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Relaxation of branched polymers under tube based modedtvéna parametep? char-
acterizing the hop-size of relaxed side-arms. Dependingssamptions made in rheological
models (e.g. about the relevant tube diameter for branohpoips)p? had been set to values
varying from 1 to 1/60 in the literature. From large-scalelenalar dynamics simulations of
melts of entangled branched polymers of different archites, and from experimental rhe-
ological data on a set of well-characterized comb polymetis many (~ 30) side-arms, we
estimate the values gi? under different assumptions in the hierarchical relaxagoheme.
Both the simulations and the experiments show that inctutiie backbone friction and con-
sidering hopping in the dilated tube provides the most abast set of hopping parameters in

different architectures.

1 Introduction

Over the last years, experimental studies on branched mol/hrave gone hand in hand with the-
oretical work aiming to explain their exceptional viscatia properties:™ While the viscoelas-
ticity of linear chains is well described by the tube thedrgntangled branched polymer melts
reveal a more complex dynamic behavior as a consequenceiottmplicated structur All of
them include one branchpoint (in the case of stars) or monealimers, combs, Cayley trees, hy-
perbranched etc.), which dramatically slow down the oVeetdxation of the material. The slow
relaxation processes are reflected in the rheological spacextending over several time decades,
and play an important role during industrial processimycorrect implementation of the branch-
point dynamics in tube-based models seems to be essemtaddarate theoretical predictions of
the rheological properties of these materials.

Molecular segments in the entanglement network of brangatgmers relax hierarchically,
progressing from the outer to the inner parts of the molecthe arms are retracted back and for-
ward along the tubes and their retraction becomes lessdfbleas the branchpoint is approaced.
This leads to an exponential distribution of the relaxatiores along the arm, and to a progressive

dilution of the entanglement network. At times longer thiaa telaxation time of outer segments,



inner segments do not experience the entanglements withufee ones, which have relaxed at
much earlier time scales. As a result, the original tube esowider (‘dilated tube’) with time.
This mechanism is known as dynamic tube dilution (DTBY.Once the arms are fully relaxed,
they act as sources of additional friction, i.e., as frictib‘fat beads’. The branchpoint at these
time scales probes the space liberated by the removed aortsiof the arm, and performs diffusive
steps (hops) along the tube contour with a diffusivity gitgn

p2a?
274

D= (1)

whereT, is the longest relaxation time of the arm aads the tube diameter. This may be the
original or the dilated one (see below). In the following Hyenbola will be used for the dilated
tube. The original, undilated, tube diameter will be dedadsay. In the case of asymmetric
structures (e.g., T- and Y-shaped stars, combs, etc), #recbed architecture is reduced to an
effective linear chain containing the frictional beadsresenting the relaxed short arms. At this
point, the final stage of the relaxation is mediated by remtadf the backbone. In symmetric
structures (symmetric stars, Cayley trees...) reptasamot possible, and after retraction of the
main arms all stress is considered to be relaxed; hoppingeoténtral branchpoint is the only
available mechanism for later motion.

The factorp? in equation Eq. (1) is a dimensionless constant called tippihg parameter.
Thus, it is assumed that the typical hopping distancge tisnes the tube diameter, and that hop-
ping occurs every time the arm relaxes. Naively, it may beseterl thap? is of the order of unity.
However, a series of investigations have suggested caabigesmaller values in the case of asym-
metric T-shaped stars with weakly or moderately entanghedtsarms. This was first pointed out
by Frischknechet al.11 They found that, in order to reproduce the experimentalldwgcal data
with hierarchical tube-based models, the valupfieeded to be adjusted depending on the length
of the short arm. The values obtained in Réfaried in the range 4 < p < 1/60. The smaller

the short arm was, the lower value pf was needed, decreasing (through equation Eg. (1)) the



corresponding diffusivity compared to the naive value §ér= 1. Thus, the relaxed short arms
in the asymmetric stars caused much more drag than expestexl,in the case of very weakly
entangled short arms. Chen and Larson analyzed, in condminatth hierarchical models, rhe-
ological data of asymmetric stars with the same length ofsti@t arm, but this being linked at
different positions along the backbone (forming T-shaped-shaped stars)? They described the
experimental data by using a fixed hopping paramgter 1/12. We note that an alternative tube-
model approach, the time marching algorithm (TMA) upés= 1 but invokes different molecular
assumptions which in essence (implicitly) require a déferfriction due to the branch point. So,
for example, in TMA, reptation is determined by considetimg length of the primitive path of the
whole backbone (not only of the unrelaxed fraction of thekbane, as in the BoBor hierarchical
models).

Branchpoint motion has also been characterized in more lexbpanched architectures. McLeish
et al.1® found the valugo? = 1/12 to account well for rheological data of H-polymeéfsturther
experimental studies generalized the approach for H-petgraf Ref!3 to the case of comb poly-
mers. Danielet al.® kept the value of the hopping paramepér= 1/12 and analyzed the possible
factors affecting the rheological spectra. They studieddhange in the dynamics with increas-
ing number of arms in the comb structure. Some authors incated the effect of the different
length of the free backbone ends and side afhs’.As previously found for their star-like coun-
terpartst+18 rheological experiments of comb polymers with short, weakitangled, branches
revealed that these exerted a higher frictional drag thpeeed® Kirkwood et al. proposed to
solve this problem by fixing again the valpé= 1/12 and using a different, effective entanglement
length for the branche®

Further investigations have shown that reduced valugs?e& 1 are universally found for
branched architectures with weakly entangled short siahs a@he values being strongly dependent
on the arm lengti#%-220n the other hand, recent studies on comb polymers usinghhfe fave
kept the original value of the hopping paramefr= 1, as already mentioned, and used a different

molecular coordinate system accounting for the entireimaighbackbone?® In addition, we note



that the effects of architectural dispersity have beennticeonsidered and analyze&:2°

There have been only a few theoretical attempts to specifyiori the value ofp?. Lee et
al.?%2’extended hierarchical tube models to include branchpdfiuisibn in a self-consistent way,
accounting for linear rheology of Y-shaped asymmetricsstewmbs and pom-pom molecules. The
hopping parameter was identified p&§= 1/Zar being independent of the specific architecture,
with Zar the entanglement density of the unrelaxed backbone segraeithe hopping events.
Some studies using slip-link simulations have focused ennidture of the branchpoint motion
itself. Shanbhag and Larsoff suggested that the branchpoint diffusion is limited by fiié
removal of the entanglements around the short arm. Masiletich.?® examined the relaxation
mechanisms of the branchpoint and their contribution tovtbeoelastic relaxation of asymmetric
stars. They observed that the more asymmetric the struistuttee more relevant the contribution
of branchpoint hopping becomes for the overall relaxatiothe star.

The above review of the literature reveals that there areyal@&mge range of values reported for
the hopping parametgr. Why is this? We consider that there are two separate caasésljows.

Firstly, there are different assumptions made about thadb@oint hopping process itself,
within the context of dynamic dilution theory. These asstions are about two aspects of the
hopping: i) the length-scale associated with hops— thishtriig set by the original ("thin") tube
diameter or dilated ("fat") tube diameter, and ii) the dii@e, or path, of the hopping motion— hops
may be considered to occur along the paths of the thin tub®goor fat tube contour. Different
versions of hierarchical tube-based models make differleoices on these two characteristics of
the branchpoint hopping motiott;15-17.19.22,30

Secondly, the appropriate value pf is normally determined by inference from rheological
data, rather than by measuring the branchpoint motionttiréthe data are interpreted by mak-
ing use of a suitable (hierarchical) rheological model. ddition to the above assumptions made
about the hopping process itself, such models encode fuagsimptions about polymer relax-
ation2*31for example in the mathematical description of deep conlength fluctuations. See,

e.g., the discussion in Réf. As a result, inferences made about the rate of branchpdfnsitin



are themselves dependent on the model used to interpreathe S, it is quite possible that this
process deduces the wrong rate of branchpoint diffusiocailee the branchpoint motion is not
measured directly) which is then interpreted using the grassumptions for the hopping process.
It is therefore not surprising that a wide range of numendlies forp? ensue.

Given the wide range of assumptions on branchpoint hoppitngduced by hierarchical mod-
els, we aim in this article to address a fundamental issuewearule out some of these assump-
tions? We present a critical analysis of the consistencyaéliifferent assumptions for branchpoint
hopping. We perform large-scale molecular dynamics (MDjuations on several branched ar-
chitectures. These include symmetric stars, asymmetsitaped and Y-shaped stars, combs and
mixtures of stars and linear chains. The MD simulationsmallis to analyze directly the diffusive
motion of the branchpoints, rather than make inferences fleeology data. We also analyze fric-
tion of the branchpoints and tube dilution. Using these datadeterming?-values for each set
of specific assumptions for branchpoint hopping.

Since our aim is to rule out some of these assumptions, we istatdvance our criterion for
deciding what is a “good” assumption, and what is a poor ong.ddterion is simple, and based
on the requirement of a universal behavior: a good set ofnag8ans should result in broadly
similar values ofp? across the different systems studied. So, if a specific assomregarding
branchpoint hopping requires very different valuespdfto model the branchpoint diffusion of
different systems, then that particular assumption wiliided out by this exercise. Then, having
arrived at an optimal set of assumptions, we can go on to ask tybical value ofp? should
be used. Throughout this exercise, we shall pay particutenton to errors in determining the
different physical quantities measured by the simulationghere possible, we aim to estimate
guantities by more than one method, as a check on the camsysté our results. This allows us
to decide whether differences in tpé-values obtained for different simulations are significant
within reasonable error bounds.

As a final check on our conclusions, we discuss simulatioalt®s comparison with lin-

ear rheological data of well-characterized comb polymeatk weakly or moderately entangled



branches. This type of experimental system was chosenYeraegeasons: (i) the large number
of side arms means that there is a discernible experimeagtalof the arm relaxation in the linear
rheology data, allowing an experimental estimate to be nadfidiee arm relaxation time, and (ii)
following relaxation of the side arms, the combs are geagadly simple (linear) objects, and so
the terminal relaxation can be analyzed using reptatioartheThus, while direct experimental
measurement of branchpoint motion is not possible we caaat make an estimate of the motion
without resorting to one of the more complicated hierar@hicodels. In what follows, we discuss
our analysis of the experimental system in parallel withgimeulation results because there are
some similarities in the analysis, for example difficuliiegstimating the arm relaxation time, and
the need to use several different methods as a check on ntsis

The article is organized as follows: in Section 2 we predemsimulated systems of branched
polymers, we describe the simulated model and give sinouaketails. In Section 3 we summarize
the main theoretical predictions for branchpoint motiohisTsection introduces equations related
to branchpoint motion that are later used for obtainidgf the simulated and experimental sys-
tems. In Section 4 and Section 5 we estimate the variablesrgin the equations in Section 3
for different molecular architectures, by analyzing siatidn and rheological data, respectively.
Subsequently, we use the obtained variables to calculateatues ofp? for both the simulated
and experimental systems. Results are summarized andsgetin Section 6. Conclusions are

given in Section 7.

2  Simulation details

The branched polymers in our MD simulations were modeledhieyttead-spring Kremer-Grest
model 32 Monomeric units are coarse-grained into beads with dianmtenassmg and excluded

volume represented by a repulsive Lennard-Jones (LJ) paiten

4e %12—%6+1 forr <re,
) = (92 (9)°+]] o

0 forr >re,



with cut-off distance . = 21/60. Bonded beads are connected by springs, introduced ase finit

extension nonlinear elastic (FENE) potential:
1 r\?
Ur = —5KeREIn [1— (—) ] (3)

with spring constanKg = 30g/a? and maximum spring lengtRs = 1.50. In addition to the

original Kremer-Grest interactions, we applied a bendiogeptial given by:
Upend 8) = ke (1~ cos), (4)

wheref is the angle between three consecutive be@ds(@ for arod). A bending constaky = 2¢
was imposed to increase slightly the stiffness of the chdihe resulting characteristic ratio at the
simulated density and temperature (see belovds= 3.68. This choice was made to decrease
the value of the entanglement length in comparison to thtteflexible chainsky = 0).34 In the
following we assume a nominal value of the entanglementtten§Ne ~ 25. This value is the
average oNEP = 23 andNMSP = 27, these being estimated by analysis of the primitive $ahd
monomer mean square displacem&htespectively. In the following we will use the diameter
as the length unit, and time will be expressed in unitgf (moaz/s)l/z. The corresponding
entanglement timee for our model iste = 1800r,.18

The simulated systems are illustrated in Figure 1. Thededecsymmetric stars, T- and Y-
shaped asymmetric stars, combs, and mixtures of T-standimar chains. Red labels denote the
number of entanglements per arm in each architecture (lngalse nominal valuéle = 25 beads
per entanglement segment, as mentioned before). See figptierc for details. The simulated
architectures and used values for the arm lengths have leésnted to investigate several effects
on the dynamics, namely: i) the effect of the short-arm lerigt a fixed architecture (881, 882,
883 and 888 systems), ii) the effect of the branchpoint mosior stars with identical backbones
and short arms (882 and Y4212 systems), iii) the effect ofrapen identical, short arm to an

asymmetric star (Y4212 vs. comb), iv) the effect of dilutthg entanglement network by mixing



with weakly entangled linear chains (883 vs. mix11 and miggdtems).

All the systems were simulated, by using the ESPResSo padRaay number density =
0.850 2 and temperatur@ = €/kg, with kg the Boltzmann constant. The number of beads in
the simulation box for the different investigated systearsyed from 75300 to 107100 (see details
in Figure 1). The polymers were first constructed by joiningding blocks that were sampled
from simulations of unentangled stars and linear chaink wie same interactions of Eq. (2)-
Eqg. (4). The angles at the junction points between buildiogks were chosen in order to obtain
the correct distribution of intramolecular distances (Re$.3” for details). Once the polymers
were constructed and randomly inserted in the simulatiog a@ equilibrated the system. The
equilibration protocol, based on the method of Aehkl.3” consisted of three steps: i) a Monte
Carlo run for prepacking of rigid macromolecules, ii) an Mihrfor progressive introduction of
excluded volume by capped LJ interactions (‘slow push}péhd iii) a further equilibration MD
run with the full interactions. A detailed description otprotocol can be found in R&P After
equilibration, production MD runs were performed, exteigdover typically one to five billion
MD steps. The MD runs were integrated by using the velociytdt algorithm with time step
At = 0.01rg. The temperature in the MD runs was controlled by the Langéwermostat with a

friction constant” = 0.5mp/ 1.

3 Diffusion of the branchpoint: theoretical background

After the relaxation of the short arm, this effectively aatsa frictional ‘fat bead’. Consequently
the backbone, which in the case of the asymmetric starsnsediby the two long arms, is able to
reptate. The branch point motion at these time scales cagdveas a curvilinear diffusion along a

tube of diametea. The trajectory of the branch point is assumed to be a randalik, w

(r?) =IL|a, 5)
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Figure 1. Schematic representation of the simulated syst&he numbers at each arm denote the
number of entanglements in the arm, by using the nominaéwaiiNe = 25 beads per entanglement
segment (see above). In the rest of the paper the differenilaied systems will be denoted
according to the big labels. The simulated systems inclijddasymmetric T-shaped stars (881,
882, 883), ii) asymmetric Y-shaped stars (Y4212), iii) syetnc stars (888), iv) comb polymers,
and v) mixtures of 883-stars with linear chains. The fratiwd beads in the simulation box that
belong to the stars is 1/2 in the mixture ‘mix11’ and 2/3 inphixture ‘mix21’. The labels 1:1 and
2:1 denote such relative compositiomd; denote the total number of stars in the simulation box,
N denote the number of linear chains in the mixtutdsepresents the total number of beads per
macromolecule.

where(r?) is the mean square distance between the start and end piinéstajectory, andl | is
the length of the primitive path that is explored by the brapoint in this trajectory. A Gaussian

distribution is assumed for the diffusion lendthTherefore, Eq. (5) can be expressed as

|2
(r?y = \/W/ exp( )dL (6)

which leads to the relation:
(r¥) =ay/2(L2)/m (7)

Since we have assumed a diffusive motion of the branch ptangahe primitive path, we can
relate(L?) and the diffusivityD as

(L?) = 2Dt (8)

10



where the factor 2 results from the one-dimensional chara¢the curvilinear diffusion. From Eq. (7)

D:T;(S%)Z. (©)

Eqg. (9) provides a direct way of obtaining the diffusivity e curvilinear, reptative motion of

and Eq. (8) we find:

the branchpoint. In the reptative regime the mean squasgdagiement will scale agr?) O t1/2,
Therefore, by obtaining from the simulations the corresipog plateau value of the rat(m2>/t1/2,

the diffusivity can be easily calculated. We note here tha¢rvdynamic tube dilution is included,
there are different tube diameters that could be considérkdre are a set of nested tubes, each
of which is parameterised by its tube diamegerAs written, Eq. (9) gives the effective diffusion
constant for the random motion of the branchpoint, whenrtifosion is mapped onto the path for
the tube with diametea. Thus a particular motion (giving rise to a plateau valuéré)‘/tl/z) can

be construed either as rapid diffusion along a tube path avgimall tube diameter, or as slower
motion along a shorter tube path with a larger tube diameter.

As mentioned in the Introduction, the branchpoint is assitoehop in the tube every time
the short arm relaxes ( EQ. (1)). This branchpoint hopping otxur in the skinnydp) or in the
dilated @) tube. In order to investigate both possible cases, we madif (1) in the way it was
done in eq. 11 of Ref®:

2.4
D= %. (10)

The parametes;, denotes the tube diameteaag(or @) in which the branchpoint hopping takes
place. In deriving Eq. (10), Ref.assumes that the length sets both (i) the typical distance of
the hops, and (ii) the tube contour along which the hops tékeep This is then converted to an
effective diffusion constarD, for motion mapped on to the tube path set by tube dianzetéve

note that, if Eq. (9) and Eq. (10) are equated then the fat@ancels: the large scale motion
given by(rz)/tl/2 will depend only on the tube diameteg within which hops take place. We

equate Eqg. (9) and Eqg. (10) below if we assume that branchfraion dominates the motion.

This is to be contrasted with, for example, Frischknestral., 11 who (when considering hops in a

11



skinny tube) sometimes consider the length of the hop to tieysa), but the path of the hop to be
along the dilated tube contour.

Eqg. (10) includes an additional factqr The factorq is the number of side arms attached to
the main backboney(= 1 for the starsq = 2 for the simulated combs), and it is introduced for
accounting for all frictional contributions from the rekkq short arms. In the cas®, = a and
g=1, Eqg. (10) reduces to the original Eqg. (1).

As mentioned in the Introduction, the hopping paramefeused in the expression for the
branchpoint diffusivity was experimentally found to be smerably smaller than unity, reflecting
a stronger drag from relaxed arms than expected. A possiplaration is that Eq. (1) and Eqg. (10)
overestimate the diffusivity by missing the friction cdhtrtion from the chain itself. We attempt
to correct this point by adding the chain friction for the imatalong the skinny tube, allowing for
arescaling to the dilated tube in the manner of eq. 36 ofR@&he corresponding equation for the

diffusivity reads:

2\ —1
O_ (3n2rez N 20T ) (11)

A
whereZ is the number of entanglements along the backbagis the undilated tube diametag
is the entanglement time, aggd represents the fraction of material giving rise to slow ¢@ists
(see below). As discussed in detail in Réf(building on the earlier work of Viovet. al*9), the
factor@” in the first term on the right hand side of Eq. (11) arises bgedue ‘solvent’ (giving the
dilated tube) is actually formed by slow moving entangledinb. The fastest mode for diffusion
along the dilated tube a chain motion along the skinny tube. Motion directly along thlated
tube requires many constraint release events and is thenmsfach slower. The fact@ is due to

projecting chain motion along the skinny tube onto the sratiiuted tube path.
For the mixtures of asymmetric 883-stars (see Figure 1) imeei chains, constraint release
from the solvent (the short, linear chains) is a little fasééd we can refine equation Eq. (11) to

allow for chain motion along the dilated tube, mediated by ttonstraint release (see eq. 39 of

12



Ref.39):

1 -1
MPTZ | 2 1\ 21,82
D( 2 [(p +<37T2vre+1—(pa> +—p2aﬁ , (12)

wherev = c\,rg1 is the constraint release rate from the linear chains in theune, s is their

relaxation time anda, is the rate constant. In Eqg. (12) we have dropped the faggince for

the 883-starg] = 1. We note that, in the limit of extremely fast constrainesse ¢ — ) the

friction for chain motion along the dilated tube becomesepehdent ofp”. In practice, even for
the mixtures with short linear chains, Eq. (12) gives onlyral correction to Eq. (11).

Again, we contrast Eq. (11) and Eq. (12) with the work of Frlggechtet al.'* When con-
sidering reptation of the backbone along the dilated tutey aissumed that the only friction ex-
perienced by the backbone was the monomeric (or “Rouse&tijdri. This neglects the fact that,
for chain motion along the dilated tube, constraint relesasnts need to occur, and these give rise
to drag on the chain. Here we consider two possibilitiest tthe constraint release events are so
slow, the fastest motion available to the chain is along Kieny tube, but subject to monomeric
friction - this gives Eq. (11). For the blends, we also coasidcluding constraint release events
approximated to be at a fixed rate - this gives Eq. (12). ThekwbrFrischknechtet al. cor-
responds to Eq. (12) in the limit — . Thus, in using Eqg. (11) and Eq. (12), together with
hopping in a dilated tube, we are considering an option netluy Frischknechét al., namely
branchpoint hopping in the dilated tube, but backbone mafiaminated by movement along the
skinny tube. Finally, if we know the tube diameter and usesihaulation value for the reptation
plateau in(r2) /t%/2, we can obtain the hopping paramepérby combining Eq. (9) with one of
the Eq. (10), Eq. (11), Eq. (12).

Once we have presented equations for branchpoint motidreisitnulated systems, we draw
our attention to experiments. We will focus on the illustratase of experimental comb polymers.
Regarding the analysis of the experimental combs, we hawiract access to the diffusivity.
Therefore, we proceed in a related but different manner taiolp?. As in the other asymmetric

architectures, the combs relax as effective linear chdigpgdptation) after the relaxation of the

13



short side arms. Likewise, reptation can be considered itaged tube (but with an enhanced
friction), due to the faster dynamics of the entanglemehth® backbone with short side arms.

For each comb, we can deduce the number of effective entaegls Zyj, in the dilated tube as:

Zy

| =Zp=——, 13
Zgil b7 aZa (13)
whereZ, andZ, are the number of entanglements along the backbone andlabééte q side
arms, respectively. With this, the effective relaxationdir gj of a diluted entanglement segment

can be obtained as:

Tedil = Td/Tdil, (14)

where 1y is the experimentallymeasured terminal time of the comb, ang is the ratio of the
terminal to the entanglement time of the linear chain withghme number of entanglemerzs;,

as the diluted comb. This ratio can be calculated from thdatioilan-McLeish theory for linear

chains as*!
lin
Ty 3 338 417 155
raii = -9 =323 [1— - . 15
dil Tleln Zd|| ( Z;ﬁz + Zdil Zgﬁz ( )

In applying Eq. (15) to combs, we are assuming that the corebhave exactly as rescaled linear
polymers in their terminal relaxation. In particular, wesasie that the depth of contour length
fluctuations is commensurate with the diluted tube (c.f.timary blend case in Ref). We also
assume that the rate of contour length fluctuations and tedmeptation are rescaled by exactly
the same time constant (i.e. slowed down compared to thesmonding linear chain by the large
contribution of side arm friction). Thus, the effective caked entanglement timg, g; includes
contributions from side arm friction, just as the experitadig measured terminal timg includes
the side arm friction. So, the diffusion constant we derig®ty ( Eq. (16)) is the effective diffusion
constant along the diluted tube, including contributiaiosf the side arm friction.

For a linear chain, the entanglement time and curvilinefwslvity are given respectively by
Te = {N2b?/(3ksT) and D = kgT/({ZNs), whereNe is the total number of monomers per

entanglement segmeny, is the microscopic bare friction arfdlis the Kuhn segment length.
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Moreovera3 = Neb? due to Gaussianity. By combining the former expressioresgiffusivity is
given byD = ag/(SnzreZ). In the reptative regime of the combs, this relation holadgHe diluted
number of entanglement&  Zgj ), dilated tube &g — a), and the effective relaxation time of the
diluted entanglement segmemt ( Te il ):

a2

D=~ 16
31 Te gil Zdil (16)

Thus, our procedure is as follows. We measure, experimegrtta terminal timery of the combs.
Using Eq. (14) and Eq. (15), this allows us to obtain the ¢iffecentanglement timee g for the
comb, treating it as a renormalised linear chain. Then, Eg) gives our experimental estimate
of the effective diffusion constant for the comb along thetéid tube contour, which we compare
with Eqg. (10), Eqg. (11) or Eq. (12) as appropriate. The nundfeside arms in the experimental
combs is very large (see Section 5). Therefore, in this caseanw neglect the contribution from the
backbone friction and we just use, in combination with E&)(the simple Eq. (10) to calculate
p?. On the other hand, the simulated comb has only two side anch¢he backbone friction may
play an important role. In this case we combine Eq. (9) with&d).

The equations presented in this section establish a dietation betweerp? and several ob-
servables that can be directly measured from the simulatmmhexperimental information. We
determine this information in Section 4 (simulations) amdt®n 5 (experiments), and use it for

obtaining the correspondingf-values in Section 6.

4  Analysis simulations

4.1 Branchpoint displacement

The plateau value ofr2(t)) /t¥/2 for Eq. (9) can be directly obtained from the simulation daa
analyzing the time evolution of the mean square displacéi8D, (r?(t))) of the branchpoint.
However, this MSD has poor statistics because of the lirmtedber of branchpoints in the simu-

lation box. In order to improve statistics considerablythout significant effects in the results, we
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have averaged the MSD of the ‘branchpoint’ over ten beadsatiual branchpoint and the three
nearest consecutive beads at each of the three arms stefnommtipe branchpoint. Figure 2 shows
the so-obtained values divided by?, for the different investigated systems. At long time ssale
beyondt ~ 10° — 10’ depending on the system, all the data exhibit a plateau péfcethe case
of the symmetric stars. This result suggests that asymensgtars and combs relax in such time
scales by reptation, with the MSD showing the well-known povaw behaviorr?(t)) 0t/2 for
reptating linear chain®.For symmetric stars relaxation is exclusively mediated oy eetraction.
Hence no plateau itr?(t)) /t'/2 is expected to arise at time scales beyond the simulatiodawin

In order to obtain a reliable value of the plateau for Eq. {(&),average the simulation data of
(r2(t)) /t¥2 00 for timest > 5 x 10°, where the plateau is well resolved. The so-obtained values

are indicated as horizontal lines in Figure 2, and are listécble 2.
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Figure 2: Symbols: MSD of the branchpoint dividedt84?, for all the investigated systems. The
solid lines for each data set represent the average val(ré(of) /t1/2 over the long-time plateau.

4.2 Reaxationtimes

In this subsection we determine the longest relaxation,timpeof the short arm. For this, we

analyze its end-to-end correlation function. This is defiae:

C(t) = (P -P(to)) a7



Figure 3: End-to-end correlators of the short arms for thikemint simulated systems. Symbols
with error bars are simulation data. Solid lines are fits teaWwted sum of exponentials ( Eq. (18)).
The dotted line indicates the upper level of noise.

whereP(t),P(to) is the end-to-end vector of the short arm at tirhaadtg respectively. When the
correlation function decays to 0 the short arm is fully reldxWe show the correlation functions
of all the simulated systems in Figure 3. For each system weated the end-to-end correlator
for 15 equispaced uncorrelated time origips Each data set in Figure 3 is the average over the
corresponding 15 correlators. The error bars indicategémh timet, the respective upper and
lower value obtained in the 15 correlators. In order to dbscaccurately the decay of the end-
to-end correlator and to get a reliable valuergfwe fitted the simulation data of Figure 3 to sev-
eral empirical functions. The stretched exponential Kabich-William-Watts (KWW) function,

ok (t) O exp(—(t/1x)P<), whereBg < 1 andtk are fit parameters, seems adequate for describing
the observed nonexponential decayCof). KWW fits provided a good description in most cases,
but failed for the 883-stars and for the two mixtures, whighikit a more complex decay. An
alternative choice is to fit data to a weighted sum of expaakfiinctions. Excellent fits (lines

in Figure 3) were obtained with five exponentials:

f(t) = _iBi exp(—t/1), (18)
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Even if the fitting function provides a very good descriptadour data, the strong noise in the final
decay of the correlation function makes the estimatiom,afather tricky. However, it is evident
that the error bars in Figure 3 do not exceed the v@lii¢ = 0.1. We define the longest relaxation
time of the short arnt, as the time at which the obtained fitting function drop£ta,) = 0.1.
This value ofC(t) is rather small and at the same time, the noise at that lewesd dot influence
significantly the estimated value of. The average values @f with corresponding errors for the
simulated systems are listed in Table 2. In order to quathiéyerror of our estimation afy, we
fitted to EqQ. (18) the 15 correlators computed for the diffiétene origins. For each correlator we
obtained a relaxation time from the conditiG(r,) = 0.1, and we calculated the standard deviation
of the so-obtained 15 values of.

3.5
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Figure 4: Ratio of the MSD of the T/Y-shaped asymmetric starthe MSD of the reference
symmetric stars as a function of time. The arrows are platéueashort arm relaxation timag
obtained by our method (see Table 2).

At this point it is worth studying the possible effect of tHeosen method on the final value of
p?, namely by discussing other suggested approaches fomaimai, from the simulation data.
There have been some attempts to determine the longesatielaxime of the short armg,,
from slip-link?® and molecular dynamics simulatiof3In the slip-link simulationg, was defined
as the time when the short arm loses all its entanglenténits.the MD simulation$® 1, was
determined as the time at which the MSD of the branchpoinhefasymmetric stars deviates

from the corresponding data of the symmetric stars. Thisnasibn is based on the assumption
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that, after the short arm relaxation, the branchpoint isvadd to take a random hop along the
confining tube. This change in the branchpoint dynamicsddad change in the slope of the
MSD. Zhou and Larson observtthat this change occurred at the time when the end-to-end
correlation functions of the short arms decaye(o) ~ 0.2. However, there is no systematic
method to find an accurate time, where the MSD curves for asgtnerand symmetric stars split
up, so the values afy estimated by the naked eye have a significant uncertaintyo(ope time
decade). Moreover, in order to obtain thefor the mixtures we would need a reference system
consisting of a mixture of symmetric stars and linear chailmsFigure 4 we show the results
(arrows) obtained by our method (see above) together with ldi&a of the branchpoim(ri2>) for
different architectures. The latter are divided by the bhgnoint MSD of the reference symmetric
stars((rgsg). In this representation, deviations from the branchpoiotiom of the reference
symmetric stars are reflected by deviations above the haagtevel (r?)/(r3ge) = 1. By direct
inspection of Figure 4 it seems that the precise point at vbeviations arise is ill-defined (note
the scatter in the data). Sitill, it is clear that the so-defindaxation times are systematically
smaller than those estimated by our method (arrows). AedsiatRef.12 the time at which the
branchpoint MSD deviates from that of the reference symimestars is in very good agreement
with the time at which the short arm correlation function aectoC(t) = 0.2. Obviously this
corresponds to a shorter time scale that the relaxation tisee by us, obtained &1;) = 0.1
(see above). Namely, the former is about a 50 % smaller thaauwesponding value for,,
which affects significantly the final value pf.

In the case of the mixtures of asymmetric stars and lineanshg? is obtained from Eq. (12),
which contains as additional parameter the relaxation tignef the short linear chains in the
mixture. We proceeded in a similar manner as for the shorsamthe branched polymers, by
analyzing the end-to-end correlator of the linear chainswélser, the relaxation time of the linear
chains is obtained in the usual way,&gs) = €1, unlike the conditiorC(1,) = 0.1 used for the

longestrelaxation time of the short arms. We fimgl= 19000.
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4.3 Tubediameter and tube survival probability

As mentioned in the Introduction, one of the open questiegsnding branchpoint dynamics is
whether hopping takes place in the skinny (undilated) onéfat (dilated) tube. In this subsection
we investigate both cases and estimate from the simulat®edrresponding values for the tube

diameter. First we calculate the original skinny tube ditaney, in our bead-spring polymers as:

2§ = Ng " Cubj, (19)

whereC,, is the characteristic ratidyg is the average bond length, aNgF is the entanglement
length estimated by primitive path analysis. We fingd= 0.97, and by analyzing the asymp-
totic behavior of intramolecular distances between didieads (see Re¥. for details), we obtain
Cwb3 = 3.4640.10 for all systems. We use the valdg® = 23 reported by Everaet al.,3®
which was obtained for a melt of bead-spring chains at theesgemsity and temperature, and with
identical interactions as those used in our work. By inegrthe former values in Eq. (19), we
obtain a diametesy = 8.92+ 0.13 for the skinny tube.

In order to quantify the diameter of the fat tube for each stigmated system, we first need
to analyze the corresponding tube survival probabiity).38 The procedure for obtaining(t)
involves the calculation of the tangent correlation fumes of polymer segments for the different
investigated architectures. These provide informatiotherrelaxation times of the primitive path
coordinates, which can be used to determine the time depeed the tube survival probability.
A detailed description of the procedure is given in the AgpenThe obtained results for the tube
survival probabilities are represented in Figure 5. Thatdd tube diameter at the relaxation time

T, of the short arm can be obtained %%:

2
a2 = 20 (20)

where®(1,) is the value of the tube survival probability at the averagetr, (see above), and



a is the dilution exponent. In the analysis of the hopping peaterp? (see below) we will con-
sider the two suggested values of the dilution expofemt= 1 anda = 4/3. As we discussed
in the previous subsection, for each simulated system wess¢ of 15 end-to-end correlators
(computed at distinct time origins), yielding their resipee values oft,. Accordingly, we have a
corresponding set of 15 values fé(1;). We use these for computing the standard deviations of
®(1,) (see below).

The calculated tube survival probability is directly reldtto the parametep® in Eq. (11)-
Eq. (12) via:

9% = OY(Ta). (21)

This parameter represents the fraction of the materiaishrasponsible for the slow constraints in
the system. After the relaxation of the fastest parts in gatesns (short arms, and linear chains
in the mixtures), the only slow components to relax are timg larms or main backbone. This
information is contained 9 (1), which measures the unrelaxed tube fractiomati.e., at the

time scale of the relaxation of the short arm. This is alsoctme for the investigated star/linear
mixtures. Indeed the relaxation time for the linear chamst most, that of the short arms, since
both have the same length (three entanglements, see Figuretthe short arms have only one

free end.
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Figure 5: Tube survival probability obtained from the siatidns (see Appendix) for all the inves-
tigated systems.
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Figure 6: Comparison between the tube survival probadslitibtained from the simulations (solid
line) and from the BoB model with choice of parametpfs= 1,a = 4/3 (dashed line) ang? =
1/60,a = 1 (dash-dot line).

Some general trends are inferred from simulation data ior€ig. The two mixtures exhibit
an abrupt decay in the range*1g t < 10°. The beginning of this decay is consistent with the
estimated relaxation time of the linear chainmg-£ 19000, see above). Thus, completion of the
relaxation of the short linear chains leads to a sharp rehmfveonstraints. As expected, the
larger fraction of linear chains in the mixture 1:1 produeestronger decay oP(t) than in the
mixture 2:1. Differences in the tube survival probabibtief the T-shaped stars (881, 882, and
883) and the Y4212-stars are small at all time scales, whiggests a relatively small role of
the relaxation of the short arms in the tote{t) of these systems, and once the short arms are

relaxed, a similar amount of constraints are removed byatiept. The tube survival probability
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of combs is markedly different from that of the T- and Y-stdtshows a faster decay up to time
scales of about,. This is consistent with a stronger role of dynamic tubeteluin combs, due
to their higher volume fraction of short arms than in the Td &hstars. However, after relaxation
of the short arms, the combs contain two frictional fat begldse to the both ends of the linear
backbone. This strongly hinders relaxation @nd) exhibits a very slow decay over the following
time decades, prior to the late decay by reptation.

The tube survival probabilities obtained from the simwlas can be directly compared with
theoretical predictions from hierarchical models. Hereamenpare our results with those from
the branch-on-branch (BoB) model developed by Basl. (see Ref for details). The BoB
model makes detailed predictions for linear rheologicghdd non-looped branched architectures
of arbitrary complexity, by using the entanglement lengtti antanglement time as external inputs.
Output of the BoB calculation includes the tube survivalaioility ®(t). Figure 6 compares BoB
and simulation results @b(t) for some representative cases (882-stars and star/lingtrel:1).
BoB assumea priori values fora andp?. The results in Figure 6 are obtained for two limit cases
p?> = 1/60, a = 1 (dash-dot lines), ang? = 1, a = 4/3 (dashed lines). These include the two
values used for the scaling exponentand the lowest and highest value pf reported in the
literature ! Both the hopping parametef and the scaling exponent (through the facko® (15))
determine the friction constant for the final reptation ad #ystem. Therefore, in systems where
final relaxation is mediated by reptation, decreasing theegof p> and a moves the reptative
regime to longer timescales. Thus, the caseés- 1/60, a = 1 andp® = 1, a = 4/3 provide an
upper and lower bound for the onset of reptation predicteBdily. Relaxation by reptation in the
BoB curves of Figure 6 corresponds to the final sharp droprim%&his time scale can change by
even one decade according to the specific choiq® @hda.

Having noted this, the chosen valuespdfanda do not significantly affect the obtained BoB
curves in the time window, < T4 (relaxation before arm retraction is independerpénd chang-
ing a from 1 to 4/3 introduces less than 0.1% differencepift) at t, for the molecules investi-

gated), relevant for our estimations pf. Indeed, we estimatp? from the simulations by using
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information on®(t) at the relaxation time of the short armgs(through equations for the diffusiv-
ity in Section 3 and Eq. (21)), i.e., mudieforethe onset of reptation. As shown in Figure 6 the
two limit cases ofp? anda used to generate the BoB curves lead to essentially the ssuksrin
the former time window, differences only arising at muchgentimes. Still, it must be noted that
a should have a significant effect in that window for long sid@s In the cases investigated here
the effect is negligible because the side arms are weakangted and stay in the early fluctuation
regime.

In general, the simulation results for the tube survivabjatality are in qualitative agreement
with the corresponding BoB results. The agreement is evengsgntitative in the case of the
pure T-stars. The BoB model captures the trends observeidioyations, including the crossover
between fast dynamics of the short linear chains/side bhesand slow relaxation of the long
backbone. Having said this, it must be noted that for some&esys (Y4212-stars and combs)
a significant part of the final relaxation of the backbone o&@i times beyond the simulation
window (t > 4 x 107), so conclusions about the comparison at such time scalssbrataken with
care.

Once the reptation plateau {n?) /t/2, as well ast, and ®(15) have been determined from
the simulations, we can directly obtain the actual valugfsee Section 6). According to the
discussion in Section 3, different expressions will be dseg?. These will depend on the specific
architectures and compositions (pure or mixture), as veatirethe choice of hopping in the dilated
or in the skinny tube. In the different expressionspdf the values oft, and ®(t,) will enter
separately and/or through the prodagb?? (1,) (see Section 6). Figure 7 shows simulation results
of T, and the product,®??(1y), for the case of dilution exponent = 4/3, in comparison with
the corresponding results obtained from the BoB model. Adgagreement is again found, with
some tendency for overestimation by BoB. Similar agreensastbserved for the cage= 1. With
all this, we conclude that our procedure provides a robushaton of tube survival probabilities
and relaxation times of the short arms, allowing for a rééadstimation of the hopping parameter

p?, as will be discussed in Section 6.
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Figure 7: Comparison of the simulation resultsrgfand ,0%% (1,) with BoB predictions for the
dilution exponentr = 4/3.

4.4 Branchpoint trajectories

A further test of consistency for the estimated arm relaxatimes can be obtained by analyzing
the real-space trajectories of the branchpoints. Hiereathhodels postulate branchpoint diffusion
after relaxation of the short side arms. Prior to this, trenbhpoint remains strongly localized. In
order to test this hypothesis we have analyzed the shape tfajectories at different time scales.
Thus, for timest > 10° we have saved the coordinates of the branchpoint every2000 time
units. This roughly corresponds to one entanglement trpe-(1800). At earlier times we have
used shorter intervals for saving the branchpoint positidtamely we have used= 2 x 10"2
for the time decade T0< t < 10", with 2 < n < 4. With this, we use a large number of points
(at least 50) to characterize the shape of the branchpaijgctory at any relevant time. This

characterization can be made by computing the aspheriargnpeter, defined as:

(I2—11)%+ (13— 11)%+ (I3—12)?

A=
2(|1+|2—|—|3)2

(22)

wherel, |2, 13 are the semiaxes of the inertia ellipsoid of the trajectdhus, at each selected time
t, we compute the asphericifyt) of the set of points consisting of the saved branchpointjoos

at timest’ <t. More precisely, for the timewe only use the points <t saved every time units,
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with 1 the interval for saving used in the time decade whibklongs to (see above). For example,
fort = 4 x 10%, we use the branchpoint positions/at t saved every 20 time units. For any time
t > 10° we use those saved every 2000 time units. In this way we gét affaracterization of

the asphericity at any time, by always analyzing a set oftsaquispaced in time, and preventing

‘crowding’ in the regions visited by the branchpoint durihg early time decades.

0I5 | o ndom walk

0.1}

Asphericity A

Figure 8: Time dependence of the asphericity of the branahp@jectory for all the simulated
systems. The horizontal line represents the limit case @naom walk. The arrows indicate
the relaxation times;, of the short arms, as determined independently from theysisabf their
end-to-end correlators (see text).

Figure 8 shows the time dependence of the asphericity of ridwechpoint trajectory for all
the investigated systems. For comparison we include theevak: 0.15 obtained for a particle
performing a three-dimensional random walk. The evolutbthe asphericity with time reveals
interesting features. In the early stage of the simulatio®asphericity diminishes by increasing
time. This means that new positions of the branchpoint becloralized in a limited region of
the space, forming a trajectory that becomes closer andrdioshe ideal spherical shap&£ 0).
The asphericity reaches a minimum and then increases withduring the rest of the simulation,
i.e., the branchpoint trajectory becomes progressivelgaatized. The random-walk limit is not
reached at the end of the simulation. This will happen at manger time scales, in thiaree-
dimensional isotropidiffusive regimer?(t)) Ot. Note that for the asymmetric systems, only one-

dimensional curvilinear diffusion (reptatiory2(t)) 0t%/2, has been reached within the simulation
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window.

The minimum in the asphericity seems to follow several teerfébr the three investigated T-
shaped stars, it becomes deeper, i.e., the branchpointiescmore localized, by increasing the
length of the short arm. As expected, the strongest lodadizas found for the symmetric 888-
stars. Localization in the 883-stars becomes weaker byngixith short linear chains. In Figure 8
we have indicated (arrows) the relaxation timgsf the short arms, as obtained by the method pre-
sented in Section 4B. Within statistical error, there iseaclkorrelation between these time scales
and the end of the localization of the branchpoint and latergase of the asphericity from the
minimum. This result is consistent with the theoreticalasgtion of hopping of the branchpoint

after full relaxation of the short arm.

5 Analysis: experiments

We use results from linear rheology measurements on a sépe$ystyrene (PS) and polyisoprene
(P1) combsl’42 The mastercurves obtained from the dynamic frequency swesgsurements
correspond to reference temperatukgs= 0°C for polyisoprene andes = 170°C for polystyrene.
Similarly to the simulation analysis, estimation of the aataxation time from comb experimental
data presents some difficulties. In an effort to identifydn@ relaxation time of the combs and to

check the consistency of the obtained values we have useel different methods:

1. Analysis of the tube survival probabilities provided hg BoB computational algorithm. In
this calculations we explicitly use the experimentallyetatined polydispersity indices in

arm lengths (less than 1.1 in all cases).

2. Analysis of the intermediate peak in the frequency deppoé of the experimental loss

tangent tad = G’ (w) /G (w).

3. Defining the time at whiclB(t) = Ge@,, WhereG(t) and Ge are the experimental stress
relaxation function and entanglement modulus, respdygtiVde quantityq,, is the fraction

of unrelaxed material at the arm relaxation time (see below)
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Table 1: Molecular characteristits*24%and parameters used in the estimation.obf the exper-

imental combs.

system| My Ma q | Zai | On Me* Me**
(kg/mol) | (kg/mol) (MPa) | (kg/mol) | (kg/mol)
PI254 | 120.5 188 |7.1|11.4| 041 5 4.09
PS642 275 47 29| 29| 0.22 16 13
PS732| 860 25.7 | 26 |30.3| 0.22 16 13
PS742| 860 47 29 | 20.8| 0.22 16 13
*Me was calculated from the plateau modulsg according to Ferry’s definition, i.e., without the

4/5 prefactor®®
** Me Was calculated from the plateau modudeig according to the definition used in BoB and
Fetterset al, %4 i.e., with the 4/5 prefactor.

10’
108 |
=105
é‘ilo
LI
0107
108 G’ BoB prediction
G” BoB prediction
G data PI254  +
9 __ G data PI254

0 ul A A ul ul
10* 10° 102 10" 10° 10 10%® 10° 10* 10° 10°

frequency w (rad/s)

Figure 9: Linear rheology data of the P1254 comBsSymbols: experimental data & (w) and
G’ (w) at reference temperatufgs = 0°C. Lines: fits to the BoB model (see text for details).

28



The molecular characteristics of the combs are describdale 1. All combs have a long
well-entangled backbon&y in the approximate range of 17 to 54 entanglements). The arens
weakly or moderately entangled(in the range of 1.6 to 6 entanglements). The valueZ;pf
in Table 1 have been calculated by using Eg. (13) and entar@giemolar masseele obtained
from the Ferry’s definition (column 7 in Table 1). The terninglaxation times of the arms and
backbone (see Table 5) differ by several orders of magnitunditherefore, it becomes possible
to separate the two relaxation processes by using onlyrlmemlogy. The first method used to
identify relaxation times includes the use of the BoB corafiahal algorithm® Figure 9 com-
pares experimental data and BoB results for the PI254 comdfexence temperatuiigss = 0°C.
The input parameters required by BoB are the entanglemelgcolar weightMe, entanglement
time Te, dilution exponentar and hopping parameter®. We seta = 1 for all the studied sys-
tems. Good agreement with the experimental moduli is aeklidy usingMe(PI) = 4.09 kg/mol
and 1e(Pl) = 1074 s at Tyt = 0°C. In the case of the PS combs we Wdg(PS = 13 kg/mol
and 1¢(PS) = 5 x 1074 s atTef = 170°C. The entanglement times chosen are shown to be
consistent with previous works for the PS corhtband for the PI comB2:46 The plateau moduli
corresponding to this set of parameters (listed in Tabled )raagreement with published results
of experimentally estimate@y.4’ Whereas the PI microstructure 390% 1,4-addition, even a
small variation may slightly change the entanglement masi@L andte. This may explain small
variations in the values of these parameters in this and otbeks, but overall there is consistency.
Architectural variability such as polydispersity in arnredabackbone or uncertainty in the num-
ber and position of the branches is another possible sodidis@epancy:’ Although the TGIC
(temperature gradient interaction chromatography) ctaraation on the PS combs confirmed
their high level of purity & 85% target materialf2*8the samples are still not perfect in terms of
microstructural architecture. However, given the antitiol small effecg? further fractionation
was not performed and this has not been further pursuedsmibrik.

It must be noticed, that the molecular entanglement lengfimeld in BoB is by a factor 4/5

smaller than the value dfle used in our calculations (see Table 1). This differencefadl from
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the different definitions oM. (se€*® for more details). The value qi* was selected to describe
well the low frequency region 0B’ andG” 1. It is important to stress, as we discussed in Sec-
tion 4.3, that the value gp? chosen for BoB prediction is irrelevant for further estiroatof .
Once we checked that BoB provides a good description of tisatirheological data we used ad-
ditional output from BoB to estimate the arm relaxation timkamely, by using the tube survival
probability computed by BoB,®(t), we obtain the arm relaxation tintg as the time for which
®(Ta) = @unr, With @unr given by Eq. (23) below. Similarly to the work of Kapnistesal, 1’ we
include the contribution of the free backbone ends, andutatie the fraction of unrelaxed material

after the full arm retraction as:

qMa+ 2Mp/(q+1)
gMa + My

@Qnr=1—(a+@) =1 ; (23)

whereg, andg: are the volume fraction of the arms and dangling backbons,eadpectively. The
factorq is the number of side arms per comb. The quantMgandM, are the molecular masses
of the backbone and of each of the side arms, respectively.vailues of all quantities included

in Eq. (23) are given in Table 1.
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Figure 10: Unrelaxed volume fractiah(t) obtained from BoB (solid line) and experimental &n
(dashed line) versus time, for the P1254 comb. The arrowisatelthe values af}, and1, obtained
by using®(1}) = 1— @ and®d(12) = 1— (@4 + @), respectively.

1p? = 1/40 for P1254,p? equal to 10 in case of PS642 combs’ = 1/12 was set for PS732 and PS742 samples
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We have also determined the timgat which the fraction of unrelaxed material is given by
®(1}) = 1— . This gives us a lower bound for the estimation of the armxeglan time. Fig-
ure 10 shows the time dependence of the funcgn obtained by the BoB model for the case of
P1254. We indicate (arrows) the timesandt,, obtained from the BoB model as explained above.
For comparison, we plot in the same figure the experimensgaltangent versus inverse frequency.
The intermediate peak in tarfalls in between the two relaxation timesandt,. From the plot of
unrelaxed fraction versus time we can identify two mainxateon processes. The final relaxation
time of the arms is at the transition point between these twogsses. We find the same qualita-
tive behavior than in thé(t) of the simulated combs ( Figure 5), with a very slow decayratte
extending over several decades prior to the final reptdtoeeay.

In the second method we determingby analyzing the intermediate peak in the frequency
representation of the experimental &anT he first step is to fit the curves with, e.g., a Gaussian or a
Lorentzian function. One example of the fitting procedurghiswn in Figure 11. Then we estimate
T, as the inverse of the peak of the so-obtained fitting funct#orother estimation can be obtained
from the derivative of the experimental tarcurve, by definingr, as the inverse frequency at the

point in which the derivative becomes zero.

1.54
1.0 Gaussian fit curve
PS642

=
IS 0.5+ .
8) .- -.'.
= 0.04 /\

0.5 -

4 2 0 2 4 6

log .o (rad/s)

Figure 11: Symbols: frequency dependence obtéor the PS642 comb (log-log representation).
The line is a Gaussian fit of the peaktt is the horizontal shift factor, for the presented data
(T =170C) at is equal to 1.
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Finally, we make another estimation of the arm relaxatioretby analyzing the experimental
stress relaxation modulu3(t). The tube model in combination with the dynamic dilution-the
ory*! provides an expression for the relaxation moduiit) consisting of two contributions: (i)
fast Rouse modes together with longitudinal Rouse moddwitutbe that represent 1/5 of tiig
relaxation, (ii) escape from the tube at longer times rel&ehe plateau modulusy = ‘g‘Ge. One
may generally assume that, at the times comparable to @veatedn time of the side arms, the first
contribution has already relaxed. However, in the combitecture where the longitudinal modes
are primarily operative at the backbone, this relaxatioolmaism may depend on the number and
position of branchpoints on the backbone. In all experirmecdmbs used for this analysis the
average distances between the branchpoints are very smialbst case&yj /q < 1. Therefore
the relaxation modes involving the motion of the backbommam@lthe tube are frozen during the
relaxation of the side arms. Only small fluctuations of theldb@ne between consecutive branch-
points are present. Following this argument and assuminigutiosh exponenta = 1,17:19:245¢
the end of the arm relaxation the relaxation modulus wildie,) = Ge,, instead of the value
G(1a) = Gn@y, EXpected foZgy /g > 1. We would like to draw attention to this issue, because
the suppression of the longitudinal Rouse motion seems sodemeral feature of densely grafted
combs. We use in the calculation an entanglement modsdus %GN = 5.1 x 10° Pa for Pl and
Ge = 2.8 x 10° Pa for PS. These values are consistent with the above repaiges oMM, in the
sense that they obey rubber elasti¢ftyvithin 15% at reference temperatures given above. Fig-
ure 12 shows experimental results for the relaxation madnlthe different investigated systems.
We indicate by arrows the corresponding values,aéstimated by this method.

By combining the results obtained by the different methads@nted in this section, we de-
termine an upper and lower bound for the arm relaxation tigna each of the investigated comb

polymers. These values are given in Table 5.
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Figure 12: Experimental stress relaxation modulus fornkiestigated comb polymers. The arrows
indicate the arm relaxation times estimated from the r@e®(1,) = Ge@?,, (Se€ text).

Table 2: Summary of the variables obtained from the simuteti reptation plateau in MSD
((r2) /t¥2 ~ t9), longest relaxation time of the short army), and tube survival probability at
the timet, (P(13)).

system| (r?)/t1/2 Ta D(T,)
881 | 0.066+0.003 3700069000 0.849+0.011
882 | 0.0310.001| 4390006:65000 | 0.685+0.013
883 | 0.023+0.001| 213300@507000| 0.500+0.023

Y4212 | 0.036+0.001| 349006:80000 | 0.678+0.009

mix11 | 0.064+0.004| 962000:265000 | 0.278t0.021

mix21 | 0.045+0.002| 1193006:221000| 0.373t0.014
comb | 0.036+0.002| 401000t57000 | 0.593+0.010
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6 Hopping parameter: Resultsand discussion

Now we use the information obtained from the analysis iniSact and Section 5, as input for
obtaining the numerical values pf for each of the investigated systems. The values of the wbser
ables estimated from simulations — reptation plateau in M88) /t¥/2 ~ t% longest relaxation
time of the short armtg), and tube survival probability at the tintg (P(15)) — are summarized
in Table 2. By inserting these values, together with the tibeeter, into the equations presented
in Section 3, we can calculate the hopping paramgtelf the backbone friction is not considered,

by combining Eqg. (9) and Eq. (10) for the diffusivity we olstai

2\ 2
pz:qz%h:a@_/g) . (24)

In this equation we usaf = a3 if hopping is assumed to occur in the skinny undilated tubehé
case of hopping in the dilated tube, according to Eq. (20) seafi= af/ %% (1a).

If we consider the backbone friction, then we make use of Edf)) {or the pure branched
systems and Eq. (12) for the star/linear mixtures. By combieach of these cases with Eq. (9)

we obtain the general expression for the hopping parameter:

2 _ 20%7% ((r?)/11/2)2
TT T s sl e )

Again, a} = ag or af = a3/ ®2% (1) if hopping takes place in the skinny or dilated tube, respec-
tively. The number of entanglements along the backboZe=s16 for all the simulated systems
(see Figure 1). The number of side armgjis 1 in star-like structures angl= 2 in the case of
combs. The facto@ is equal to 1 in the case of the pure systems, whereas for ttianes it stands

for:
g 2Ts(1—®9) 4 3rc, Te
21D (1 — dY) + 3rcy T

Q= (26)

We assume a constraint-release rate con&tapt= 0.1 in the two investigated mixtures of T-stars

and short linear chains.
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The reciprocal values of the hopping parametgp?ifor the simulated systems, calculated by
using Eq. (24) (no backbone friction) and Eq. (25) (inclgdiackbone friction) are summarized
in Table 3 and Table 4 respectively, for both dilution expuse = 1 and 43. In both Tables
we just give the minimum and maximum possible valuegin each system. For getting these
values, we have made the corresponding combinations ofgperwand lower values (given by
their respective error bars, see Section 4) of the parameteering in the former equations fiof,
and have selected the minimum and maximum output of suchiegsaThis allows us to estimate

p? within an uncertainty of typically about a factor 2.

Table 3: Results of the calculation of i? in the simulated systems without considering additional
friction of the backbone (i.e., by using Eq. (24)). Undeglidata are further compared to experi-
mental results ( Figure 14). First column: simulated systeBecond to fourth columns: values of
1/p?. In the first two lines we indicate the used values of the @ituexponent¢ = 1 or 4/3), and
whether hopping occurs in the skinny tulag € ag) or in the dilated oneg, = a).

Table 4: As in Table 3, but considering the additional foatiof the backbone (i.e., by us-

a 1 413 1 413
1/p> |ah=a |an=a | ah=2a |an=2a
881 | 17-38 | 17-38 || 25-51 | 28-56
882 | 7-13 | 7-13 || 16-27| 21-35
883 | 35 35 | 11-20| 18-30
Y4212| 6-13 | 6-13 || 14-28 | 19-36
mix1l | 1-2 1-2 | 10-19 | 25-42
mix21 | 1-2 1-2 | 916 | 19-31
comb | 35 35 | 915 | 12-20

ing Eq. (25)).
a 1 413 1 413
Up? |ah=a |ah=a ||an=a|a=a
881 | 823 | 823 || 11-30| 13-34
882 | 7-12 | 7-12 || 14-25]| 19-32
883 | 25 25 | 11-19 | 17-29
Y4212| 512 | 512 || 12-25| 16-32
mix1l | 1-2 1-2 || 9-18 | 25-41
mix21 | 1-2 1-2 | 9-16 | 18-30
comb 2-5 2-5 7-13 | 10-18

The values of 1p? calculated from the simulation results are plotted in Féigli8. There is

35




a big gap between the values obtained by assuming hoppirigiskinny or in the dilated tube.
The gap in the 1p?-values is indeed proportional to the factoid®? (1,) arising from assuming
at = a3 or a} = af/d?%(1,) in Eq. (24) and Eq. (25). The effect of the tube widening on the
former gap is, therefore, more pronounced in the systemsandsignificant part of the molecule
has been relaxed at the tintg. One clear example is the mixture 1:1. In this system, and for
dilution exponentr = 1, the value of 1p? for hopping in the dilated tube is about 10 times bigger

than the corresponding value for hopping in the skinny tube.

100

'data without backbone friction, skinny tube, a51 —>¢—
data without backbone friction, dilated tube, a=1

data with backbone friction, skinny tube, a=1 —3—
. data with backbone friction, dilated tube, a=1 —3—

%EEEF ey

Loy

881 882 883 Y4212 mixll mix21 comb

1/p2

Figure 13: Representation of the results of Table 3 and Tafdea = 1. Symbols are the averages
of the respective upper and lower values ¢pa.

The question of the apparent high friction exerted by thghslly entangled short arms seems
to be rationalized if one accounts for the effect of the bacidbfriction on the branchpoint diffu-
sivity. This effect is nicely illustrated in the case of th&l8stars, where the short arm is only one
entanglement long, and therefore the contribution of thekibane friction is expected to play a
relevant role in the diffusion of the branchpoint along thiee. For the case af = 1 and hopping
in the dilated tube, the value of/ fp* for the 881-stars without including the backbone frictien i
about 40. If we include the backbone friction in the diffusimnstant the value of/p? is lowered
to approximately 20, which is much closer to the respectalaas obtained for the other systems.

We now restate our criterion, presented in the Introdu¢tionwhat constitutes a good set
of assumptions about branch-point hopping: a good set eingsisons should result in broadly

similar values ofp? across the different systems studied. By inspection ofél8bhnd Table 4
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and Figure 13, we conclude that a comparatively low disparsi the values of Ap? is found
only if the backbone friction is included in the diffusivity an@pping is assumed to occur in the
dilated tube. This set of assumptions leads to roughly afaariation in the value of /Ap?
across the systems studied, which is within the error bowhasir analysis. As is emphasized
by the logarithmic axis in Figure 13, results for other conathions of specific assumptions for
branchpoint hopping are very disperse, suggesting thatatesinconsistent and can be ruled out
in models. For example, setting the length scale assoomtadhe hops to the bare (skinny) tube
diameter leads to a very wide range of fifevalues for different branched structures (variation by
a factor of 10, which is significantly beyond the error bouatisur analysis).

With the assumptions of both inclusion of backbone fricemial hopping in the dilated tube, the
mean values of Ap? (defined for each system as the mean of the upper and lowedpfuctuate
between 10 and 20.5 if we use the dilution exponent 1, and between 14 and 33 if we use
a = 4/3. Thus, the diffusion of the branch point in the dilated twb#h incorporated backbone
friction points to an universal behavior described in margegimental studies with parameter
1/p? = 12.12.13.19

Now we discuss results for the experimental combs. The sporeding expression for the

hopping parametgs? can be obtained, by combining Eq. (10), Eq. (13), Eq. (14)Eqd15), as:

27025 338 417 155

2 _ 7'[21'de” (1_zjﬁz+ Zai _Zgﬁz>. 27)
By using in Eq. (27) the upper and lower boundsrgfand 74 we determine the minimum and
maximum possible values of the hopping parameter. See batdethe values of the quantities
in Eq. (27) &g is calculated from Eq. (13) and is placed in Table 1). The teairtime 74 was

calculated as the product of the zero-shear viscagjtgnd the zero-shear recoverable compliance

Jo.*° The expression fory reads:

1. G G /w?
Tg = Nodo = No— lim — = Me0(G /) (28)

N2 w-0w?  limg ,o(G"/w)’
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Both zero-shear limits of the linear rheology data were apipnated by fitting to the empir-
ical Carreau and Cross modeéf$Then the lower and upper bounds of the obtained limits were
combined in order to get the range Bf values (see Table 5). This method of determination of
the relaxation time is more prone to error when the termiglalxation G’ ~ w? andG” ~ w) has
not yet been attained as is the case of the comb PS742. Insbheot#his comb, the uncertainty
in the terminal time is much higher than in the other combse fiéaxation timegy determined
from Eq. (28) are larger than the relaxation times estimétau the crossover o’ andG” to
terminal relaxatiorf This is expected for combs with entangled branches since than addi-
tional mode of relaxation in the terminal regime. More dstabout the determination a@f can
be found in*®

Table 5: Summary of relaxation times and hopping parametbtained for the experimental
combs. The particular method used for the estimation, e written in square brackets.

system T4 T [BOB] | 15 [tand] | 14 [G(1)] || 1/p?
(s) (s) (s) (s)
PI254 | 580-730 0.4-25 | 0.9-1.2 1.9 4-30
PS642 84-93 1.7-1.9 2.2-2.5 53 5-8
PS732| 3200-3900| 0.07-0.11| 0.04-0.05| 0.16 8-39
PS742| 7700-13000 0.8-1 0.7-0.9 1.3 5-16

100

experimentél data, dilated tube a=1 —>¢—

1/p2

0] 1

1 L L L L
PI254 PS642 PS732 PS742

Figure 14: Hopping parameters for the combs. Symbols araweeges of the respective upper
and lower values of Ap? for the experimental combs. Green lines indicate the lowelr @pper
value obtained from the simulation data, without consitgthe backbone friction (underlined
data in Table 3). Blue lines represent the analogous redgutsckbone friction is considered
(underlined data in Table 4).
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In Figure 14 we compare the estimated values fp?lin the five experimental comb polymer
melts with the results in the simulated comb. For the latterinclude the upper and lower lim-
its, for the case ofr = 1 and hopping in the dilated tube, without considering badibfriction
(underlined data in Table 3) and considering backbonadndunderlined data in Table 4). The ex-
perimental data lay close or within the bounds given by theufation values. The only exception
is the PS732 sample. It must be noted that, except for theatsba timesr, andty, the numerical
values of the quantities entering in Eq. (27) are known wigiinlaccuracy. The strong discrepancy
between the Ap? value obtained for the PS732 comb and the values obtaine¢ddarther combs
might originate from a poor estimation of its. By comparing thas andp? values obtained from
different methods we found that the highest value g#lin case of the PS732 arises from the tan-
gent loss peak analysis. This analysis is based on the aisartiat the two relaxation processes
of the short side branches and the backboneratependent and well-separateld this assump-
tion is not fulfilled, the tad-peak will contain more contributions than the simple arfaxation,
what will bias the analysis. This seems plausible since idhe Isranches in the PS732 comb are
weakly entangled4; ~ 2). Incidentally, same issues may arise if the branchesoaréohg and
effectively dilute the backbone too much. This is the casemitie arm and backbone relaxation
times are too closé’>1Hence, the precise determination of the arm relaxation tifiee combs
remains a subtle issue and cannot be accomplished withmliinong experiments and modeling.
Regarding the PS642 combs, it must be noted that the dilafitre backbone is beyond the limits
captured by the modelZ{; = 2.9). Nevertheless, by assuming, even in this limiting casat t
after the relaxation of the side arms the branched polymesdsced to an effective linear chain
described by the Likhtman-McLeish theotythe values of the hopping parameter obtained from

the analysis of the linear rheology data are comparableosetfound in the simulations.
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7 Conclusions

We have performed large-scale molecular dynamics sinmugtof melts of entangled branched
polymers: symmetric stars, asymmetric T-shaped and Yeshafars, combs and mixtures of stars
and linear chains. An analysis of the branchpoint trajéesoreveals that delocalization of the
branchpoint begins at the relaxation time of the respedigsie arm. The results for the mean
squared displacement, at times far beyond the relaxatiomaif the short side arms, are consistent
with reptation of the diluted linear backbone. Both obsBoves are in qualitative agreement with
assumptions invoked in hierarchical tube models for bradgiolymers.

We have analyzed the diffusive motion and friction of thenfgoints, as well as dynamic
tube dilution, by using direct information from the simudai data. We have determined the values
of the hopping parametep?, for each set of specific assumptions made by hierarchicéletao
for branchpoint hopping. Including the contribution frohetbackbone friction, and considering
hopping in the dilated tube, provides the only consistenbsbBopping parameters in the different
architectures, with Ap? found to be in the range 1020 for dilution exponentr = 1, and in the
range 14- 33 for a = 4/3. Other combinations of specific assumptions for branaitgwpping
lead to disperse, inconsistent setpéfvalues, suggesting that they can be ruled out in the imple-
mentation of hierarchical tube models. The analysis oflimbeological data for comb polymers

confirm the findings obtained from simulations.
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A Calculation of thetube survival probability

As first proposed by Doi and Edwards, and examined in the sitiom work of Stephanoet al., %2
the tube survival probability can be obtained from the tamgerrelation function. This function
can be expressed as:

@(t) = (Uar0 (RS +BRE +CRS)). (29)

The indicesa, B,y € {1,2,3} label the three arms in the case of the star (T- and Y-) arcthite,
and the two short arms and half of the backbone in the caseeafdmb. For simplicity, in the
following we will also refer to the half-backbone in the corab ‘arm’. The vectoRg is the
end-to-end vector of the particular ammat timet. The tangent vectany oo = 914 ¢,0/0Y, at the

/th segment of the armx at time 0, is approximated in the simulation analysis by thé-&®-end
vector of the/th segment (see below). The numerical coefficiditandC’ express the weight of
the correlation between the padsf andy of the molecule. We consider three possible values of
the coefficients: 0 (no correlation), -1 (full correlatiao)-1/2 (half correlation). In our previous
work, we confronted our choice of the coefficients with thedictions of the Rouse mod#. It
turned out that, in the case of the 3-asymmetricstars two neighboring arms contribute equally
with a prefactor -1/2 to the correlation with the third armhelintroduction of the full correlation
(B'=C' = —-1) led to artificial peaks in the correlation function of thegments close to the
branch point. Following this argument, in this work we Be=C' = —1/2 for the case of the
Y-shaped stars. However, the situation is a bit differerthancase of T-shaped stars, where there
are two equally long arms and one short arm. The tangentlatoref each of the long arms is
largely dominated by correlations with the segments of batly arms. Hence, we can omit the
correlations with the short arm in the tangent correlatbth®long arms, taking the corresponding
coefficient as zero. We treat the linear chains in the stadh mixtures as 2-arm stars, and we
use the same coefficients as in the case of the T-shaped d$taysré 15a). In the case of the
comb we use a similar procedure based on the decompositittreaholecule into symmetric

and asymmetric regions. Figure 15 shows an schematic esgeg®on of all the correlations and
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corresponding coefficients for the T-shaped stars and comb.

a) Asymmetric stars b.) Comb

Figure 15: Schematic representation of the weight of theetations used for the tangent corre-
lator: a)T-stars, b) and ¢) comb. Numbers labelling particular segsnare the prefactors used
in Eq. (29). The partr containing the/th segment in this equation is represented with red color.

0.8

o 06
S 882 5,=0.4
882 5,=0.6
0.4t 882 5,=0.8
Y4212 5=0.4
Y4212 5=0.6
02 f Y4212 5=0.8

fit 882 5,=0.8
fit Y4212 5,=0.8

0 1
102 100 10*  10®°  10®° 107

Figure 16: Symbols: tangent correlation functions of tleegments, = 0.4 (red),s; = 0.6 (green)
ands, = 0.8 (blue) in the long arms of the 882 T-shaped (squares) anthes] Y4212 (circles)
asymmetric stars. Lines are two representative KWW fits.

We calculate the tangent correlation function accordingdo(29), where we defing, o as
the end-to-end vector of finite segméniVe use segments of length of ten beads, which constitutes
a good compromise. The choice of longer or shorter segme=s dot change the character of
the correlation function, but the so-obtained functiorkéaof good statistics or is biased by fast
monomer fluctuations (not captured in the original tube isatyprobability). Figure 16 shows the
functionsg(t) of three selected segments in the 882 T-shaped stars an®¥4&iaped stars. In

both cases the selected segments are placed in the long @h@segmental tangent correlation
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datalongarm ¥

data short arm
exponential fit long arm -----
0.2 | "kww fit longarm, =, ——
KWW fit short arm, E[)3

Figure 17: lllustration of the procedure for obtaining the survival probability in the 883-
star. The datdsy; 74| for the long (red symbols) and short (green symbols) armditeel to
KWW functions. The dashed line represents a single expaldéanction. The final tube survival
probability, calculated according to Eq. (31), is given bg blue line.

functions were fitted to a KWW function ( Figure 16),

@(t) = exp(—(t/1,)P) (30)

wheret, andf are fit parameters. The spectrum of the relaxation times all the /th-segments
provides us the information about the progressive relaratif the molecule. We use the set of
points[s; Ty] to construct the tube survival probabili@y(t). By countingl = 1 to ¢ = {max from
the branch point to the outermost segment, the ‘path caieliradefined as; = ¢//max

The procedure to construct the tube survival probabifity) is illustrated in Figure 17 for the
T-shaped 883-stars. The discrete set of data,| for each arm can be described by an empirical
function, which allows us to assign, in a continuous way,a&tion of unrelaxed arm to every
time t. It is evident from Figure 17 that the time evolution of thradtion does not follow a
single exponential decay (dashed line). Instead, a KWWtfandred and green lines) provides
an excellent description of the data. We use the so-obtaitWtlV functions to construct the
smooth, continuous functiors, g ,(t) corresponding to the tube survival probability of each arm

a,B,y. The function starts &g g ,(0) = 1 (when the whole arm is unrelaxed), and decays to zero,
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=a,8,y(Ta) = 0, at the longest relaxation time of the arm. In the case offteBaped asymmetric
stars the tube survival probabilities of the two long arnesidentical (only one of both is shown
in Figure 17). There is a straightforward relation betwdendbtained partial functiors; g (t)
and the final tube survival probability:

d(t) (32)

In this equationZ, g, stands for the number of entanglements of the distinct arm8 andy
respectively. In the star/linear mixtures (mix21, mix11g Wwave to add the tube survival prob-
ability of the linear chains with the appropriate weight. ushthe final tube survival probabil-
ity of the 2:1 mixture is®(t) = (2dPgs3+ Pjin)/3, and in case of the 1:1 mixture it is equal
to ®(t) = (Pggz+ Pjin)/2, where the functionsggz and ®);, are obtained separately by us-
ing Eq. (31) with their respective values 8f g , and=, g ,(t). The tube survival probabilities
of all the simulated systems, calculated according to Efj), (8e shown in Section 4.3 of the

manuscript ( Figure 5).
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