical model [3], in which a
baserecord is extended by coming it with a record oéxtramethods, to yield derived
record:

derived = basé® extra

Intuitively, we now want to rename methodstie base record, then combine this with
the extra record. For this, we need a remgnoperator ®, and expect to use it in the
following way:

derived = (base ® renaming®)extra

in which renamingsis a map from original labels tevised labels. In the same style as
the union with override operator [3], we mdgfine the renaming operator to accept an
object record (a map from labels to methodsd a record of renamings (a map from
labels to labels) and returmaw object record in which sontebels have been replaced:

Va, B . ®: (a—p) x (a—a) = (a—Pp)
® = Af:a—B) Mg:o— o).
{k v |Vhe dom(f).v="f(h)a
(h €e dom(g)= k = g(h))A
(h ¢ dom(g)= k=h) }

The top line is a polymorphic type signature [1], saying that ® takes two maps with the
individual type signaturesx(~>f) and tt—a), and returns a mapith the signatured—

B). The typea is the label-type, anfl is the method-type in ¢hobject record. Note how

the object-type of the resuis unchanged, reflecting thatethods have merely been
renamed.

The full definition follows. This says that ® takes two argument miaqsdg (with
the given types) and produces a result mapwthae expression in braces). This result is

the set of all those mapletd— v that satisfy the following conditions (after the vertical
bar |). For all original labels in the domain of the base objéctif h is also listed in the
domain of the renamingg the resulting label is equal to the translatiay(h), otherwise

VoL. 3,NO. 1 JOURNAL OF OBJECT TECHNOLOGY 45

#—/ THE THEORY OF CLASSIFICATION, PART 10:
o METHOD COMBINATION AND SUPER REFERENCE

k is equal to the original labél The corresponding valuesare always equal tigh), as

in the original object map. Recall thi#h), g(h)denote range values by appealing to the
functional interpretation of map&h) “applies” the mag to the domain valub, yielding

the corresponding range value.

We can use this operator to rename mettodds object. Here is a simple Point2D
instance:

aPoint2D =u self . { x> 3, y— 5, identity self,
equal— Ap.(self.x = p.xa self.y = p.y) }
in which we wish to rename tlegjualmethod with a longer, qualified nanwdg_equai

aPoint2D ®{equal —~ old_equal}
=uself. {x— 3, y— 5, identity— self,
old_equal- Ap.(self.x = p.xA self.y = p.y) }

The renaming operator ® takess its operands, the objentd a map of renamings (see
bold highlight), yieldingan object in which thequalmethod has been renamed.

4 METHOD COMBINATION WITH RENAMING

This allows us to construct a modelinheritance with métod combination supported
through renaming. The following is an expression to deaReint3D from aPoint2D by
renaming itsequal method and then supplying a redefined version, which refers back to
the old version:

aPoint3D =y self . ((aPoint2D ® {equal— old_equal}) ®
{z 2, equal> Aq.(self.old_equal(q)a self.z=q.2) })
The left-hand operand of the record combination oper@ates a renaming expression
(see first bold highlight), in which thequalmethod is renamed before combination. The
right-hand operand o® is a record of extra methods, in which the redefingdal

method invokes the renamed methad_equalin its body (see second bold highlight),
thereby benefiting from the more sucdisgntax offered by method combination.

We want to show that this method comliioa syntax is equivant to a regular,
wholesale method replacement. Simplifying teaming expression yields a base record
(see bold highlight):

aPoint3D =p self. ({ x+ 3, y— 5, identity — aPoint2D,
old_equal— Ap.(aPoint2D.x = p.xA aPoint2D.y = p.y) }
@ {zm 2, equal> Ag.(self.old_equal(g) self.z=0.2) })

46 JOURNAL OF OBJECT TECHNOLOGY VoL. 3,NO. 1

which in turn may be combined with the redf extra methods (see [3]) to yield the
following unusual record, in which inherited self-references are resolva@dmt2D
while the local sk is bound ovelaPoint3D

aPoint3D =p self . { x— 3, y— 5, z— 2, identity—~ aPoint2D,
old_equal- Ap.(aPoint2D.x = p.x aPoint2D.y = p.y),
equal- Aqg.(self.old_equal(g)a self.z = q.z) }

The resulting object has both the renamed metiddequaland the redefined version
equal This is quite normal in languages witmaeing. Note that we have deliberately
given these two functions diffent formal argument namgs.andq, in order to observe
what happens to object references in thet igage. We now want to understand the
precise meaning of the redefinedual in detail. To do this, we may simplify the
embedded call to the old version of theethod (see bold higight above). This
simplification is equivalent to regting the call by the inlined body of tleéd _equal
method, after substituting the argumegfg, viz the evaluation:

self.old_equal(g} (aPoint2D.x = g.x aPoint2D.y = q.y)

This internal simplification is performed exactly like any other function simplification;
and may be thought of as an evaluatiomwtmch the call is repiced by the body after
arguments have been substituted. In this case, the actual argu@dPint3D instance)

IS substituted in place of the formal argumenia Point2D variable) yielding the
simplified form:

aPoint3D =p self . {x— 3, y— 5, z— 2, identity— aPoint2D,

old_equal- Ap.(aPoint2D.x = p.x aPoint2D.y = p.y),

equal> Ag.(@Point2D.x = q.xA aPoint2D.y = q.yA self.z = q.2)
}

This demonstrates formally how the derivsphalmethod does indeed compare all of the
X, ¥ and z dimensions of the Point3D instaigcddowever, note how the body of this
method suffers from the same kind of schizepia that we have noted before [2, 3]
when dealing with simple objetypes. The local binding iself «— aPoint3D, whereas

the inheritedself«<— aPoint2D After the internal simpliiation, the combined method is

comparing mixtures of 2D and 3D points for the equality of their x and y fields! For this

reason, we cannot yet regardstkind of method combination as wholly equivalent to
defining a replacement method wholesale.

5 FLEXIBLE METHOD COMBINATION WITH RENAMING

The problem is one of ensuring uniform self-reference in both local and inherited

methods. Recall that in Eiffel, self-referencéésible, such that inherited occurrences of
self (known agurrentin Eiffel) are redirected to reféo the derived object. In the formal
model, this requires the use of an objectagator to exmss the object definition [3]:

VoL. 3,NO. 1 JOURNAL OF OBJECT TECHNOLOGY 47

#—/ THE THEORY OF CLASSIFICATION, PART 10:
o METHOD COMBINATION AND SUPER REFERENCE

genAPoint2D =\ self . { x— 3, y— 5, identity— self,
equal— Ap.(self.x = p.xa self.y = p.y) }
This is different froma plain object in thatelfis a formal argument of the generator. As
such, we can bind it to different valuespresenting the different objects tlsaif may

range over. Inheritance is mdiéel as an adaptation on gears [3]. We now add the
renaming scheme to this model:

genAPoint3D =A self . ((genAPoint2D(self) ® {equal— old_equal})
® {zm 2, equab> Aq.(self.old_equal(g) self.z=q.2) })
The critical difference is in the way se#ference is modified, through the generator
application:genAPoint2D(self)yielding an adapted record in whishlfrefers to the new

object. After simplifying the renaming-expressi(see bold highlights above and below),
this yields:

genAPoint3D =A self. ({ x> 3, y— 5, identity — self,
old_equal— Ap.(self.x = p.xA self.y = p.y) }
@ {z > 2, equal> Aq.(self.old_equal(g) self.z=q.z) })

and after record combination, thyselds a result in which botkqual and old_equal
methods co-exist, but all se#ference is now uniform:

genAPoint3D =\ self . { x> 3, y— 5, z— 2, identity— self,
old_equal- Ap.(self.x = p.xa self.y = p.y)
equal — Aq.(self.old_equal(g)a self.z = q.z) }

We now simplify the body of theequal method, by expanding line the call to
old_equal

genAPoint3D =\ self . { xi— 3, y— 5, z— 2, identity— self,
old_equal— Ap.(self.x = p.xA self.y = p.y)
equal — Lqg.(self.x = g.xa self.y = q.ya self.z = q.z2) }

This yields the final result (see highlights) in whsif refers uniformly to the current
object. This is a satisfactorgutcome, in that it meets our requirement that method
combination should be provably equivalentedefining the method wholesale. Because
of its special treatment afurrent Eiffel's method combinatin with renaming follows
this semantics.

6 THE MEANING OF SUPER

However, it may be considered inelegdot objects to keep both the old and new
versions of a method. Having to rename meshisdrksome and keeping both versions is
redundant, especially if you only want thel eersion once, during method combination.

48 JOURNAL OF OBJECT TECHNOLOGY VoL. 3,NO. 1

ff—

For this reason, languages like Smalltalk and Java provide “one time access” to the
inherited versions of methods, when radag the same methods, through a special -
pseudo-variable calleslper

equal— Ap.(super.equal(p)a self.z = p.z)

It is clear thasupermust refer in some sense to the current object, somewhaelikget
different from the point o¥iew of method lookup. The operational explanatiosuger
method invocation is typically that “theearch for a method starts in the immediate
superclass of the class s#lf' [4]. Other attempts at describirsgipersometimes say that
it is “the inherited object” ofthe embedded parent-part okthurrent object”. In fact, the
meaning okuperis subtle and varies from languagdanguage, as we shall show below.

We may construct a model superfrom the operational deription of method
lookup. The most obvious way of invoking the “hexost general” version of a method
in our theory is to ensure that we selg#dtom the “next most geeral” version of the
object-instance with which ware dealing. In other word#,our most recently derived
object is expressed as:

derived = basé® extra

such that we would expederived.methodo invoke the latest version of somethod
thenbase.methodhould be the expression that invekbe next most general version of
the samemethod skipping over any redefinition supplied in teetra record. From this
analysis, it seems clear thaiperis equivalent to théaseobject record, in a record
combination expression.

In the theory, this object is always supglias the left-hand operand to the record

combination operato® (see bold highlights below). Recall that in record combination
with simple object records (ssection 6 in [3]) we have:

aPoint3D =p self. @Point2D® { z > 2,
equal— Ap.(self.x = p.xa self.y = p.ya self.z=p.z) })

which indicates that this operand is in fact @glént to an instance of the base type. This
gives the meaning &fuperin Java, a language based imple types and subtyping in
our theory. The variablsupercorresponds to the embeddearent-part of the current
object, self, or more exactly to the inherited pargart before any fields are replaced
during record combination. It has the tyggoer : Point2Dand behaves exactly like an
instance of the base type, in that seferences in super-methods refer backujoer

On the other hand, in flexible record camddion with object generators (see section
7 in [3]) we have the compldyedifferent left-hand operand:

genAPoint3D =X self . genAPoint2D(self) ® {z — 2,
equal — Ap.(self.x = p.xa self.y = p.ya self.z=p.z) })

which is an adapted record, obtained by wipgl the base generator to the new self
reference (of the derived generatdris gives the exact meaningsafperin Smalltalk, a

VoL. 3,NO. 1 JOURNAL OF OBJECT TECHNOLOGY 49

#—/ THE THEORY OF CLASSIFICATION, PART 10:
o METHOD COMBINATION AND SUPER REFERENCE

language based on classes and subclassing in our theory. The audles like an
adapted instance of the parent type, in which self-reference is redirected to refer to the
current, derived object. It has adapted type given by thegpdication of a type generator
super : GenPoint3D[Point2Dand behaves differently froan instance of the base type,

in that self-references in super-methods ré&dethe whole of the current, derived object,
rather than to an embedded parent instance.

/7 METHOD COMBINATION WITH SUPER-REFERENCE

In order to model method combination withpsureference in our theory, we need to
introduce thesupervariable, and bind it to a value standing for the (possibly adapted)
parent instance, such that we may referstiper throughout the record combination
expression, in the style:

super @ {z— 2, equal> Ag.(super.equal(g) self.z = q.z) }

The variable may be introduced as flormal argument of a functiohsuper.(...)which

is later bound to a suitable valuThe order of variable troduction is dictated by the
need forsuperto be bound outside the scope of recoombination, but inside the scope
of self

aPoint3D =y self .(Asuper . Guper® {z — 2,
equal > Ag.(super.equal(q) self.z = q.z) })
aPoint2D)

Here, the expressiohsuper.(...)is a function, bindingsuper whose body is a record
combination expression that contains free referencesipger as intended. This super-
function is then applied to the valueaPoint2D. To verify that this is equivalent to
regular record combination, we may simplifye super-function apightion internally,
with the bindingsuper<« aPoint2D, to obtain:

aPoint3D =p self .(aPoint2D® {z — 2,
equal— Aq.@Point2D.equal(g)x self.z = q.2) })

Firstly, we see thaguperis replaced by the desired parent object on the left-hand side of
the combination operator. Secondly, we find thaper.equal(...jranslates exactly into

an expression invoking thequalmethod of a parent instance, which is promising, since
it clearly skips the current version. To simplthis internally, we replace the call by the
inlined body of the parent's method, after substituting the argunwp} &s before.
After record combination:

aPoint3D =p self. { x— 3, y— 5, z— 2, identity— aPoint2D,
equal> Ag.(@Point2D.x = q.xA aPoint2D.y = q.yA self.z = q.z)

}

50 JOURNAL OF OBJECT TECHNOLOGY VoL. 3,NO. 1

ff—

this yields a non-uniform solution similar tieat in section 4 above, but without duplicate

versions of theequalmethod. This model of method coimétion explains the behaviour -
of languages like Java, in whicduperalways resolves to anstance of the immediate

parent type.

The more flexible kind ofmethod combination wittobject generators may be
modelled as:

genAPoint3D =X\ self .(Asuper . Guper® {z — 2,

equa — Ag.(super.equal(q) self.z =q.z) })
genAPoint2D(self))

in which the super-function is bound differently wghper<« genAPoint2D(self)Note

in passing howself must be bound before we can bsuper This time,superdoes not
denote a parent instance, but rather an tadapbject, the result aipplying the parent
generator tself To explore further what this means, we may simplify the super-function
application internally, yielding:

genAPoint3D =) self.(genAPoint2D(self)® { z 2,
equal— Aq.(genAPoint2D(self)equal(g)n self.z = q.z) })
From this, it appears that tlseper.equal(...)nvocation is equivalent to invokingqual
on an adapted parent object. This is quitetlsy because self-reference is redirected in

this object onto the newelf of 3D points. We can illusite this more graphically by
expandingsuper

super = genAPoint23€lfp)
={x 3, y— 5, identity— selfsp,
equal — Ap.(selfp.x = p.xA sellp.y = p.y) }
From this, it is clear thasuper.equalwill select the inheritecequal method body, in
which self refers back to the local Point3D instance. Furthermsuper.equal(g)will

produce the argument substitutiog/g}, where q is implicitly a variable of the type
Point3D:

super.equat() = (selgp.x =g.x A selkp.y =q.y)
When this subexpression is replaced in the body of the éapall method, we obtain a
combinedequalmethod, which has consistent self-refece and an argument in the same
type:

equal— Aq.(selgp.x = g.xA selgp.y = q.yA selgp.z = q.2)

Method combination using super-reference tliereby proved to be equivalent to
redefining the method wholesale. Noi@w the more subtle semanticssoiperis needed
for this to work out fully. Cook et al. were thest to identify this femal interpretation of
superin Smalltalk [5, 6], from the operationalsigiption of inheritane in that language.

VoL. 3,NO. 1 JOURNAL OF OBJECT TECHNOLOGY 51

#—/ THE THEORY OF CLASSIFICATION, PART 10:
o METHOD COMBINATION AND SUPER REFERENCE

8 CONCLUSION

We have constructed four different modéts inheritance with method combination.

Two involve the renaming of methods, in tigle of C++ and Eiffe Two involve the

use of the pseudo-varialdeper in the style of Java and Smalltalk. While C++ and Java
have a simple model of inheritance, based on the extension of object records, Smalltalk
and Eiffel have a more subtle model of inheritance, based on the extension of object
generators. Hereafter in our theory, we khnefer to the simple extension model as
derivation to distinguish it from “genuineinheritance in which self-references are
redirected to refer to me specific objects [3, 5].

Considering each approach to method combination individually, the first uses
derivation and renaming. The second usesritdmee and renaming, of which Eiffel is
the exemplar. The third uses derivation aswuper-reference, oivhich Java is the
exemplar. The fourth uses inheritance and super-reference, of which Smalltalk is the
exemplar. An even simpler model exists for C++, if we allow objects to have two names
for each method, one local and one global:

equal— Ap.(self.x = p.xa self.y = p.y)

Point2D_equat> Ap.(self.x = p.xa self.y = p.y)
and adopt the convention that only the locahea are ever overridden. In this way, we
can express the combinedualmethod for Point3D as:

equal— Aqg.(self.Point2D_equal(q) self.z = q.z)

which simplifies in accordance with ofirst model, above. The method combination
strategies using inheritance were showm be equivalent to wholesale method
replacement, demonstrating again the usefuloese theoretical model. The model also
provided the pseudo-variabsiperwith two semantic intemgtations, corresponding to
the meanings of this variable in JavadaSmalltalk. We also provided an original
renaming operator ® to account for Eiffel’s behaviour.

REFERENCES

[1] A J H Simons, “The theory of classificati, part 7: A class is a type family”, in
Journal of Object Technology, vol. 2, no. 3, May-June 2008. 13-22.
http://www.jot.fm/issues/issue_2003_05/column2

[2] A JH Simons, “The theory of classifiben, part 8: Classifidgon and Inheritance”,
in Journal of Object Technologwol. 2, no. 4, JuhAugust 2003, pp. 55-64.
http://www.jot.fm/issues/issue_2003_07/column4

52 JOURNAL OF OBJECT TECHNOLOGY VoL. 3,NO. 1

http://www.jot.fm/issues/issue_2003_05/column2
http://www.jot.fm/issues/issue_2003_07/column4

ff—

[3]

[4]
[5]
[6]

A J H Simons, “The theory of cladsation, part 9: Inheritance and Self-
Reference”, inJournal of Object Technologyol. 2, no. 6, November-December N
2003, pp. 25-3ttp://www.jot.fm/isses/issue 2003 _11/column2

A Goldberg and D Robsorgmalltalk 80: The Language and its Implementation
Addison-Wesley, 1983.

W Cook, W Hill and P Canning, fiheritance is not subtypingRroc. 17th ACM
Symp. Principles of Prog. LandACM Sigplan, 1990), pp. 125-135.

W Cook and J Palsberg, “A denotatal semantics of inheritance and its
correctness”Proc. 4" ACM Conf. Obj.-Oriented Prog. Sys. Lang. and Appib.
Sigplan Notices, 24(10JACM Sigplan, 1989), pp. 433-443.

About the author

Anthony Simonsis a Senior Lecturer and Director of Teaching in the
Department of Computer Scienddniversity of Sheffield, where he
leads object-oriented research irrifreation and testing, type theory
and language design, developmenthuds and precise notations. He
can be reached atsimons@dcs.shef.ac.uk

VoL. 3,NO. 1 JOURNAL OF OBJECT TECHNOLOGY 53

http://www.jot.fm/issues/issue_2003_11/column2
mailto:a.simons@dcs.shef.ac.uk

