
This is a repository copy of The theory of classification - part 10: method combination and
super-reference.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79264/

Version: Published Version

Article:

Simons, A.J.H. (2004) The theory of classification - part 10: method combination and
super-reference. Journal of Object Technology, 3 (1). 43 - 53. ISSN 1660-1769

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 1, January-February 2004

Cite this column as follows: Anthony J.H. Simons: “The Theory of Classification, Part 10: Method
Combination and Super-Reference”, in Journal of Object Technology, vol. 3, no. 1, January-
February 2004, pp. 43-53. http://www.jot.fm/issues/issue_2004_01/column4

The Theory of Classification
Part 10: Method Combination and
Super-Reference

Anthony J H Simons, Department of Computer Science, University of
Sheffield, U.K.

1 INTRODUCTION

This is the tenth article in a regular series on object-oriented type theory, aimed
specifically at non-theoreticians. Recent articles have presented a formal model of
classification that differs from the conventional model of types and subtyping [1, 2]. The
popular object-oriented languages fall into two groups – those based on simple types and
subtyping, such as C++ and Java, and those based on polymorphic classes and
subclassing, such as Smalltalk and Eiffel [2, 3]. A programmer’s class has a formal
interpretation at the typeful level [2] and a concrete interpretation the implementation
level [3]. In the theory, we have been careful to distinguish classification from
inheritance.

Classification is the hierarchical relationship between classes, whereby one class is
judged to be a subclass of another, according to type rules governing subclassing [2].
Inheritance, on the other hand, is a short-hand mechanism for defining a new class in
relation to an existing class1, specifying what is new or different, and otherwise inheriting
all existing features [3]. This presents an interesting formal challenge. If inheritance is
indeed merely a short-hand, we should be able to prove in our theory that a class
constructed by inheritance is equivalent to a class defined as a whole, from first principles
[3]. This challenge is made more complicated by the possibility of method combination,
the merging of local and inherited versions of a method. Furthermore, Smalltalk and Java
can invoke inherited versions of methods through a pseudo-variable called super. So, our

1 Popular books on object-oriented programming sometimes confuse these notions, referring to the
hierarchical relationship as “inheritance”. Strictly speaking, inheritance is just the extension mechanism.
However, an inheriting class will typically be a subclass, but only by virtue of obeying the rules about
classification [2].

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_01/column4

THE THEORY OF CLASSIFICATION, PART 10:

METHOD COMBINATION AND SUPER REFERENCE

44 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

theory must be able to explain the meaning of super, and show how super-method
invocations are eventually equivalent to ordinary method invocations.

2 METHOD COMBINATION

So far, our treatment of inheritance and method overriding has assumed that individual
methods are always replaced as a whole. For example, in the previous article [3] we
replaced an equal method of a two-dimensional point:

 equal a λp.(self.x = p.x ∧ self.y = p.y)

in which self refers to a Point2D instance, by an equal method of a three-dimensional
point:

equal a λp.(self.x = p.x ∧ self.y = p.y ∧ self.z = p.z)

in which self refers to a Point3D instance. On the surface, the overriding method appears
to be syntactically quite similar to the method that was replaced. In most object-oriented
languages, programmers don’t have to write out such replacement methods long-hand;
instead the languages offer a short-hand mechanism for adapting the inherited version of
the method. The idea is that the overriding method may somehow reuse the code body of
the inherited method and need only specify what additional computations take place. This
is known as method combination.

In C++ and Eiffel, method combination is achieved simply by naming the local and
inherited versions of the method differently. In C++ it is always possible to qualify
method names globally by their owning class, in the style: ParentClass::method and
ChildClass::method. So, the redefined body of the Child’s method may invoke
ParentClass::method explicitly, by referring to its global name. In Eiffel, the name of a
method may be locally renamed when it is inherited, in the style: class Child inherit
Parent rename method as old_method … end. Then, the body of Child’s method may
invoke old_method. In both of these cases, invoking an inherited method inside a
redefined version is no different from invoking any other differently-named method.

Smalltalk and Java achieve method combination in a much more interesting way.
These languages have a pseudo-variable called super, which somehow allows a
programmer to invoke an inherited version of a method inside the redefined version of
the same method, without renaming the method. In the theoretical model, we can express
Point3D’s equal method more simply as:

equal a λp.(super.equal(p) ∧ self.z = p.z)

In this, super somehow stands for the current object in the context of the parent class.
Whereas an invocation self.equal(…) would call the local version, super.equal(…) is
deemed to call the inherited version of the same method. It is quite difficult to understand
exactly what object super refers to! By the end of this article, we hope to answer this

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 45

important question. However, one consideration is that the sub-expression:
super.equal(p) must eventually be shown to be equivalent to the portion of code in the
long-hand version of the method: self.x = p.x ∧ self.y = p.y.

3 RENAMING METHODS

To handle method combination in C++ and Eiffel, we must first consider how to rename
methods in the theoretical model. In C++, we could either decide that the global names
exist permanently as alternative, duplicate names for the same methods, or we could
introduce them on demand, when we want to combine methods. In Eiffel, however, we
must allow methods to be renamed locally, on demand, during inheritance. Recall that
inheritance is modelled as record combination in the theoretical model [3], in which a
base record is extended by combining it with a record of extra methods, to yield a derived
record:

derived = base ⊕ extra

Intuitively, we now want to rename methods in the base record, then combine this with
the extra record. For this, we need a renaming operator ®, and expect to use it in the
following way:

derived = (base ® renamings) ⊕ extra

in which renamings is a map from original labels to revised labels. In the same style as
the union with override operator [3], we may define the renaming operator to accept an
object record (a map from labels to methods) and a record of renamings (a map from
labels to labels) and return a new object record in which some labels have been replaced:

∀α, β . ® : (α→β) × (α→α) → (α→β)
® = λ(f:α→β).λ(g:α→ α).
 { k a v | ∀h ∈ dom(f) . v = f(h) ∧
 (h ∈ dom(g) ⇒ k = g(h)) ∧
 (h ∉ dom(g) ⇒ k = h) }

The top line is a polymorphic type signature [1], saying that ® takes two maps with the
individual type signatures (α→β) and (α→α), and returns a map with the signature (α→
β). The type α is the label-type, and β is the method-type in the object record. Note how
the object-type of the result is unchanged, reflecting that methods have merely been
renamed.

The full definition follows. This says that ® takes two argument maps, f and g (with
the given types) and produces a result map (the whole expression in braces). This result is

the set of all those maplets k a v that satisfy the following conditions (after the vertical
bar |). For all original labels h in the domain of the base object f, if h is also listed in the
domain of the renamings g, the resulting label k is equal to the translation g(h), otherwise

THE THEORY OF CLASSIFICATION, PART 10:

METHOD COMBINATION AND SUPER REFERENCE

46 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

k is equal to the original label h. The corresponding values v are always equal to f(h), as
in the original object map. Recall that f(h), g(h) denote range values by appealing to the
functional interpretation of maps: f(h) “applies” the map f to the domain value h, yielding
the corresponding range value.

We can use this operator to rename methods of an object. Here is a simple Point2D
instance:

aPoint2D = µ self . { x a 3, y a 5, identity a self,
 equal a λp.(self.x = p.x ∧ self.y = p.y) }

in which we wish to rename the equal method with a longer, qualified name, old_equal:

aPoint2D ® {equal a old_equal}
 = µ self . { x a 3, y a 5, identity a self,
 old_equal a λp.(self.x = p.x ∧ self.y = p.y) }

The renaming operator ® takes, as its operands, the object and a map of renamings (see
bold highlight), yielding an object in which the equal method has been renamed.

4 METHOD COMBINATION WITH RENAMING

This allows us to construct a model of inheritance with method combination supported
through renaming. The following is an expression to derive aPoint3D from aPoint2D by
renaming its equal method and then supplying a redefined version, which refers back to
the old version:

aPoint3D = µ self . ((aPoint2D ® {equal a old_equal}) ⊕
 { z a 2, equal a λq.(self.old_equal(q) ∧ self.z = q.z) })

The left-hand operand of the record combination operator ⊕ is a renaming expression
(see first bold highlight), in which the equal method is renamed before combination. The
right-hand operand of ⊕ is a record of extra methods, in which the redefined equal
method invokes the renamed method old_equal in its body (see second bold highlight),
thereby benefiting from the more succinct syntax offered by method combination.

We want to show that this method combination syntax is equivalent to a regular,
wholesale method replacement. Simplifying the renaming expression yields a base record
(see bold highlight):

aPoint3D = µ self . ({ x a 3, y a 5, identity a aPoint2D,
 old_equal a λp.(aPoint2D.x = p.x ∧ aPoint2D.y = p.y) }
 ⊕ { z a 2, equal a λq.(self.old_equal(q) ∧ self.z = q.z) })

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 47

which in turn may be combined with the record of extra methods (see [3]) to yield the
following unusual record, in which inherited self-references are resolved to aPoint2D,
while the local self is bound over aPoint3D:

aPoint3D = µ self . { x a 3, y a 5, z a 2, identity a aPoint2D,
 old_equal a λp.(aPoint2D.x = p.x ∧ aPoint2D.y = p.y),
 equal a λq.(self.old_equal(q) ∧ self.z = q.z) }

The resulting object has both the renamed method old_equal and the redefined version
equal. This is quite normal in languages with renaming. Note that we have deliberately
given these two functions different formal argument names, p and q, in order to observe
what happens to object references in the next stage. We now want to understand the
precise meaning of the redefined equal in detail. To do this, we may simplify the
embedded call to the old version of the method (see bold highlight above). This
simplification is equivalent to replacing the call by the inlined body of the old_equal
method, after substituting the argument {q/p}, viz the evaluation:

self.old_equal(q) ⇒ (aPoint2D.x = q.x ∧ aPoint2D.y = q.y)

This internal simplification is performed exactly like any other function simplification;
and may be thought of as an evaluation in which the call is replaced by the body after
arguments have been substituted. In this case, the actual argument q (a Point3D instance)
is substituted in place of the formal argument p (a Point2D variable) yielding the
simplified form:

aPoint3D = µ self . { x a 3, y a 5, z a 2, identity a aPoint2D,
 old_equal a λp.(aPoint2D.x = p.x ∧ aPoint2D.y = p.y),
 equal a λq.(aPoint2D.x = q.x ∧ aPoint2D.y = q.y ∧ self.z = q.z)
}

This demonstrates formally how the derived equal method does indeed compare all of the
x, y and z dimensions of the Point3D instance q. However, note how the body of this
method suffers from the same kind of schizophrenia that we have noted before [2, 3]
when dealing with simple object types. The local binding is self ← aPoint3D, whereas
the inherited self ← aPoint2D. After the internal simplification, the combined method is
comparing mixtures of 2D and 3D points for the equality of their x and y fields! For this
reason, we cannot yet regard this kind of method combination as wholly equivalent to
defining a replacement method wholesale.

5 FLEXIBLE METHOD COMBINATION WITH RENAMING

The problem is one of ensuring uniform self-reference in both local and inherited
methods. Recall that in Eiffel, self-reference is flexible, such that inherited occurrences of
self (known as current in Eiffel) are redirected to refer to the derived object. In the formal
model, this requires the use of an object generator to express the object definition [3]:

THE THEORY OF CLASSIFICATION, PART 10:

METHOD COMBINATION AND SUPER REFERENCE

48 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

genAPoint2D = λ self . { x a 3, y a 5, identity a self,
 equal a λp.(self.x = p.x ∧ self.y = p.y) }

This is different from a plain object in that self is a formal argument of the generator. As
such, we can bind it to different values, representing the different objects that self may
range over. Inheritance is modelled as an adaptation on generators [3]. We now add the
renaming scheme to this model:

genAPoint3D = λ self . ((genAPoint2D(self) ® {equal a old_equal})
 ⊕ { z a 2, equal a λq.(self.old_equal(q) ∧ self.z = q.z) })

The critical difference is in the way self-reference is modified, through the generator
application: genAPoint2D(self), yielding an adapted record in which self refers to the new
object. After simplifying the renaming-expression (see bold highlights above and below),
this yields:

genAPoint3D = λ self . ({ x a 3, y a 5, identity a self,
 old_equal a λp.(self.x = p.x ∧ self.y = p.y) }
 ⊕ { z a 2, equal a λq.(self.old_equal(q) ∧ self.z = q.z) })

and after record combination, this yields a result in which both equal and old_equal
methods co-exist, but all self-reference is now uniform:

genAPoint3D = λ self . { x a 3, y a 5, z a 2, identity a self,
 old_equal a λp.(self.x = p.x ∧ self.y = p.y)
 equal a λq.(self.old_equal(q) ∧ self.z = q.z) }

We now simplify the body of the equal method, by expanding inline the call to
old_equal:

genAPoint3D = λ self . { x a 3, y a 5, z a 2, identity a self,
 old_equal a λp.(self.x = p.x ∧ self.y = p.y)
 equal a λq.(self.x = q.x ∧ self.y = q.y ∧ self.z = q.z) }

This yields the final result (see highlights) in which self refers uniformly to the current
object. This is a satisfactory outcome, in that it meets our requirement that method
combination should be provably equivalent to redefining the method wholesale. Because
of its special treatment of current, Eiffel’s method combination with renaming follows
this semantics.

6 THE MEANING OF SUPER

However, it may be considered inelegant for objects to keep both the old and new
versions of a method. Having to rename methods is irksome and keeping both versions is
redundant, especially if you only want the old version once, during method combination.

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 49

For this reason, languages like Smalltalk and Java provide “one time access” to the
inherited versions of methods, when redefining the same methods, through a special
pseudo-variable called super:

equal a λp.(super.equal(p) ∧ self.z = p.z)

It is clear that super must refer in some sense to the current object, somewhat like self, yet
different from the point of view of method lookup. The operational explanation of super-
method invocation is typically that “the search for a method starts in the immediate
superclass of the class of self” [4]. Other attempts at describing super sometimes say that
it is “the inherited object” or “the embedded parent-part of the current object”. In fact, the
meaning of super is subtle and varies from language to language, as we shall show below.

We may construct a model of super from the operational description of method
lookup. The most obvious way of invoking the “next most general” version of a method
in our theory is to ensure that we select it from the “next most general” version of the
object-instance with which we are dealing. In other words, if our most recently derived
object is expressed as:

derived = base ⊕ extra

such that we would expect derived.method to invoke the latest version of some method,
then base.method should be the expression that invokes the next most general version of
the same method, skipping over any redefinition supplied in the extra record. From this
analysis, it seems clear that super is equivalent to the base object record, in a record
combination expression.

In the theory, this object is always supplied as the left-hand operand to the record
combination operator ⊕ (see bold highlights below). Recall that in record combination
with simple object records (see section 6 in [3]) we have:

aPoint3D = µ self . (aPoint2D ⊕ { z a 2,
 equal a λp.(self.x = p.x ∧ self.y = p.y ∧ self.z = p.z) })

which indicates that this operand is in fact equivalent to an instance of the base type. This
gives the meaning of super in Java, a language based on simple types and subtyping in
our theory. The variable super corresponds to the embedded parent-part of the current
object, self, or more exactly to the inherited parent-part before any fields are replaced
during record combination. It has the type super : Point2D and behaves exactly like an
instance of the base type, in that self-references in super-methods refer back to super.

On the other hand, in flexible record combination with object generators (see section
7 in [3]) we have the completely different left-hand operand:

genAPoint3D = λ self . (genAPoint2D(self) ⊕ { z a 2,
 equal a λp.(self.x = p.x ∧ self.y = p.y ∧ self.z = p.z) })

which is an adapted record, obtained by applying the base generator to the new self
reference (of the derived generator). This gives the exact meaning of super in Smalltalk, a

THE THEORY OF CLASSIFICATION, PART 10:

METHOD COMBINATION AND SUPER REFERENCE

50 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

language based on classes and subclassing in our theory. The variable super is like an
adapted instance of the parent type, in which self-reference is redirected to refer to the
current, derived object. It has an adapted type given by the application of a type generator
super : GenPoint3D[Point2D] and behaves differently from an instance of the base type,
in that self-references in super-methods refer to the whole of the current, derived object,
rather than to an embedded parent instance.

7 METHOD COMBINATION WITH SUPER-REFERENCE

In order to model method combination with super-reference in our theory, we need to
introduce the super variable, and bind it to a value standing for the (possibly adapted)
parent instance, such that we may refer to super throughout the record combination
expression, in the style:

super ⊕ { z a 2, equal a λq.(super.equal(q) ∧ self.z = q.z) }

The variable may be introduced as the formal argument of a function: λsuper.(…) which
is later bound to a suitable value. The order of variable introduction is dictated by the
need for super to be bound outside the scope of record combination, but inside the scope
of self:

aPoint3D = µ self . (λsuper . (super ⊕ { z a 2,
 equal a λq.(super.equal(q) ∧ self.z = q.z) })
 aPoint2D)

Here, the expression λsuper.(…) is a function, binding super, whose body is a record
combination expression that contains free references to super as intended. This super-
function is then applied to the value: aPoint2D. To verify that this is equivalent to
regular record combination, we may simplify the super-function application internally,
with the binding super ← aPoint2D, to obtain:

aPoint3D = µ self . (aPoint2D ⊕ { z a 2,
 equal a λq.(aPoint2D.equal(q) ∧ self.z = q.z) })

Firstly, we see that super is replaced by the desired parent object on the left-hand side of
the combination operator. Secondly, we find that super.equal(…) translates exactly into
an expression invoking the equal method of a parent instance, which is promising, since
it clearly skips the current version. To simplify this internally, we replace the call by the
inlined body of the parent’s method, after substituting the argument {q/p} as before.
After record combination:

aPoint3D = µ self . { x a 3, y a 5, z a 2, identity a aPoint2D,
 equal a λq.(aPoint2D.x = q.x ∧ aPoint2D.y = q.y ∧ self.z = q.z)
}

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 51

this yields a non-uniform solution similar to that in section 4 above, but without duplicate
versions of the equal method. This model of method combination explains the behaviour
of languages like Java, in which super always resolves to an instance of the immediate
parent type.

The more flexible kind of method combination with object generators may be
modelled as:

genAPoint3D = λ self . (λsuper . (super ⊕ { z a 2,
 equal a λq.(super.equal(q) ∧ self.z = q.z) })
 genAPoint2D(self))

in which the super-function is bound differently with super ← genAPoint2D(self). Note
in passing how self must be bound before we can bind super. This time, super does not
denote a parent instance, but rather an adapted object, the result of applying the parent
generator to self. To explore further what this means, we may simplify the super-function
application internally, yielding:

genAPoint3D = λ self. (genAPoint2D(self) ⊕ { z a 2,
 equal a λq.(genAPoint2D(self).equal(q) ∧ self.z = q.z) })

From this, it appears that the super.equal(…) invocation is equivalent to invoking equal
on an adapted parent object. This is quite subtle, because self-reference is redirected in
this object onto the new self of 3D points. We can illustrate this more graphically by
expanding super:

super = genAPoint2D(self3D)
 = { x a 3, y a 5, identity a self3D,
 equal a λp.(self3D.x = p.x ∧ self3D.y = p.y) }

From this, it is clear that super.equal will select the inherited equal method body, in
which self refers back to the local Point3D instance. Furthermore, super.equal(q) will
produce the argument substitution {q/p}, where q is implicitly a variable of the type
Point3D:

super.equal(q) ⇒ (self3D.x = q.x ∧ self3D.y = q.y)

When this subexpression is replaced in the body of the local equal method, we obtain a
combined equal method, which has consistent self-reference and an argument in the same
type:

equal a λq.(self3D.x = q.x ∧ self3D.y = q.y ∧ self3D.z = q.z)

Method combination using super-reference is thereby proved to be equivalent to
redefining the method wholesale. Note how the more subtle semantics of super is needed
for this to work out fully. Cook et al. were the first to identify this formal interpretation of
super in Smalltalk [5, 6], from the operational description of inheritance in that language.

THE THEORY OF CLASSIFICATION, PART 10:

METHOD COMBINATION AND SUPER REFERENCE

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

8 CONCLUSION

We have constructed four different models for inheritance with method combination.
Two involve the renaming of methods, in the style of C++ and Eiffel. Two involve the
use of the pseudo-variable super, in the style of Java and Smalltalk. While C++ and Java
have a simple model of inheritance, based on the extension of object records, Smalltalk
and Eiffel have a more subtle model of inheritance, based on the extension of object
generators. Hereafter in our theory, we shall refer to the simple extension model as
derivation, to distinguish it from “genuine” inheritance, in which self-references are
redirected to refer to more specific objects [3, 5].

Considering each approach to method combination individually, the first uses
derivation and renaming. The second uses inheritance and renaming, of which Eiffel is
the exemplar. The third uses derivation and super-reference, of which Java is the
exemplar. The fourth uses inheritance and super-reference, of which Smalltalk is the
exemplar. An even simpler model exists for C++, if we allow objects to have two names
for each method, one local and one global:

equal a λp.(self.x = p.x ∧ self.y = p.y)
Point2D_equal a λp.(self.x = p.x ∧ self.y = p.y)

and adopt the convention that only the local names are ever overridden. In this way, we
can express the combined equal method for Point3D as:

equal a λq.(self.Point2D_equal(q) ∧ self.z = q.z)

which simplifies in accordance with our first model, above. The method combination
strategies using inheritance were shown to be equivalent to wholesale method
replacement, demonstrating again the usefulness of the theoretical model. The model also
provided the pseudo-variable super with two semantic interpretations, corresponding to
the meanings of this variable in Java and Smalltalk. We also provided an original
renaming operator ® to account for Eiffel’s behaviour.

REFERENCES

[1] A J H Simons, “The theory of classification, part 7: A class is a type family”, in
Journal of Object Technology, vol. 2, no. 3, May-June 2003, pp. 13-22.
http://www.jot.fm/issues/issue_2003_05/column2

[2] A J H Simons, “The theory of classification, part 8: Classification and Inheritance”,
in Journal of Object Technology, vol. 2, no. 4, July-August 2003, pp. 55-64.
http://www.jot.fm/issues/issue_2003_07/column4

http://www.jot.fm/issues/issue_2003_05/column2
http://www.jot.fm/issues/issue_2003_07/column4

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 53

[3] A J H Simons, “The theory of classification, part 9: Inheritance and Self-
Reference”, in Journal of Object Technology, vol. 2, no. 6, November-December
2003, pp. 25-34. http://www.jot.fm/issues/issue_2003_11/column2

[4] A Goldberg and D Robson, Smalltalk 80: The Language and its Implementation,
Addison-Wesley, 1983.

[5] W Cook, W Hill and P Canning, “Inheritance is not subtyping”, Proc. 17th ACM
Symp. Principles of Prog. Lang., (ACM Sigplan, 1990), pp. 125-135.

[6] W Cook and J Palsberg, “A denotational semantics of inheritance and its
correctness”, Proc. 4th ACM Conf. Obj.-Oriented Prog. Sys. Lang. and Appl., pub.
Sigplan Notices, 24(10), (ACM Sigplan, 1989), pp. 433-443.

About the author

Anthony Simons is a Senior Lecturer and Director of Teaching in the
Department of Computer Science, University of Sheffield, where he
leads object-oriented research in verification and testing, type theory
and language design, development methods and precise notations. He
can be reached at a.simons@dcs.shef.ac.uk.

http://www.jot.fm/issues/issue_2003_11/column2
mailto:a.simons@dcs.shef.ac.uk

