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The Theory of Classification
Part 17: Multiple Inheritance and the
Resolution of Inheritance Conflicts

Anthony J H Simons, Department of Computer Science, University of
Sheffield, Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK

1 INTRODUCTION

This is the seventeenth article in a reguseries on object-oriented theory for non-
specialists. Using a second-ordecalculus model, we have previously modelled the
notion of inheritanceas a short-hand mechanism fefining subclasses by extending
superclass definitions. Initially, weconsidered the inheritance dfpe [1] and
implementation[2] separately, but later combined both of these in a modéyp=d
inheritance[3]. By simplifying the short-hand inhiéance expressions, we showed how
these are equivalent to canomnickass definitions. We alsshowed how classes derived
by inheritance are type compatible with theuperclass. Further aspects of inheritance
have included method combination [4],xmi inheritance [5] ad inheritance among
generic classes [6].

Most recently, we re-examined th® inheritance operator [7], to show how
extending a class definition (tiv@ensionof a class) hathe effect of resicting the set of
objects that belong tohe class (theextensionof the class). We also added a type
constraint to théd operator, to restrict the types fiélds that may legally be combined
with a base class to yield a subclass. By wmaryhe form of thisonstraint, we modelled
the typing of inheritance in Java, Eiff&++ and Smalltalk. Object-oriented languages
vary widely in their policies on inheritancBome, like Smalltalk, Objective C and Java,
only supportsingle inheritance whereby a class may have at most one parent class.
Others, like Flavors, Eiffel, CLOS and C+support multiple inhdtance, whereby a
class may have possibly mamarent classes. In this article, we consider first the
theoretical issues raised by combining multipiplementations. Then, we consider what
it means for an object to belong to multiple parent classes, defining the notraitipie
classification
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2  MULTIPLE RECORD COMBINATION

In the Theory of Classificationwe model objects as simptecords, whose fields map
from labels to functions, representing thaiethods. Inheritance is modelled as a kind of
record combination, in whickxtra fields are added to the fields ofparent object to
yield the desired union of fields in tiekild object:

child = parentd extra

In the resultingchild, fields obtained from thextra extension may replace similarly-
labelled fields obtained from thgarent modelling the notion of method overriding. This
is assured by the right-handed preference ofttlumion with override operator [2, 7].

In single inheritance, thehild obtains all the fields of itparent adding theextra
fields to these. Intuitively, in multiple inheritance, tfdld must somehow obtain all the
fields of multiple parents, adding tleetrafields to these. We cahink of this initially as
a kind of multiple record combination, in which the operatois used many times to
combine the fields of the parentsdathen combine this result with thgtrafields:

child = father® mother® extra

However, this establishes a particular kind of multiple inheritance, in which records are
combined in a strict left-to-right ordewith fields in the later records overriding
similarly-labelled fields of ta earlier records. Ehabove expression &valuated in the
order:

(father® mother)® extra

such that fields froomotherwill possibly override fields irfather, and then fields in
extra will possibly override fields in the rebuf the first combination. This rule is
similar to the multiple mixin combination &lavors [8, 5], and is most like the recency-
based superclass ordering rilem LOOPS [9]. The fieldshat you get in the result of
multiple inheritance expressions usi@gare critically dependerdn the order in which
you list the parent classes. But, as we shallssow, this is not the only strategy that
could be proposed; noriisperhaps the best strategy.

3  MULTIPLE INHERITANCE POLICIES

Theoretically, we start from the premise that ¢hédd should obtain at least the union of
the fields of itsmotherandfather. If there is no limit on the nunelp of parent classes, this
is adistributedunion, of the form:

parently parent2u parent3

The first design choice in amprogramming language is whethéis should be a simple
union, or a disjoint ummin of fields. In asimple unionfields with the same labels on both
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sides are merged, so that only one copy of a field is retaineddigjoat union fields
with the same labels on both sides are iclmed distinct, so they are not merged.

The simple union policy is usually adopted the grounds thamique names should
be chosen for fields everywhere, since thmesaname should always refer to the same
property. It is perhaps the most theordlycz@hallenging option, since it requires an
automatic rule for merging fields. Every timeawersions of a field with the same label
are encountered, one must be preferred over the other, usually by determining the order
of precedence among ancestor classes. Object-oriented languages have proposed many
strategies for this, ranging from simple class-order [8, 9] to @phisticated topological
sorting algorithms for linearising the multipleheritance graphlp, 11]. Languages with
automatic inheritance policies includdavors [8], LOOPS [9] and CLOS [11].

The disjoint union policy is usually adopted on the grounds that field-names were ill-
chosen and therefore both inhed versions of the field arequired in the child. This is
the default policy in C++ [12] and for identlalabelled fields introduced at multiple
points in Eiffel [13]. This policy gives rise @mbiguity when fields are accessed in the
scope of the child. In C++, the two fields must be qualified explicitly by the name of each
parent, to resolve the ambiguity, whereagiffiel, the programmer must rename one or
other of the conflicting fieldsn the child’s inheritance clause. A benefit of the disjoint
union policy is that the fieldsf a child may always be cqmated locally from the fields
of its immediate parents,ithout worrying about the order in which its more distant
ancestors were declared. A disadvantage isithatitance graphs i fork-join patterns
will give rise to unnecessary duplications falds that were declared in a common
ancestor.

For this reason, Eiffel distinguishes the ‘®aped inheritance” of the same field, via
multiple paths from a common ancestor, from the “multiple inheritance” of two distinct
fields with the same names [13]. The défaule is to merge the common “repeatedly
inherited” field. (The same effect can be iavled in C++ by using “virtual base classes”,
although this is a less elegant mechanisaguired by the language’s implementation
strategy).

Merging or recombining fields is a compléssue. Over the years, object-oriented
languages have proposed many different kimfdautomatic rule for combining multiple
parent classes. We shall consider av feere, to uncover #r advantages and
disadvantages.

LOOPS computes a local precedence ordertie immediate parent classes. The
child’s fields take priority over the first parent’s fields, which take priority over the
second parent’s fields, etc., on the basis thdtild is “more like” its nearer parents than
its distant ones [9]. Similarly, Flavors comesita global order for all classes, by merging
all the local precedence orders (as defineolva) and any duplicated classes in this list
are eliminated, retaining the most recent copgrest to the front. However, if the local
orders are found to be globally inconsistdat example by requiring class A to precede
class B and, at the same time, class B taqite class A, the definin is rejected [8].
Both of these adopt recency-based criterracfioosing which field to retain, rather like
Touretzky’s “inferential distance” algorithm4}, according to which a class retains the
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version of the field that was defined clasés it in the inhetance graph. Where the
graph forks and joins, all paths leading up to the joins are explored before the path
beyond the join is considered.

In CLOS [11], all possible ordered pairsaddsses are computed, such that the child
precedes each of its parents separately, arahisaprecede each other pairwise according
to their local ordering declared in thehild. A topological sding algorithm then
computes a global order for all classes, presgrthe pairwise consiints. Again, if no
globally consistent order can be found, the mgdin is rejected 10]. The aim of this
precedence-based scheme is to preserve, as much as possible, the local ordering of
parents in a class, whether or not the clagacluded as the ancestor of another class.
However, even this sophisticated algoritfon linearising the multiple inheritance graph
delivers counter-intuitive results for certairitiges [15]. If inheitance is only a local
short-hand for a canonical class definition, Way a child class inherits from its parents
should not depend on unexpeciateractions between thedwsring of its more distant
ancestors (see arguments 18], especially pages 246-250).

4  INHERITANCE CONFLICT RESOLUTION

The Theory of Classificationadopts a particular “refence model” of multiple
inheritance, which captures aspects of bo¢hahitomatic and explicitly-specified policies

on multiple inheritance. The compromise is motivated by examining the nature of
inheritance conflicts. Amheritance conflicarises when a clagbtains the same named
method from more than one parent — the ltggm of this conflict determines which of
these methods (perhaps both) should bzorporated in the dld. We distinguish
accidentalandrecombinaninheritance conflicts.

e An accidentalconflict arises from inheriting tavsemantically distinct methods,
introduced in two places, which accidentally have the same name.

e A recombinantconflict arises from inheritingwo semantically related methods,
which were originally introduced at angie point in the multiple inheritance
graph.

As discussed above, an object-orientedgleage may prefer tanerge conflicting
definitions (simple union) or preserve both folist union). Disjoint union really exists to
support the resolution of accidental conflictWe consider it inappropriate for the
fundamental theoretical modtl have to rectify poor namg conventions! Instead, we
assume that accidental conflicts can bsohke=d by renaming one of the conflicting
methods throughout, in the class hietgr (here, perhaps better calledederarchy since

it is a full directed, acyclic graph). Bymmving accidental conflicts, our model only has

to provide for the resolution sEcombinant conflicts, by sinfgounion. But this is harder
than at first it seems. We do not simply want to achieve Eiffel's “repeated inheritance”,
but also want to recognise that the commefidfimay have been redefined in either, or
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both branches leading to the parents. Semantically, this is still the “same” operation
(albeit in a refined form). -

Ideally, a child class should be a determinisynthesis of the most specific aspects
of its parent classes, without undue prejudice to either parent. This is what is wrong with
existing automatic inheritance schemes: tliesce the programmeto prioritise one
whole parent class before the other, whereas what we really desire is a scheme that
prioritises individual methods, by recency tbkir definition. However, we think it is
inappropriate for objects to have to r@asabout the points at which methods were
introduced in the inheritance graph, since this mitigates against the “locality” of
inheritance expressions. The following easnay therefore be distinguished:

e the father and mother classes may hawefields in common; in which case
multiple inheritance should lead to tlstraightforward concatenation of their
fields;

e the father and mother classes may have some commonly-thbeltts, which are
pairwise identical, since they are inherited from a common ancestor; in which
case only one copy of each of these should be retained,;

e the father and mother classes may hesmmonly-labelled fields which ameot
pariwise identical, due to fther specialisation in one ather parent since their
introduction; in which case automatic selection is impossible.

In the last case, even thouglettesire is to select the stospecific redefinition of a
method, a system that only has local knowledfy¢he immediate pants cannot detect
which of the versions of this method svaedefined most recently. Instead, the
programmer must specify explicitly which method should be retained (sometimes a
combination of both).

5 SYMMETRICAL COMBINATION

A variant of the® operator is defined below to allow the construction of multiple
inheritance expressions. The neymmetricalrecord combination operator is writtén
and its specific character is that it treatth its left- and righhand operands fairly,
rather than preferring its right-hand operand, I&e It is defined to obey the three
principles described above in section 4. Whigrcan determine which field to select, it
does so; and where it cannot, it leaves theltre§the combination undefined, so that the
programmer may later choosepécitly which field to incude in the child class.

The symmetrical operato® is actually a short-hand for a typed second-order
polymorphic function calledherge designed for merging twgarent classes fairly:
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merge VFather.v(MotherM Father). Father» Mother— (Fatheran Mother)
= AFatherA(MotherM Father)A(father : Father).(mother : Mother).
{ label value | (labek dom(father)o dom(mother)x
(labele dom(father)x labele dom(mother}=
(father(label= mother(label)= value = father(label))
(father(label)* mother(label}= value =1)) A
(labele dom(father)x labelg dom(mother)=
value= father(label))x
(labelg dom(father)x labele dom(mother)=
value = mother(label)) }

This says that “two recordather andmotherof the respective typdsather andMother
may be merged, if these typedislg a merging type-constraifd. The result of the
merger is a map containing the union of fieladsm both parents, iwhich fields unique
to thefather or to themotherare inherited unchanged, Higlds common to botfather
and motherare tested to see if their values areniital. If they are, then one copy is
retained (the father’s), but they are not, then ¢hresult of the mesrg is undefined.” In
the above definition,. denotes the undefined value &action-call expressions like:
father(label) denote thevalue stored opposite thiabel in the father object, which is a
map from labels to values. This definition uses the type consiiathat was introduced
in the previous article [7], which says that two record types may be merged if their
common fields have the same types. Tikissufficient for second-order polymorphic
typed inheritance, adopted in thieory of Classificatiofiz, 1].

We can now define thsymmetrical operat@® in terms ofmerge
V. Ve. ®p .= mergef,e]

This creates a simply-typed version®ffor each pair of records we wish to combine.
Really,® is just a short-hand fanergewith two types already supplied. To see h®w
works, we will seek to constructpmint3D object by combining a two-dimensionadint
object withzcoord a mixin object representing the thilimensional coordinate. Initially,
we shall just observe the operation®in isolation:

point =puself.{x — 2, y— 3, equal> Ap.(self.x = p.xa self.y = p.y}
zcoord =uthis.{z+ 5, equal> Aq.(this.z = q.2)}
point3D = point® zcoord = {X — 2,y 3, z— 5, equal> 1}

In this initial examplepoint3D is constructed by merging the definitions of the two
parent objectspoint and zcoord The result contains copies of the unique methods
inherited from both parents, but tequalmethod was defined in bogioint andzcoord

so by the definition of®, the body ofequal is undefined. This idbecause we cannot
automatically determine which version thle method we should inherit (we assume by
convention thatequal was declared at a single point the inheritance graph, and is
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intended to stand everywhere for the saseenantic operation; although the calculus
cannot determine this). -

Now, the example was deliberately choseilltstrate a further aspect of automatic
multiple inheritance that is not usually coresield in object-oriented languages. It would
in fact be a mistake to prefer one version of éqeal method over the other; what we
really desire is to inheriboth parent methods, suitably combined. We may use method
combination [4], of the kind used to e&api super-method invocation, to achieve this:

genPoint =Aself.{x > 2, y—> 3, equal> Ap.(self.x = p.xa self.y = p.y}
genZcoord =\this{z+— 5, equal> Aq.(this.z = g.z)}

genPoint3D sume.(father.rmother(father® mother

@ {equal— Ar.(father.equal(rh mother.equal(r)) )
genPoint(me) genZcoord(me) )

= amedx— 2,y 3, z— 5,
equal> Ar.(me.x = r.xA me.y =r.ya me.z =r.z)}

The revised example uses generators instéaabjects, because we wish to unify self-
reference in the manner explained in the eaddirticle [2]. The two parent objects are
created usinggenPoint(me)and genZcoord(me),where me is the self-reference
introduced bygenPoint3D These parent objects are bounternally to the variables
fatherandmother in exactly the same way that we bound an inherited objesttpterin
[2]. There is no reason why we should not have many super-objects in multiple
inheritance; and this is what opens theywa novel kinds of method combination. The
multiple inheritance expression is resolved by first combifatiger ® mother Since this
yields an undefined body for tlegual method, the child object now specifies explicitly
how to combine the two inherited rgeons: it is the logical-and of thiather’'s and
mother’'simplementations foequal The new version oéqualis given in a record of
additional methods, to be added to thegee of the parents, using the us@abperator.
After combination, it will ovende the undefined placeholder fequal yielding the
desired version aéqualfor a 3D point.

The notion of multiplesuperobjects has not been uskdfore in any mainstream
object-oriented language. It is powerfuloeigh to model any kindf explicit method
recombination, whether preferrinige left-hand or right-hand x&on, or, as in this case,
creating a fusion of bothin C++, you can get a similaffect by defining a method which
explicitly calls both parent methods, qualifgi these by their owninglasses. In Eiffel,
the same effect may be achieved by a doatmn of renaming and redefining. There is
no limit on the number auperobjects, sinc&® may be used to combine any number of
parents fairly, whose common methods nteey accepted, refused or combined in all
possible ways in the child.
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6 MULTIPLE CLASSIFICATION

Turning now to the issue of types, intuély the type of the child object must be
compatible with the types of each of its pdse In the first-order subtyping model (c.f.
Java, C++), we may express this asdwal subtyping conditionwhich yields an
interesting result in terms of type intersections:

(Child <: Fathern (Child <: Mother)= Child <: (Fathen Mother)

“If the Child is a subtype of thEatherand also of thdlother, then theChild is a subtype

of the intersectichof the Father andMother types.” Type intersections were introduced

in the previous article [7]. We showed hamerging two objectypes results in a new

type whose extension-set is the intersection of the extension-sets of the original two
types. The extension of tl@hild type is a subset of eachitd parents’ extensions, which

fits nicely with tre idea that all theChild’s instances should alsbe considered as
belonging to thé-ather'sandMother’stypes.

parent class multiple inheritance describes
intersecting volumes in the
space of types, with fixpoint
child class types at each apex

parent type

child type

Figure 1: Multiple inheritance describes intersecting volumes

In the more sophisticated second-order mpetaic typing model [1, 3] (c.f. Eiffel,
Smalltalk) there is a similar result which we can express using type generators:

V1. (t <: GenFathet]) A (t <: GenMotherf]) =
1 <: (GenFathet] A GenMotherf])

“If the self-type t is a pointwise subtype ddll types created using th@enFather
generator and also ofll dypes created using th&enMothergenerator, then it is a
pointwise subtype of all intsection types created simultaosly from both generators.”

! The symboh is overloaded here to mean logical-and and type intersection. An intersection type contains
the union of the fields of the two record type arguments.
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The intersection type in the result is basicdike the merger otwo record types, in

which t has been replaced in turn by each self-type that satisfies the F-bound of both N
parents’ generators. Theorstrained type expressionyt <: GenFatheftr] A

GenMothefr] is a new kind of F-bound, describirgfamily of types that occupy the

intersection of the volumes de#ed separately by each oktparent generators. Regular

readers will recall that such a “space of types” is equivalent to the notioriagsin the

Theory of Classification

We can visualise this in figure 1. Heregthwo parent classesre illustrated as
intersecting cones. The volume where theyrgget is the resultinghild class you obtain
by merging the two parents by multiple inheritance. (If the child were to add further
methods, it would form a slightly smalleoree nesting inside the intersection volume).
While polymorphic classes are represdntey volumes, exact simple types are
represented by points. If we recall that a €lesa family of structurally-similar types,
then all the exact types witha given volume satisfy tHe-bound of the related generator
and so possess at least theo$ehethods described in tigenerator’s body. A type which
resides inside the intersection volume themefpossesses at ledlse methods of both
generators.

In figure 1, the point at the apex of a caepresents the least type that is still a
member of that class. Mathematically, teimple type is the fixpoint of the generator
used to describe the class. For multiple parent classes, we may describe this as:

Father =Y GenFather, Mother ¥ GenMother

but what is the least type that sits just inside the intersection volume (see figure 1)? This
is the least type of the child clagdathematically, we may create thizhild type by
merging the generators of the two paremtd then taking the fixpoint of the result:

Child =Y Art.(GenFather] A GenMotherf])
The leastChild type is exactly the fixpoint of thgpie generator integstions (extensional
definition). In other words, this is thexpoint of the generator obtained by taking the
union of the fields of both parent generators (intensional definition), after unifying the
self-typet. TheChild type satisfies the F-bounds for each of its parent classes:

Child <: GenFather[Child], Child <: GenMother[Child]
and the leasthild is exactly equivalent to the type intersection:
Child = GenFather[Childp GenMother[Child]

by the fixpoint theorem. So, all the formptoperties that were established in earlier
articles for classes nesting in a single sifasation hierarchy [1,3] also apply in a
uniform way to overlapping classes creatednmyltiple inheritancelt is pertinent to
describe this notion aswltiple classificationthe idea that an object may have a type
belonging simultaneously to more than one overlapping class.
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7 CONCLUSION

In this article, we have developed a fldgillormal model for multiple inheritance. By
comparing existing programming language meder resolving inheritance conflicts
automatically and then contrasting these watbdels that rely on explicit resolution by
the programmer, we came up with a compsEmthat resolves fork-join “repeated
inheritance” automatically, but relies on a form of explicit super-method combination to
resolve other cases where the methods to be recombined have been redefined at some
point in the inheritance gpa. Reasoning globally about tpeints at which methods are
introduced could also resolve this automdlycebut we considered this inappropriate,
since it conflicts withthe view that inhetance should be a locahort-hand for defining
classes incrementally by extension fromiitsnediate parents. We excluded accidental
name conflicts from the formal model, oretgrounds that these could be solved simply
by renaming one or other method sysaéinally in the inheritance graph.

Multiple inheritance is different from dimary inheritance, because it involves
symmetrical merging as well as asymmetric extension. To merge multiple parent classes
fairly, a different combination operat@& was defined, which treats both of its operands
symmetrically. It constructs records contamithe union of distinctly-labelled fields,
merges identically-labelled fields that mapidentical values, andetlares the result of
the merger to be undefined otherwise. Tikishe only sensible &mmatic choice, given
that the programmer might wisb retain the left-hand, right-hand, or possibly a fusion of
both versions of the method in the resultaigld. The latter option has not been treated
before in conflict-resolution schemes. The oper&owas defined as a set of simply-
typed operators created by instatitig a polymorphic typed functianerge in the same
way that® was defined out aéxtendin the previous article [7].

Finally, it was shown that objects credtly simultaneous extension from several
parents have types which belong to multiple classes, ihbery of ClassificationThe
notion of multiple classification was visualised as creating intersections in the space of
types, satisfying natural intuitions abdaglonging to more than one class.
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