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Growth-optimal portfolios under transaction costs

Jan Palczewski∗ Łukasz Stettner†

July 21, 2007

Abstract

This paper studies a portfolio optimization problem in a discrete-time

Markovian model of a financial market, in which asset price dynamics de-

pend on an external process of economic factors. There are transaction costs

with a structure that covers, in particular, the case of fixed plus proportional

costs. We prove that there exists a self-financing trading strategy maximizing

the average growth rate of the portfolio wealth. We show that this strategy

has a Markovian form. Our result is obtained by large deviations estimates

on empirical measures of the price process and by a generalization of the

vanishing discount method to discontinuous transition operators.

Keywords: portfolio optimization, transaction costs, growth rate, logarithmic

utility, impulsive strategy

1. Introduction

Researchers and practitioners have long been aware that Markovian models of as-

set price dynamics, such as the Cox-Ross-Rubinstein model or the Black-Scholes

model, have significant deficiencies related to non-stationarity of the financial mar-

ket. They observed that the volatility and the expected rate of return of asset prices

are not constant but depend on an economic situation, which may change over

longer time spans. As a remedy, they introduced additional processes modeling

vital market variables, such as market trend or price volatility. However, a uni-

fied framework has only recenly been introduced and has attracted a lot of interest

(see eg. [5], [6], [12], [26], [25], [31]). Existing literature concentrates mainly on

continuous-time diffusion models. Bielecki et al. [6] solve an asset management

problem where economic factors, as those additional market variables are called,

form a diffusion that is independent of the Brownian motion governing the price
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process and they affect only the drift of the price process. Fleming and Sheu [12]

allow both processes to have dependent Brownian motions but their diffusions are

of a special form. Palczewski and Stettner [26], though, assume only that asset

prices and economic factors follow one general continuous-time Markov process

and prove results concerning optimal portfolio selection for infinite time disounted

performance functional under transaction costs.

In the present paper we study a portfolio management problem in which per-

formance is measured by an average growth rate of the portfolio wealth. We work

within a discrete time framework which allows us to overcome limitations and tech-

nicalities of the existing theory of continous time Markov processes and impulsive

control. The market consists of d assets, whose prices are, in general, interdepen-

dent. Their dynamics are affected by a process of economic factors, which is a

Markov process on a Polish space (for details see Section 2). We assume that as-

sets cannot go bankrupt (their prices are positive). We impose costs of performing

transactions. These costs, in the simplest, consist of a fixed part, independent of

the transaction, and a proportional part, depending on the volume and the type of

assets sold or purchased (see (4), (5) and the following discussion). This type of

transaction costs prevents continuous trading in continuous-time models (see e.g.

[26]) and emulates existing market mechanisms. The framework of this paper cov-

ers more general transaction costs structures as well (see Section 6). Performance

of a portfolio Π is measured by the funtional

J(Π) = lim inf
T→∞

1

T
E lnXΠ(T ), (1)

where XΠ(T ) is the wealth of the portfolio Π at time T . This functional com-

putes an average growth rate of the portfolio Π as can be seen from the following

reformulation of the above formula:

J(Π) = lim inf
T→∞

1

T
E

T−1
∑

k=0

ln
XΠ(k + 1)

XΠ(k)
. (2)

The aim of this paper is to find a portfolio that maximizes the value of (1). This is an

infinite-time counterpart of the logarithmic utility maximization, which is widely

used in the economic and financial community, where optimal portfolios are ref-

ered to as log-optimal or growth-optimal. For a broader treatment see textbooks

[10], [24]. In mathematical context the research goes back to Kelly (see [21], [32])

and has continued in discrete time ([3]) and continuous time ([1], [2]) up to today

([13], [17], [27]). Functional (1) can also be seen as a risk sensitive functional and

the literature is here broad as well ([6], [22], [31]). It should be stressed that the

majority of papers considers continuous time diffusion models, where an optimal

strategy is obtained as a solution to an appropriate HJB equation, usually reformu-

lated in a variational form. Consequently, the results are based on a sophisticated

theory of PDE’s and solutions usually do not use directly probabilistic properties

of the phenomena under study. Moreover, due to complexity of the studied PDEs

the results are often of existential form.
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In this paper, we approach the optimization problem (1) from a probabilistic

point of view. We prove that there exists a self-financing portfolio strategy max-

imizing the growth-rate (1). We show that this trading strategy has a Markovian

form, i.e. an investment decision at time t is based only on the state of asset prices

and economic factors at t. Main additions to the existing theory are transaction

costs with a fixed term and a general form of dependence of asset prices on eco-

nomic factors. As far as we know there is no paper that treats this type of problems

in such generality.

Our study depends strongly on the reformulation (2) of the performace func-

tional. It exposes the Markovian structure of the functional and allows application

of the theory of optimization of long-run average cost functionals. A survey of

standard methods for long-run average cost functionals is in [4]. We will, however,

borrow from a new technique invented by Schäl [29], who initiated use of Bell-

man inequalities leading to significantly more general results. His ideas thrive in

[16] (weighted norms), [14] (stochastic games) and recently in [19]. Those results

strongly depend on continuity properties of the controlled transition operator of the

Markov process under consideration. In this paper we show that the above ideas

can also be used in the study of problems which violate the continuity assumptions.

Moreover, following [19] we are able to remove a requirement for the state space

to be locally compact as is needed in the seminal paper [29]. This significantly

generalized the applicability of this framework to incomplete information case (for

details on the incomplete information model see Section 6 and [25]).

The paper is organized as follows. In Section 2 we introduce the model. We

specify the dynamics of asset price process and the form of transaction costs. We

introduce a process representing proportions of the portfolio wealth invested in the

individual assets and we reformulate the initial problem in terms of proportions.

This reformulation plays a major role in the paper.

Section 3 sees main assumptions presented. We prove ergodicity results and

large deviation estimates on empirical measures of the price process. They give a

new insight into the dynamics of the price process.

The study of value functions of discounted functionals related to (2) is pursued

in Section 4. A few important technical results on the consequences of the trans-

action costs are stated (their proofs are in Appendix). They are used to build a

relation between value functions for the discounted problems with and without the

fixed term in the transaction costs structure. It is a starting point for derivation of

the Bellman inequality, which is performed in Section 5. At this stage we also deal

with the lack of continuity of the controlled transition operator. We prove the exis-

tence of a growth-optimal strategy and show its form. We also relate the results to

the case without constant term in the transaction costs structure (see [31]).

Section 6 presents extensions of our results to other transaction costs structures

and shows how existing results can be used in the case of incomplete observation

of economic factors.
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2. Preliminaries

The market model is constructed on a probability space (Ω,F , P). Prices of d
assets are represented by the process

(

S(t)
)

t=0,1,...
, S(t) =

(

S1(t), . . . , Sd(t)
)

∈
(0,∞)d. Economic factors are modeled by a time homogeneous Markov process
(

Z(t)
)

t=0,1,...
with values in a Polish (separable, complete, metric) space E with

Borel σ-algebra E . The dynamics of the price process are governed by the equation

Si(t + 1)

Si(t)
= ζi

(

Z(t + 1), ξ(t + 1)
)

, Si(0) = si > 0, i = 1, . . . , d, (3)

where
(

ξ(t)
)

t=1,2,...
is a sequence of i.i.d. random variables with values in a Polish

space (Eξ, Eξ) and functions ζi : (E, E) × (Eξ, Eξ) → (0,∞) are Borel measur-

able, i = 1, . . . , d. We assume that
(

S(t), Z(t)
)

forms a weak Feller process, i.e.

its transition operator transforms the space of bounded continuous functions into

itself. In the sequel we shall write ζi(t) for ζi
(

Z(t), ξ(t)
)

, and ζ(t) for the vector
(

ζ1(t), . . . , ζd(t)
)

, whenever it does not lead to ambiguity.

Let
(

Ft

)

be a filtration generated by
(

S(t), Z(t)
)

. It represents the knowledge

of an investor observing the market. Therefore, in general, it depends on the start-

ing point of the process
(

S(t), Z(t)
)

. Due to (3) the filtration is in fact independent

of S(0). It depends only on the initial value z of the process
(

Z(t)
)

, and to stress

this dependence it will be denoted by
(

Fz
t

)

.

Fix s ∈ (0,∞)d and z ∈ E, the initial values of processes
(

S(t)
)

and
(

Z(t)
)

. A

trading strategy is a sequence of pairs
(

(Nk, τk)
)

k=0,1,...
, where τ0 = 0, (τk)k=1,2,...

are
(

Fz
t

)

stopping times, and τk+1 > τk, k = 1, 2, . . .. Stopping times (τk),
k ≥ 1, represent moments of transactions, whereas τ0 = 0 is only introduced for

convenience of notation. The number of shares held in the portfolio in the time

interval [τk, τk+1) is denoted by Nk, which is an Fz
τk

-measurable random variable

with values in [0,∞)d. Hence, N0 is a deterministic initial portfolio.

The share holding process is given by

N(t) =

∞
∑

k=1

1t∈[τk ,τk+1)Nk, t ≥ 0.

In what follows we shall consider transaction costs of one of the forms

c̃(η1, η2, S) =

d
∑

i=1

(

c1
i S

i(ηi
1 − ηi

2)
+ + c2

i S
i(ηi

1 − ηi
2)

−
)

+ C, (4)

c̃(η1, η2, S) = max

(

C,

d
∑

i=1

(

c1
i S

i(ηi
1 − ηi

2)
+ + c2

i S
i(ηi

1 − ηi
2)

−
)

)

(5)

where c1
i , c2

i ∈ [0, 1) are proportional costs, C ≥ 0, S stands for the asset prices

at the moment of transaction, η1 denotes the portfolio contents before transaction,
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and η2 – after transaction. We impose a self-financing condition on portfolios, i.e.

Nk · S(τk) = Nk−1 · S(τk) + c̃
(

Nk−1, Nk, S(τk)
)

, k = 1, 2, . . . . (6)

Notice that due to the lower bound C on the transaction costs function, transactions

cannot be executed if the wealth of the portfolio is smaller than C. It is also clear

that (6) depends on the initial value (s, z) of the process
(

S(t), Z(t)
)

.

For the clarity of presentation, we shall restrict our attention to the costs of the

form (4). However, all the results are easily modified to fit (5), and, in fact, they

extend to a larger family of transaction costs structures, see Section 6.

In the case of no transaction costs or proportional transactions costs it is natural

to reformulate the problem in terms of proportions as it transforms the set of con-

trols (possible portfolios) to a compact set, which faciliates matematical analysis.

In our more general framework, we shall also benefit from this reformulation.

Denote by X−(t) the wealth of the portfolio before a possible transaction at t
and by X(t) the wealth just after the transaction:

X(t) = N(t) · S(t),

X−(t) = N(t − 1) · S(t).
(7)

If there is no transaction at t both values are identical. In a similar way, for

i = 1, . . . , d, we construct two processes representing proportions of our capital

invested in the asset i:

πi(t) =
N i(t)Si(t)

X(t)
,

πi
−(t) =

N i(t − 1)Si(t)

X−(t)
.

(8)

Since short sales are prohibited we have π(t), π−(t) ∈ S, where S is the unit

simplex in R
d:

S = {(π1, . . . , πd) : πi ≥ 0,

d
∑

i=1

πi = 1}.

Denote by S0 the polyhedral set generated by S:

S0 = {(π1, . . . , πd) : πi ≥ 0,

d
∑

i=1

πi ≤ 1}

and let g : S0 → S be a projection from S0 to its boundary S

g(π1, . . . , πd) =
( π1

∑

πi
, . . . ,

πd

∑

πi

)

.

Define

c(π−, π̃) =

d
∑

i=1

(

c1
i (π̃

i − πi
−)+ + c2

i (π̃
i − πi

−)−
)

.
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The self-financing condition (6) can be written as

X−(τk) = X(τk) + X−(τk)
(

c
(

π−(τk), π̃k

)

+
C

X−(τk)

)

, k = 1, 2, . . . (9)

for some π̃k ∈ S0 such that π(τk) = g
(

π̃k

)

. From (6) one can deduce that π̃k =
X(τk)

X−(τk)π(τk) satisfies (9).

Given π−, π ∈ S, x− > 0 define a function

F π−,π,x−(δ) = c
(

π−, δπ
)

+
C

x−
+ δ.

Equation (9) can be written equivalently as

F π−(τk),π(τk),X−(τk)
(

d
∑

i=1

π̃i
k

)

= 1.

The following lemma states a crucial property of F that will be used to reformulate

the self-financing condition.

LEMMA 2.1. There exists a unique function e : S × S × (0,∞) → [0, 1], such

that

(1) if e(π−, π, x) > 0, then F π−,π,x−
(

e(π−, π, x−)
)

= 1,

(2) e(π−, π, x−) = 0 if and only if the equation F π−,π,x−(·) = 1 has no

solution in (0, 1].

Moreover, e is continuous.

Proof. The proof is rather straightforward and resembles the proof of Lemma 1 in

[31].

Let
(

(Nk, τk)
)

be a self-financing trading strategy and let π−(τk), π(τk) be

defined as above. By virtue of Lemma 2.1 for any k ∈ N we have

F π−(τk),π(τk),X−(τk)
(

e
(

π−(τk), π(τk), X−(τk)
)

)

= 1

and
X(τk)

X−(τk) = e
(

π−(τk), π(τk), X−(τk)
)

. Second assertion is a consequence of

the uniqueness of e and equation (9). Therefore, any transaction can be described

solely by means of proportions π−(τk) and π(τk), and the portfolio wealth X−(τk).
Consequently, any trading strategy has a unique representation in the following

form: the initial wealth x− = N0 · S(0), the initial proportion

π− =

(

N1
0 S1(0)

N0 · S(0)
, . . . ,

Nd
0 Sd(0)

N0 · S(0)

)

,
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and
(

(πk, τk)
)

k=1,2,···
, where πk is the post-transaction proportion represented by

an S-valued Fτk
-measurable random variable. Indeed, define the corresponding

pre-transaction proportion process π−(t) by

π−(0) = π−,

π−(t) = πk ⋄ ζ(τk + 1) ⋄ . . . ⋄ ζ(t), τk < t ≤ τk+1,
(10)

where for simplicity of the notation we have τ0 = 0 and

π ⋄ ζ = g(π1ζ1, . . . , πdζd), π ∈ S, ζ ∈ (0,∞)d. (11)

The corresponding post-transaction proportion process is given by

π(t) =











π−, t = 0 and τ1 > 0

πk, t = τk

πk ⋄ ζ(τk + 1) ⋄ . . . ⋄ ζ(t), τk < t < τk+1

. (12)

At the moment τk the pre-transaction wealth X−(τk) is diminished to

X(τk) = X−(τk)e
(

π−(τk), π(τk), X−(τk)
)

.

Furthermore,

X−(t + 1) =

d
∑

i=1

πi(t)X(t)

Si(t)
Si(t + 1) = X(t)

(

π(t) · ζ(t + 1)
)

.

Consequently,

X−(t) = X−(0)

t−1
∏

s=0

(

π(s)·ζ(s+1)
)

∞
∏

k=1

(

1τk<te
(

π−(τk), π(τk), X−(τk)
)

+1τk≥t

)

,

(13)

which finishes the construction of the correspondence between the primal defini-

tion of a trading strategy with the share holding process N(t) and the equivalent

form with proportions. Notice that due to our reformulation, the self-financing

condition no longer depends on the initial value of the asset price process
(

S(t)
)

.

Let Az be a set of sequences
(

(πk, τk)
)

k=1,2,...
, where τk is an (Fz

t ) stopping

time, πk is an Fz
τk

-measurable random variable with values in S, and τk+1 > τk,

k = 1, 2, . . .. Elements of Az will be called admissible trading strategies or admis-

sible portfolios. Notice that for a fixed initial wealth x− and an initial proportion

π− not every admissible trading strategy
(

(πk, τk)
)

is related to some self-financing

strategy
(

(Nk, τk)
)

. Indeed, if X−(τk) is small for some k, not all proportions

π(τk) are attainable from π−(τk). If π(τk) is attainable, we have

F π−(τk),π(τk),X−(τk)
(

e
(

π−(τk), π(τk), X−(τk)
)

)

= 1

7



and

X(τk) = X−(τk)e
(

π−(τk), π(τk), X−(τk)
)

.

If π(τk) is not attainable, we have, by the above construction,

e
(

π−(τk), π(τk), X−(τk)
)

= 0

and

X(τk) = 0.

Therefore, in what follows we may assume that all proportions are attainable from

π−(τk) irrespective of the value of X−(τk), but they may lead to zero wealth pro-

cess if we cannot afford to pay transaction costs. Since the strategy allowing anihi-

lation of wealth is not optimal (the functional in (2) evaluates to −∞), the extension

of the set of trading strategies does not have any impact on optimal strategies.

As we noticed before, the set of admissible strategies and the wealth of the

portfolio are independent of the initial prices of the assets. Therefore, instead of

writing P
(s,z) and E

(s,z) to stress dependence of the probability measure on the

initial state of the Markov process
(

S(t), Z(t)
)

we will write P
z and E

z .

The goal of this paper is to maximize the functional

Jπ−,x−,z(Π) = lim inf
T→∞

1

T
E

z lnX−(T ) (14)

over all portfolios Π ∈ Az , where π− is the initial proportion, x− denotes the

initial wealth and z is the initial state of the economic factor process. Observe that

using (13) we obtain

Jπ−,x−,z(Π) = lim inf
T→∞

1

T

{ T−1
∑

t=0

E
z lnπ(t) · ζ(t + 1)

+

∞
∑

k=1

E
z
{

1τk<T ln e
(

π−(τk), πk, X−(τk)
)

}

}

.

(15)

This transformes our problem to the form suitable for further analysis.

3. Assumptions and basic properties of the price process

Denote by P (z, dy) the transition operator of the process
(

Z(t)
)

. Let Ê = E×Eξ,

and let ν be the law of ξ(1) on Eξ. For x = (z, ξ) and a bounded measurable

function w on Ê define

P̂w(x) =

∫

E

∫

Eξ

w(z′, ξ′)ν(dξ′)P (z, dz′).

Consider the following assumptions:

8



(A1) The process
(

S(t), Z(t)
)

satisfies the Feller property i.e. its transition oper-

ator maps the space of continuous bounded functions into itself.

(A2) S × E ∋ (π, z) 7→ h(π, z) = E
z
{

lnπ · ζ
(

Z(1), ξ(1)
)}

is a bounded,

continuous function.

(A3) sup
z,z′∈E

sup
B∈E

(

Pn(z, B) − Pn(z′, B)
)

= κ < 1 for some n ≥ 1.

(A4) There is a continuous function û0 defined on Ê such that û0(x) ≥ 1 for

x ∈ Ê, the function x 7→ P̂ û0(x) is bounded on compact subsets of Ê and for

any positive real number l the set
{

x : û0(x)

P̂ û0(x)
≤ l
}

is compact.

(A5) The function ζ(z, ξ) is continuous and separated from 0, i.e. infz,ξ ζi(z, ξ) >
0 for i = 1, . . . , d.

Due to assumption (A3) the process Z(t) is uniformly ergodic. Together with

(A4)-(A5) it gives important estimates on the behaviour of the asset prices, as can

be seen in the following theorem:

THEOREM 3.1. Under (A1)-(A5):

i) the process Z(t) has a unique invariant probability measure ϑ.

ii) for each non-negative measurable function f such that
∫

E f(z)ϑ(dz) <
∞

lim
T→∞

1

T

T
∑

t=0

E
zf
(

Z(t)
)

=

∫

E
f(z)ϑ(dz).

iii) The following large deviations estimate holds: for each ǫ > 0 there exists

T ∗ > 0, γ > 0, K > 0 such that for all T ≥ T ∗

P
z
{ 1

T
ln
(

T−1
∏

t=0

ζ̂
(

Z(t + 1), ξ(t + 1)
)

)

≤ p̂ − ǫ
}

≤ Ke−γT ,

where

ζ̂(z, ξ) = min
(

ζ1(z, ξ), . . . , ζd(z, ξ)
)

and

p̂ =

∫

E×Eξ

ln ζ̂(z, ξ) ϑ(dz)ν(dξ).

Proof. Notice that (A3) implies that for arbitrary z, z′ ∈ E and B ∈ E

Pn(z, B) ≤ κ + Pn(z′, B)
)

.
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Therefore, Condition (D) (a version of Doeblin’s hypothesis) in [9], Section V.5,

holds with φ(B) = Pn(z′, B) for some z′ ∈ E and ǫ = 1−κ
2 . Applying (A3) one

also gets that for any bounded measurable function f we have

E
z1f
(

Z(n)
)

− E
z2f
(

Z(n)
)

=

∫

E
f(z)

(

Pn(z1, dz) − Pn(z2, dz)
)

≤ κ‖f‖∞.

Therefore, due to Theorems V.5.7 and V.6.2 in [9] there is a unique invariant prob-

ability measure for
(

Z(t)
)

and (ii) holds.

Statement (iii) results from application of the Large Deviations Theory to the

Markov process
(

Z(t), ξ(t)
)

. Recall that the transition operator of this process is

denoted by P̂ . A measure ϑ ⊗ ν is a unique probabilistic invariant measure of P̂ .

Let

Ln =
1

n

n
∑

t=1

δ(Z(t), ξ(t)), n = 1, 2, . . . ,

denote the empirical distribution of the process
(

Z(t), ξ(t)
)

. Notice that Ln takes

values in the space P = P(E × Eξ) of probability measures on E × Eξ with the

weak convergence topology. Due to Section 4 of [8] (see also [11] and [23]) there

exists a convex lower semicontinuous function J : P → R (called a good rate

function) such that for any compact set Γ ∈ B(P) we have

lim sup
n→∞

1

n
log

(

sup
z∈E

P
z
(

{ω : Ln(ω) ∈ Γ}
)

)

≤ − inf
µ∈Γ

J(µ).

Under assumption (A4) the above inequality holds for any closed set Γ (not nec-

essarily compact). By Lemma 4.2 of [8], the set of measures µ ∈ P such that

J(µ) ≤ l is compact for each l ∈ R. Consequently, for a closed set Γ ⊂ P such

that ϑ ⊗ ν /∈ Γ we have (see Proposition 1 of [11]) infµ∈Γ J(µ) > 0.

Define

Γ̂ =
{

µ ∈ P :

∫

E×Eξ

ln ζ̂(z, ξ) µ(dz × dξ) ≤ p̂ − ǫ
}

.

To complete the proof it is enough to show that infµ∈Γ̂ J(µ) > 0. Due to un-

boundedness of ζ̂ the set Γ̂ may not be closed in P . However, under (A5) for every

N > 0

ΓN =
{

µ ∈ P :

∫

E×Eξ

min
(

ln ζ̂(z, ξ), N
)

µ(dz × dξ) ≤ p̂ − ǫ
}

is closed and Γ̂ ⊆ ΓN . Due to monotone convergence theorem there exists N such

that ϑ ⊗ ν /∈ ΓN , and consequently infµ∈Γ̂N
J(µ) > 0.

Statement (iii) of the above lemma reads that whenever the average one-step

growth rate of the asset prices p̂ is positive then the prices grow exponentially fast

on a large subset of Ω, i.e. for T > T ∗

P

{

Si(T ) ≥ Si(0)eT (p̂−ǫ) ∀ i = 1, . . . d
}

≥ 1 − Ke−γT .
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This is a surprising result, since the condition p̂ > 0 is often viewed as a pre-

requisite for investors to be willing to invest on the market. Therefore, promising

markets offer exponential speed of growth of investors’ wealth.

The following remarks explain the assumptions (A1)-(A5):

(1) Assume that
(

Z(t)
)

is a Feller process. If ζi(z, ξ), i = 1, . . . , d, are contin-

uous in z then (A1) is satisfied. Indeed, let φ : (0,∞)d × E → R be continuous

bounded. Define

g(s, z, ξ) =

∫

E
φ
(

s1ζ1(z̃, ξ), . . . , sdζd(z̃, ξ), z̃
)

P (z, dz̃).

It is continuous by the Feller property of
(

Z(t)
)

. Consequently, the mapping

(s, z) 7→ E
(s,z)φ

(

S(1), Z(1)
)

=

∫

Eξ

g(s, z, ξ)ν(dξ),

where ν is a distribution of ξ(1) on Eξ, is continuous by dominated convergence

theorem and (A1) holds. In particular, if
(

Z(t)
)

is a Markov chain with a finite

state space (A1) is always satisfied.

(2) Assumption (A2) reads that the expected one period growth rate is finite.

(3) Assume that ζi(z, ξ), i = 1, . . . , d, are bounded functions separated from

0 and continuous in z. Clearly, h(π, z) is bounded. By (A1)
(

Z(t)
)

is a Feller

process, hence h(π, z) is continuous and (A2) holds.

(4) By Jensen’s inequality

inf
π∈S

h(z, π) = min
i=1,...,d

E
z
{

ln ζi
(

Z(1), ξ(1)
)}

.

Therefore, h(π, z) is bounded from below if and only if

inf
z∈E

E
z
{

ln ζi
(

Z(1), ξ(1)
)}

> −∞, i = 1, . . . , d.

(5) Condition (A2) does not imply boundedness of ζi. Consider a generalized

Black-Scholes model with economic factors (see [5], [6], [26]), i.e.

Si(t + 1) = Si(t) exp
(

σi
(

Z(t + 1)
)

·
(

W (t + 1) − W (t)
)

+ µi
(

Z(t + 1)
)

)

,

i = 1, . . . , d,

where
(

Z(t)
)

is a Feller process,
(

W (t)
)

is an m-dimensional Wiener process and

σi : E → R
m, µi : E → R, i = 1, . . . , d, are continuous bounded functions.

Clearly, (A1) is satisfied by (1). To show (A2) we recall the definition

h(π, z) = E
z ln

(

d
∑

i=1

πi exp
(

σi
(

Z(1)
)

· ξ(1) + µi
(

Z(1)
)

)

)
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with ξ(1) = W (1) − W (0). Consequently,

E
z
{

− D1

(

Z(1)
)

‖ξ(1)‖2 − D2

(

Z(1)
)}

≤ h(π, z) ≤ E
z
{

D1

(

Z(1)
)

‖ξ(1)‖2 + D2

(

Z(1)
)}

,

where ξ has a standard normal distribution on R
m, denoted by ν, D1(z) =

maxi=1,...,d ‖σi(z)‖2, D2(z) = maxi=1,...,d |µi(z)|, and ‖ · ‖2 stands for the L2

norm in R
m. Therefore, h(π, z) is bounded. Continuity follows by dominated

convergence theorem.

(6) In the stochastic control literature a one-step uniform ergodicity is usually

assumed, i.e. (A3) with n = 1 (see e.g. condition (UE) in [31]). Allowing for

n > 1 opens a new class of applications. In particular, if Z(t) is a recursive

Markov chain on a finite state space then (A3) holds with some n > 0, but usually

it does not hold with n = 1.

(7) Assumption (H∗): there is a continuous function u0 defined on E such that

u0(x) ≥ 1 for x ∈ E, Pu0(x) is bounded on compact subsets of E and for any l

the set
{

z : u0(z)
Pu0(z) ≤ l

}

is compact.

LEMMA 3.2. If Eξ is locally compact and (H∗) is satisfied then (A4) holds.

Proof. Without loss of generality we may assume that the support of ν is not com-

pact (otherwise we can replace Eξ by a compact set). Let (Kn) be an increasing se-

quence of compact sets such that ν(Kn+1\Kn) ≤ 1
n2 , and Kn+1 \ Kn∩Kn−1 = ∅,

for n = 1, 2, . . ., and
⋃

n Kn = Eξ. Define a function g on Eξ to be equal to 1

on K1 and
√

n on Kn+1 \ Kn for odd n, and extend g using Tietze theorem to a

continuous function on the whole Eξ. The construction in Tieze theorem implies

that g(ξ) ≥ 1 and ν(g) :=
∫

Eξ g(ξ)ν(dξ) < ∞. Let û0(z, ξ) = u0(z)g(ξ). We

shall prove that the set

Γl =

{

x ∈ Ê :
û0(x)

P̂ û0(x)
≤ l

}

=

{

(z, ξ) ∈ Ê :
u0(z)g(ξ)

Pu0(z) ν(g)
≤ l

}

is compact for any l. Let (zn, ξn) ⊂ Γl. If (ξn) leaves all compact sets Km then

g(ξn) → ∞. Consequently
u0(zn)

Pu0(zn) → 0, which contradicts infz∈E
u0(z)

Pu0(z) > 0.

Therefore, there exists m such that (ξn) is contained in Km. Compactness of Km

implies that ξnk
→ ξ ∈ Km for some subsequence nk. Since

u0(znk
)

Pu0(znk
)
≤ lν(g)

g(ξnk
)
≤ lν(g),

then by (H∗) there is a subsequence of znk
convergent to z. Due to continuity of

û0

P̂ û0

, we have (z, ξ) ∈ Γl, which completes the proof of compactness of Γl.
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4. Discounted functionals and estimates

This section is devoted to an in-depth study of the discounted functional related to

the functional (15). It plays a major role in the derivation of the Bellman inequality

for our optimization problem.

Given π−, x−, z consider a discounted functional

J
π−,x−,z
β (Π) = E

z

{ ∞
∑

t=0

βth
(

π(t), Z(t)
)

+

∞
∑

k=1

βτk ln e
(

π−(τk), πk, X−(τk)
)

}

,

β ∈ (0, 1), (16)

and its value function

vβ(π−, x−, z) = sup
Π∈Az

J
π−,x−,z
β (Π).

Denote by M an impulse operator acting on measurable functions

Mw(π−, x−, z) = sup
π∈S

{

ln e(π−, π, x−) + w
(

π, x− e(π−, π, x−), z
)

}

. (17)

LEMMA 4.1. The impulse operator maps the space of continuous bounded func-

tions into itself. Moreover, given any bounded continuous function w there

exists a measurable selector for Mw.

Proof. The proof is standard (see [7] Corollary 1 or [15]).

THEOREM 4.2. Under (A1)-(A2) the function vβ is continuous and bounded,

and satisfies Bellman equation

vβ(π−, x−, z) (18)

= sup
τ

E
z
{

τ−1
∑

t=0

βth(π(t), Z(t)) + βτMvβ

(

π−(τ), X−(τ), Z(τ)
)}

,

where

π−(0) = π−, π−(t + 1) = π−(t) ⋄ ζ(t + 1),

X−(0) = x−, X−(t + 1) = X−(t)
(

π−(t) · ζ(t + 1)
)

are counterparts of (10), (12), (13).

Proof. By Lemma 2.1 the function ln e(π−, π, x−) is bounded, by (A2) h(π, z) is

bounded. Therefore, vβ(π−, x−, z) is bounded. For a continuous bounded function

v : S × (0,∞) × E 7→ R let

Tβv(π, x, z) = sup
τ

E
z
{

τ−1
∑

t=0

βth(π(t), Z(t)) + βτMv
(

π−(τ), X−(τ), Z(τ)
)}

.
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The operator Tβ maps the space Cb = Cb(S × (0,∞)×E; R) of bounded contin-

uous functions into itself. It results from the Feller property (A1) of the transition

operator of the process
(

S(t), Z(t)
)

by a general result on the continuity of the

value function of optimal stopping problems. Let

v0
β(π−, x−, z) =

∞
∑

t=0

βt
E

zh
(

π−(t), X−(t)
)

.

Put vk+1
β = Tβvk

β . Thanks to continuity of vk
β and Mvk

β it can be shown that

vk
β is a value function for the maximization of Jβ over portfolios with at most k

transactions. Observe that it is never optimal to have two transactions at the same

time (P(τk = τk+1) > 0) by the subadditivity of the transaction costs structure.

Therefore, we have the estimate

‖vβ − vk
β‖∞ ≤

∞
∑

l=k

βl‖h‖∞ = βk ‖h‖∞
1 − β

,

which implies that vk
β tends uniformly to vβ . Consequently, vβ is a continuous

bounded function and satisfies vβ = Tβvβ , which is equivalent to the Bellman

equation (18).

There are two distinct cases: C > 0 (fixed plus proportional transaction costs)

and C = 0 (proportional costs only). Theorem 4.2 applies to both of them. The rest

of this section is devoted to estimation of the difference between value functions of

problems with and without fixed term in transaction costs. In the beginning let us

examine the equation for e(π−, π, x−):

c
(

π−, e(π−, π, x−)π
)

+
C

x−
+ e(π−, π, x−) = 1.

Clearly, if C = 0, the solution is independent of x−. Similarly, while C = 0,

the impulse operator M does not depend on x−, hence the value function vβ is

independent of x−. We shall therefore refer to the case without a fixed term in

transaction costs by skipping x− in the list of arguments and writing J̃
π−,z
β (Π),

ṽβ(π−, z) and ẽ(π−, π).

4.1. Technical estimates

This subsection presents auxiliary results. They are similar to those obtained in

[25]. For completeness, their proofs are included in Appendix.

Due to self-financing of portfolios, transaction costs decrease portfolio wealth.

It is therefore important to derive estimates on the diminution factor e(π−, π, x−)
and to study the relationship between e(π−, π, x−) and ẽ(π−, π). First of the fol-

lowing lemmas states lower bounds for e and ẽ:

14



LEMMA 4.3. We have

1 − ẽ(π−, π) ≤ 2 maxi(c
1
i , c2

i )

1 − maxi(c1
i , c2

i )
,

1 − e(π−, π, x−) ≤
2 maxi(c

1
i , c2

i ) + C
x−

1 − maxi(c1
i , c2

i )
.

Let x∗ = inf{x− : e(π−, π, x−) > 0 for all π−, π ∈ S}. If the wealth of the

portfolio is greater than x∗, any transaction can be executed. We use this rough

treshold in the following lemma:

LEMMA 4.4. For π−, π ∈ S

i) e(π−, π, x̃−) ≤ e(π−, π, x−) ≤ ẽ(π−, π), x− ≥ x̃− > 0.

ii) ẽ(π−, π) − e(π−, π, x−) ≤ C
(

1 − maxi c1
i

)

x−

for x− > x∗.

iii) For all M > x∗ and x− ≥ M

ln
ẽ(π−, π)

e(π−, π, x−)
≤ 1

inf π̃−,π̃ e(π̃−, π̃, M)

C
(

1 − maxi c1
i

)

x−

.

COROLLARY 4.5. The value function vβ(π−, x−, z) is non-decreasing in x−.

Due to Theorem 4.2 the value function ṽβ(π−, z) is bounded and continuous for

each β. However, it does not imply that it is uniformly bounded in β. Conversely,

it increases to infinity as β grows to 1 in market models of interest. To account for

this fact, we shall study the span seminorm of ṽβ , which is defined as ‖ṽβ‖sp =

sup ṽβ(·) − inf ṽβ(·).

LEMMA 4.6. Under (A3) there exists M < ∞ such that

‖ṽβ‖sp ≤ M ,

for all β ∈ (0, 1).

4.2. Large deviations and proportional transaction costs

Theorem 3.1 provides important insight into the dynamics of asset prices. In this

section we apply this result to describe the dynamics of the portfolio wealth under

proportional transaction costs. Let us introduce a general assumption:

(A6) η < p̂,

where p̂ is a constant from Theorem 3.1 and

η = − ln

(

1 − 2 maxi(c
1
i , c2

i )

1 − maxi(c1
i , c2

i )

)

.
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Since η is a unique solution to the equation

e−η = 1 − 2 maxi(c
1
i , c2

i )

1 − maxi(c1
i , c2

i )
,

by virtue of Lemma 4.3, e−η is a lower bound on ẽ(π−, π). Formula (13) gives the

following estimate

X−(t) ≥ X−(0)

t−1
∏

s=0

(

e−η π(s) · ζ(s + 1)
)

= X−(0)e−ηt
t−1
∏

s=0

(

π(s) · ζ(s + 1)
)

.

Consequently, denoting ζ̂(t) = min
(

ζ1(t), . . . , ζd(t)
)

, we obtain

X−(t) ≥ X−(0)e−ηt
t−1
∏

s=0

ζ̂(s + 1). (19)

In view of Theorem 3.1 for any ǫ > 0 there exists K > 0, γ > 0 and T ∗ such that

P

{

eT (p̂−ǫ) ≤
t−1
∏

s=0

ζ̂(s + 1)
}

≥ 1 − Ke−γT , T > T ∗,

and the wealth of the portfolio satisfies

P

{

X−(0)eT (p̂−η−ǫ) ≤ X−(T )
}

≥ 1 − Ke−γT , T > T ∗.

Due to (A6) there exists 0 < ǫ < p̂ − η, which implies that X−(t) increases

exponentially fast irrespective of portfolio trading strategy.

4.3. Bounds on ṽβ(π−, z) − vβ(π−, x−, z)

For the rest of this section assume that (A1)-(A6) are satisfied. Since

lim
m→∞

− ln

(

1 − 2 maxi(c
1
i , c2

i ) + C
m

1 − maxi(c1
i , c2

i )

)

= η < p̂,

there exists a constant M > 0 such that

p̂ > ηM := − ln

(

1 − 2 maxi(c
1
i , c2

i ) + C
M

1 − maxi(c1
i , c2

i )

)

. (20)

THEOREM 4.7. For any z ∈ E and any admissible strategy Π̃ ∈ Az , π− ∈ S,

x− ∈ (0,∞) there exists an admissible trading strategy Π ∈ Az such that

J̃
π−,z
β (Π̃) − J

π−,x−,z
β (Π) ≤ L(x−), β ∈ (0, 1),

where

L(x−) = K1 + K2 max(K3,− lnx−)

for some strictly positive constants K1, K2, K3 independent of the choice of z,

Π̃, π− and x−.
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COROLLARY 4.8. We have

0 ≤ ṽβ(π−, z) − vβ(π−, x−, z) ≤ L(x−), β ∈ (0, 1), π− ∈ S, z ∈ E.

where L(x−) is a function from Theorem 4.7.

Proof. The inequality 0 ≤ ṽβ(π−, z) − vβ(π−, x−, z) is obvious. For the second

inequality it is enough to notice that

ṽβ(π−, z) − vβ(π−, x−, z) ≤ sup
Π̃∈A

{

J̃
π−,z
β (Π̃) − J̃

π−,x−,z
β (Π)

}

,

where by Π we denote a strategy related to Π̃ as in Theorem 4.7.

The strength of the above theorem and corollary lies in the fact that the estimates

are uniform in β, π− and z.

Proof of Theorem 4.7. Fix π−, x−, z and Π̃ ∈ Az . We construct Π, with its

pre-transaction wealth denoted by X−(t), in the following way: if X−(t) ≥ M we

mimic the strategy Π̃, i.e. we keep the same proportions of stocks. On the other

hand, if X−(t) is smaller than M we do not make any transactions and wait for

the wealth to raise over M∗ = MeηM . At that moment we perform a transaction

to make the proportions equal to those defined by Π̃. This decreases the wealth at

most by e−ηM , so the resulting portfolio wealth is not less than M .

Let π̃−(t) and π̃(t) denote the pre-transaction and the post-transaction process

linked to the strategy Π̃. Analogously, π−(t) and π(t) are the processes corre-

sponding to the strategy Π. By the construction of Π we know that π(t) = π̃(t)
if X−(t) ≥ M∗. However, if the wealth X−(t) is below M∗ but above M we

cannot determine whether π(t) = π̃(t). This is caused by the fact that the wealth

X−(t) can be between M and M∗ as a result of either normal investing process or

recovering from the shortage of wealth (being below M ).

By the definition of J
π−,x−,z
β and J̃

π−,z
β we have

J̃
π−,z
β (Π̃) − J

π−,x−,z
β (Π)

= E
z

{ ∞
∑

t=0

βt

(

h
(

π̃(t), Z(t)
)

− h
(

π(t), Z(t)
)

+ 1π̃−(t) 6=π̃(t) ln ẽ
(

π̃−(t), π̃(t)
)

− 1π−(t) 6=π(t) ln e
(

π−(t), π(t), X−(t)
)

)}

.
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Above difference can be bounded from above by the sum of the following two

expressions:

E
z

{ ∞
∑

t=0

βt1X−(t)<M∗

(

h
(

π̃(t), Z(t)
)

− h
(

π(t), Z(t)
)

(21)

− 1π−(t) 6=π(t) ln e
(

π−(t), π(t), X−(t)
)

)}

,

E
z

{ ∞
∑

t=0

βt1X−(t)≥M∗

(

h
(

π̃(t), Z(t)
)

− h
(

π(t), Z(t)
)

(22)

+ 1π−(t) 6=π(t) ln
ẽ
(

π−(t), π(t)
)

e
(

π−(t), π(t), X−(t)
)

)}

.

By construction of the strategy Π no transaction is performed if the wealth X−(t)
is below M , so we have

−1π−(t) 6=π(t) ln e
(

π−(t), π(t), X−(t)
)

≤ ηM .

This yields

(21) ≤ L1 E
z

∞
∑

t=0

1X−(t)<M∗ ,

where L1 = suph(·) − inf h(·) + ηM . On the other hand, if X−(t) ≥ M∗, we

have π(t) = π̃(t), so

(22) ≤ E
z

{ ∞
∑

t=0

(

1X−(t)≥M∗ ln
ẽ
(

π−(t), π(t)
)

e
(

π−(t), π(t), X−(t)
)

)}

.

By virtue of Lemma 4.4 (iii) we obtain

(22) ≤ E
z

{ ∞
∑

t=0

(

1X−(t)≥M∗

L2

X−(t)

)}

,

where

L2 =
C

inf π̂−,π̂ e(π̂−, π̂, M∗)
.

Consequently, we have the estimate

J̃
π−,z
β (Π̃) − J

π−,x−,z
β (Π)

≤ L1 E
z

∞
∑

t=0

1X−(t)<M∗ + L2 E
z

∞
∑

t=0

(

1X−(t)≥M∗

1

X−(t)

)

. (23)

To complete the proof we use the large deviations estimate. Fix ǫ > 0 small

enough so that p̂ − ηM − ǫ > 0. Denote by At the event

At =
{1

t
ln
(

t−1
∏

j=0

ζ̂
(

Z(j + 1), ξ(j + 1)
)

)

− p̂ ≥ −ǫ
}

.
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The strategy Π is constructed in such a way that trade takes place only if X−(t) ≥
M . Thus on the set At we have

X−(t) ≥ x−e−tηM et(p̂−ǫ) = x−et(p̂−ηM−ǫ). (24)

This reads as an exponentially fast growth of the wealth due to p̂ − ηM − ǫ > 0.

Let K > 0, γ > 0, and T ∗ be the constants from Theorem 3.1 (iii) for the given

ǫ. By the large deviations estimate we have

P
z(Ac

t) ≤ Ke−γt for t ≥ T ∗,

where by Ac
t denotes the complement of At. Let t0 be the smallest integer such

that t0 ≥ T ∗ and

et0(p̂−ηM−ǫ) ≥ M∗

x−
.

Clearly, X−(t) ≥ M∗ on At for all t ≥ t0. Hence

E
z

∞
∑

t=0

1X−(t)<M∗ ≤ t0 +

∞
∑

t=t0

P(Ac
t) ≤ t0 +

∞
∑

t=t0

Ke−γt =: L3.

Computation of a bound for the second term of (23) has to be split into two parts

depending on At:

E
z

∞
∑

t=0

(

1X−(t)≥M∗

1

X−(t)

)

= E
z

∞
∑

t=0

(

1X−(t)≥M∗

1At

X−(t)

)

+ E
z

∞
∑

t=0

(

1X−(t)≥M∗

1Ac
t

X−(t)

)

.

Easily,

E
z

∞
∑

t=0

(

1X−(t)≥M∗

1Ac
t

X−(t)

)

≤ 1

M∗
E

z
∞
∑

t=0

P(Ac
t) ≤

1

M∗
E

z
∞
∑

t=0

Ke−γt =: L4.

Due to (24)

E
z

∞
∑

t=0

(

1X−(t)≥M∗

1At

X−(t)

)

≤ E
z

t0−1
∑

t=0

(

1X−(t)≥M∗

1At

X−(t)

)

+ E
z

∞
∑

t=t0

(

1X−(t)≥M∗

1At

X−(t)

)

≤ t0
M∗

+
1

M∗

∞
∑

t=t0

e−(t−t0)(p̂−ηM−ǫ)

=: L5.
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Consequently,

J̃
π−,z
β (Π̃) − J

π−,x−,z
β (Π) ≤ L1L3 + L2(L4 + L5).

The constants L1, . . . , L5 do not depend on π−, Π̃ and z. However, they depend

on x− through t0. Combining the estimates for L1, . . . , L5 we obtain the formula

for L(x−).

5. Growth optimal portfolios

Now we are in a position to state and prove the main result of this paper: existence

and form of an optimal strategy maximizing the expected average rate of return of

a portfolio of financial assets.

THEOREM 5.1. Under assumptions (A1)-(A6) there exists a measurable func-

tion p : S × (0,∞) × E → S, a constant λ and a measurable set I ⊆
S × (0,∞) × E such that

λ = Jπ−,x−,z(Π∗) = sup
Π∈Az

Jπ−,x−,z(Π), (25)

where the optimal portfolio Π∗ =
(

(π∗
1 , τ∗

1 ), (π∗
2 , τ∗

2 ), . . .
)

is given by the for-

mulas

τ∗
1 = inf{t ≥ 0 :

(

π−(t), X−(t), Z(t)
)

∈ I},

τ∗
k+1 = inf{t > τ∗

k :
(

π−(t), X−(t), Z(t)
)

∈ I},

π∗
k = p

(

π−(τ∗
k ), X−(τ∗

k ), Z(τ∗
k )
)

.

The strength of the above theorem is in its generality. We are not aware of papers

dealing with the maximisation of the average rate of return in such a general setting

and with fixed and proportional transaction costs. This result also extends the area

of applicability of the vanishing discount approach to models with non-weakly con-

tinuous controlled transition probabilities. Existing results require either strongly

or weakly continuous (Feller) controlled transition probabilities (see [15], [19],

[29], [30]). Moreover, in Section 6 we generalize Theorem 5.1 to other transaction

costs structures.

COROLLARY 5.2.

i) The optimal value for the problem with only proportional transaction costs

(C = 0) is equal to λ from Theorem 5.1. The strategy optimal for fixed

plus proportional transaction costs is also optimal for proportional trans-

action costs.

ii) There exists an optimal portfolio Π for the problem with proportional

transaction costs that depends only on the current state of the processes

(π−(t)) and (Z(t)) (does not depend on (X−(t))).
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iii) If Π is the portfolio from (ii), then the portfolio ΠM optimal for fixed

plus proportional transaction costs is constructed as follows (for notation

consult Subsection 4.3): whenever X−(t) < M do not make any transac-

tions and wait until the wealth increases over MeηM ; otherwise as long as

X−(t) ≥ M keep the same proportions of stocks as in Π.

Optimal strategies for proportional costs can be efficiently computed in a number

of cases: there are closed-form formulas in simple diffusion models and efficient

algorithms for more complicated models, all benefiting from compactness of the

state space. Corollary 5.2 (iii) presents how an optimal portfolio for proportional

cost can be employed in construction an optimal trading strategy for fixed and

proportional transaction costs. However, unlike portfolio Π∗ from Theorem 5.1,

portfolio ΠM constructed in Corollary 5.2 depends on past variations of its wealth

and hence is not Markovian. The proof of Corollary 5.2 is presented in details later.

Proof of Theorem 5.1. We use a generalization of the vanishing discount method

([4], [15], [19], [29], [31]). We obtain a Bellman inequality for our optimization

problem as a limit of Bellman equations for discounted problems (16). We cannot

directly apply known results since they require continuity of the controlled transi-

tion function q defined below. Instead, we follow the approach pioneered by [29]

exchange the parts where the continuity of q is needed by considerations based on

specific properties of our control problem. We also ease the requirement of local

compactness of the state space in the spirit of [19].

Denote by H = S × (0,∞) × E the state space of our Markovian control

model. It is complete and separable, which is needed for the existence of mea-

surable selectors. Denote by q the controlled transition operator, i.e. a function

q : H × S → P(H), where P(H) is the space of Borel probability measures on

H, uniquely determined by the formula

∫

H

f(π̃−, x̃−, z̃) q(π−, x−, z, π)(dπ̃−, dx̃−, dz̃)

= E
zf
(

π ⋄ ζ
(

z, ξ(1)
)

, Xπ
−(1), z(1)

)

(26)

for all bounded measurable f : H → R, where

Xπ
−(1) =

{

x− e(π−, π, x−)
(

π · ζ
(

z, ξ(1)
))

, when π− 6= π,

x−

(

π · ζ
(

z, ξ(1)
))

, when π− = π.

Obviously, q is not weakly continuous as long as the constant term in transaction

costs is non-null. Indeed, X
π−

− (1) − X π̃
−(1) ≥ C for any π̃ 6= π−. Consider

η(π−, π, x−, z) =

{

h(π, z), π− = π,

h(π, z) + ln e(π−, π, x−), π− 6= π.
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Bellman equation (18) writes in an equivalent form

vβ(π−, x−, z) = sup
π∈S

{

η(π−, π, x−, z) + β

∫

vβ dq(π−, x−, z, π)
}

. (27)

Let aβ : H → S be a measurable selector for Mvβ (see Lemma 4.1) and Iβ be the

impulse region

Iβ = {(π−, x−, z) ∈ H : vβ(π−, x−, z) = Mvβ(π−, x−, z)}.

The optimal strategy in this formulation is given by a measurable function fβ :
H → S

fβ(π−, x−, z) =

{

π−, (π−, x−, z) /∈ Iβ ,

aβ(π−, x−, z), (π−, x−, z) ∈ Iβ.

Since vβ is unbounded as β grows to ∞ we introduce the relative discounted

value function

wβ(π−, x−, z) = mβ − vβ(π−, x−, z),

where

mβ = sup
π−∈S

sup
z∈E

ṽβ(π−, z)

is well-defined due to Lemma 4.6. Moreover, we have

LEMMA 5.3.

i) 0 ≤ wβ(π−, x−, z) ≤ M1+M2 max(M3,− lnx−) with M1, M2, M3 > 0
independent of β, π−, x−, z.

ii) {(1− β)mβ : β ∈ (0, 1)} is a pre-compact set, i.e. its closure is compact.

Proof. By Lemma 4.6, and Corollary 4.8 we have

wβ(π−, x−, z) ≤ mβ − vβ(π−, z) + vβ(π−, z) − vβ(π−, x−, z) ≤ M + L(x−),

where L(x−) is a function defined in Theorem 4.7. We conclude by using the form

of L(x−). Part ii) follows from boundedness of h(·) and ln ẽ(·).
Put λ = lim supβ↑1(1 − β)mβ , which is finite by Lemma 5.3 (ii). Denote by

βk the sequence of discount factors converging to 1 such that

λ = lim
k→∞

(1 − βk)mβk
.

Let

w(ϑ) = lim inf
k→∞, ϑ′→ϑ

wβk
(ϑ′), ϑ ∈ H.

It can be written equivalently as

w(ϑ) = inf
{

lim inf
k→∞

wβk
(ϑk) : ϑk → ϑ

}

, ϑ ∈ H.
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LEMMA 5.4. ([20] Lemma 3.1) The function w is lower semi continuous.

The proof of this lemma is straightforward and is based on the following reformu-

lation of the definition of w:

w(ϑ) = sup
n

inf
k≥n

{

inf
ϑ′∈B(ϑ,1/n)

wβk
(ϑ′)

}

,

where B(ϑ, 1/n) is a ball in H of radius 1/n.

In the sequel we use two transition operators related to q. Let q be given by the

formula (26) with

Xπ
−(1) = x− e(π−, π, x−)

(

π · ζ
(

z, ξ(1)
))

and q with

Xπ
−(1) = x−

(

π · ζ
(

z, ξ(1)
))

.

They are weakly continuous. Indeed, it is straightforward by (A1) and the continu-

ity of e(π−, π, x−) (see Lemma 2.1) that the mapping

(π−, x−, z) 7→
(

∫

H

f dq(π−, x−, z),

∫

H

f dq(π−, x−, z)
)

is continuous for any continuous bounded function f : H → R.

LEMMA 5.5. ([28] Lemma 3.2) Let {µn} be a sequence of probability measures

on a separable metric space X converging weakly to µ and {gn} be a sequence

of measurable nonnegative functions on X . Then

∫

g dµ ≤ lim inf
n→∞

∫

gn dµn, where g(x) = lim inf
n→∞, y→x

gn(y), x ∈ X .

THEOREM 5.6. Under assumptions (A1)-(A5) there exists a measurable func-

tion f1 : H → S and a measurable function w : H → (−∞, 0] such that

w(ϑ) + λ ≤ η
(

ϑ, f1(ϑ)
)

+

∫

w(ϑ′)q
(

ϑ, f1(ϑ)
)

(dϑ′), ϑ ∈ H. (28)

Proof. From equation (27) we derive

wβ(ϑ) + (β − 1)mβ = −η
(

ϑ, fβ(ϑ)
)

+ β

∫

wβ(ϑ′)q
(

ϑ, fβ(ϑ)
)

(dϑ′),

ϑ ∈ H, β ∈ (0, 1),

where fβ defines an optimal strategy for vβ . Fix ϑ ∈ H and a sequence (ϑk)
converging to ϑ. Above equation can be rewritten as

wβk
(ϑk)+(βk−1)mβk

= −η
(

ϑk, fβk
(ϑk)

)

+βk

∫

wβk
(ϑ′)q

(

ϑk, fβk
(ϑk)

)

(dϑ′).
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Applying lim infk→∞ on both sides yields

lim inf
k→∞

wβk
(ϑk) − λ (29)

= − lim sup
k→∞

η
(

ϑ, fβk
(ϑk)

)

+ lim inf
k→∞

∫

βkwβk
(ϑ′)q

(

ϑk, fβk
(ϑk)

)

(dϑ′).

Since S is compact there exists a sequence (nk) such that fβnk
(ϑ) → π∗ and either

(a) ϑnk
∈ Iβnk

for every k, or (b) ϑnk
/∈ Iβnk

for every k. Assume first that (a)

holds. By virtue of Lemma 5.5 we have

lim inf
k→∞

∫

βkwβk
(ϑ′)q

(

ϑk, fβk
(ϑk)

)

(dϑ′) ≥
∫

w(ϑ′)q
(

ϑ, π∗)(dϑ′).

By Corollary 4.5 the functions vβ(π−, x−, z) are nondecreasing in x−. This im-

plies that w(π−, x−, z) is non-increasing in x−. Hence
∫

w(ϑ′)q
(

ϑ, π∗
)

(dϑ′) ≥
∫

w(ϑ′)q
(

ϑ, π∗
)

(dϑ′) and

lim inf
k→∞

∫

βkwβk
(ϑ′)q

(

ϑk, fβk
(ϑk)

)

(dϑ′) ≥
∫

w(ϑ′)q
(

ϑ, π∗
)

(dϑ′). (30)

In the case (b) we have fβnk
(ϑk) = πk

−, where ϑk = (πk
−, xk

−, zk). Obviously,

π∗ = π−, where ϑ = (π−, x−, z). From equalities q
(

ϑ, π∗
)

= q
(

ϑ, π∗
)

and

q
(

ϑnk
, fβnk

(ϑk)
)

= q
(

ϑnk
, fβnk

(ϑk)
)

and Lemma 5.5 we obtain (30). Since η is

upper semicontinuous we conclude that

lim inf
k→∞

wβk
(ϑk) − λ ≥ −η

(

ϑ, π∗
)

+

∫

w(ϑ′)q
(

ϑ, π∗
)

(dϑ′).

Consequently,

lim inf
k→∞

wβk
(ϑk) − λ ≥ inf

π∈S

{

− η
(

ϑ, π
)

+

∫

w(ϑ′)q
(

ϑ, π
)

(dϑ′)
}

.

Taking infimum over all sequences ϑn converging to ϑ we finally obtain

w(ϑ) − λ ≥ inf
π∈S

{

− η
(

ϑ, π
)

+

∫

w(ϑ′)q
(

ϑ, π
)

(dϑ′)
}

. (31)

To complete the proof we have to show that there exists a measurable selector for

the infimum on the right-hand side of (31). Corollary 4.5 implies that w is non-

increasing in x−. Thus, for (π−, x−, z) ∈ H
∫

w(ϑ′)q
(

π−, x−, z, π−

)

(dϑ′) ≤
∫

w(ϑ′)q
(

π−, x−, z, π−

)

(dϑ′),

and the infinum in (31) can be equivalently written as

min
{

− η
(

ϑ, π−

)

+

∫

w(ϑ′)q
(

ϑ, π−

)

(dϑ′), (32)

inf
π∈S

{

− η
(

ϑ, π
)

+

∫

w(ϑ′)q
(

ϑ, π
)

(dϑ′)
}

}

,
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where ϑ = (π−, x−, z). Recall that by Lemma 5.4 the function w is lower semi-

continuous. By weak continuity of the transition probabilities q, q the mappings

(π−, x−, z, π) 7→
∫

H

w(ϑ′) q(π−, x−, z, π)(dϑ′)

(π−, x−, z, π) 7→
∫

H

w(ϑ′) q(π−, x−, z, π)(dϑ′)

are lower semicontinuous (see [14] Lemma 3.3 (a)). Corollary 1 in [7] implies that

there exists a measurable selector f2 : H → S for

inf
π∈S

{

− η
(

ϑ, π
)

+

∫

w(ϑ′)q
(

ϑ, π
)

(dϑ′)
}

.

Define f1 : H → S by

f1(π−, x−, z) =



















































π−, if
− η
(

ϑ, π−

)

+

∫

w(ϑ′)q
(

ϑ, π−

)

(dϑ′)

≤ inf
π∈S

{

− η
(

ϑ, π
)

+

∫

w(ϑ′)q
(

ϑ, π
)

(dϑ′)
}

,

f2(π−, x−, z), if
− η
(

ϑ, π−

)

+

∫

w(ϑ′)q
(

ϑ, π−

)

(dϑ′)

> inf
π∈S

{

− η
(

ϑ, π
)

+

∫

w(ϑ′)q
(

ϑ, π
)

(dϑ′)
}

,

and put w = −w. This completes the proof.

Fix (π−, x−, z) ∈ H and define a portfolio Π =
(

(π1, τ1), (π2, τ2), . . .
)

by

formulas given in Theorem 5.1 with I = {(π−, x−, z) ∈ H : f1(π−, x−, z) 6= π−}
and p = f1. Iterating (28) T times, dividing by T and passing with T to infinity

we obtain

λ ≤ Jπ−,x−,z(Π) + lim inf
T→∞

E
z w
(

πΠ
−(T ), XΠ

−(T ), Z(T )
)

T
≤ Jπ−,x−,z(Π),

since w is nonpositive. On the other hand, by a well-known Tauberian relation

Jπ−,x−,z(Π) ≤ lim inf
β→1

(1 − β)J
π−,x−,z
β (Π)

≤ lim inf
β→1

(1 − β)vβ(π−, x−, z) ≤ lim inf
β→1

(1 − β)vβ(π−, z) ≤ λ,

which proves the optimality of Π and completes the proof of Theorem 5.1.

Proof of Corollary 5.2. First notice that λ is the optimal value for the problem

with proportional transaction costs. Indeed, if in the proof of Theorem 5.6 we put

wβ(π−, z) = mβ−ṽβ(π−, z), we obtain an analog of (28) with function w depend-

ing on π−, z and λ as above. Consequently λ is the optimal value for the problem
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with proportional transaction costs and the optimal strategy for the proportional

transaction costs depends only on the current state of the processes (π−(t)) and

(Z(t)).
Let Π be the optimal portfolio for the case with fixed and proportional transac-

tion costs (as defined in Theorem 5.1). Denote by X̃Π
−(t) the wealth of the portolio

governed by Π when the fixed term of the transaction cost function is equal to 0.

Obviously X̃Π
−(t) ≥ XΠ

−(t) and

lim
T→∞

1

T
E

z ln X̃Π
−(t) ≥ λ.

Since λ is the optimal value for the problem with proportional transaction costs we

have the opposite inequality.

Proof of (iii) follows directly from the proof of Theorem 4.7.

6. Extensions

The paper can be extended twofolds. First consider a generalization with respect

to the cost function c̃. Assume that the cost function c̃ is subadditive and satisfies

c̃(N1, N2, S) ≥
d
∑

i=1

(

c1
i S

i(N i
1 − N i

2)
+ + c2

i S
i(N i

1 − N i
2)

−
)

(33)

c̃(N1, N2, S) ≤
d
∑

i=1

(

c1
i S

i(N i
1 − N i

2)
+ + c2

i S
i(N i

1 − N i
2)

−
)

+ C (34)

for some C ≥ 0 and c1
i , ci

2 ∈ [0, 1), i = 1, . . . d. If the cost function in the right-

hand side of (34) satisfies (A6) than there exists an optimal portfolio of the form

presented in Theorem 5.1. Moreover, the portfolio optimal for the cost

d
∑

i=1

(

c1
i S

i(N i
1 − N i

2)
+ + c2

i S
i(N i

1 − N i
2)

−
)

+ C (35)

is optimal for c̃ as well. To see this let us denote by Ĵπ−,x−,z(Π) the functional

(15) for the cost function c̃, by Jπ−,x−,z(Π) the functional (15) for the cost func-

tion (35), and finally by J̃π−,z(Π) the functional (15) for the cost function (this a

proportional cost)

d
∑

i=1

(

c1
i S

i(N i
1 − N i

2)
+ + c2

i S
i(N i

1 − N i
2)

−
)

. (36)

Easily, for any portfolio Π ∈ Az we have

J̃π−,z(Π) ≥ Ĵπ−,x−,z(Π) ≥ Jπ−,x−,z(Π).
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This implies that

sup
Π∈Az

J̃π−,z(Π) ≥ sup
Π∈Az

Ĵπ−,x−,z(Π) ≥ sup
Π∈Az

Jπ−,x−,z(Π).

Since, by virtue of Theorem 5.1 and Corollary 5.2 there exists a constant λ such

that

λ = sup
Π∈Az

J̃π−,z(Π) = sup
Π∈Az

Jπ−,x−,z(Π)

we conclude that λ = supΠ∈Az Ĵπ−,x−,z(Π). Moreover, due to Corollary 5.2 the

optimal portfolio for the functional Jπ−,x−,z is also optimal for J̃π−,z . Therefore,

it is also optimal for Ĵπ−,x−,z . Notice now that the cost function (5) satisfies (33)

and (34). Therefore, Theorem 5.1 extends to this important case.

The results of this paper can be applied to an incomplete information case and

extend [25]. Let us first sketch some motivation for this development. It is well

known that investors do not have full information about variables influencing the

economy. It is due to errors in statistical data or simply due to inaccesibility of

some information. Therefore, it is natural to extend our model to cover the case

where a number of economic factors is either observable with noise or not observ-

able at all. For simplicity we restrict ourselves to the case when a group of factors

can be precisely observed and the rest is not observable. However, our results can

be extended to a more general.

Following the above remark assume that the space of economic factors E is

a direct sum of metric spaces E1, E2 with Borel σ-algebras E1, E2. Therefore,
(

Z(t)
)

has a unique decomposition into
(

Z1(t), Z2(t)
)

. We shall treat E1 as the

observable part of the economic factor space and
(

Z1(t)
)

as the observable factor

process. The process
(

Z2(t)
)

is the unobservable factor process. We denote by

Mt,Z1
t ,Z2

t filtrations generated, respectively, by
(

ζ(t)
)

,
(

Z1(t)
)

and
(

Z2(t)
)

.

Denote by Yt the filtration generated by Mt and Z1
t and by Ãz the space of Yt-

adapted portfolios admissible for z, i.e. Ãz ⊆ Az . Our aim is to prove existence

of optimal strategy maximizing the functional

Jπ−,x−,z1,ρ(Π) = lim inf
T→∞

1

T
E

z1,ρ lnXΠ
−(T )

over all strategies Π ∈ Ã. Here (z1, ρ) ∈ E1 × P(Z2) denotes the initial distribu-

tion of
(

Z1(t), Z2(t)
)

and P(Z2) stands for the space of probability measures on

(Z2, E2). Now, we can follow a similar reasoning as in [25] to apply Theorem 5.1

and prove existence of an optimal portfolio. Here, however, we improve several as-

pects of the result; firstly, the transaction costs structure covers important examples

(4) and (5). The model setting is more general. Moreover, in [25] the space E2 has

to be compact to guarantee that P(E2) is locally compact. Here, due to a different

method of proof of Theorem 5.1 we allow E2 to be a general complete separable

metric space (in this case, P(E2) is also a complete separable metric space). For

further details see [25].
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7. Appendix

Proof of Lemma 4.3. First inequality is a direct consequence of the second one.

Denoting δ = e(π−, π, x−), by Lemma 2.1 δ ≥ 0 and c(π−, δπ) + C
x−

+ δ ≥ 1.

Noticing that c(π−, δπ) ≤ d
∑d

i=1 |πi
−−δπi| we obtain 1 ≤ d(1−δ)+2dδ+ C

x−
+δ,

which easily leads to the desired inequality.

Proof of Lemma 4.4. We shall prove (i) by contradiction: assume that ẽ(π−, π) <
e(π−, π, x−). Noticing a+ − b+ ≤ (a − b)+ and a− − b− ≤ (a − b)− we obtain

|c(π−, δ2π) − c(π−, δ1π)| ≤ |δ2 − δ1|maxi(c
1
i , c2

i ) for δ1, δ2 ∈ [0, 1], we have

0 ≤ e(π−, π, x−) − ẽ(π−, π) ≤
(

e(π−, π, x−) − ẽ(π−, π)
)

max
i

(c1
i , c2

i ) −
C

x−
.

It gives the estimate 1+ C

x−

(

e(π−,π,x−)−ẽ(π−,π)
) ≤ maxi(c

1
i , c2

i ), which contradicts

the assumption that c1
i , c2

i ∈ [0, 1). The proof of e(π−, π, x−) ≤ e(π−, π, x̃−)
can be done in an analogous way. Statement (ii) follows immediately from the

inequality

ẽ(π−, π) − e(π−, π, x−) ≤
(

ẽ(π−, π) − e(π−, π, x−)
)

max
i

c1
i +

C

x−
.

For (iii) we apply the inequality ln(1 + x) ≤ x for x > 0.

Proof of Corollary 4.5. For a given π− ∈ S, z ∈ E and x̃− ≤ x−

vβ(π−, x̃−, z) − vβ(π−, x−, z) ≤ sup
Π∈Az

{

J
π−,x̃−,z
β (Π) − J

π−,x−,z
β (Π)

}

.

Therefore, the result follows from the observation that J
π−,x̃−,z
β (Π)−J

π−,x−,z
β (Π) ≤

0 for any π ∈ Az .

Proof of Lemma 4.6. Let e = infπ−,π∈S ẽ(π−, π). Since maxi(c
1
i , c2

i ) < 1,

we have e > 0. Fix z, z′ ∈ E and π−, π′
− ∈ S. Denote by Π the portfolio

optimal for ṽβ(π−, z), and by Π′ the portfolio optimal for ṽβ(π′
−, z′) (they exist by

Theorem 4.2). The corresponding proportion processes πΠ,z
− (t), πΠ′,z′

− (t) will be

written as π−(t), π′
−(t) and the corresponding wealth processes XΠ,z

− (t), XΠ′,z′

− (t)
as X−(t), X ′

−(t). We have then

ṽβ(π−, z)−ṽβ(π′
−, z′)

=

n−1
∑

t=0

βt
E

zh
(

π−(t), z(t)
)

+

∞
∑

k=1

E
z
{

1τk<nβτk ln ẽ
(

π−(τk), πk

)

}

−
n−1
∑

t=0

βt
E

z′h
(

π′
−(t), z′(t)

)

−
∞
∑

k=1

E
z′
{

1τk<nβτk ln ẽ
(

π′
−(τk), πk

)

}

+ βn
(

E
z ṽβ

(

π−(n), z(n)
)

− E
z′ ṽβ

(

π′
−(n), z′(n)

)

)

.
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There are at most n transactions between 0 and n− 1, since by subadditivity of the

cost function it is never optimal to have more than one transaction at a moment.

Hence,

ṽβ(π−, z) − ṽβ(π′
−, z′)

≤ n‖h‖sp − n ln e + βn
(

E
z ṽβ

(

π−(n), z(n)
)

− E
z′ ṽβ

(

π′
−(n), z′(n)

)

)

,

where ‖h‖sp = suph − inf h is a span seminorm. Choose arbitrary π∗ ∈ S and

observe that

E
z ṽβ

(

π−(n), z(n)
)

− E
z′ ṽβ

(

π′
−(n), z′(n)

)

≤ E
z
{

ṽβ

(

π−(n), z(n)
)

− ṽβ

(

π∗, z(n)
)}

+ E
z′
{

ṽβ

(

π∗, z′(n)
)

− ṽβ

(

π′
−(n), z′(n)

)}

+ E
z ṽβ

(

π∗, z(n)
)

− E
z′ ṽβ

(

π∗, z′(n)
)

.

Since ṽβ(π−, z) − ṽβ(π′
−, z) ≤ − ln ẽ(π, π′), we have

E
z
{

ṽβ

(

π−(n), z(n)
)

− ṽβ

(

π∗, z(n)
)}

≤ − ln e,

E
z′
{

ṽβ

(

π∗, z′(n)
)

− ṽβ

(

π′
−(n), z′(n)

)}

≤ − ln e.

Notice that

E
z ṽβ

(

π∗, z(n)
)

− E
z′ ṽβ

(

π∗, z′(n)
)

=

∫

E
ṽβ(π∗, y) q(dy),

with q = Pn(z, ·) − Pn(z′, ·). Let Γ ∈ E be the set from the Hahn-Jordan decom-

position of the signed measure q, i.e. q is non-negative on Γ and non-positive on

Γc. By (A3)

∫

E
ṽβ(π∗, y) q(dy) ≤ ‖ṽβ(π∗, ·)‖sp q(Γ) ≤ κ ‖ṽβ(π∗, ·)‖sp.

Consequently,

ṽβ(π−, z) − ṽβ(π′
−, z′) ≤ n‖h‖sp − (n + 2) ln e + κ‖ṽβ(π∗, ·)‖sp.

Since π−, π′
− ∈ S and z, z′ ∈ E were arbitrary we obtain

‖ṽβ(π∗, ·)‖sp ≤ n‖h‖sp − (n + 2) ln e + κ‖ṽβ(π∗, ·)‖sp,

which yields the desired result.
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