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Abstract

Mathematical models and numerical methods are developehfdysing and simulating
the spatio-temporal evolution of the tear film coating theegar surface of the human

eye during an interblink period. The novelty of the work ista distinct fronts.

e First, a systematic approach is taken to ensure that the@l@bumodel evolution
equations — one each for film thickness and lipid-surfactaoricentration —
arising from asymptotic thin-film approximations of the NavStokes equations,
are uniformly valid when realistic ophthalmic data are usetie parameterisation.
In this way, the present model does not — as occurs in relatedhture —
yield results that are in conflict wita priori approximation hypotheses. More
specifically, novel results are obtained on the effects difssate curvature by
proposing a specific coordinate system in which: the infleesfccurvilinearity on
the evolution of the tear film can be parameterised, and;ithiéing case recovers
the Cartesian models of related literature. Additiondhlg, evolution equations are
developed using sophisticated bespoke computer-alghtxal(E) techniques that
permit the correct priori scalings — of the competing effects of gravity, inertia,
evaporation and surface tension — that guarantee the ahewtioned uniform
validity. A novel consideration of the physical viability boundary conditions at
three-phase contact line on the eyelid in the existing nmagtieal literature leads
to the proposal, implementation and investigation of ndtelmann boundary

conditions that are supported by the results of regenitro experimental work.

e Second, bespoke spectral numerical methods are developeol¥ing the thin-
film approximations, yielding hitherto-unseen explicitrrfaulae for high-order
Chebyshev differentiation matrices. Inherent errors aentjfied, thereby yielding
an explicit understanding of both the modelling limitacand the plausibility of
results. A suite of post-processing tools is developed gmtiate the complexities

of implementing the novel boundary conditions in a specatralironment. All



viii

numerical techniques are validated on test problems; adegree of both accuracy
and efficiency is demonstrated. An analysis is presenteteoétrors incurred in
the numerical approximation of the (steep) film-profile geats near the eyelids;
the results of this error analysis prompt questions on ticaracy of many of the

results of previously published models.

Through the combination of new, uniformly valid, thin-filrp@roximations and bespoke,
fully validated numerical methods, the coupled evolutiquations for the thin-film
thickness and lipid surfactant concentration are solvatl wonfidence that the results
obtained are credible. The novel boundary conditions leadesults that predict
behaviours of the tear film that, whilst unseen in all pridatedmathematicaliterature,
encouragingly align withn vivo experimental observations in tlphthalmicliterature.
As a result, a novel hypothesis is presented for the behawgidhe tear-film contact line,
through which predictions are made regarding the developarad treatment of dry-eye

pathologies. Suggestions for future work conclude theishes
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Chapter 1

Introduction and Background

The work contained in this thesis studies the movement ofdy lod fluid that is, quite
literally, right before your eyes! The tear film located oe @imterior surface of the eye
is an example of the diverse range of macroscopic thin filmituaf that can be found
in both nature and engineering, and it provides the primacys of the present research.
The fluid dynamics of the tear film are studied through a matimal model that is
generated from basic physical principles, which modeliipomates the interaction of the
fluid with a layer of lipid surfactant found at the free sudaaf the tear film. Throughout
the modelling process, meticulous care is taken to ensatatly assumptions made in the
derivation are not invalidated by subsequent choices @mpater values: this philosophy
is motivated by the frequent violation of this apparentlyiolns principle in much existing

related literature.

In addition to novel developments made within the derivatd the mathematical
model for the tear film, a significant proportion of this tlesidedicated to the numerical
methods employed in finding approximate solutions of the ehodhe resultant pair of
coupled initial-boundary-value problems (IBVPs)—for filen thickness and surfactant
concentration—is, in itself, difficult to tackle due to themperiodic domain in which the

tear film is located; this difficulty is exacerbated by theaiz® of any critically-important
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minutiae in the description of numerical methods used integpublished models of the
tear film (cf. §1.2). Hence the explicit description and derivation of noelhin this thesis

is motivated by the aim that all results are readily replieddy the reader.

This introductory chapter is divided into three sectionsthe first, the composition
and certain physical properties of the human tear film areudsed, followed by the
physiology of the secretory and drainage systems; thesalsl@ire pertinent to the
subsequent modelling of the fluid mechanics of the tear filmhe Becond section
comprises a review of published mathematical literaturelelilmg the dynamics of the
tear film. The third section comprises an outline of the $tmecof the remainder of the

thesis.

1.1 Ophthalmic physiology

The pre-corneal tear film is an essential part of the oculstesy: it acts as a barrier to
debris, maintains the outermost cells of the eye, and actslalricating layer for the
rapidly-moving upper eyelid during a blink. The cells of tbernea(the transparent
cap of fibrous material located anterior to the iris and pugd not receive a blood
supply, making them reliant on a fresh tear film for their dypd nutrients. Continual
replacement of the tear film allows dead cells and any delaisi$s not deflected by the
eyelashes to be washed away from the ocular surface. In@dtltthese functions, the
tear film is the first and major refractive interface of the mnet al,, 1997; Németlet
al., 2002) and so must remain as uniform as possible over theateegion of the cornea
in order that its shape does not deleteriously diffract trogdient light, thereby affecting
the visual acuity of the eye. In subsequent sections of Hasis, reference is made to
the palpebralregion of the eye. This term refers to the areas containiagyelids and
their associated structures, which structures are théidwcaf the secretory and drainage

systems for the tear film. The elliptic opening between theea@nd lower eyelids is
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known anatomically as thealpebral fissure

1.1.1 Tear-film structure

The ocular surface exposed within the palpebral fissurevsred by the tear film and
its menisci, which form where the fluid abuts the eyelid masgi The tear film is
widely accepted to be formed as a tri-laminar structure I{H&ILemp, 1973; Bronet

al., 1997); however, recent advances have suggested that tmeldries between the
individual layers are not distinct, leading to blending loé tayers (Rolando & Zierhut,
2001; Gipson, 2004; Szczesanal,, 2006). Periodic blinking refreshes and replenishes
the tear film (Snell & Lemp, 1998). A variety of techniques é&een devised to measure
the thickness of the tear film, with published measurememging from as low a3.7 um
(King-Smithet al., 2000) to as high a& pm (Prydalet al,, 1992). The general consensus
within the published data suggests that the true thickreeaader10 ym; such data can

readily be found in the review articles of Brethal. (2004) and King-Smitlet al. (2004).

The layers of the tri-laminar model of the tear film, from po&ir to anterior, are as

follows.

A mucus layer lining the epithelial cells of the cornea. The long-stagdmodel of
Holly (1973) suggests that a deep mucus layer forms a hydiogurface to
aid the wetting of the cornea. However, more recent stu@ésrma, 1998, for
example) have shown the epithelial surface to be hydraphiid as wettable as the
mucus layer. Furthermore, there is evidence that the muyes is not distinct,
and is intermixed with the overlying aqueous layer (Rola&dd@ierhut, 2001).
Measurements of the thickness of the mucus layer vary witelydalet al. (1992)
suggest that the tear film (of depth40 um) is largely composed of mucus, whilst
values of roughlyl xm are given by Rolando & Refojo (1983) and Nichelsal.

(1985). The modelling of the dynamics of the viscous mucyerlalls outside the
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scope of this thesis due to its interaction with membrars®@ated glycoproteins
at the highly-folded surface of the corneal epithelia (8teet al., 1999; Gipson,
2004).

An aqueous layer consisting principally of water with dissolved salts, emss and
proteins (Broret al,, 1997). A diverse range of depths for the aqueous layer have
been reported in the ophthalmic literature; however, th@rga fall within the
range of3 - 10 um (Holly & Lemp, 1977; Rolando & Refojo, 1983; Sharma, 1998;
King-Smith et al, 2004). Little dissolved mucin was found in the aqueousiaye
by Nagyova & Tiffany (1999), casting into dispute the afoentioned intermixed

mucus-aqueous model of Rolando & Zierhut (2001) and others.

A lipid layer at the free surface of the tear film. This layer is composedfishof wax
esters, cholesterol esters and phospholipids, afd isl00 nm thick (McDonald,
1969; Holly & Lemp, 1977; Norn, 1979; Broet al, 1997; Goto & Tseng,
2003). The presence of the lipid layer reduces evaporaisgek from the aqueous
layer (Mishima & Maurice, 1961; Mathers, 1993; Craig & Tondon, 1997), and
decreases the surface tension of the film, increasing idisggHolly, 1973; Bron
et al, 2004). Furthermore, inhomogeneous distributions of digu lipid have
been suggested to drive flows within the underlying aqueaysrithrough the
induced gradients in surface tension (Brown & Dervichi@@§4; Berger & Corrsin,
1974; Holly & Lemp, 1977; King-Smitlet al., 2009).

A schematic diagram of the tear film is shown in Figure 1.1. fifahematical analysis
presented in Chapterse?2 seq.employs the tri-laminar model of the tear film in order to
develop equations describing the interaction between p dgeeous fluid covered with
a superficial surfactant layer. As noted above, the movemwietite mucus layer is not

studied.

The rate of evaporation from the aqueous fluid reservoir eftéar film is a major
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Lipid 75-100 nm
Agqueous 3-10pm
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Figure 1.1: A cross-sectional schematic view of the tear film showing ttikéaminar model.
Layer thicknesses are not represented to scale, and thie dieffte pre-corneal mucus layer is

omitted as its dynamics are not within the scope of this work.

factor in so-called ‘dry eye’ disorders (Holly & Lemp, 197Craig & Tomlinson, 1997;
Tomlinsonet al, 2011), symptoms of which are reported byearly half of women
between the ages of 35 and”6@nd are prevalent inX0 — 15% of the older adult
populatiori (Mathers, 2004). These disorders are divided into two mepssesaqueous
or tear-deficiendry eye, in which there is a reduction in the volume of the agsdayer
of the tear film, andevaporativedry eye, which is caused by excessive evaporation and
is associated with deficiencies of the lipid layer (Baudp@001; Bron, 2001; Tomlinson
& Khanal, 2005). Ophthalmologists have derived a varietyeghniques to quantify the
rates of evaporation from normal and dry eyes in an effortrid & treatment for the
disorder. Average rates of evaporation from normal eyes$ »f107%, 15 x 1076 and

4 x 107" kg m™% s~! were respectively obtained by Rolando & Refojo (1983), Math
(1993) and Craig & Tomlinson (1997); further collated résuahay be found in the review
articles of Mathers (2004) and Tomlinson & Khanal (2005). alhcases, the rates of
evaporation from the eyes of subjects with lipid-layer deficies were higher than those
from eyes with normal lipid layers. King-Smitt al. (2008) argue that high humidities
induced in the experimental apparatus of the studies alane dthers) have caused the

results published in the literature to be lower than the tabe of evaporation from normal
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eyes; they suggest the rate3sf x 105 kg m2 s~! obtained by Liuet al. (2005) as an

accurate representative value.

Studies of the surface tension of tears have shown that, ilopanson with a value
of 7.3 x 1072 N m~! for a pure air-water interface, the presence of the supaifipid
layer markedly reduces the surface free energy of the tear flillar (1969) obtained
a measurement of.6 x 1072 N m~! for normal tears, which is similar to the value of
4.36 x 1072 N m~! found by Tiffanyet al. (1989). Further corroboration is provided by
the results of Nagyova & Tiffany (1999), in which intact aligid-depleted tears were
tested to isolate the components responsible for the futtsion: a range of.2 —

4.6 x 1072 N m~! was stated for intact tears.

Observations of the lipid layer during a blink have showrt this extremely resilient
to the actions of compression and expansion enforced ugoyrréspectively the descent
and ascent of the upper eyelid (McDonald, 1968, 1969; MishdnMaurice, 1969; Bron
et al,, 2004). Through such observations, McDonald (1968, 196§yssts that the lipid
layer moves in a manner similar to a ‘pleated drape’, foldang unfolding in reaction
to the movement of the upper eyelid during a blink. After thmper lid has ceased
moving, an upward drift of the lipid layer is observed for gbly one second (Brown
& Dervichian, 1969; Berger & Corrsin, 1974; Owens & Phillj001; King-Smithet
al., 2009). To explain this phenomenon, Brown & Dervichian @R®erger & Corrsin
(1974) and Holly & Lemp (1977) propose that the depositiothef tear film is a two-
phase process in which the upper lid first deposits a thirrlayaqueous fluid without
a lipid covering; the lipid layer then lags behind slightiyyd is drawn from a reservoir
near the lower lid (Broret al, 2004) by the induced surface-tension gradient. Through
movement of the lipid layer, viscous drag of agueous fluid gletes the second phase of
deposition, thickening the film to its full depth across tlge.eObservations of thickening
of the tear film over the superior cornea after a blink (Bettedst al, 1984; Zhuet al.,,

2007) appear to support this two-phase hypothesis. Cadtiragithis model, Wongpt al.
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(1996) hypothesize that the filnis‘directly deposited at close to its final thickness by the
rising upper lid’, and hence that the subsequent spreading of the lipid isss®ntial for
the creation of a stable tear film. Eyelid kinetics observgdbane (1980) show that,
regardless of the hypothesis used, there is a significattdageen the completion of the
upstroke of the upper eyelid and the establishment of aestalr film, and Németht

al. (2002) suggest that it can take up to ten seconds for the teatdistabilize after a
blink. Corroborating these observations, King-Sneittal. (2009) observe a slow upward
drift of the lipid layer persisting after the initially fastynamics of the first second have
subsided. The modelling of the post-blink distributiontoé lipid surfactant is discussed
in §2.4.1.

1.1.2 Palpebral physiology

The components of the tear film are secreted by organs witlkeipalpebral region. The
mucus that forms the posterior layer of the tear film is secrély thegoblet cellsof the
conjunctiva which itself is a thin mucous membrane that lines the inyetids and the

anterior surface of the eyeball.

Secretion and drainage of the aqueous layer is controllgtidiacrimal® apparatus,
which consists of théacrimal gland lacrimal lake lacrimal canaliculi lacrimal sag
punctg andnasolacrimal duct Thelacrimal glandis the source of the aqueous fluid, and
is situated above the eye towards the lateral side, opemtggtbe ocular surface at the
junction of the upper eyelid with the eyeball (known as $heerior conjunctival fornix
In addition to the main lacrimal gland, a number of small asoey lacrimal glands are
scattered around the upper eyelid. Aqueous fluid accunswetlin the area below the
eyelid (theconjunctival sagand is distributed across the surface of the eye by thedlierio

action of blinking.

1 ‘lacrima is the latin word for tear.
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Drainage of aqueous fluid occurs through thenctg which are two small orifices
found at the medial end of the lid margins, and are the opsrohthelacrimal canalicul
the small tubes that connect the puncta to l@imal sac The muscular action of
blinking opens the puncta onto the ocular surface whilst gismping the canaliculi,
creating a pressure gradient that draws fluid away from tleeay(Maurice, 1973; Zhu
& Chauhan, 2005). The lacrimal sac opens intortasolacrimal ductwhich itself drains

into the nasal cavity.

The superficial lipid layer of the tear film is secreted by thesal (Meibomian)
glands These glands are located within the upper and lower eydiidsy anterior to
the conjunctiva, and opening onto the eye at the lid margliere are around 20 — 25
glands in each lid (Snell & Lemp, 1998). The secretion of theildmian lipid onto
the eyelid margins alters the wettability of the eyelid niaig a transition zone called
the mucocutaneous junctiotinat is located immediately posterior to the orifices of the
Meibomian glands. The abrupt change in wettability préssithe anterior limit of the
tear-film meniscus that forms at the eyelid (Brehal, 1997). The tear film is stated
by Bronet al. (2011) to always reach the mucocutaneous junction. Howeler is
contradicted by the repeatability results of Goldetgal. (1997), which show that the
reach of the tear meniscus up the eyelid marggnvariable in the same subject. The
pinning of the meniscus at the mucocutaneous junction imy@oitant topic in this thesis,

and is discussed further §2.4.1.

For more detailed information on the anatomy and physiotidglge eye and palpebral
region, the reader is referred to the text-books by Bebal. (1997) and Snell & Lemp
(1998), among others.

2called the ‘tear-meniscus width’ (TMW) in the ophthalmigliature.
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1.2 Tear-flow models

A plethora of literature has been published containing eragtical models for thin-
film flows, of which a small subset (cited below) is focussedtioe modelling of the
human tear film. Many papers have been published within thefifieen years, as
mathematicians and ophthalmologists have started to fetrgeg links. The majority
of published work focusses on the movement of the aqueows, laypd its interaction
with the lipid surfactant at the free surface. However, pgapmve also been published
on the mucus layer, as well as on convection of the humourderthe eyeball itself.
In all literature cited in the following paragraphs, the retsdare derived using a two-

dimensional Cartesian coordinate system unless explgtiited otherwise.

Motivated by the results of Brown & Dervichian (1969), a Laggian model for the
post-blink drift of the lipid and aqueous layers is presdrig Berger (1973) and Berger
& Corrsin (1974), which respectively comprise a PhD thesid aummary article. In
these works, a comparison of simulated results withivo data leads to a conclusion
that surface-tension gradients are a suitable mechanisuirifong the tear film up the
cornea after a blink. As mentioned§f.1.1, an alternative theory for the post-blink drift
of the tear film is presented in Worgg al. (1996), which models the deposition of the
tear film as a coating process with fluid drawn from the merssagiuthe moving upper
lid. This model predicts the thickness of the deposited jgradi be proportional to the
speed of the advancing lid. Interblink simulations in Wat@l. (1996) show significant
thinning of the film at the join of the meniscus to the main tidar, a phenomenon that
is also studied by Milleet al. (2002), who conclude that the menisci and the interior film
are hydrodynamically isolated by the thinned region. Tek@on of meniscus-induced
thinning is called the ‘black line’ by ophthalmologists (Monald & Brubaker, 1971;
Holly & Lemp, 1977; Bronet al, 2011), in reference to the reduced fluorescence of the

thinned region when visualized using flourescein dye.



Chapter 1. Introduction and Background 10

A significant body of work on the tear film has been publishedBogun and co-
authors. Braun & Fitt (2003) model the draining of the teanfilnder the effects of
gravity and evaporation, concluding that, whilst the twieetls are not dominant in the
flow, they can influence the drainage process and so must loel@ttwithin models. The
full blink cycle is modelled in Braun & King-Smith (2007), g a domain length and
flux boundary conditions that vary sinusoidally in time tmsilate periodic movement of
the upper eyelid. A simplified model for the concentratiotipfl surfactant is included,
and computed film profiles are matchednovivo data. Heryudonet al. (2007) extend
this work by incorporating realistic lid motions and fluidxXes into the temporal variation

used to simulate the blink cycle. Results are again compaitbcdophthalmic data.

Maki et al. (2008) use an overset-grid method for their spatial diszagon, and
extend the model of Heryudonet al. (2007) to simulate the opening of the eye
followed by reflex tearing from the lacrimal gland; specilligathis is modelled via an
alteration to the fluid influx boundary condition specifiedra upper eyelid. The same
numerical method is employed in Ma&t al. (2010a) and Maket al. (2010b), which
are sister papers modelling the tear film using three-dimeat Cartesian coordinates
on an eye-shaped domain. The two parts study the influenceffefesit boundary
conditions, respectively variable pressures and variflbies for papers (a) and (b).
Three-dimensional modelling is retained in Braginal. (2012) by employing prolate
spheroidal coordinates to incorporate the curvature obthdar substrate. Newtonian
and shear-thinning fluids are modelled, drawing a conctugiat corneal shape does not
have a significant effect on the thinning of the tear film. Te #luthor’s knowledge, this
is the only existing model outside of the present work thaludes the influence of the

curved corneal substrate on tear-film dynamics.

The work of Braun & Fitt (2003) is extended in Winter al. (2010) through the use
of a more-realistic model for the evaporation from the tdar,fand a conjoining pressure

to model a simulate corneal surface. Qualitative agreernetwteen model results and
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in vivo data is obtained for the speed at which ruptures in the tearditpand. The
temperature distribution within the tear film is studied ir&lBraun (2012) by modelling
the diffusion of heat through the tear film and from the ungded cornea. A parameter
set is found that captures the temperature decreases etigemvo. A review article on

the mathematical modelling of the tear film is presented ewiar(2012).

A model for the deposition of the tear film is presented in 3atal. (2005), which
extends the model of Braun & Fitt (2003) by studying the opgnphase of the eye
and including a simplistic model for the effects of the stip&l lipid layer. Boundary
conditions specifying the influx of fluid from below the opegiupper lid are enforced,
and it is found that the deposition of a viable tear film regsiian influx of fluid from
under the lid. Jonest al. (2006) extend the work by improving the modelling of the
surfactant layer to study the post-blink movement of lifdg.altering the initial surfactant
distribution, the results of the model are found to supploet hypothesis of Brown &
Dervichian (1969), Berger & Corrsin (1974) and Holly & Lem®{7). A model for the
elastohydrodynamics of the eyelid as a ‘wiper’ mechanismprésented in Jonet al.
(2008).

Further insight on the deposition of the tear film is givenli@aBeet al. (2011), which
studies the influence of meniscus shape and storage on thprbfite deposited by the
upper eyelid, modelled in three-dimensional Cartesiamdinates with an elliptic domain
acting as a simplified palpebral fissure. The shape of thesikepatear film is found to
be strongly affected by the geometry of the menisci at théidsieAydemiret al. (2011)
studies the effect of the lipid layer on the deposition anassguent thinning of the tear
film in the absence of evaporation, and includes an asynetidy of the early stages
of deposition. Again, the conclusions drawn support the-$teme deposition model of
Brown & Dervichian (1969), Berger & Corrsin (1974) and HofiyLemp (1977).

A model for the solute concentration within the aqueous dayfethe tear film is

coupled to the dynamics of the film thickness and surfactantentration in Zubkov



Chapter 1. Introduction and Background 12

et al. (2012), and used to study hyperosmolarity in the black-tegions caused by
meniscus-induced thinning. Further meniscus dynamicexaenined in Zubkoet al.
(2013), which compares the tear-film behaviour predicted lprication-approximation
model with the behaviour modelled through solution of theilaStokes equations in the
menisci. Lubrication theory is found to be qualitativelycamateexceptin the menisci,
wherein the Navier-Stokes model predicts a convectivemgixegion that is absent from

the lubrication model.

With the exception of Pleas al. (2011), which models the radius of curvature of the
menisci, a common thread running through the models citegieals the prescription of
the tear-film thickness at the eyelid, to emulate the pasiafdhe mucocutaneous junction
introduced in§1.1.2. This so-called ‘pinning’ of the film thickness vyieldsDirichlet
boundary condition for the resulting partial differenteguation for the evolution of the
tear-film thickness. Further, more detailed, comment orvéiiglity of pinning the film

thickness is made i§2.4.1.

In addition to modelling the dynamics of the tear film's aquedayer and its
interaction with the superficial lipid layer, a variety ofilunechanical models have been
inspired by the eye, including: studies of the mucus layel isinteractions with the
cornea and the overlying aqueous fluid (Sharma, 1998; Shermila 1999); flow of the
agueous humour in the anterior chamber of the eye (Fitt & @lezz 2006; Avtar &
Srivastarva, 2006); movement-induced dynamics of the®its humour (Repetto, 2006);
models of shear-thinning tear substitutes (Jossial, 2009); the dynamics of the tear
film in the presence of a contact lens (Trigtal,, 2014), and; the aforementioned studies
of Zhu & Chauhan (2005) and Jonetsal. (2008).
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1.3 Outline of the thesis

Having described the palpebral physiology and the existioglels of the tear film, the
objective of this thesis is to develop a spatio-temporal ehéat the lacrimal dynamics of
the open eye during the interblink period, which constiatleasd5% of the total blink-
cycle duration (calculated using data from Berger & Corr$Bv4, and Doane, 1980), and
to employ accurate numerical methods to solve this modeah Wis motivation in mind,

the structure of this thesis is as follows.

Chapter 2 presents an asymptotic derivation of the thin-@bWwmlution equations for
the thickness of the tear film and the concentration of lipidactant that incorporates
the effects of gravity, hydrostatic pressure, evaporatin a spatially-varying surface
tension that is dependent on the local concentration ofradsgosurfactant. Despite the
existence of many models for the tear film as outlined abdwe,present approach is
distinguished from prior work through its meticulous treant of the asymptotic ordering
of terms within the governing equations, which orderingdkiaved through aa priori
rescaling of all variables and physical quantities in thaleloThrough such scalings, the
leading-order evolution equations are, by constructioifpumly valid in the considered
parameter régime. The modelling of the tear film includee tvovel developments
that are hitherto unseen in all other models. The first is e af a novel curvilinear
coordinate system that allows the curvature of the undeglgubstrate to be controlled
through variation of a single parameter, allowing the inflees of the curved corneal
substrate on the flow dynamics to be quantified. The secorttkisgecification of the
contact angle, formed between the eyelid margin and thesfrdace of the tear film, as a
boundary condition for the spatio-temporal evolution gurefor the film thickness. Such
a boundary condition represents a significant departura ttee modelling inall prior
models for the tear film, as it replaces the Dirichlet ‘pirgiimentioned above, enabling

the tear film to evolve under the influence of only Neumann ldamy conditions. This
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change to the modelling is motivated because, as indicagiusly, pinning of the film
does not appear to have a firm physical justification. TheiBpation of the boundary

conditions is addressed fully §2.4.1.

Following the derivation of the coupled thin-film evoluti@guations for the film
thickness and surfactant concentration, Chapters 3 ané #feapectively devoted to a
detailed description of the numerical methods used in sgltfne tear-flow model, and
to the validation of the numerical techniques employed. pi#ra3 describes the spatial
discretization process using Chebyshev spectral methaush are chosen in order to
improve (dramatically) upon the accuracy of the finite-eli#ince methods used in the
solution of the majority of prior tear-flow models (see, faample, Braun & Fitt, 2003;
Joneset al, 2006; Aydemirt al,, 2011). To further improve the accuracy of the numerical
scheme, novel explicit forms of the third- and fourth-ord@&rebyshev differentiation
matrices are derived. The spatial discretization is augetdny post-processing tools that
allow the boundary conditions to be enforced with specitaligacy, and allow the mass
within the system to be calculated, which mass provides idatébn of the accuracy of
the numerical scheme in the absence of evaporation. To neroasistent in the present
transparent approach to numerical modelling, the tempbsaretization is carried out
using a coupled fourth-order Runge-Kutta scheme that isflproutlined. Such an
approach is in contrast to a number of tear-film models, whgghundiscussed proprietary
software packages to carry out temporal integration (seexample, Braun & Fitt, 2003;
Heryudoncet al., 2007; Makiet al. 2010a; Makiet al., 2010b; Zubko\et al,, 2012, 2013).
The presentation of the numerical scheme is made as gersepaisaible in order that
the techniques may be employed, with suitable modificatitmether spatio-temporal
problems on a finite domain. All the methods of Chapter 3 aréiameusly tested
in Chapter 4 using model problems with known analytic solsi giving confidence
that the results obtained through numerical solution oftéae-flow model are accurate
representations of the physical processes included witleiderivation. Motivated by the

steep menisci in tear-film profiles occurring in the existipdnthalmic and mathematical
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literature, Chapter 4 concludes with an analysis of the labs@rrors encountered in
the numerical approximation of derivatives of “steep-didiinctions using Chebyshev

spectral methods.

With the numerical methods thus outlined and tested, theyeanployed in the
solution of the new coupled evolution equations in Chapeasd 6. More specifically,
Chapter 5 contains results from simulations of the film&hg&ss evolution equation in
the absence of a motile surfactant layer, allowing the &ffef the novel coordinate
system and boundary condition to be observed in isolatidme fllly coupled system
of evolution equations is solved in Chapter 6, demonstgatie non-trivial influence of
the surfactant layer on the dynamics of the tear film. In bdiapters, the results of the
model are compared and contrasted with both the ophthalbsergations described in
§1.1 and the data from the existing mathematical models fotdéar film outlined ir§1.2.
Through such comparisons, novel conclusions are drawndieggthe onset of dry-eye
phenomena within the human tear film, which conclusions vatgithe formulation of
a new hypothesis for the movement of the tear-film conta& ¢oring the interblink
period. This hypothesis enables alternative methods &tréatment of dry-eye diseases

to be suggested.

Finally, a summary of the major emphases of the thesis is\giv€hapter 7, in which

possible future developments for the model are also disdlss
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Chapter 2

Governing Equations

This chapter contains the derivation of a mathematical mdde describing the

ophthalmic flow introduced in Chapter 1; specifically, theuaipns describing the
motion of a two-dimensional incompressible, viscous, evapng fluid coating a curved
substrate enclosed by solid boundaries, with a non-unitiistnibution of adsorbed lipid
surfactant at its free surface are derived. A definitionakéar the flow is given in Figure

2.1

A pair of coupled spatio-temporal evolution equations,tha film thickness and the
concentration of surfactant, is derived from first prineplunder the assumptions that
the characteristic depth of the film is small by comparisothwie arc length along
the substrate, and that the concentration of adsorbedctamtais low enough that the
molecules are not densely packed, and hence can be trediethgsn an expanded state
(Adam, 1941). The competing effects of gravity, evaporatad capillarity are included
within the modelling. To observe the effect of substratevature on the behaviour of
the system, the equations are derived in cylindrical potardinates, with a change of
coordinate system to so-called ‘marginal-surface’ cawats (se¢2.2 for details) that
are introduced to admit a simple transition to a Cartesiamdinate system in the fluid as

the radius of curvature of the substrate is increased tatiynfihhis is done because, with
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the exception of Brauet al. (2012), the literature in this area focusses exclusivelpon
Cartesian model, hence this development provides a nowgitification of the effects of

controllablecurvilinearity.

2.1 Derivation of governing equations

The thin-film thickness evolution equation has been derteestudy a diverse range of
applications. In the majority of formulations, the combination of phyaiparameters
within the modelled fluid flow yield a Reynolds number that églgible by comparison
with the dominant terms of the governing equations, and #sulting Stokes-flow

approximation is studied under the assumptions detailedeab

The notation convention used below is as follows: subssapipended to dependent
variables denote differentiation with respect to the stipscsubscripts in Roman font
are an exception to this rule, and the purpose of such terthdeimade clear by the
surrounding text; superscripts are employed to identifyngepertaining to the vapour and
free-surface phases of the system. In equations where gpebsgripts are present, terms

without superscripts pertain to the fluid phase.

These include: coating and rimming flows (Moffat, 1977; Pukthev, 1977; Hinch & Kelmanson,
2003; Hinchet al, 2004; Benilov & O’Brien, 2005; Noakest al, 2006, and 2011; Kingt al, 2007;
Kelmanson, 2009a,b; Groh, 2010); biophysical fluid dynamiBerger & Corrsin, 1977; Borgas &
Grotberg, 1988; Gaver & Grotberg, 1990, and 1992; Halpernéitigrg, 1992; Wongt al,, 1996; Braun &
Fitt, 2003; Jonest al, 2005; Braun & King-Smith, 2007; Aydemét al,, 2011; Zubkowet al,, 2012); flow
of surfactant-laden drops and films (Afsar-Siddigual., 2003a,b,c; Warnest al., 2004a,b; Edmonstoret
al., 2004, and 2005; Jensen & Naire, 2006); stability analy$esaporating films (Burelbacét al., 1988;
Jooet al, 1991); geophysical flows (Griffiths, 2000; Hindmarsh, 2a8dppert, 2006), and; fluid flow over
curved substrates (Rat al, 2002; Myerset al,, 2002; Howell, 2003), to name a few. Review articles on

thin-film dynamics can be found within Oraat al. (1997), Myers (1998), and Craster & Matar (2009).
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2.1.1 Equations of fluid motion

The Navier-Stokes equations describing the motion of annmmressible Newtonian fluid
are (Acheson, 1990)

p<Ut + U-VU) = —VP + uV?U + pG, 2.1)

whereU (ms™), P (kgm~! s72) andG (m s 2?) respectively denote the fluid velocity
field, pressure and gravitational acceleration, with patans p (kg m~3) and p
(kg m~!' s71) respectively corresponding to the fluid density and dymaviscosity. In

an incompressible flow the fluid density remains constamt the continuity equation is
V-U =0. (2.2)

Transport of heat energy within the tear film is modelled gsam advection-diffusion

equation (see, for example, Burelbaattal., 1988)
T, + U-VT = xV°T, (2.3)
whereT (K) andx (m? s~1) are respectively the temperature and fluid thermal difftysi

To incorporate the effects of a curved substrate, the teari§iimodelled as a layer
of fluid coating the exterior of a cylinder of radias(m). In keeping with prior models
of the tear film, the model considers a longitudinal cut tiglothe anterior-posterior axis
of the eye (see, for example, Berger & Corrsin, 1973; Wengl,, 1996; Braun & Fitt,
2003; Jonest al, 2005; Braun & King-Smith, 2007; Aydemet al., 2011; Zubkob
et al, 2012), whence all derivatives and equations pertainingat@tions parallel with
the axis of the cylinder are henceforth neglected. Thusflthe can be treated as two-
dimensional, and the cylindrical geometry can be simplifeg@lane-polar coordinates,
(R, 0), as depicted in Figure 2.1, with orthonormal unit vectagyendicular and parallel

to the ocular substrate defined by

en = (cos(0). sin(@))”  and 2.
ey = (—sin(h), cos(9))” .
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For ease of comparison with Cartesian coordinates in thiedihmnfinite cylinder radius,
the velocity vector is defined non-conventionally, withand V" “reversed” to represent

respectively the radial and azimuthal components of vBlosb that
U = VeR + Uey . (25)
Equations (2.1), (2.2) and (2.3) require augmentation Wwahndary conditions in
order to close the system. The fluid is permitted to slip alibregcorneal mucus, but not

to penetrate into the rigid substrate, and the temperagwgqual to that of the eye; these

give the respective conditions
R 7 . R
U . tEYE — —IIEYE . T . tEYE) U . IIEYE — 07 and T — TEYE at R =aQa. (2.6)
o

The first of these relationships is the Navier slip conditiwhich relates the tangential

x(6,t)

’-
///////////

//////////

Figure 2.1: Geometry (in standard plane-polar coordinates) for thermmressible coating-flow
problem on the exterior of an impermeable cylinder of radiughe coordinate origin is marked
O, and the locus of the free surface of the fluid is givendy, ¢) (see§2.1.2 for further details).

The fluid-filled area is denoted l§y. Gravity, G, acts in thed = 37 /2 direction.
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velocity to the shear rate at the substrate (Navier, 1823y &®criven, 1971). In this
conditionng, andt..c respectively denote the unit vectors normal and tangetatitie
ocular substrate (identified with; andey in this coordinate systemy, (m) represents the
slip length along the eye, aril (kg m™~! s72) is the fluid stress tensor, defined in (2.10).
In §2.2.1 the scaling o will mean the effect of slip is found to be negligible in the
model; nevertheless, the Navier slip condition is include(?.6) for completeness. At
the free surface, boundary conditions are provided by denisig the balances of mass,
momentum and energy (Delhaye, 1974; Shikhmurzaev, 2008 permeable fluid-
vapour interface is modelled as a mathematical dividinggserof infinitesimal thickness
and density of the same order as the bulk fluid, hence its soéesank or source of mass
is assumed negligible by comparison with the evaporativesmiax passing through the
boundary (Shikhmurzaev, 2008). The effects of the variabtéactant layer are modelled
purely within the interface, causing variation in the losakface tension. The mass
balance at the fluid-vapour interface is thus (Delhaye, 186@dation 12; Shikhmurzaev,
2008, equation 2.134)

p(U—US) A= pV<UV—US> A= J, 2.7)

wherein superscriptsand" respectively denote the surface and vapoandn is a unit

normal vector pointing from the fluid into the vapour.(kg m—2 s™') is an evaporative
mass flux, and equation (2.7) states that all mass leavingetrefilm is transported
into the vapour, with no change of mass in the interface. Udinothe scalings and
asymptotic expansion respectively madeg22 and§2.3 to solve (2.1) and (2.2) for the
fluid velocities, equation (2.7) yields an evolution eqoatior the height of the tear film

above the ocular surface. The vector momentum balance is
J(U—UV)—ﬁ-<T—TV> -V, TS, (2.8)

in which T is the stress tensor corresponding to each phas&anepresents the surface

2as mentioned on page 18, quantities without a superscrifztipéo the fluid
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gradient operator,

I
VSZV—na—n—(I—nn)-V. (2.9)

The stress tensors in the bulk phases and the interfacesgrectevely defined as
T =—PI+2ur, TV = -P'I4+2,V7Y, and T° = ¢(I—nn), (2.10)

wherel is the identity matrixy (s™1) is the rate-of-strain tensor in each bulk phase,and
(N m™1) is the surface tension. The bracketed téfm- nn) found in both (2.9) and’®
signifies that the action of each quantity lies solely witla interface. Note that through
(2.10), the surface stress tendbt is expressed in units of force-per-utgagthrather
than force-per-uniairea as used for the bulk stress tens@randT" . Equation (2.7) has
been used to simplify the equations of Delhaye (1974, eguédtb) and Shikhmurzaev
(2008, equation 4.12) to yield (2.8).

It should be noted here that the divergence term on the hHght side of
Shikhmurzaev's momentum balance (4.12) utilises the thhee-dimensional gradient

operatorV in conjunction with theconstraintthat the normal to the interface satisfies
n-vn = 0. (2.11)

If this constraint were to be relaxed, the terms arising ftben(non-vanishing) left-hand
side of (2.11) are found to lie within the plane of the freeface. Thath - Vn is parallel

to t follows from a standard vector calculus identity (Spied®€59), which gives
f-Va = %V(ﬁ-ﬁ)+(Vxﬁ)xﬁ. (2.12)

Sincen is a unit normal, the first term on the right-hand side of (2.\I&Znishes, but
the second term clearly lies within the plane of the freeamef Then (2.11) and (2.12)
are compatible only iV x n either vanishes or is parallel o, the latter of which is

impossible: the former requirgsto be irrotational and conservative.

With the fluid interface defined by a functiof(r,¢) = 0, the unit normal ish =

V f/IV f|, hence one only obtains a conservative fieldiff| = 1 at all points and times,
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which is not true for general functiorfs That is, the constraint (2.11) is not realisable as

presented. However, i realisable provided that (2.11) is amended to
n-v,n =0, (2.13)

in which V is the surface divergence operator, (2.9). This can be@typlproven using

standard Einstein suffix notation as follows:

f-Vih = - {[(I—an) V]af,
= n;e;- {(I — n; Ny €; ek) . (nm,z e e, + n,e emvl)},
= n;€; - {nm,l € ey + Ny € €m,l — TNk Nk €5 €y — T4 N Ny, €5 em,k}a

= N Mmi €m + N N € — (i MG) Mg N ke €0 — (M5 1) Mg My €01, 1,

=1 =1

= 0. (2.14)

The balance of energy at the fluid-vapour interface is given(belhaye, 1974,
equation 18; Shikhmurzaev, 2008, equation 4.17)
q’ 1
T <(pSSS)t + V. [pSUSSS + WD + ﬁqS~VTS
2_ 1

2

Loov 118
+J[LU+Q(U Us)

(U—US)Q} +EVT -2 — kYT -4 (2.19)
+2u(r-n)- (U-U%) —24" (rV-n)- (UY -U") = 0.

Here, p° (kgm™2), S Qkg'K™), ¢ Wm™), L, Qkg?!) andk (Wm™! K1)

respectively represent the interfacial density, specificopy of the interface, heat flux
within the interface, latent heat of vaporisation and theroonductivity. By treating the
interface as a dividing surface, the changes in interfat@alkity and interfacial specific
entropy, and the interior heat flux are taken to be negligiblthe model, whence all
terms in the first line of (2.15) vanish: this is equivalentrtodelling the transport of heat
energy through the interface as a reversible thermodynpmicess, the first line being

a statement of the second law of thermodynamics within ttesfecce. Equation (2.15),
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with its first line removed through the argument above, isleygd in the later workings
of this model. In its reduced form (2.15) balances: the gneeguired to vaporize the
bulk fluid and the jump in kinetic energy of particles incitlem each side of the free
surface (contained in the remaining square bracket); heetdlwithin the bulk phases,
which fluxes are modelled using Fourier’s Law of heat conduaaFourier, 1822; Kundu
& Cohen, 2002), and; viscous dissipation of heat energyerbtiik phases (contained in
the final line of (2.15)). Furthermore, it should be noted thigh the interface modelled
as a dividing surface, any viscous heating that occurs anhtbeace will be manifest in
the bulk fluids only, and so will in fact be governed by (2.3}l &s analogue in the vapour
(which is not treated herein); such bulk terms would thepaff2.15) through the heat
flux terms. Despite this, the final line is retained in thisnfiofor completeness and to
allow comparison to the existing literature. The same (ced) equation is presented in
Burelbachet al. (1988, equation 2.9); however, the explanation and assangeading

to the removal of the first line of (2.15) are not presentedeine

To close the system, a conservation equation is requiredhiiconcentration\
(molecules m?), of adsorbed lipid surfactant along the fluid-vapour if#tee. The
equation for surfactant motion is taken from Berger & Corr§i974), which uses the
surface analogue of Reynolds’ transport theorem (Aris2)86r the material derivative

of the surfactant concentration in the surface; this yiéh@sevolution equation
U, + Vs (PU%) — ¥ (U®-A)(V-n) = D°V2U, (2.16)

where D® (m? s71) is the surface diffusivity of surfactant molecules. In iide to the
time derivative and advective terms, the third term on thieland side of (2.16) expresses
the change in concentration caused through dilatatiompribeess by which the local area
of the free surface is distorted due to the underlying fluidkemeent (Aris, 1962; Slattery,
1972; Stone, 1990). Lipid sorption kinetics between therfiate and bulk fluid are not

modelled.
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Alternative form of the surfactant-transport equation

An alternative form of equation (2.16) can be found in thebanalysis of Stone (1990),
and it is important to stress here tHat is the full surface velocity at the interface, and
has not been decomposed into components normal and taagenthe interface. In
Stone (1990), the full surface velocity is decomposed iheodoordinate system of the
interface and, through manipulations, a dilatation termbined through expansion of
the advective term. Note that, in a potentially confusiragshl of notation, Stonews, is
the tangential component of the surface velocity, rathen the full surface velocity, here

represented b{J°; that is,
(uS)STONE = (I - ﬁﬁ) ' US = UTANGENTIAL 5

say. The left-hand side of the evolution equation for theseoved surfactant at the
interface presented in Stone (1990, equation 5) contailysterms concerning the time
derivative of U and advection using the full surface velocity, expressethéncurrent
notation as

U, + V, - (VU) .

By settingU® = Upweemae + (U° - 1)1, expanding using standard vector calculus
identities (Spiegel, 1959), and noting that the surfaceligra operator admits vectors
with no normal component, the advective term above can bapulated into a form
which contains a dilatation-type term. Through these maaimns, the surfactant-

evolution equation of Stone (1990, equation 7) is
Uy + Vs (WUpeenra) + ¥ (U - 0) (V,-0) = DV2U. (2.17)

Comparison of the formulation of equations (2.16) and (Rdhows that the former
contains a dilatation terrab initio, modelled through the time-dependence of the surface
metric (see Aris, 1962, for further details), whereas thietalerives a dilatation term (of

different sign) through advection of the surface. Thiswtidilatation term is simply an



Chapter 2. Governing Equations 26

artefact of the form of decomposition of the surface velgdhus, whilst (2.17) appears
to contain dilatative effects, tests using trial geomstdenfirm that the term is removed
through interaction with the surface divergence of the ¢atigl velocity, yielding the

pure-advective left-hand side of Stone (1990, equatioE§lation (2.16) is employed in

this thesis asitis in the form of a so-called surface adwveetiilatation-diffusion equation.

Calculation of curvature

A further difference between equations (2.16) and (2.17pithe calculation of the
curvature term within the dilatation; (2.16) uses the filMetlgence operator acting an
whereas (2.17) employs the surface divergence. koritnormal vector, both methods
yield the same result;

V-n = V- n, (2.18)
in which the left-hand term is less computationally expemso evaluate. The surface
gradient operator is defined in (2.9) d@s— nn) - V, hence the proof of (2.18) lies in

showing that the ternan - V) - 1 is equal to zero, which follows from

(hh-V)-A = [A(A-V)] 5,

— h-(A-V)n,

= n-(n-Vn), cf. equation (2.12),

= n- %V(ﬁ-ﬁ)+(Vxﬁ)xﬁ :

= 0, (2.19)

becauser - n = 1 and(V x n) x n is perpendicular ta.

2.1.2 Plane-polar equations and free surface geometry

The equations of motion (2.1), (2.2), (2.3), (2.6), (2.D.8], (2.15), and (2.16) are

expanded in plane-polar coordinates, with the free surfdi¢he fluid defined in terms
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Upper eyelic

Cornea/'é

Free surface

G

Lower eyelid

Figure 2.2: The locus of the free surfaggat a fixed statiord, together with the normakh, and
tangential vectonr, defined at that point. The set of orthonormal basis veetgrandey (2.4) are
also displayed and, for the sake of clarity, the normal andeatial vectors have been expanded
from their unit length. The eyelids are located at polar esgjl= +J, whence is confined to the

interval [—¢, 6]. As previously, the fluid-filled region is labelle@.

of the height from the ocular (cylinder) surface using stadddifferential geometry

techniques (Struik, 1961). In this coordinate system, thei&-Stokes equations (2.1)

become
Ul, UV\ B
P(Ut+VUR+—R +—R)— R—l—pG(g)
Ugr Upo U 2Vy
+M<URR+§+ﬁ_ﬁ+ﬁ)’ (220&)
UV, U?
p<m+vvR+ - + f) = —Pp + pG
Vi Voo \%4 2U,
Vig + — + o5 — — — — 2.20b
+’”‘(RR+R+RZ R? R?)’ (2.20b)

in the azimuthal and radial directions, respectively. Thacketed subscripts on the
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gravitational terms represent the components of the grasdttor, rather than partial
differentiation. Note that these equations differ from skendard form (see, for example,
Acheson, 199%A.2; Kundu & Cohen, 2002B2) due to the non-conventional velocity
definition (2.5), wherd” andU respectively represent the radial and azimuthal velocity

components. The continuity equation (2.2) becomes

Vo U
Vi —+ = =0 2.21
Rt 5t R ; (2.21)
and the heat equation (2.3) yields
UTy Tg Tho
T, + VT, — = T — 4+ — . 2.22
t + VIgp + R ff( RR t R + RQ) ( )

Associating the normal and tangent vectors to the oculastsale withey and ey,

respectively, the boundary conditions at the eye (2.6) imeco

U:Z<U —%), V=0, and T = Tupe, (2.23)

at R = a, wherein the boundary condition dn has been used to simplify the slip

condition through removal of thg, term, andZ is the slip length along the cornea.
The locus of the free surface is defined by
X = x(0, t)er. (2.24)

At time ¢, the curvey is a regular curve iR?, confined by eyelids (see Figure 2.2);

x(0,t)>0,t>0,0 € [0, 6]. Aunit tangent vector to the free surface is defined by

. _ —1/2
= lxol ™ x = [C 433 (voen + xeo). (2.25)

wherein the prefactor normalises the vector’'s magnituefiecting the fact thay is not a

unit-speed curve. The unit outward-facing normdbatisfyingn - t = 0) is therefore

a= [ aad] (en — voer). (2.26)
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The velocity at the free surface is defined as

D U
US = F)t( - (Xﬁ%) en + Uey, (2.27)

wherein the azimuthal velocity is evaluated aR = y.

With the geometry of the free surface thus defined, the baknotmass, momentum
and energy, and the surfactant transport equation may noexpanded to yield the
boundary conditions at the interface. The vapour phase geiteal as an inviscid gas at
atmospheric pressuré,;,, with a homogeneous temperature distribution. Furtheemor
at the interface, the tangential components of velocity afhephase are taken to be
continuous;

~

U-t=U"-t=1U"t.

Two boundary conditions are derived from the vectorial motam balance (2.8), whose

scalar product withh yields the balance of stresses normal to the interface

21 (X*Ve — X*xoUr — xxoVo + xxoU + X3V + x2Us)

—P + Py +
i x 0 + x3) (2.28)
o (}_i) _ o (X + 25 — xxes) '
Pt O+

in which both formulations of equation (2.7) have been usedttain the evaporative
term, which term can be attributed to the recoil of the swfas fluid particles evaporate.

Similarly, the scalar product of (2.8) withgives the balance of tangential stresses as

M[(X2 —2) (XUg 4+ Vo — U) + 2xx0 (xVr — V — Up)
)1/2

= 0. (2.29)
x (X% + X2

The energy balance (2.15) at the free surface becomes

2 —
J{Lmt%ﬂ( 1 _i)}ij(XTR xoTy)

(k)2 p? X O+ 12"

Vi U
2XVr — X0 (UR+ 4 —)
X X

+

Bk
(2 +x2)"*
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wherein the continuous tangential velocities at the iatfhave been combined with
both forms of (2.7) to obtain the term inside the first squaecket; as in (2.28), this
term can be attributed to the transfer of kinetic energy stbe interface as molecules

evaporate from the tear film.

The mass balance (2.7) and surfactant transport equatid®)(2vhich will yield the

governing pair of coupled spatio-temporal evolution et for the tear-film flow, are

respectively
PV :/QCQU) = J, (2.31)
(X +x3)
and
U (X2 + 2x5 — XXoo) 1 { s
Wy + Uy |U (x* + x5) +
t (2 +x3)° v 0+ o[V 06 426) + o)

+ VU |x (xeUr + Us) (X* + x5) + xoU (xx00 — x3) + x* (xx¢ + XGXGt)] } (2.32)
Woo (X° + x5) — xo %o (X + Xo0)
(O +x3)”

The final diffusive term (containing,) on the right-hand side of (2.32) is omitted in many

= D°

works that model the evolution of the surfactant conceiutnabn the tear film (Jonest
al., 2006; Braun & King-Smith, 2007; Heryudored al., 2007; Aydemiret al., 2011).
This term arises through the decomposition of the surfagaacean operator into the
surface divergence operator acting upon the surface gradfel, and (to the author’s
knowledge) is presented in the tear flow models of only Befgy@r3), Berger & Corrsin
(1974), and Zubkowt al. (2012), the first of which contains a meticulous treatment
of the differential geometry at the free surface. The indoof this term is shown to
be academic in subsequent sections of this chapter, as anafrthagnitude analysis
identifies that its impact on the surfactant concentrat®ominor by comparison with
other terms in (2.32). However, the significance of this terould be greatly increased
in a physical system with a large surfactant diffusivity othna free surface that has steep
gradients and/or large curvatures, thus this term shouidb@@mitted from the general

form of the surfactant-transport equation.
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Whilst the coupling of equations (2.31) and (2.32) is claarthe latter through
the advection, dilatation and diffusion terms, it is notreatly obvious that surfactant
concentration has any impact on the former. Variations ¢allgsurfactant concentration
affect the strength of the surface tension acting alongrttegface, hence the normal- and
tangential-stress conditions will provide feedback t@12.via the boundary conditions
enforced on the bulk pressure and velocity fields. A corstgurelationship is thus
required to link the surface tension to the concentratiosunfactant at the free surface.
The final term to be considered is the evaporative mass fluwhich is itself dependent
on the pressure and temperature of the vapour phase, anddalecbncentration of

surfactant. These additional relationships are discussta following section.

2.1.3 Constitutive relationships

A discussion of the colloid chemistry that occurs at a fratese with adsorbed surfactant
molecules falls outside of the scope of this thesis. Howeve&realth of literature exists
modelling the influence of adsorbed surfactant on the uyithgrfluid (see, for example:
Borgas & Grotberg, 1988; Gaver & Grotberg, 1990 and 1992; néfaet al, 2004a
and 2004b; Edmonstorat al., 2004 and 2005). In the present model, the surfactant
concentration is taken to be dilute at the free surface (knasva ‘liquid-expanded film’:
Adam & Jessop, 1926; Langmuir, 1934; Adam, 1941; Sakata & B#869). Dilute
concentrations are characterized by the density of masanlthe film being significantly
below the level at which they become tightly packed, whichitiis referred to as the
critical micelle limit. For such a regime, the constitutive relationship betwhersurface

tension and surfactant concentration is taken from Gaverdélsgrg (1992);

o = (2.33)

whereV,, represents the critical micelle concentratiop,is the surface tension of the
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uncontaminated film, and,, is the surface tension of the film whelh = V,,. The

presence of meibomian lipid lowers the surface tensionakteso that,,, < oy.

A large quantity of literature is dedicated to the study ofdflevaporating into a
surrounding vapour (Alty, 1931; Wyllie, 1949; Maa, 1967;IRar, 1976; Higuera,
1987; Burelbaclet al,, 1988). The equations presented in such papers requireadecu
modelling of the changes in temperature and pressure of dpbew phase, as well
as knowledge of the experimentally-obtained evaporatmefficient, a dimensionless
constant that parameterises the likelihood that moledtdes one phase that are incident
on the interface are transported through to the other budk@lrather than being reflected
back. Within this model, the equations derived§ih1.2 can be viewed as ‘one-sided’
as they are concerned only with the fluid phase of the systech,sa changes in the
vapour phase remain unknown but negligible. Additiondhyg data for the evaporation

coefficient of the human eye has not been experimentallyrodda

In the absence of such data, and with the model so defined séitciire relationship
for the evaporative mass flux will not be given. The evaporatate from human eyes
has been measured by the ophthalmic community using ayafiedchniques to discern
if there is a notable difference in the rate of evaporatiotwben patients with normal
eyes, and those who suffer from lipid-deficient dry-eye phabies (see, for example,
Bron et al,, 2004; Mathers, 2004; Tomlinson & Khanal, 2005). An evapiorarate of
roughly1.5 x 10~° kg m~2 s~! is reported for normal eyes in Mathers (1993), and values
of the same magnitude can be found within reviews in the gapentioned above. This
value is used in the mathematical model of Braun & Fitt (2003p incorporate the
resistive effects of greater concentrations of surfadiaetvaporation from the tear film,
an heuristic model is used for the evaporation mass fluxgusiea measured value from

above;
Jo

J = —, where J, = 1.5 x 10 kgm s .. (2.34)

m

()
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The positive parameterd and B allow the heuristic model to be altered, controlling
the rate at which evaporation drops as the concentratioredses, and the evaporation
rate at critical micelle concentration, respectively. Mtihe surfactant modelled in dilute
concentrations, it will be foundtf. §2.2.2) that these parameters do not play a role in the

leading-order behaviour of the system.

2.2 Marginal-surface coordinates

To model the effect of substrate curvature, a change of aoatel system is defined
within a marginal surface which, in cylindrical geometrytssa small distance below
the ocular surface. In the limit that the radius of the cydintknds to infinity, the distance
between the marginal surface and ocular surface decreasesd, and the marginal-
surface coordinates coincide with Cartesian coordinaésed on the flat plane, in which
coordinates comparison can be made with all of the existiegture (with the exception
of Braunet al.,, 2012).

The marginal-surface coordinates are defined as
£ = —abcosd, and n = R — acosd, (2.35)

where/ is the half-angle of the palpebral fissure, as shown in FiguBeThe half-length,
L, along the ocular surface remains fixed for all simulatitimsreby imposing a constraint
on ¢ through

a0 =L — limé = lim L = 0. (2.36)

a—00 a—o0 (1

Hence the geometry of the substrate is controlled solely yth § = 0 corresponding to
a Cartesian plane. Thus defined, coordingges) are configured so that thg-direction
is the same as that ef;, whilst e, is opposite tae, in order that the prevailing direction
of gravity is aligned with increasing. Note that the minus sign in the definition &f

in (2.35) accounts for the sign change associated with ¢hgrfgpm a left-handed set
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of orthonormal vectors in Figure 2.2 to a right-handed seffigure 2.3. To simplify
calculations, the azimuthal velocity is re-defined in thegmeal-surface coordinates and

the gravity vector can now be defined:

B B S . g
Uen = —Urp, and G = G cos (acosé e + Gsin a cos 0 ©n

whereG is the gravitational field strength, and the coordinate supts onU will be
dropped in subsequent calculations. The locus of the frdaculis re-defined according

to (2.35) as

¢ = o t)e,, with o, t) = x(& t) —acosd. (2.37)

Figure 2.3: Defining sketch for the marginal-surface coordinateés)) of (2.35). The surface
n = 0 is defined a distance cos 6 from the polar coordinate origir), with the origin of the
marginal-surface coordinate®)/, falling on the intersection of this surface and the lthe= 0.

Orthonormal basis vectoeg ande,, are shown, as well as the transformed normagnd tangent,

t. In the marginal-surface coordinates, the locus of thedtetace is given by.
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2.2.1 Non-dimensional, scaled equations of motion

To make progress with the system of equations (2.20) - (2s2Bject to boundary
conditions (2.23) and (2.28) - (2.30), the thin-film lubtica approximation is employed
with the aim of reducing the equations to a coupled pair ofraxmate evolution
equations for the film thickness and surfactant conceotrati The central principle
underlying the lubrication approximation is an assumpttwat the ratio of fluid activity

in one coordinate direction to that in the other coordinateation(s) can be characterized
by a small parameter, with 0 < € < 1, the ultimate goal being to expand each dependent
variable as a power series drto generate an asymptotic hierarchy of terms within each
equation. In making such expansions, the standard thesyraes that all coefficients
multiplying powers ofe within the governing equations are of ord@f1); however, it
will be shown in§2.2.2 that this is not the case. A review of the magnitude whseis

thus required before an expansion can be made.

The lengthscales of the eye yield a convenient small paemdefined as the aspect
ratio between the half-length of the palpebral fissute,= 5 x 1072 m, and the
characteristic film height away from the eyelids= 5 x 10~¢ m (Braun & King-Smith,
2007);

e = — = 107°. (2.38)
The perpendicular height of the tear fluid above the oculbssate,H (¢, t), is used to

redefine the locus of the free surface
o€, t) = a(l —cosd) + H(E ). (2.39)

The lengthscales mentioned above, together with equai@d), motivate the definition

of the following non-dimensional marginal-surface cooates and tear-film depth

Leosds a1 = cosd) + doo = £<1—COS5+€5(I)>, H=dh, (2.40)
C 5
<

£ =

where0 & < h, andC is a yet-unspecified, ordeP(1) constant that scales the

azimuthal direction and is central to the enforcement ofbiendary conditions for the
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pair of coupled evolution equations when they are solvedgutiie numerical scheme
that is introduced in Chapter 3.C is introduced here as it permeates through the
equations of motion; however, its definition is deferred qoaion (3.16) irt3.2. Note
that equations (2.36) and (2.38) have been used in the dafirof . Here, and in
subsequent definitions, tildes will be used to denote scadeedimensional variables, i.e.
variables that are strictly of ordé?(1). With the non-dimensional coordinates so defined,
derivatives with respect to the original, dimensional plgolar coordinate§R, ) are
transformed via (2.35) and (2.40) into

to__ ¢ 0 o0 _19

RO§  L(1+edw) ¢ OR  dow
The dependent variables in the bulk flow are non-dimensiee@dlsing a typical draining
velocity, Uy = 1 x 10®* ms~! (Braun & Fitt, 2003). This velocity is used to adopt a
viscous pressure scale and an advective timescale. Tetupgeis non-dimensionalised
using the difference in temperature between the eye andntiéeat environment. The

non-dimensionahnsatzemployed within the model to define the ord@s1) ‘tilded’

variables is
. U . Uy
(U7 V) = U()(U, EU) 3 P = y P PATM = ?pATM P
) eL L L= (2.41)
T = (Tee — Tow) © + T2y, t=—t, Z =ed(,

Uo

in which 1 = 1.002 x 1072 kg m™! s72 is the kinematic viscosity an@,. is the vapour
saturation temperature, taken to'Hg. = 293 K. The ansatz2.41) contains scalings for
both the velocity normal to the ocular surface and the pressthe fluid is not allowed
to penetrate the ocular surface, forcing the velocity nbtotne surface to be zero at that
point. Furthermore, the fluid is presumed to be extremely toimpared with its length
along the ocular surface, leading to the assumption thalraelocity, V, is an order of

e smaller than the transverse velocity, which itself requires no scaling as the draining
velocity Uy is taken along the ocular surface. The pressure terms aeglsnaorder that

the asymptotic hierarchy obtained from expansion of thenadistress condition (2.28)
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Table 2.1: Physical parameters for the tear-flow problem. Values ofl flwbperties are taken for

water, whilst vapour properties are for air at atmosphemgsgure a20°C. The critical surfactant

concentration is a representative value for condensed {#tam, 1941; Burdon, 1949), and the

surfactant diffusivity is taken from Sakata & Berg (1969helcritical micelle value for the surface

tension is taken from Tiffangt al. (1989).

Parameter Value Unit Description
L 5x 1073 m Half-length of palpebral fissure
d 5x 107 m Typical film depth
Uy 1073 mst Typical velocity
p 998.2 kg n? Fluid density
oV 1.2 kg nT3 Vapour density
U 1.002 x 1073 kgm's! Fluid kinematic viscosity
g 9.81 ms? Gravitational acceleration
P 1.01 x 10° kgm!s2 Atmospheric pressure
TV, 293 K Vapour saturation temperature
Teve 310 K Eye temperature
k 0.68 wnr!t Kt Fluid thermal conductivity

1.7 x 1077 m?s!

L, 2.3 x 106 Jkg!

Jo 1.5x107°  kgm?s!
0, 1018 molecules m
D3 3x 1078 m? st

00 0.073 N ntt

Om 0.045 Nt

Fluid thermal diffusivity

Latent heat of vaporization
Evaporative mass flux

Critical surfactant concentration
Surfactant diffusivity
Surfactant-free surface tension

Surface tension whewr = ¥,

yields a well-posed system of equations. Additionally, ¢hecaling of the slip length

meansZ falls within the lower limit of the range of values presentedraun & King-



Chapter 2. Governing Equations 38

Smith (2007). Similar scalings can be found in other matheralditerature on the tear
film (Braun & Fitt, 2003; Aydemiret al,, 2011).

Finally, surfactant-based quantities within the free acefare non-dimensionalised

using their critical micelle values;
U = 0,1, 0 =0,0, (2.42)

where the scaling of the surfactant concentration refldws the lipid molecules are
not densely packed. It should be noted that the valu& gfis taken for a tightly-
packed, condensed film, but that the term itself will be foomdirop out of the non-
dimensional equations; the important factor is #iescaling, which will affect the
constitutive relationship for the surface tension (2.3B)e physical parameters for the

tear-flow model are summarised in Table 2.1.

Upon changing variables, non-dimensionalising, and drgpptildes on all
subsequently presented variables, the differential @psgoverning the fluid flow are

transformed thus: the transverse Navier-Stokes equati@f4) becomes

R n n Cuug eouv o C pe N U 5 uy,
AT T T w1t eow) e(1+edw) € e(l+elw)
C? uge 5u 2e0C v o0&
(1+ edw)? B (1+ edw)? * (1+ edw)? + St cos (6) ’ (2.433)
and the radial Navier-Stokes equation (2.20b) becomes
Cuv 5% €l
2 § _ _& w
€R6<Ut+1)%+1+65w 1+65w) €2 +wa+1+e§w
e2C? vge €26 2e0C uge 0&
— — in|—] . 2.4
Qtow?  (taw?  (Irewp H oD (c) (2.43b)
The continuity equation (2.21) yields
Cue + (1+€edw)v, + edv = 0, (2.44)

and the heat equation (2.22) becomes
Cu@5 ) . @ww (SG)w Cz @55

(2.45)

he Pr (G)t O+ 1+ edw 2 e(1+edw) (14 edw)?’
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The non-dimensional constants introduced in the above tieqsaare formed from
groupings of the physical parameters for the flow;
. onL

L2
Re st =P" and  pPr=X (2.46)
7 plo pK

are respectively the Reynolds number (quantifying thetiveamportance of inertial
forces to viscous forces), the Stokes number (the ratio afigational forces to viscous
forces) and the Prandtl number (the ratio of the rates ofousdiffusion to thermal

diffusion).

At the ocular surface, the boundary conditions (2.6) become
u = 6C<uw — 65u>, v =20, and © =1, (2.47)

atw = 0 (this value has already been substituted into the slip bayncbndition). It is
important to note here that the scaling of the slip lendthjn the ansatz(2.41) means
that slip effects are observed at ord2(e¢) in the boundary condition fox; a ‘no-slip’
boundary condition is obtained at leading order in (2.4 )th& free surfacer = h, the

normal- and tangential-stress conditions, (2.28) an®{2r2spectively become

p Darm JEL 1 1
et e T 2\ v
€ € plo (1 + A(e2¢0)B)” \p¥ p
2 ) o *6C? vhi
T T e o | T v — eCuhe +
e C% ughy (2.48)

+65Cuh§ — (1 +€5h)(]h§uw +

1+ edh
aA((l + €6h) €C? hee — 262502 h2 — §(1 —|—€5h)2>

9

((1 + e6h)? + 202 hg)3/2 (1 - 62B¢/A)3

and
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1
€ ((1 + edh)? + €2C? hg)

1/2

[uw<602 h — (1 +€5h)2) + 2¢*5C hev

202 h2

+ (eéu — €2CU§> (1 + edh — i " 652) + 262C? heug — 2€*(1 + edh) C hev,,

3e2aBC ¢
(1 — 62B¢/A>4 |

(2.49)
The constitutive equations (2.33) and (2.34) have beentitutiesl into the stress
conditions and, furthermore, the non-dimensional form2088) has been simplified by

making the substitutions (see Table 2.1)
A= 2 == and B = A(l- AY3). (2.50)

The balance of energy (2.30) is transformed to

b A )]
pUs (1 + A(e)B) [0 2 \ (V)2 p?
@w(l —|—€5h)2 — €2C? hg@g

T 1/2
eBr (1 + edh) ((1 + edh)? + €C? h?)

€ <(U — hy) (1 4+ €5h) — Cuhg) (2.51)
_'_

7 {2(1 + ebh)?v,,

(1+ edh)? ((1 Fe6h)? 4 202 hg)
+Ch5[65u — (14 €Sh)u, — 62(]115]} = 0.

By aggregating the physical parameters within the boundangitions at the free surface,
two further non-dimensional numbers that characterizéltinecan be obtained in (2.48)
and (2.51), these are

Om pUs
a = —, and Br = _
II"LUO k (TEYE - TV

SAT)

(2.52)

« is the inverse Capillary number, which measures the reatifluence of surface-

tension forces to viscous forces, att is the Brinkman number, the ratio of heat
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produced through viscous friction to heat transported bydaction within the fluid. It
should be noted that the first lines of (2.48) and (2.51) aomtan-dimensional groupings
of the evaporative mass flux and other physical parametBesetgroupings are not
assigned specific names, but their magnitudes will be caledlin§2.2.2, along with

those of all non-dimensional numbers defined above.

Finally, with the redefinition (2.39) of the locus of the fregrface, the pair of coupled
evolution equations (2.31) and (2.32) yield PDEs for the-domensional height above

the ocular surface and surfactant concentration, resfedgti

€ ((v — hy) (1+ €6h) — Cuh§> ) T 53
1/2 - 2,,\B)\ ’ ’
((1+ eom)2 + ec22) Pl (1+ A(e9)7)
and
ebhy (1 + edh) (602 hee(1 + €6h) — 2626C2 b2 — 5(1+ ash)2)
@Dt - 2
((1 +e5h)? + 02 h@)
o[t + naw) € (9he (1+ eoh) + €C? hehey)
+
(1 + €dh) <(1 +e6h)? + 202 hg)
€2 C® heu | hee(1 + €dh) — €edh?
. ¢ < ge( ) g) (2.54)

(1+ oh)? ((1 +e0h)? 4 202 hg)

2
+ O u n e*C hehy
(1+ €dh) ((1 + e5h)? + 202 h§>

o ehetfe (5(1 + e6h) + €C? h§§>
 Pe ((+eon)2 + ec2p2) (L eompz + ec2nz) )

Here, the Péclet number on the right-hand side of (2.54efsed to be the ratio of

advective movement of surfactant molecules to diffusiveemnoent,

Pe = 22, (2.55)
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The grouping of physical parameters on the right-hand sid@.63) also yields a non-

dimensional quantity, the magnitude of which is discussdte following subsection.

2.2.2 Scaling of non-dimensional terms

Through the scaled non-dimensiomaisatz (2.40) and (2.41), the equations governing
the tear-flow problem (2.43) - (2.45), (2.47) - (2.49), (3,54nd (2.53) - (2.54) have
been transformed to contain non-dimensional variablel wiagnitude of orde©(1).
However, the non-dimensional numbers defined2m2.1 are formed from un-scaled
groupings of the physical parameters in Table 2.1. Befonpli expanding all equations
as power series in the small parameter to form a thin-film@ypration, the magnitudes
of the non-dimensional groups are first investigated in thieitsof representing, as
accurately as possible, physically-realistic scalingghefir magnitudes in terms af
Using real ophthalmic data for the tear film, the non-dimenal numbers are scaled in
terms ofe to obtain a physically-consistent form of the equations ofion. Under such
scalings, the aforementioned governing equations arsfoaned from generic equations
of lubrication approximation modelling to equations tha elaimed to represenb more
thanthe flow of tears upon the human eye; this ensures that regrierated by the model

will genuinely merit interpretation.

Using the parameter values collated in Table 2.1, the noredsional numbers
defined in (2.46), (2.52) and (2.55) are found to have thevahg values

Re = 4098 ~ 022
St = 244 x10° =~ 176

Pr = 590 ~ 0257 e
a = 4.49x 104 A~ Lol (2.56)

Br = 867x 1071 ~ 3%,
Pe = 167 ~ 070
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The realistic scalings suggested by (2.56) are built inortfodelling via a rescaling of

the non-dimensional parameters using

Re = ére,

St = e ?st,

Pr = pr, (2.57)
o = 3 Qg ,

Br = éebr,

Pe = ¢ lpe,

wherein all lower-case parameters ang are by genuine physical considerations
constants of orde®(1). It should be noted here that the scaling of the inverse leaypil
numberp, has been altered to increase the importance of termswglatsurface tension
and surface-tension gradients, respectively arising enntbrmal- and tangential-stress
conditions at the free surface. One of the primary aims afwark is to study the effects
of variable surface tension on the tear film, hence this tesres necessary to promote
such effects in the model. Furthermore, in order that thecedfof evaporation from the
bulk fluid occur at leading-order in the balance of mass, tiredimensional grouping in
(2.53) is rescaled using an ord@(1) parameterr via

o
pUo

= 150x107°% ~ €168 i = ek (2.58)
pUo

Within the normal-stress condition (2.48) the two non-dagienal groupings model the
transfer of momentum through the interface as fluid molecal@porate into the vapour

phase. The scaled terms become

JRL J2L ,

= 1.12x107° ~ 9% —— = em,
p 1Uo p 1Uo (2.59)
2 2 '
Sl 9.36 x 1077 ~ 00 Sl emY |
PV ul pY nlo

with m andm" defined ag)(1) factors. Finally, the three non-dimensional quantities in
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the energy balance at the interface (2.51) are rescaled usin

ijﬁ S 12X 108 A e JO@S” = 3,
0 HYg

JoL JoL

= 845x 10715 ~ 490 : = €K, (260

2p*uUs ‘ 223 ‘ (2.60)

JoL JoL
s = B85x 1070 & ™ — o = SKY,
2(p")?ulg 2(p")*uUs

where)\, K andK" are defined to bé(1). These groupings of parameters multiply terms
that respectively model the heat energy released from thefloid phase as molecules
evaporate into the vapour phase, and the kinetic energtls @itiid and vapour molecules

themselves.

Upon replacing the non-dimensional numbers and groupifyisysical parameters in
the governing equations with their scaled equivalentsr(2-%2.60), the tear-flow model
now contains factors that are all of ord@(1), with the exception of the small parameter
that governs the relative size of all terms in the equatidhsough the use of real physical
data, the equations of motion have been consistently repted, allowing expansions
of the dependent variables as power series o be made in with confidence that the

asymptotic equations obtained will be uniformly valid arng/gically viable.

2.3 Asymptotic expansion and leading-order solution

To make progress with the non-dimensional, scaled (sutpetie rescalings detailed in
§2.2.2) set of differential equations (2.43) - (2.45) andoagded boundary conditions
(2.47) - (2.49) and (2.51), the field variablesv, p, and© are expanded as power series

in the small parameter

( (

u(ﬁ, w, t) uj(gv W, t)
N
v(€, w, t) _ Z€j v; (&, w, t) + o(eV), (2.61)
p(€, w) =0 pi(§ w)
@(5, w, t) ) @j(gv W, t) )



Chapter 2. Governing Equations 45

with the aim of transforming the original nonlinear problerto a hierarchy of linearised
differential equations at each order ef Through substitution of (2.61) into the
aforementioned governing equations and expanding evegyth ¢, a hierarchy of fully
closed boundary value problems is created at differentsiafe, solution of which yields
the coefficient functions of (2.61) that yield uniformlylgbasymptotic expansions for the
field variables. Substitution of the expanded field varigalodo (2.53) and (2.54) converts

the pair of coupled evolution equations to an asymptotimfor

In keeping with the existing literature on the tear-flow desh, the leading-order
solution to the system of differential equations listedwabis sought, and substituted into
the pair of coupled evolution equations to study the dontibahaviours within the tear
film. Making the expansion of the field variables, the leadinder components of all

relevant partial differential equations are

(2.4338): g ww = Cpoe — stcos (%5) ,

(2.43b):  po., = 0,
(2.62)

(2.44). Cuge + v, = 0, and
(2.45): 00,00 = 0,

whereinj = 0 in (2.61) and differentiation with respect to a variable &dted after a
subscript comma. These equations reveal that the leaddeg-temperature distribution
is at most a linear function of depth through the tear film. Théial component of
the momentum equation shows that the pressure gradientgirte film is zero, thus
the leading-order pressure field represents a depth-aaragdue that is dependent only
upon the azimuthal coordinage this is a typical feature of thin-film lubrication models.
Finally, the azimuthal component of the momentum equatiows v (§,w, t) to be a
quadratic function of depthy, with all £- and¢-dependence arising through and the

boundary conditions.

The differential equations (2.62) must be supplementetiéptderO(1) components
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of the expansions of the slip, no-penetration and conynaittemperature boundary

conditions (2.47) at the ocular surface, which are respelgti

=0, () =0, and 0O, =1, (2.63)

w=0 w=0 =0
and the normal- and tangential-stress conditions, (2.48)(2.49), and energy balance

(2.51) boundary conditions at the free surface

= Pam — Oéo.ACZ h§§ — O[(]A(SQh,

Po
w=h
UQ, w . = 3 OéoBClpg , and (264)
G, = 0.
w=h

The solution of equations (2.62), satisfying the boundamyditions (2.63) and (2.64), is

w? 2 2 0§
uy = | hw — > aOAC[C’ heee + 0 hg] + st cos rel + 3w aoBC e,

(3h —w) {QOA C? [02 hegee + 52hgg] — Jst sin (5—05) }

w2

UQZ—F

Y

+3C he {aOAC [02 heee + 5%4 + st cos (%5) } + 9B C? g

Po = Pam — CYOACZ hgg - a0A62h,

Oy = 1.
(2.65)

The velocity and pressure fields in (2.65) demonstrate Heattirvature of the substrate
has a non-trivial influence on the leading-order solutiothttear-flow problem, which
influence is unseen in all prior models of the tear film (witl #xception of Brauet al,,
2012). In the Cartesian limit (= 0), the leading-order velocity and pressure fields agree
with the solutions of other formulations that employ theg@mtial stress condition (2.49)
atw = h (Joneset al, 2005, in their “zero-stress limit”; Jones al, 2006; Aydemiret

al., 2011; Zubkowet al,, 2012, 2013). However, the fluid velocities of (2.65) diffeth
from those of formulations that model the free surface todmgéntially immobile, and

from the velocities of Braun & King-Smith (2007) and Heryuaeet al. (2007), in which
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slip at the cornea is modelled as a leading-order effect. ediite scalings 0£2.2.2,
the uniform leading-order temperature field of (2.65) d#f&om the spatially-variable

distributions derived in Braun & Fitt (2003), Wintet al. (2010) and Li & Braun (2012).

Through the form ofu, in (2.65), two simplifying substitutions can be made that
partition the behaviours influencing the movement of the fia into the combined
effects of capillarity and gravity, and the effect of sutéat concentration gradients. Two
functions are defined as

M(€) = apAC|C heee + 6he| + steos (%5) , (2.66a)

Q&) = 3aBC e, (2.66b)
using which, the leading-order velocity field in (2.65) imglified to

2
Uy = (hw—%)M+wQ,

w2
w=—-C= (81— w) My + 3heM + 30| .
To identify the limits of validity of the leading-order saion (2.65) to the tear-flow
problem, the orde®(¢) components of the governing equations and boundary conditi
are considered as these are the terms of largest magnitatarth neglected through

truncation atO(1). The linearised differential equations for the componentis atO(¢)
in (2.43) - (2.45) are
Ut = Cpre — 0 (upw+ Cwpoe)
P = stsin (6—6)
o c)’ (2.67)
CULg + v, = ) (wvow —|—’U0) , and
@1,ww - _6@O,w7

in which all terms on the right-hand side are explicitly kmotkirough (2.65). These are

augmented by thé&(e) components of the boundary conditions; at the ocular serfac

U = CUQW, (1 =0, and O, =0, (268)

w=0 w=0
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and at the free-surface, the stress conditions and enelgydeayield

1
P1 N = Oé()A(S (2 02 hhgg —|—52h—|— 502 hz) “‘30&0851/),
wu| = 0(ug—huy), and (2.69)
01,0 = —=\or.
w=h

At this point it is instructive to re-iterate that all linesed differential equations,
boundary conditions and solutions presented within thigice are obtained under
the inherent assumptions of the long-wavelength, thin-filbrication approximation,
specifically: that the ratio of the fluid activity in the coardte direction through the film
to the fluid activity in the direction along the film is charagted by the small parameter,
e. Through the scalings made §2.2.1 and;2.2.2, all variables and derivatives in the
leading-order set of differential equations and boundanyddions used to obtain (2.65),
and in (2.67) - (2.69) are assumed to be strictly of or@ét). When this is not the
case (for example near a steepening front in the free surfage>> 1; or where the
free surface has a large curvatupe,| > 1) the asymptotic hierarchy formed to enable
solution of the governing equations ceases to be uniforalig vScaled into the notation
of the present work, steep gradients and large curvatueegndeed found throughout
the models of the tear film in the published literature. Disfhis, a study of the terms
neglected in the orde®(1) differential equations is never undertaken. Hence near the
pinned menisci, where the first and second derivatives dféeesurface height may be of
orderO(e!) or larger, terms that were originally omitted through stgirguments may
need to be promoted in the asymptotic hierarchy, into thditgaorder equations. The
invalidation of the assumptions of the lubrication appneation is illustrated in Zubkov
et al. (2013), wherein a comparison of fluid velocities from a lghation model and from
solution of the full Navier-Stokes equations in a meniscum@d at a height of order
O(100) shows the lubrication model to omit a convective mixing oegihat is observed
in the Navier-Stokes model and, moreover, to predict movemiethefixedcontact line.

Notably, qualitative agreement between predicted teawrilickness profiles from both
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models is demonstrated. However, this similarity of resoiay be born of the constraints
of the modelled scenario, specifically: a thin film coupledttarge, pinned meniscus,
hence there is very little movement the film could exhibit tivauld lead to significantly

different results between the two models.

Herein the assumptions employed to obtain the leadingrdtole variables (2.65)
are used to inform the choice of boundary and initial condsiin §2.4.1, enforcing
that all expansions used to derive the model evolution égusmtemain uniformly valid.
With the ordering of the terms in the governing equationd3p- (2.45), (2.47) - (2.49),
and (2.51) remaining intact, the leading-order solutia6%2is henceforth adopted as an
accurate approximation to the tear-flow problem. Through tttuncation of the power-
series expansion, it is noted that each field variable inljdseffectively expanded with
only one component term on the right-hand side=(e"«,, etc.). This notation is relaxed
in the following sections, and so the subscript zeros append each field variable in
(2.65) are subsequently removed, the implication beingithathe O(1) system under
consideration. As the leading-order temperature didioby2.65) is shown to be spatio-

temporally constant, its evolution is not considered inrdraainder of this work.

2.4 Coupled evolution equations

The pair of coupled evolution equations for the leadingeortear-flow problem is
obtained through the substitution of the leading-order ftpjwamics (2.65) into (2.53)
and (2.54), which are respectively subjected to the resgslof (2.58) and (2.57). To

simplify the expressions, the functions defined in (2.66)#ilised.

Evaluating the fluid velocity componentsandv (2.65), at the free surface, = h,
and substituting into (2.53) allows all spatial derivasive / to be identified with the

gradient of a mass flux), of fluid along the ocular surface. This flux is defined as
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h h3 h2
Q) = / uvdw = —M + —Q, (2.70)
0 3 2
and is used to cast the leading-order thin-film evolutionagign for the film thickness

into a conservative form given by
hy + CQe + E = 0. (2.71)

Upon substitution of: (2.65) and its derivatives at = h into (2.54), the leading-order
thin-film evolution equation for the concentration of setént at the fluid-air interface
may be expressed as

Yy + CRe = 0, (2.72)

in which

R(E) = vu| = %th + YR Q (2.73)

plays a role that is here called a ‘concentration flux’ for thefactant. It should be
noted that the scaling (2.57) of the Péclet number natuteléscopes diffusive terms in
the asymptotic hierarchy of (2.54) to lower than ord#fl), so that the leading-order

evolution equation contains only advective terms in additd the time derivative.

Equations (2.71) and (2.72) form the pair of coupled evolugquations to be solved
in Chapters 5 and 6. These must be augmented by initial pgdbleeach distribution,
together with physically-motivated boundary conditioaslioth the height and surfactant

profiles at the eyelids.

2.4.1 Boundary and initial conditions for ~ and ¢

Evolution equations (2.71) and (2.72) are first-order iretiamd respectively fourth- and
second-order in the spatial coordingte Thus, in order that the system of equations is
well-posed, (2.71) requires a single initial condition sodnforced on the film thickness,

h, as well as four boundary conditions at the eyelids; sifyil§2.72) requires one initial
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condition, and two boundary conditions to be imposed upersthfactant concentration,
1. Due to the requirement that the initial conditions satigfg appropriate boundary
conditions, a discussion of the initial conditions is deddr until after the boundary

conditions at the eyelids have been defined.

Contact-angle boundary condition

The first boundary condition fok is specified by the contact anglé,..,, subtended
between the eyelid margin and the free surface of the tear Tilme contact angle arises
through the physical interaction of the surface tensiorteathree-phase contact line, at
which point the balance of forces acting along the inteddmtween each phase is given
by Young’s law (Young, 1805; Adam, 1941; Snoeijer & Andred013)

Osv = Ose + 00 C0S Oopyr 5 (274)

wherein subscripts SV and SF respectively denote the sut@atsions along the solid-
vapour and solid-fluid interfaces, amnd is the surface tension of the clean fluid-vapour

interface €f. Table 2.1). In dimensional coordinates, the contact aragisfges

10
cot Ooprmn = :F__X

X 00 |o_ss
Converting to scaled, non-dimensional, marginal-surtammrdinates (2.40), the gradient

of the film thickness at the contact line is related to the acindngle through

1+ edh
hg _ - j: C COt HOPHTH . (2 . 75)
¢=+C €

However, using thén vivo measurements of Johnson & Murphy (2006, page 522) the
contact angle can readily be estimatedas:., ~ 7/6, from which (2.75) yields gradients

of the scaled film thickness of magnitude

| he |= O(e7) > 1.
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As such, boundary condition (2.75) is not feasible for thesspnt model as it is currently
presented, because it invalidates the constraint thakahtg and their derivatives are
strictly of orderO(1) (as mentioned on page 48). To ensure that the ‘long-waveieng
assumptions (relative th) of the lubrication approximation remain valid, (2.75) rmhe

recast in an analogous form, modellifig| as an orde©(1) quantity through the use of

ascaledcontact angled, yielding

1+ esh
he iR (2.76)
t=+C

with 6 2 m/4. Importantly, the constraint placed 6rby the lubrication approximation
effectively models an unscaled contact angle that is uripag large, Oopry =~ 7/2,
yielding a tear film that is nearly flat. Nevertheless, the at€2.76) enables novel

behaviours of the tear film to be observed in Chapters 5 and 6.

The use of boundary condition (2.76) is, to the author’s Kedge, wholly new to the
field of mathematically modelling the tear film. In all preumliterature (eg. Braun & Fitt,
2003; Jone=t al, 2005; Aydemiret al., 2011) a pair of Dirichlet boundary conditions
are chosen at the contact line, effectiveipning the height of the fluid and allowing
the film profile to assume any contact angle. Such an appreagpistified through a
discussion of the change in the hydrophilicity of the eyefidrgin at the mucocutaneous
junction; the presence of the lipid-secreting Meibomiaangls forming an anterior limit
for the tear film on the eyelid. It is accepted that the mucaedbus junction provides
a barrier to the tear film as it advances, anteriorly, aloregeyelid margin. However,
nowhere in the literature is there either given or discussptysical reason for the tear
film not to recede over the already-wetted and hydrophilithefia of the eyelid, which
are not covered by lipid. Hence, in the following sectiond ahapters, what is believed
to be a pioneering investigation is undertaken that usegtresiderably more difficult to
implement) condition (2.76) as a physically more-justigadeplacement of the ‘Dirichlet
pinning’ used in all prior studies. Through employing boandcondition (2.76), the

tear film is allowed to slip to a level that is naturally definiegl the surface energies
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at the three-phase contact line. Thus, by replaéipg. with 6 in Young’s law (2.74),
boundary condition (2.76) effectively models a contact liocated at a point below the
mucocutaneous junction, where the epithelia both antamol posterior to the point of
contact on the eyelid margin are similarly wettablg, ~ os. This variation of the

contact-line position complements timevivo observations of Goldingt al. (1997).

Furthermore, pinning of the tear film at the eyelids appearbe contradictory in
models which include evaporative losses from the bulk flp@kticularly as the eyelid
margins have been shown to maintain a higher temperaturnetiigacornea (Tomlinson
et al, 2011), and hence should enhance evaporation in the menisgions. In pinned
models, the thickness of the tear film is reduced in all aegasptat the eyelids, inducing
increasingly steep gradients in the film profile that thewesliwill influence the flow
field. By contrast, through allowing the tear film to slip a¢ #yelid margin in the present
model, the full film profile may be steadily diminished thrbugvaporation without the

creation of artificial flow dynamics.

Velocity-motivated boundary conditions

The remaining boundary conditions for the film thicknéssnd the boundary conditions
for the concentration of surfactant, are motivated by modelling the eyelids as solid
boundaries in the tear film flow. These cause the azimuthatitglto vanish at all heights

along the eyelid
2
u(£C, w, t) = hw — 2 M + wQ = 0,for 0<w<h,
2 E=+C
thereby automatically being consistent with zero flux at efelids (in the absence of

lacrimal influx or punctal efflux in the derivation of the mddé& his equation is satisfied
when bothM (£) and Q(¢) vanish at¢ = +C whence, from (2.66a) and boundary
condition (2.76), a boundary condition can also be derivethad derivative ofh as

—stcosd _ 6*(1+edh) |~
hf&g i = aOAC3 + 3 C0t97 (277)
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which, under the assumptions of the lubrication approxiomateffectively specifies the
rate of change of interfacial curvature at the contact liaeg from (2.66b), the first

derivative ofy satisfies

e =0, (2.78)
E=+C

giving a concentration of surfactant that is spatially ¢ansin the vicinity of the contact
line. Although boundary condition (2.77) was formulatedngssimilar arguments to
those in the published literature, it may be argued thatremfg a boundary condition
on any derivative higher thal is tantamount to enforcing a boundary condition on the
pressure field through the expressionggin (2.65). This is an artefact of the modelling,
in which the elimination of the pressure in the velocity fiehdroduceshe,, hee and
heeee 10 the evolution equation, about which the original systé&mi) — (2.3) cannot
possibly ‘know’. As such, instead of evolving under the thuorder partial differential
equation (2.71) for the film thickness, which is a mathenahtonstruction, the real-life
tear film would evolve according to the Navier-Stokes equetiand boundary conditions

as presented ifR2.1.

As introduced above, the eschewal of a Dirichlet boundanglit@mn within this model
allows slippage of the contact line along the surface of ffedi@ as the height of the tear
film evolves. This suggests thatdgnamiccontact angled,,, should be used to model
the motion-dependent changes to the advancing and receaiittgct angle. However, in
the absence of any data for the behaviour of the contact algleg dynamic wetting of
the epithelia of the eyelid margid,is modelled as atatic parameter. Furthermore, the
scaling of the fluid velocity perpendicular to the ocularface (2.41) and the value 6f,
(cf. Table 2.1) mean that any dynamic model for the contact arigteekample Voinov,
1976) yields perturbations to the specified static angleateof ordemn(1), thus for the

purposes of this thesis a static contact angle is employed,

D>
)

12
>
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Initial conditions

To close the system, a pair of initial conditiorg,£) andy(£), must be specified that
respectively define the shape of the tear film and distribugidipid molecules at the end
of a blink. The initial conditions must be chosen from thedgprofiles that satisfy the
boundary conditions (2.76) - (2.78); if this is not the cdbe,imposition of the boundary
conditions on the system would cause an un-natural foramipe initial dynamics of the

tear film and the surfactant concentration.

In the published literature many of the initial conditions the height of the thin film
contain similar characteristics; a wide, flat central ragiith steep menisci at the eyelids.
In many cases (Braun & Fitt, 2003; Jonesal.,, 2005; Braun & King-Smith, 2007)
the initial condition consists of a flat-centred, steepedidU-shaped’ initial condition
obtained using a high even power of the azimuthal coordinatportantly, in all cases it
should be noted that such initial conditions contain veegptgradients near the interval
end points; features that invite the conditidn| > 1, which is incompatible with the

assumptions of the lubrication approximation employedherrnodelling.

To preclude the artificial introduction of discontinuousidatives’, a splined initial
condition is used to blend a steep-sided, U-shaped profile evie that has shallower

menisci and satisfies the boundary conditions. The U-shpp#ile is defined as

8
UE) = hwp (1 + (r— 1)%) , (2.79)
whereh,,, is the height of the flat central region&t= 0, andr > 0 is the ratio of the

meniscus height & = +C to the height at = 0. A blend point¢ = b is specified, at

3The model of Braun & Fitt (2003) uses a piecewise-contintaiigl condition 2, which matches
guadratic boundary menisci to a flat central profile. Thusneefi the initial profile has a discontinuous
second derivative oy at the matching points. Furthermore, with gravity includeuds initial condition
will fail to satisfy the boundary conditions that are impdsm the third spatial derivative @f Not only have
these aspects not been critically questioned, but alsottheg been adopted verbatim by the subsequent

study of Winteret al. (2010).
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which the function ), and its derivatives up to fourth-order match thosé/pforming

five constraints or,.

The forms of functiori/(¢) and boundary condition (2.76) suggest definligagas an
even function ot. However, boundary condition (2.77) enforces a break irsyimemetry
of hy when gravity is included in the model, whenggis constructed as the combination

of a symmetry-breaking functiof(¢) and a polynomial formed of nine even powerg of

8
ho(§) = G(&) + Y _a; ¢, (2.80)
j=0

from which the nine constants are fixed using the constraints described above and four

further requirements that are subsequently outlined.

The symmetry-breaking functio@(¢) must be determined first and is required to
satisfy six constraints. As such, it is defined as a fifth-opdynomial in single powers
of &

5

G = D A, (2.81)

§=0
where the six coefficients4;, are fixed through enforcing théx(¢) satisfies boundary
condition (2.77) and
=0, and G =0
§==C E=+xC
The latter two pairs of conditions ensure tHE) and its first derivative vanish at the

eyelids, allowing all ‘even-power behaviour’ to be enfatd®y the polynomial im.

Equation (2.80) contains nine free parameters,of which five are fixed through
asserting that the value &f and its first four derivatives match thosetéfat the blend

point. The remaining four conditions are

dh 1+ edrh N

ho = h’MlD 9 ho‘ =T h’MlD 9 —0 = M COt 0 9 and
£=0 ¢=C d& ¢=C C

—stcosd  6%(1 + €drhyp) .

d3hy
—-C - CXQACS B C? COt@,

g3

3
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in which the restrictions oG (&) and the even powers @fin (2.80) ensure that all four
boundary conditions are satisfied, and that the meniscgstisiidentical at both eyelids.
The functiond{, G andhy may be readily programmed using an algebraic manipulator
such as MPLE, which can be used to solve for the unknown coefficients ims$eof the
orderO(1) parameters in the model. The general form of these coefticisrextremely

cumbersome, and is not presented in this thesis.

To study the effects of surfactant on the thickness of the fidm, three initial
conditions are defined fory(£). The first models a clean surface with no surfactant,
allowing the bulk fluid to move under the effects of gravitydazonstant surface tension.
The second models a uniform concentration of surfactamtr dfte eye has opened,
which would create no surface tension gradients to drivearthial flow characteristics.
Instead, any movement of the fluid would be created from thexation of the initial
height profile, which itself would advect the surfactanysiag interaction and feedback
between the coupled equations. Enforcing a uniform indiatribution of surfactant
is akin to modelling the ‘pleated-drape’ effect observedvigDonald (1968, 1969), in
which the movement of the lipid layer during a blink reserslileat of a curtain gathering
in front of the advancing lid as the eye closes, and subseiyuanfolding as the eyelid

opens. These two options are given by

Yo(€) = 0, for a surfactant-free interface, and (2.82a)

Po(€) = 1, for a uniform surfactant distribution, (2.82Db)

both of which initial conditions also satisfy boundary cdiwh (2.78).

The third initial condition models a variable distributiof surfactant, in which the
concentration of lipid is higher in the inferior half of theeé surface{ > 0) than
in the superior half{ < 0). This models the delivery of Meibomian lipid of Brown
& Dervichian (1969), Holly & Lemp (1977), and Broet al. (2004) in which, during

the upstroke of a blink, lipid is drawn from a reservoir lagiat the lower lid, lagging
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slightly behind the advancing upper eyelid. Despite th&rapreading of the lipid during
the opening phase, the location of the reservoir leads tonaundorm distribution of
lipid, with greater concentrations over the inferior cange> 0. The initial condition is

constructed as a polynomial consisting of a constant teihodd powers of,

3
Yo(§) = bo + » b &Y, (2.83)
j=1
in which three of the four coefficients;, are fixed by asserting that
- d
o = Yun 5 ¢0’ =, and ﬂ = U,
¢=—C £=0 € {e_c

where,,, is the minimum concentration of surfactant (found at theaupiol), andy is

the mean concentration of lipid, taken tode= 1 in scaled, non-dimensional variables.
The third condition is a statement of boundary conditio@82. The remaining coefficient
is fixed using an additional, fictitious boundary conditibattis required by the numerical
scheme (seg3.2.2 for details). MPLE may, again, be used to solve for the coefficients,

b;, in terms of the parameters of the model.

2.4.2 Viability of pinned boundary conditions

Central to the derivation of the initial condition (2.80) itee enforcement of the
physically-motivated boundary conditions, (2.76) and 2, for the evolution equation
(2.71). This enforcement averts an artificial forcing of #ystem when the boundary
conditions are abruptly applied at the initiation of temmadantegrations. As previously
mentioned, the specification of only Neumann boundary d¢ardi allows slip of the
three-phase contact line, with the rate of slippage defiryetthd free-surface velocity at
the eyelid. Boundary condition (2.77) enforces no peneinaif the fluid into the eyelid
margin, whence the velocity field at the contact line is puratlial, i.e. tangential to the
eyelid. The initial speed of advancement or recession isisge by the initial conditions

enforced on both the film and the surfactant concentratbr(2.65). Thus, by studying
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the initial conditions used within the published literauthe conflict arising between
pinned boundary conditions and the initial speeds ands&sasduced at the contact line

is now discussed for two papers that model drainage of thidibesein an open eye.

The initial condition of Braun & Fitt (2003) is formed from gdratic menisci matched
to a flat central profile, as mentioned in a prior footdata page 55. For such an initial
condition, the vertical velocity (Braun & Fitt, 2003, egioat 38) is simplified through the

removal of the third and fourth derivatives bto
2
Ugr = —th ,
wherey measures non-dimensional distance from the ocular surfdseng parameter
values taken from Table 1 and Figure 2 of Braun & Fitt (2008, dimensional velocity
and normal component of the stress tensor acting along #leeyargin (in Braun &

Fitt's Cartesian geometry) induced at the three-phaseacbhibe are

vge = —3.4x 107 mst Te,, = 13.6Pa, atz = L, (2.84)

Ve = 3.4x 103 mst, Ty = 14.0Pa, atax = — L,
wherex = Ly denotes the lower eyelid, and = —Lg- the upper eyelid; note that
the height profile induces an advancing (anterior) veloaityhe upper eyelid. These
velocities, on the order of millimetres per second, are aeduwithin a meniscus that
is modelled to be dimensionalB0 um thick, hence they are significant to the tear-film
dynamics in the meniscus regions. These speeds clearlsadicitthe Dirichlet boundary
conditions enforced in the model of Braun & Fitt (2003), dagghe menisci to be un-
naturally held at a fixed height throughout simulations. Blresses induced at each
contact line are positive, hence the initial condition gigeh stress field that acts to push
the contact lines in an anterior direction. Notably, thisegg with the predicted contact-
line motion at the upper lid, but is at odds with the predictection at the lower lid.
In each case the magnitude of the induced normal stress cenpes four orders of

magnitude smaller than that of standard atmospheric presbws its effect on the fluid

flow would not be expected to be significant.
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A similar contradiction is seen in the model of Ma#i al. (2010a) and Maket al.
(2010b), which may be simplified by taking a cut through thgitsal plane of their three-
dimensional eye to yield a two-dimensional profile. Approations to the dimensional
contact-line speeds and stresses can then be obtaineé torakdimensional analogue of
the exponentially-decaying initial condition used witkire model. Temporarily adopting
Maki et al’s coordinate system, the two-dimensional film profile isdgtd along the
planex = 0, with they-axis (which runs between the eyelids along the ocular sejfa
shifted in order thay = 0 represents the centre of the plane (Mekal., 2010a, Figure
2). Thez-axis is identified with the direction normal to the cornea. the shiftedy-
coordinate, the initial condition (Maldt al,, 2010a, equation 9) is approximated by

0.775 — |y

] +1, y € [—0.755,0.755]
Zo

Fvenk (y) = (hO - 1) exp {_

in which hy = 13 is the meniscus height, ang = 0.1 is a parameter. The upper and
lower eyelids are respectively positionedjat 0.755 andy = —0.755. Parameter values
from Maki et al. (2010a, Table 1) are used to calculate the dimensionahcthhe

velocities and stresses along the eyelid induced througlriitial condition, giving

,UMBHK - _5.4 X 10_3 m S_l7 TMBHK, 2z — 1].-7 Pa, aty - _0-775,
,UMBHK - _2.9 X 10_3 m S_l7 TMBHK, 2z — 1]_.9 Pa, aty - 0.775-

(2.85)

Thus relatively large initial speeds of recession are irdun a meniscus of dept® m.

These speeds are, again, in conflict with the Dirichlet bampdondition enforced upon
the system. Normal stresses of the same magnitude as th(&84n are predicted, and
represent a force pushing the contact line in the anteri@cton, in opposition to the

initial velocity of the contact line.

The conflict between pinned contact lines and induced udscarises through
the scalings, (2.40) and (2.41), and the inherent assungptitade in the lubrication
approximation. These cause the leading-order equatiahb@mdary conditions (2.62) -

(2.64) to yield a first-order differential equation farwith a boundary condition enforced
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at the ocular surface. Hence, there is no mechanism by whigpecify the radial velocity
at the contact lines, as this would require boundary comutitio be specified &t-C', h).
Results presented in Chapters 5 and 6 show that recessimmiaictline velocities are
observed in the initial dynamics of simulations of (2.7 1pwéver, the lack of pinning at
the eyelid enables a swift relaxation of the menisci thagigates the contact-line stresses

manifest by the initial condition, before a slower, dragffow towards a steady state.

2.4.3 Mass conservation and steady states

The pair of coupled evolution equations (2.71) and (2.7 abtained through
substitution of the leading-order asymptotic solution$%2 to the equations of motion
into equations derived from concepts of mass and surfactamdervation, respectively
(2.7) and (2.16). In the absence of evaporation from thefilearthe mass of fluid in the
system must remain constant as the tear-film dynamics aaiygolredistribute the tears
around the ocular surface under the influence of gravity amhce tension. Similarly,
with no influx or efflux of surfactant defined, the total amoaflipid must be conserved.
An estimate of the accuracy of the leading-order solutionthé equations of motion is
therefore given by the calculation of the fluid mass and tatabunt of surfactant in the

system at a given time.

The dimensional mass;, of the tear film is obtained in cylindrical polar coordinate

9 X
m = / / pRAR A,
0=—06 J R=a

in which /5 (kg m~2) is an areal densify Changing to non-dimensional, scaled marginal-

through the integral

surface coordinates via (2.35) and (2.40), and scaling dimedimensional mass of fluid

asm = pLdm, the conservation of fluid mass is observed by calculatinth(the tilde

4In a three-dimensional model, an additional integral of vhiumetric density,p, along the lateral-

medial axis of the eye would be requirgdnay be thought of as the simplified outcome of such an integral
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notation immediately dropped)

1/0 h+15h2d£ (2.86)
m = — —€ .
C f:—C 2 ’

at timet > 0, and comparing the computed value with the mass obtained the initial
condition (2.80). For simulations in which evaporation &t modelled, the change in

mass is expected to be negligible.

The quantity of surfactantyy, is calculated through an integral of the surfactant

concentration along the free surface

5
my = ][ U(s)ds,
9=—6

in which s is the dimensional length along the free surface of the tear fn cylindrical

polar coordinates the metric form for the length along tlee surface is
ds®* = dR* + R*d6?, ata R =y.

Asserting, through the thin-film lubrication approximatjdhats acts primarily in the

azimuthal direction, the length along the surface and tked tomount of surfactant are
respectively non-dimensionalised ia= L3, andmg = €*V,,/m,. Changing to non-

dimensional, scaled marginal-surface coordinates angdpang the tilde notation, the
integral for the non-dimensional total amount of surfattan

2C2h2

1 C c 2 1/2

In addition to checking the accuracy of the evolution equegiand their numerical
discretization through the calculation of the integraleah the large-time behaviour
of the system may also be checked by obtaining the steatwy-stdutions to the
differential equations, which the film-thickness and sttdat-concentration distributions
will migrate towards as time increases. In the steady stla¢etime derivatives in (2.71)

and (2.72) are set to zero, leaving a pair of coupled ordid#fgrential equations for
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the steady-state distributiors,(¢) and..(£). Integrating these ordinary differential
equations once with respect{pthe steady state solutions satisfy

h Q k
h%, <?’°M+§) = 51 and

hoo ks

(2.88)

wherek; andk, are constants of integration. These equations are valali¢iirout the
region for which the partial differential equations are laggble, thus they apply at the
eyelids,¢ = +C', whereM and? are forced to vanish through the boundary conditions,
(2.77) and (2.78). k; and k, are accordingly set to zero, and by asserting that both
hso, Voo # 0 at the eyelids, the steady states enforce that

M(E) = Q) =0,  vEe[=C, ],

which decouples the ordinary differential equatiodd: = 0 and boundary condition
(2.76) yield a third-order differential equation fbx, that is strongly dependent upon the
parametep that specifies the coordinate system, and: 0 gives a homogeneous first-
order differential equation foy,. The remaining boundary condition required to solve
each differential equation is obtained through the appatgprmass integral, evaluated
using the initial conditions. This is used to fix the arbigraonstant of integration in each

case.

Equation (2.66a) shows that the differential equation guwg the steady film profile
is greatly simplified when the ocular surface is modelled &adesian plane, = 0. In

this case, the differential equation is readily solved aslgrmial in&;

heo(§)

—st cot 0 st 1 ( cot 0
mo —

_ 3 2 -
N 6oz0.AC3§ + 202g + £+ 3

VRN ) 5§=0, (2.89)

wherem, is the mass integral (2.86) evaluated using the initial filrofige, 1o(¢). In
curvilinear coordinates), # 0, the equation\/ = 0 is integrated once with respectgdo

yield an inhomogeneous, linear, constant-coefficientpiseé@rder ordinary differential
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equation forh., with boundary conditions given by (2.76), in which the finsteigration
adds a constant that is fixed using the mass integral (2.86)eoiitial condition. The

steady-state height profile for a curved ocular substrate is

hoo(§) = ¢ cos (%5) + cosin (%5) + ansﬁgcos (%5) + c3, (2.90)

where
—(1+€des) cot

c = —, and
d(sin d + e cosd cot 0)
st sind — 0 'cosd + ecosdcotd
Cy = _ )
? 209 A62 cosd — esin d cot f

The constants is found by the solving the quadratic equation

fles) = ifch +15h2dg — =0
03—0_0002600 mo = U,

from which selecting the positive square root in the stathdmradratic formula yields a

physically-realistic steady-state film profile.

The steady-state surfactant concentration distribusdound through settin@ = 0
in (2.66b), yielding a constant value. With the total amoahsurfactant conserved,
the steady-state concentration is the total amount of ciari&calculated from the initial
condition (2.83) divided by the length along the steadyesfitm profile, giving

c €202 (dho/d¢)?\
L:—C(l + 6(5]10) (1 + (1 n 6(5}10)2 ) ¢0 dg

c 2C2(dhoo /d€)?\
LZ_C(1+€5hm) (1+ (1—|—€5hoo)2) d¢

With the initial conditions (2.80), and (2.82) or (2.83) kwny and the geometry and
boundary conditions defining the steady-state film profil8%R or (2.90), the uniform

steady state,, can be obtained from the initial set-up of the tear-flow peatnl
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2.5 Summary and discussion

The leading-order thin-film approximations to the tear-flok@blem derived within this
chapter form the basis for the studies in subsequent clsagWeticulous care has been
taken to employ an accuragepriori scaling when performing asymptotic expansions of
the governing flow equations, ensuring that the expandedtiems yield a uniformly-

valid hierarchy of terms when realistic ophthalmic datawssed in the IBVP.

Evolution equations (2.71) and (2.72) form a highly-noeén pair of coupled
evolution equations respectively describing the changéset non-dimensional thickness
of the tear film and non-dimensional surfactant concemtnatiThey are both derived
from conservation equations (in the absence of evaporé&ion the bulk fluid; £ = 0),
whence any numerical scheme used to model these equatighsenalidated through
monitoring the mass lost or gained by the system over time.efuations are augmented
by naturally-motivated boundary conditions, derived tlgio a consideration of the
physical conditions in which the tear-flow problem findslitsBoundary condition (2.76)
is novel to the field of tear-flow modelling, and allows the dlto slip along the eyelid
margin where previous studies have pinned the menisci antimcutaneous junction;
this pinning condition appears unphysical when modellingperative losses from the
bulk fluid and, moreover, has been found to be in contradictiith the contact line
velocities induced by the initial conditions of existingidtes €f. §2.4.2). Boundary
conditions (2.77) and (2.78) are derived through the mouglf the static eyelids as
impermeable barriers to the tear film. The system of equatisrclosed through the
specification of initial conditions for the film height (2 8@&nd surfactant concentration
(2.82) - (2.83), with various surfactant initial conditeallowing the study of different

models arising from the ophthalmic literature.

A further novel development in the derivation of equatidhd'1) and (2.72) and their

associated boundary and initial conditions is the use ofgmal-surface coordinates
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(2.35) that allow the tear film to be modelled on a substratevasfable curvature,
which curvature is controlled through the parameterTo the author’'s knowledge, all
existing models for the tear film are derived using a Cartes@ordinate system, with
the exception of Braumt al. (2012) in which the tear film is modelled using prolate
spheroidal geometryi is treated as an ord€?(1) parameter throughout the asymptotic
derivation of the coupled evolution equations, and the arfae of the curved substrate
is clearly observable in the leading-order expressiongh@wvelocity and pressure fields
(2.65). By allowingé to tend to zero, the substrate is flattened to a Cartesiare plan
whereas, with a realistic ocular radius of approximatell2 m (Singhet al., 2006), an
upper limit of 6 = 5/12 can be obtained from the constraint (2.36) to model the true

curvature of the cornea.

The numerical methods that will be employed to solve the paaoupled evolution
equations (2.71) and (2.72) are respectively outlined atidated in Chapters 3 and 4. To
study the ‘isolated’ tear flow (i.e. in the absence of a vdei@urfactant concentration),
(2.71) is solved in Chapter 5 and subjected to a variety ohdaty and initial conditions
in order to demonstrate their influence on the dynamics oft¢ae film. The effects
of substrate curvature and evaporation are also investigasing the isolated system
of Chapter 5. Finally, the effects of the overlying surfattéayer are observed in
Chapter 6 by solving the full coupled system with differenitial conditions for the
surfactant concentration (2.82) and (2.83) employed td@mmbehaviour observed in the
ophthalmic literature. A comparison of the results from ftiees 5 and 6 will allow the

non-trivial effects of the lipid surfactant on the dynamidshe tear film to be observed.
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Chapter 3

Numerical Methods

Numerical methods are discussed for the simulation of thdimear pair of coupled
evolution equations (2.71) and (2.72). The equations aleedon a non-periodic,
bounded spatial domain that is discretized using Chebyspeegtral methods to convert
the partial differential equations into a system of firs@rordinary differential equations
in time. A fourth-order, explicit Runge-Kutta time-stepgi algorithm for coupled
systems of equations is employed to advance the simulatidimse. It is noteworthy that
information on the specific details of implementation of rawiwal schemes employed in
the published mathematical literature on the tear film isiscaven non-existent. This
is not only unhelpful because of the well-known difficulteessociated with solvingon
periodic IBVPs, but also it moreover precludes completaly possibility of comparison
with the results presently obtained and, indeed, the alesehtmplementational detalil
potentially undermines confidence in the published restiltss motivated, it is an aim of
this thesis that the numerical algorithms used herein arefesdly clear to the reader, in

order that they may be readily reproduced for the purposesraparison and verification.

The structure of this chapter is as follows. A summary of tteoty of approximating
aperiodic functions using Chebyshev spectral methodsesegmted, and differentiation

matrices for the numerical approximation of second, thadg fourth derivatives are
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derived using novel computer-algebra techniques. Imphatien of the boundary
conditions (2.76), (2.77) and (2.78) is discussed, reqgithe as-yet-undefined constant
C' to be prescribed, and the development of an appropriatee(nbwundary condition
for the surfactant concentration, To evaluate test quantities obtained using laws of
conservation ir2.4.3, a process of integration using spectral methodseiscpbed in

63.3. Finally, the time-stepping algorithm is briefly oudoh

The notation utilised in this chapter is as follows: appneations of the function
u(z,t) are augmented with a tilde; vectors or matrices that haveemaides removed
are augmented with a hat; upper-case subscripts are usedntiedfunctions that
depend upon the number of nodes employed in the spatialetisation; lower-case
subscripts are used as indices that label components oftiaytar vector or matrix;
complete vectors and matrices are respectively represdrtemboldened lower- and
upper-case letters; square-bracketed superscripts autigmeectors and matrices denote
their dimensions; differentiation with respect to spatiabrdinatex is represented
by superscript parentheses containing a number denotmgritier of the derivative;
differentiation with respect to time, is represented by a superscript dot, and; the bounds
of incremented indices are annotated as X (Y)Z whereX is the lowest valueY” the

increment, and’ the highest value.

3.1 Chebyshev spectral methods

Spectral methods are used in a diverse range of mathematigiheering and physical
applications (Boyd, 2001; Canuét al,, 2006, and references therein). The popularity of
spectral methods is derived from their high-order convecgeroperties when modelling
infinitely-differentiable functions. Furthermore, spattmethods are global in nature:
that is, they use thdull spatial domain to compute an approximation to tbeal

solution using a globally-defined orthonormal basis, antcheéhey are seen as memory-
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minimizing (Boyd, 2001, page 8) when compared with otherhods such as finite

differences or finite elements.

3.1.1 Cardinal function and differentiation matrix

The bounded spatial domain is scaled onto the finite interval[—1, 1], which itself is
discretized with a set of as-yet-undefined nofles} for j = 0(1)N, with N € N. The
values of the functiom(z)* are known at the nodes, yielding a data&et} = {u(x;)}
from which the approximation may be obtained. To interpoléte nodal data set, a
cardinal function,C;(z), is constructed using a basis of polynomial functions, Whic
in this case, are chosen to be Chebyshev polynomials dueitortthe in near-minimax
interpolation (Atkinson, 1989); thayth Chebyshev polynomial of the first kind is given
by

Ty(z) = cos N, 6 = cos ', N>0. (3.1)

The Chebyshev polynomials are boundgd; (x)| < 1, from which the nodes are defined
at theN + 1 extrema of the Chebyshev polynomials located at

r; = cosj—w, j=0(1)N. (3.2)
This set of nodes{z;}, more commonly known as a Gauss-Lobatto grid, may be
visualized as the projection of points located at equidisaagles around a semi-circular
arc onto the straight line joining the two ends of the arc. sTimeans the nodes are
non-uniformly distributed along the line, their densitgieasing towards the boundaries,
r = =*1.

For a givenV, the cardinal-function interpolation of the functiafir) is defined to be

For simplicity, v is defined as a function af only during the derivation of the spatial discretization.
The spatial and temporal discretization processes aseifidependent of each other, thus the functigm)

defined here may be thought of @&, ¢) at a fixed time.
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(@) = ) Cilw)ulws), (33)
with (Boyd, 2001)

(=17 (A = 2?) Ty ()
(1 + 5j0 + (SjN)Nz (.T - l’j) ’

Ci(x) = j=0(1)N, (3.4)

whereind;; is the Kronecker symbol, defined as

1 ifi=k,
Ok =
0 otherwise
The cardinal function (3.4) requires some explanationptoeluct(1—z2)T% (x) vanishes
atall nodes becausg, (x;) = 0 for j = 1(1)N — 1, and(1 — z?) vanishes at the external

pointsz = +1, which are extrema but not turning points’®{ (z); the remaining terms

ensure that the cardinal function has the filtering property
Cj(z;) = by, (3.5)

whence the interpolanty in (3.3) is exact at all nodes. Derivatives of the functidn)

are approximated by differentiating (3.3), thus the firstwdgive is approximated by

%(“(”’» ~ iy (@) = 36 @u(e), (3.6)

with higher derivatives ofi approximated by the corresponding derivativepf(3.4).

The discrete nature of the numerical scheme enforces tteeathtial equations (2.71)
and (2.72) to be evaluated and incremented forward in timenst the nodes{z;}.
By representing the set of interpolation data poifi$z;)} as a vector, the vector of
approximate derivative values at each of the nod&%, may be obtained from (3.6) as
a matrix-vector product through substituting= z; into the derivative of the cardinal

function, yielding

@) = DPu;,  where DY) = O (x;), (3.7)

7
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in which repeated suffices imply summation frgre 0(1) N. DW is called the first-order
Chebyshev differentiation matrix and its entries can ba&ébin texts on spectral methods
(see, for example, Trefethen, 2000). As shown in (3.7), titdes of D(Y) are obtained
through making the substitutian= z; in the derivative of (3.4). Taylor series expansions
are required to calculate the leading-order termé?ﬁf(xi) in the diagonal cases when
i = j, and when populating the top-left and bottom-right entries ;7 € {0, N}. The

entries of the first-order Chebyshev differentiation mxadirie readily determined to be

((1+2N? o
) Z:.] = )
6
1+ 2N? N
- ) t=7]= 9
O _ 6 (3.8)
Y R i=j,i=1(1)N -1,
2(1—a?) N
(1 + dio + din) (=1)" i Fj
(1+5j0+5j]\/) xT; —.Tj ’ '

By discretizing the process of differentiation into a matrector multiplication, higher
derivatives of the functiom(z) may be approximated through repeatedly multiplying the

vector of function valuesy, by the differentiation matrix
qm — <D(1>)mu7
hence higher-order differentiation matrices can be canttd by using powers of (3.7):
(m) _ n\"
pim = [(D< >> ]J . (3.9)

Alternatively, explicit forms of the entries of higher-@mddifferentiation matrices may
be obtained through the repeated differentiation and esiparof (3.4) around: = z;.
With a view to minimizing the errors associated with the edpd matrix multiplication

implicitin (3.9), these explicit forms are now investigate
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3.1.2 Higher-order differentiation matrices

Motivated by the aim of obtaining the most accurate posditleth-order numerical
differentiation in the modelling of the film-thickness eutbn equation (2.71), the
explicit forms of the Chebyshev differentiation matricgs 1 fourth order are now
derived. The explicit form of the second-order differetitia matrix is well-known, and
can be found in Canutet al. (2006); however, no formulae for the elements of the third-

and fourth-order differentiation matrices appear to @rishe prior literature.

Differentiating the cardinal function (3.4) twice with pect tox and settingr =
x;, the entries of the second-order differentiation matrir ba obtained. In a similar
procedure to that used to derive the entries of the firstrotihebyshev differentiation
matrix, Taylor series expansions are required to calctietentries on the main diagonal,

and the first and last rows of the matrix. The explicit formshaf entries are

((N* -1 . .
= i=j=0andi=j=N,
22(N?—1) - N? -2

W)= M m2 =, i= 11N -1,

3(1—1’?)
2(—1) 2N? +1 2
=1) o ) itdi=o,
ij

2(=1)7tN [ 2N2 41 2

( ) i - 2 ) 7’%]712]\77
(—1)i+it+ i N 2

L+ 0jo+0jn \ (L—a7) (x — ;) (2 — ;) )

i#j,i=11)N-1.

(3.10)
Again differentiating the cardinal function and expandusging Taylor series, the third-

order differentiation matrix is populated with entrieghieirto unpresented, given by
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(2N® — 7TN* —TN? + 12

210 ’ 1=1=0,
IN6 — TN* — 7TN? 4 12 o
_ 7 t=7=N,
210
xj<2g;§(N2—1)—2N2—13)
5 , i=yg,i=11)N—1,
4(1—x§)
2(-1)y [ N*—1  2N%?+1 6 S,
3 — + , 1 , 1 =0,
DY = TG <5<1—%~> —w) O-ay) 7
2~V [Nt 1 2N2 41 6 o
( ) - 2+ 3 | 27&]722]\[7
L+d0 \5(+z;) (I+z;)° (14

(—1)* (22 (N2 —1)— N? =2
L+ 0jo+ v\ (1—a3)” (2, — )
3I’Z‘

(1 —a?) (2 — ;)"

+

6
(i — ;)
(3.11)
Finally, taking the fourth derivative of (3.4), the entristhe fourth-order Chebyshev

differentiation matrix are the newly determined

( N® — 12N + 21N* 4 62N? — 72
945 ’
N* (1 _x?)z - 5N2$? (1 - $2) — (Gx;* +83x? + 16)

J
5(1—a2)" ’

i=j=0andi=j=N,

i=j,i=1(1)N -1,
A(—1) <(N4—5N2+4) (2N2+3) 2(Ni-1)

D(4) 14 5jN 105 (1 — .Tj) 5 (1 — J;j)2
v 2(2N? 4+ 1) 12 L
+ 3 il I ? 7é ] t= 07
(1—x) (1—x)

1+ dj0 105 (1 + ;) C5(1+x,)?
2(2N? 4+ 1 12
20N Al ), i#i=N

A(—1)I+N ((N4 —5N2+44)(2N243)  2(N*—1)
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[ (Cpn [-w <2x$ (N2 —1)— 2N? — 13) 122,
pW _ 1+ dj0 + 0N (1—a2) (2 — ;) " (1 —a?) (2; — 2;)"
v 4(w2 (N2 = 1) = N2 - 2) 24 L
\ i (1= 22)* (z; — x;)° i (xixj)4) SRS

(3.12)
The process of differentiating (3.4) and expanding may Imicoedad infinitumto derive
differentiation matrices of all orders. However, as theheigt order derivative in (2.71)
and (2.72) is of fourth-order, matrices up to only this orlave been derived. The
workings required to obtain the entries of the differemiatmatrices are readily carried

out using the algebraic manipulatorAvLE.

The accuracy of the derived matrices (3.10) - (3.12) is teatminst repeated action
of the first-order Chebyshev differentiation matrix (3.8%#.1.1. Before such tests are
carried out, the accuracy of the differentiation matrices/irst be improved by making

use of trigonometric identities.

3.1.3 Alternative formulations

In addition to the derivation of explicit forms of the Chebhgs differentiation matrices,

the accuracy of the numerical scheme may be improved bydadtieps to reduce the
round-off error introduced through the explicit definitioh the Chebyshev nodes and
differentiation matrices. Following Weidemann & Reddy @), the set of Chebyshev

nodes (3.2) are redefined using the trigonometric identity
. s
cosf = sin (5 — 9)
to

2N
The significance of this substitution is not immediately iolog; however, in floating-

z; = sin {l(N—Zj)] . j=0(1)N. (3.13)

point arithmetic it yields a set of collocation nodgs; } that are perfectly symmetrically



Chapter 3. Numerical Methods 75

spaced about the origin, which is not the case when emplo@). The round-off
error in the entries of the Chebyshev differentiation neatican be further reduced by
noting that the denominators in the third and fourth linesfaf example, (3.8), contain
differences of quantities that are nearly equal for certainies of; andj. To improve
accuracy, the following identities are used to replacesdgfiices of trigonometric terms

with multiplications (see Canutet al,, 2006):

Ti—x; = COST—COSE = 2sin {(Z—Zi_ij)w] s {(j_Z)W]’

N N N 2N
l—xz; = 1—005% = 25in2%, (3.14)
jm Jjm
l+z; = 1+cos® = 2C082ﬁ.

The resulting form of the first-order Chebyshev differetidia matrix (3.8) is

(14 2N? .
5 i1=37=0,
_1+2N27 i— -

DY) = _6:5 (3.15)
m, i=yg,i=11)N -1,
I =
(1+ 650+ d;n) 2 sin[(z + j)m/2N] sin[(j — i)m/2N]

\

The identities (3.14) are similarly substituted into thegher-order Chebyshev
differentiation matrices (3.10) - (3.12) to obtain the aitgive form of these matrices.

Due to their cumbersome nature, presentation of these ésrddfto Appendix A.

3.2 Implementation of boundary conditions

The enforcement of the boundary conditions is a subtle andalraspect of the numerical

scheme that is barely mentioned in any of the previous mklaphthalmic literature

2Maki et al. (2010b, Appendix 3) is a notable exception.
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The boundary conditions (2.76) - (2.78) must be convertealtimeir discrete forms, and
through manipulation of the entries of the relevant diffeii@ion matrices, the conditions
are applied with spectral accuracy to the profiles obtainemarically at each time-
step. Because this model employs only Neumann boundaryitommg] the values of
the film-thickness and surfactant-concentration distidns atall nodes betweeland
including the simulated eyelid positions must be found using the éwoluequations
(2.71) and (2.72). In the absence of Dirichlet boundary d@nts, the fourth-order spatial
derivatives in (2.71) therefore warrant the addition ofrfetitious ‘ghost’ nodes outside
the solution domain of the evolution equations (Smith, )98%e values of: and+ at
these ghost nodes may then be extrapolated from the infegophysical) data as shown

below.

3.2.1 Ghost-node scalings and methods

Because all physical and ghost nodes are restricted to thleyShev intervaly € [—1, 1],
the eyelid locations are symmetrically positionedat= C andxy_, = —x5. Thisyields

the definition

2
C = cos N (3.16)

which specifies the constant that appears in (2.40) and uentiarough each subsequent
differentiation with respect tg. The ghost nodes are located outside= [—C, C],

occupying positiongg, x1, zy_1 andzy.

At each time-step, the evolution equations must be temiyoiategrated at
the Chebyshev nodes using the complete film-thickness arfdctant-concentration
distributions at the start of the time-step. The boundanmyddens are then enforced
atr = +C, and spectral extrapolation determirfeand at the ghost nodes using the
newly-obtained interior profiles for andv. To demonstrate the method, the boundary-

condition procedure foh is outlined briefly below for the unknown functian(z). A
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(2.76) (2.76)

(2.77) 2.71) (2.77)

(2.78) (2.78)

(3.23) 2.72) (3.23)
Cas, ® @ @ ® ® SaY)
xTrs Ty Tg Ty Ty XT3 i) I Xo
-1 —C 0 C 1

Figure 3.1: The spatial distribution of the Gauss-Lobatto grid (3.2ewhv = 8. Filled circles
denote physical data points, and empty circles represesgtgiodes. Within a time-step, the
evolution equationg@re solved at each of the colour-coded nodes to deterfmiaad ). The
boundary conditiongre then applied at points, = C andzg = —C, and spectral extrapolation
from the newly-obtained physical data yields the ghostenwdlues. The additional boundary
condition (3.23) is discussed §3.2.2.

sketch of the computational domain is given in Figure 3.1.

The calculation of all nodal derivatives occurs via a matctor multiplication.
Since the boundary conditions (2.76) and (2.77) respdgtamecify the first and third
derivatives, and are enforced at nodesindz_», the entries in the second afll —2)”‘
rows of both the first- and third-order Chebyshev differatmdin matrices are isolated.
These entries are subdivided into those that multiply treakminterior values (columns
2 to N — 2) and those that multiply the ghost-node data (coluing, N — 1, and
N). The data sefu;} is also split into its interior and ghost values, and theipanied
entries assembled into the following matrix-vector systemvhich each of the four rows

represents one of the four boundary conditions in (2.76)ark¥)

D44 qax1] [Ax(N=3)] (IN=3)x1] _ pldx1] (3.17)

~
arost Ugrost T Dinner UiNNER

wherein the vectors are defined as

Ulen = (g, U1, Un_1, Un)", (3.18a)

~ [(N—3)x1]

WiNNER = (7127 T, aN—2)T7 (318b)
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and the entries db are obtained from the boundary conditions (2.76) and (2a87)

(1 + €dity) cot(8)/C ((2.76) atzr = C)
—(1 + €diiy_s) cot(6)/C ((2.76) atr = —C)

—st cos(8)/(aAC?) — (1 + €dily) cot(8) /C° (77 ate=C)
—st cos(d)/(aAC?) + (1 + edtuy—_2) cot(h)/C? ((2.77) atr = —C)

b[4>< 1] —

(3.18¢)
The entries of the boundary condition matrices are
ol DY D, DUk
s | DVa0 Doy DRy D 5100
Dy Dyl Doy,  Diy
| Dz(?)—z,o DJ(\?T’)—Z,I D](\?;)—2,N—1 D](\?;)—2,N ]
and
| DS% D§1§ e Dé,lj)\f—s Dé,lj)\f—2
f)l[sNxE(RN—?))} _ Dz(vl)—zz Dz(vl)—273 Dz(vl)—z,N—s Dz(vl)—z,N—z _ (3.19b)
Dg D§33)> e DSJ)\/—?) DSJ)\/—z
D](\:;)—2,2 D](\:;)—2,3 DJ(\?;)—2,N—3 DJ(\?;)—2,N—2 ]

With (3.17) thus configured, the first and second rows enfoazendary condition (2.76)
and the third and fourth rows enforce boundary conditio@{®. odd and even rows
respectively represent boundary conditionsta= ¢ andx = —C. The unknown

data values at the ghost nodes are obtained by invertin@)(3adth matrix dimensions

omitted, this gives
Ugpost = f)_l b — f)_l

GHOST onost Dinner Winner 5 (3.20)

upon which all nodal data i-1, 1] has been updated, and Chebyshev differentiation can

be performed at the next time-step, the process being egbaatrequired.

The process outlined above yields data at the four ghostsntidg accommodate

the four boundary conditions for the fourth-order evolatiequation (2.71). A slight
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complication arises because tsamenode set has to be employed to integrate the
second-order evolution equation (2.72), which thereforly ocequires two ghost nodes
to accommodate its Neumann boundary condition (2.78). Thuavoid an under-
determined system, the valuesipfat the remaining ghost nodes must be specified via

additional ‘ghost boundary conditions’.

3.2.2 Ghost boundary condition fory

The required ghost boundary condition fgr must be compatible with the natural
boundary condition (2.78), which specifies a vanishingastént-concentration gradient
at the eyelidsy = +C'. The specification of a fictitious Dirichlet condition is @afsible
as the fixed ghost value may vary significantly from the phaisialue at the eyelid,
creating a large gradient within the ghost region. As thdwian equation (2.72) is
second-order in space, the additional boundary condii@miorced on the gradient ¢f

at the nodes located immediately outside the simulateddayesitions by proposing that
o —gf) and 9, o —u (3.21)

which is compatible with the natural boundary condition7@, and is tantamount to
modelling a local maximum or minimum i at the eyelids through the changing sign of

the concentration gradient on either side of each boundary.

The surfactant concentration is approximated over eadiedfiree-node intervals that
straddle the eyelidSgs, x2, 1] and[zy_1, nx_2, xy_3], USING a quadratic polynomial
interpolant

V(x) = ag + ax + ar?.

The ghost boundary condition is obtained using the sameadetheach eyelid, which
method is illustrated for the subinterval over= z,. First, boundary condition (2.78) is

employed to solve fot; in terms ofa,, yielding

a; = —2a2x2.
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Then by evaluatin@?(” at nodesr; andzs;, an expression foi, may be obtained from

each location. Equating these expressions, and definingptistant

c= T2 IN-1T N2 (3.22)

)
T3 — T2 IN-3 — TN-2

the additional boundary conditions are found to be
o =’ and Wy, = iy, (3.23)

in which the fractional constantis negative, satisfying the original proposal for the ghost

boundary condition (3.21).

With the additional boundary condition thus obtained, ariratector system akin to
(3.17) is created for (2.78) and (3.23) as

~ [4x1] ~ [(N=3)x1]

]/j[4><4] ¢GHOST —"_ ]/5[4><(N_3)] ¢INNER = b'EZLXH ? (3'24)

1,GHOST 1, INNER

in which ¥, andi,,., are respectively analogous to (3.18a) and (3.18b) kane 0
because (2.78) yields a vanishing gradient at the eyelids(2123) is expressed using

only differentiation matrix entries. The entries of the hdary condition matrices are

1 (1) 1 (1)
Dé,g Dy Dé,z)\rq Dy N
1 (1) 1 (1)
]’5[4><4] . DEV)—2,0 DNZ21 DEV)—2,N—1 DnZan
P,GHOST ~—
1 1 1 1 1 1 1 1
D{}—eDSY) D —eDS!) DY\ =D, Diin—cDily
(1) (1) (1) (1) (1) (1) (1) (1)
| DNZ10=¢PnZso Dnl117¢DnZs: Dniin-17¢Dnlgn-1 Dniin—¢Dyizn ]
(3.25a)
and
[ H) (1) ]
Ds Dy s
(1) (1)
DIx-3) _ DN—2,2 DN—2,N—2 3.25h
1, INNER - . ( ) )
’ D(l) . CD(I) D(l) CD(I)
1,2 3,2 1,N—2 3,N—2
(1) (1) (1) (1)
i DN—1,2 —cDy 5, D=1 N2 CDN—3,N—2
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3.3 Spectral integration

The spectral differentiation methods describeffdri for the solution of (2.71) and (2.72)
can be adapted to provide relatively cost-free numeridaigiration of the free-surface
profile and the surfactant-concentration distribution. néte an efficient and accurate
computation of the bulk fluid mass (2.86) and the total amaditipid surfactant (2.87)

can be made as the partial differential equations are iatedr This data gives an insight
into the accuracy of (2.71) and (2.72), which are leadirdgorapproximations to the

governing equations ig2.2.1. Each of the integrals is of the form

c
I = /x:—c f(z)dz, (3.26)

allowing the method of spectral integration outlined inféteen (2000) to be amended
to approximate such an integral. Differentiating both sid&(3.26), the integral may be

restated as an ordinary differential equation for an unknfwactionu(z)

from which the value of the integral (3.26) is given by = «(C). The differential

equation is discretized on the Chebyshev collocation n{#l&8) as
DYa = f, (3.28)

whereinii, (= 4(C)) is the spectral approximatiahof the integrall sought in (3.26).

The boundary condition of (3.27) enforces that » = 0. This means that theV —
2)th column of DM has no effect on (3.28) as its entries are all multiplied by zand the
(N —2)" row of DO represents an equation that does not require solution nikieown
n_o having been specified by (3.27) withamogeneouBirichlet boundary condition.
To impose the boundary condition, th — 2)1 column and row oD® are removed to

create anV x N matrix
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- 1 1 1 )
Dgg -+ Dgnos  Donoy Do
o ) X ) 1
DY = DJ(V)—?,,O Dg\/)—?;,N—ZS DEV)—?),N_1 ng)_s,zv ; (3.29)
Dz(v)—l,o o D](V)—I,N—S Dz(v)_uv_l D](V)_l,N
1 1 1 1
DY, o Dy, DU, DU,

and similarly the( N — 2)th entries ofa andf are removed, yielding the system

A

DYa = f.

Obtaining the inverse of the mat@® and noting thati, is the only data point required
as it approximates(C) in (3.27), the spectral approximatidnto the integral (3.26) is
found by calculating the scalar product of the third rovx(ﬁl(l))‘1 with f
N
=3 {(ﬁm)_l} N i (3.30)
j=0 J

The accuracy of the spectral integration procedure (33@sted ir§4.1.2.

3.4 Time-stepping method

To close the numerical discretization of the system (2.7 €.72), a method must
be employed to advance the solutions through time. Withénekisting literature on
the tear film, little to no detail is given on the temporal or&ion scheme used to
simulate the models. For example, Joeésl. (2005) and Jonest al. (2006) simply
state that their solutions ar@advanced in time using a semi-implicit method [in which]
the non-linear terms are evaluated at the current time lefaid] the linear terms are
treated at the future time levelthus the order of the error is not discussed. This is
a critical issue as inferences are drawn relating to theeisduso-called ‘black lines’
(see, for example, Milleet al, 2002), defined by the location of the domain at which

h — 0%, i.e. wherdh| may be comparable to the order of the unknown error. The ptese
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concerns are augmented further by observations regardengproximation of fourth
derivatives of steep-sided functions near the boundzrg4.3). In many cases, the first-
order ordinary differential equations resulting from tpatal discretization are integrated
using proprietary software packages such as#x® (Braun & Fitt, 2003; Braun & King-
Smith, 2007), BssL® (Maki et al, 2010a; Makiet al., 2010b), MATLAB’S ode15s?
(Heryudonoet al, 2007; Li & Braun, 2012) anadde23s? (Winter et al,, 2010), and
modules within COMSO&E (Zubkov et al, 2012; 2013). Aydemiet al. (2011) use
an implicit backward Euler discretization with a NewtongRaon method. Despite the
obvious benefits to be gained from using such software paskagis felt that the use
of so-called ‘black-box’ time integrators masks the levéleoror in the approximate
solutions, and hence violates the explicitly-stated airthisf chapter: that the algorithms
used in the numerical scheme are manifestly transparehetoetider. Thus motivated,

the time-stepping method is briefly outlined here.

To remain consistent with the approach8f1, in which Chebyshev spectral methods
are employed to achieve a high accuracy in the spatial dizati®on, high-order Runge-
Kutta methods are used to discretize the first-order tenhplenavative in each of the
evolution equations. Runge-Kutta methods are used to ajppate the solution to the

differential equation
du
dt

]

f(t,u), (3.31)

3 Both DassL and DasPK use variable-order, variable-stepsize backward diffegeiormulae within
a ‘predictor’ step, followed by an iterative ‘corrector'egt (Brenanet al, 1989; Li & Petzold,
1999). Information on MTLAB packages can be found in Shampine & Reichelt (1997), revgdhat
odel5s uses quasi-constant stepsize backward differenceg@®@@3s uses a linearly implicit scheme.
COMSOL (2012a; 2012b, pages 348 - 352) identify that thewsof's time-dependent solver uses
backward differences or a generalised-alpha method. lraptly, each software package allows an error
tolerance to be set for the solution calculated at every-8tep, through which the package varies its
time discretization parameters. Hence, whilst the docuskésted herein give some information on the
discretization errors, it is not possible to know the eriianplicit in the results of published ophthalmic

models without knowing the minutiee of the software-packagdiguration.
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in which v = u(t). The time is discretized using a time-stepfrom initial time ¢,
to timet = ¢, = ty + nh, with n € N. Approximations tou(t,,) are notated as,,.
The well-known, fourth-order, explicit Runge-Kutta meth@ee, for example, Atkinson,
1989; Iserles, 1996) used to integrate (3.31) is extendedbitel the coupled system of

equations in two dependent variables

u = f(t7 u? U)?
f[} = g(t7 u? v))

which represents thig, 1) system of (2.71) and (2.72). The time-step integrationisigi

by the algorithm
ki = h f(ty, Un, Upn), li = hg(ty, Un, Upn),
ko = hf(tn+g,ﬁn+%,@n+%), ly = hg(tn+g,ﬂn+%,@n+%>,
ks = hf(tn+g,ﬁn+%,@n+%), ls = hg(tn+g,ﬂn+%,@n+%>,
ky = h f(tn+ h, Gn + k3, 0, +13), ly = hg(ty+ h, G, + ks, 0y +13),

1 1
’l~Ln+1 == ﬁn + 6 <k51 + 2]{32 + 2]{53 + ]{54) 5 'Z}n—l—l == ﬁn + 6 (ll + 2[2 + 2[3 + l4> .
(3.32)

Through this algorithm, the solution is iterated forwand$iime using a weighted average

of four estimates of the solution in the intervat [t,,, t,,11].

3.5 Summary and discussion

The goals motivating this chapter were to outline the nucaérmethods and post-
processing techniques to be used in the solution of the pegupled evolution equations
(2.71) and (2.72) on a non-periodic spatial domain. Due ¢csttant level of detail in the
descriptions of numerical algorithms used in the existiragjhramatical literature on the

tear film, an explicit aim of this chapter has been that allnds employed can be readily
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reproduced by the reader. As such, it is hoped that the pexbésEchniques are adopted

for the modelling of further related evolution equationsbmunded spatial domains.

Chebyshev spectral methods have been used to discretizpatial derivatives
in the system of evolution equations. In an effort to imprdkie accuracy in the
calculation of derivatives up to fourth-order, explicitfioulee for the entries of higher-
order Chebyshev differentiation matrices have been deri@é these formulee, the author
believes the third- and fourth-order differentiation nies to be hitherto-unpublished in
mathematical literature, despite the method for theirvdgion being readily available.
Further improvements to the accuracy of the matrices hase bwde through the use of
simple trigonometric identities. All testing and validagi of Chebyshev differentiation

matrices presented herein occurs in Chapter 4.

Motivated by the lack of information regarding the enfores of boundary
conditions in existing models on the tear film, a procedure heeen outlined in which
spectral extrapolatiomllows the boundary conditions to be enforced upon the elized
system. In the absence of Dirichlet conditions that pin thenisci at the eyelids, the
boundary-condition procedure for the fourth-order evoluequation (2.71) warrants the
addition of four ghost nodes within the Chebyshev domaia [—1, 1], as depicted in
Figure 3.1. The specification of the boundary-conditioncpdure for the second-order
(2.72) on thesameset of collocation nodes reveals the need for an additioglabst”
boundary condition (3.23) foe, which condition is informed by the natural boundary
condition (2.78). The hybrid matrices and vectors requlsgdhe boundary-condition

procedures are presenteck® 2.1 anc3.2.2.

A method for the spectral integration of functions across pphysical domain: €
[—C, C] is outlined in§3.3, which allows the integrals (2.86) and (2.87) to be cotegu
as (2.71) and (2.72) are solved. These integrals respbotegesent the total fluid mass
and the total amount of surfactant within the coupled systeance tracking the value of

such conservation integrals allows the accuracy of theudenl equations to be tested:
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specifically, (2.71) represents the conservation of mas$h@ absence of evaporation,

E =0), and (2.72) represents the concentration distributicadsbrbed surfactant.

To integrate the solutions in time, a coupled formulationhaf fourth-order, explicit
Runge-Kutta scheme has been outlined. This method is pedfesver the use of
proprietary software packages as it ensures that the tiepessze remains fixed and

known to the user, and therefore the error associated wathngthod can be estimated.
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Chapter 4

Validation of Numerical Tools

Rigorous testing of the numerical methods and boundaryitongrocedure described
in Chapter 3 is required to validate the techniques to be uségk integration of the pair
of coupled spatio-temporal evolution equations (2.71) @d2). Tests using Chebyshev
methods are carried out i#.1 to illustrate the spectral accuracy of the differemdiat
matrices and spatial-integration procedure, respegtivaflined in§3.1 and$3.3. To test
the accuracy of the full numerical scheme, comprising apatid temporal discretization,
§4.2 contains simulated solutions to both a linear partiffedintial equation with a
known analytic solution, and the nonlinear film-thicknessletion equation (2.71).
These tests demonstrate the accuracy of the boundarytmmmgrocedure outlined in
§3.2, and the fourth-order, explicit Runge-Kutta time-giag algorithm of§3.4. Novel
insights on the applicability of Chebyshev spectral methodthe approximation of
derivatives of functions containing steep gradients (Whigodel the menisci at the

eyelids)near boundariesre presented if¢4.3.

The notation of Chapter 3 is retained herein, with tildesnaegting numerical
approximations to functions and their derivatives. Furdithat have been differentiated
are represented by superscript parentheses denoting ther of differentiation.

Quantities that depend upon the numbéof spatial discretization nodes are identified
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with a subscript.

4.1 Testing Chebyshev differentiation and integration

The spectral convergence of numerically-approximatetvagres and integrals to their
analytical values as the spatial discretization paramateis increased is illustrated
in this section. Calibrations are performed using a varwtyest functions defined
using both polynomial and transcendental terms. The inggtgeerformance of the
alternative differentiation matrices (those which emplbye identities in (3.14) to
replace differences of trigonometric terms with produaegr their original forms is
demonstrated. Furthermore, the errors arising throughotisiee explicit higher-order
matrices, of which the third- and fourth-order matricesrespnt novel developments
within this thesis, are compared to the errors arising thhoepeated action of the first-
order differentiation matrix, identifying the optimum rhed for generating higher-order
spatial derivatives, which method introduces the minimurorefrom the discretization

process.

4.1.1 Differentiation-matrix accuracy

The accuracy of the Chebyshev differentiation matriceshairtoriginal form, (3.8) -
(3.12), and their alternative form, (3.15) and (A.1) - (A.i3)tested in this section. Three
test functions are defined using a combination of purelgstandental terms, purely-

polynomial terms, and a mixture of polynomial and transestal terms. These are

u(z) = exp(sin(3z)),
v(z) = P+t +2¥+22+2+1, and (4.1)
w(z) = 1—x+42? + x exp(—3z) cos(2x) + 3z° sin(3z).
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Each function is differentiated four times both analytigadnd numerically, and the
analytically calculated derivatives are evaluated at thel@shev node$z;}. Higher

derivatives are obtained using both the original and adtitra forms of the explicit
differentiation matrix of relevant order, and also usingeated action of both forms,
(3.8) and (3.15), of the first-order matrix. At the nodes,ittimity norm of the percentage

absolute error in the approximation

#(k
i

F®

is obtained. This is shown to converge to zero rapidly witlréasingV and, forNV 2> 40,

% error inf](\f)H = max [100
[ee] re|—1,

] : (4.2)

the limiting factor in the accuracy of the calculation of therivative is shown to be the
precision of the machine itself. In each test case, the synwaky-distributed form of
the Gauss-Lobatto grid (3.13) is used in favour of the oabdefinition (3.2).

Results from tests of the accuracy of both forms, (3.8) and5)3 of the first-
order differentiation matrix are presented in Figure 4.hjo show that, for values of
N > 20, the maximum absolute error in the first derivative of eaadhcfion in (4.1)
is less thar).01%. As N is increased, both test functions containing transcemdient
functions display rapid convergence to zero of the maximbsobute error, which error
reaches the numerical round-off plateau located betwéet! — 10-8%. For all values
of NV shown in Figure 4.1, the accuracy of the approximate gradiethe polynomial
functionwv(z) is such that the round-off error of the finite-precision nmiaetswamps the
differentiation error. This occurs because, for > 5, the fifth-order polynomial can
be represented accurately by the linear combination of @tedy polynomials used in
the cardinal function interpolant (3.3). A slight positigeadient with increasingv is
observable in the data falling within the round-off plateeeflecting the accumulation,
with N, of rounding errors from the manipulation of matrices oesizy + 1) x (N + 1),

which themselves are populated with entries of large madait

Importantly, the coloured pairs of symbols in Figure 4.1 destrate the improved

performance of the alternative first-order Chebyshev difigation matrix (3.15) over
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that of the original matrix (3.8). In the falling limbs of theanscendental test-function
data, the accuracy of the interpolant (which is dependeahuyp) dominates the error
calculation, leading to data points that overlie each otkiéthin the round-off plateau,
the vast majority of coloured symbol pairs appear with theeldata poinbelowthe red
point, showing the improved accuracy in the calculationhaf éntries of the first-order

differentiation matrix computed via (3.15).

For higher orders of differentation, the behaviour of theefor each function in
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Figure 4.1: Logarithm of the maximum percentage absolute error in tlmeatical approximation
of the first derivative obtained using the Chebyshev difféation matrix inits original form (3.8)
andits alternative form (3.15jor N = 8(2)60. Test functions (4.1) are denoted by(crosses),
v (dots) andw (circles). Blue circles and crosses overlie their red cewparts in each of the

descending limbs, giving the impression that only blue @atsts for these values o¥.
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(4.1) is qualitatively the same as that displayed in Figure fér the first derivative,
but the magnitude of the errors is greater. Four methods lofikedion are available
to approximate higher-order derivatives, these are: fipated application of the first-
order matrix (3.8); (ii) the appropriate explicitly-degi# matrix (3.10) - (3.12), and;
methods (i) and (ii) with the alternative formulations oétimatrices, respectively (3.15)
and (A.1) - (A.3). The accuracy of the hitherto-unseen expthird- and fourth-order

differentiation matrices (3.11) and (3.12) is evidenceBigure 4.2, which figure contains
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Figure 4.2: Logarithm of the maximum percentage absolute error in timeerical approximation
of (left) w® (z), and(right) () (z), for N = 8(2)60. In both plots, colours and symbols denote:
matrices defined in their original fornmatrices defined in their alternative forms using (3. 14)
the colour-specific explicitly-derived matrix, and; multiple applications of the colour-specific

first-order matrix.
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the maximum percentage errors in the approximations/©f(z) and u®(z). These
results are representative of the results from the secorfdutth-order derivatives of all
three test functions in (4.1). These similar results arepnesented, but they all support

the conclusions that are drawn below.

The data located in the round-off plateaux of Figure 4.2 stimay, in the majority
of cases, the best-performing method for calculating a driglerivative is multiple
application of the alternative first-order matrix (3.159presented graphically by blue
crosses. The overlaying data in the descending limbs bltstriites the accuracy of
the explicit formulae, and identifies that all four methods dalculating the derivative
are primarily dependent on the accuracy of the interpoleather than the accuracy
of the representation of matrix entries. As in Figure 4.1jsitonly in the round-
off plateaux that differences are observed between theopeainces of the different
calculation methods, which differences identify that epd matrix multiplication using
the first-order matrices shows a marked improvement overothidne explicitly-derived
formulae 0f§3.1.2. An explanation for the large errors attributed toeRplicit formulae
is that, for all values ofV, the entries in the top-left and bottom-right corners of the
differentiation matrices grow a&?*, wherek is the order of differentiation. Thus &
is increased, the accumulated errors are magnified thrdwgghide of steadily-growing
(N +1) x (N + 1) matrices containing entries of high magnitude, which estdan only
be represented to a finite degree of accuracy by finite-pogcasithmetic. Alternatively,
through repeated action of the first-order matrix, the aedation of errors is reduced
because the magnitude of the entries within the matrix isisogntly lower; for example
when N = 60, Dy is of orderO(10%), whereasD{, is of order©(10'!). Hence, the
errors in the finite-precision representation®f) are of a smaller magnitude the errors

in the formulation ofD®) for k = 2, 3, 4.

Despite the efforts made to generate the novel, explicghév-order Chebyshev

differentiation matrices, the results presented in Figutel and 4.2 support the use
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of repeated applications of the alternative form (3.15)D8f) to calculateall spatial
derivatives required for the modelling of the pair of coup&volution equations (2.71)
and (2.72).

4.1.2 Testing spectral integration

The accuracy of the spectral integration proceduregg38B is now tested using five

functions formed from a mixture of polynomial and transcamdl terms

si(z) = (1+2),

so(w) = exp(z?) sinﬂ—g,
s3(x) = exp (sin W—g) , (4.3)
sy(z) = 1—x+2x2+xcos%+3x3smﬂ—g,
() 4 Y9
ss(x) = 4cos ——.
° C

These functions are chosen because,sfoe [-C,C]: s; and its gradient increase
monotonically withz; s,, s3 and s, all contain multiple turning points and are formed
from combinations of transcendental and polynomial furddi and;s; is a rapidly-
oscillating function with steep gradients. For each testfion in (4.3), the integral
C

I, = /_C si(z) dz (cf. (3.26)) (4.4)
is performed analytically in MPLE using 20-digit precision arithmetic, and compared
to the N-node spectral approximatioﬁ,N of I, calculated through the Chebyshev
integration procedure (3.30) inMfLAB using standard IEEE 754 64-bit double-precision

arithmetic, with a machine-of 2.22 x 10716: results are presented in Figure 4.3.

The improvement in the accuracy of the spectral approxonatith increasingV
is clearly demonstrated by the test functienér), s4(x), andss(x), which respectively

reach the round-off plateau at roughlg—'* when N = 42, 22 and42. The spectral
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Figure 4.3: The convergence wittv of the error|I; — fng , for the various test functions of

(4.3), calculated forV = 8(2)60. The test integrands;(x) are represented by the colour scheme
i =1,2,3,4,5. For all functions tested, the round-off plateau|/at- f,-vN] ~ 10—, is reached
when N = 42. The omitted red data point whel = 8 is because the numerical integration
is exact. Absoluterather tharrelative errors €f. Figures 4.1 and 4.2) are shown Bs= 0 for

i = 2,5, and all other integrals are of ordéx(1).

integration ofs;(z) and sy(z) yields errors in the round-off plateau for all values of
N tested. As ing4.1.1, an explanation for the rapid convergence of the emrdhese
functions in comparison to, for example, the error convecgen the integral of;(x) in
Figure 4.3 may be obtained by considering the error in therpratiation of the functions
using (3.3). Fors;(z) andsy(z), the interpolant (3.3) yields a maximum error of order

O(107%) for the range ofN displayed in Figure 4.3. The maximum errors in the
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interpolation ofss(z) when N = 10, 20, and30 are respectively)(10), O(10~'), and

O(10~?); this marked improvement in the interpolation is reflectethie greater accuracy
of the spectral approximation (3.30) of the integral. The®x in the interpolation of
s5(x) with low N arise through interpolating a rapidly-oscillating fureetiusing a coarse

discretization mesh.

4.2 Validation of the numerical scheme

To ensure that the dynamics observed in the subsequentechapt due to the tear-
flow model, and not spurious artefacts of the numerical seh@ma associated parameter
combinations used within simulations, two tests of the fuimerical scheme are carried
out in which the discretization parameter§, and dt, are varied to demonstrate the
consistency of spatio-temporal integrations. Both testapute the solutions to partial
differential equations containing first-order temporalieiives and fourth-order spatial
derivatives, complemented with Neumann boundary conwstgpecified upon the first-
and third derivatives at the ends of the computational dormsich boundary conditions

are compatible with those of the full tear-flow model.

4.2.1 Linear test simulation

Preliminary tests of the numerical scheme are carried onguslinear partial differential
equation containing an inhomogeneous forcing functiomnaented by homogeneous

Neumann boundary conditions. The IBVP is given by
Uy + CMppee = 240% — 72C%2% ) uy(£C, 1) = 0, Upee(£C,t) =0. (4.5)
Two initial conditions are specified to test different ddtries of the numerical scheme,

7C? 1
Ul(l’, O) = 1- ?.%2 + zt — @1’6 + sin <%) s (46a)
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and
us(x,0) = 0. (4.6b)

Initial condition u; in (4.6a) satisfies the evolution equation and boundary itiond
(4.5) exactly, and demonstrates the accuracy of the nualestbeme as it approximates

the temporal evolution of the explicitly-known analytidistion
702 4
uw(z,t) = 1 — —a2* +2* — ——a% +exp <—7T—> sin <E> : 4.7)

Initial condition uy in (4.6b) fails to satisfy the evolution equation, and epabihe
convergence of the scheme towards a steady-state solatibe tested. The steady

solution to (4.5) subject to initial condition (4.6b) is

3104 7C? 1,
uee(w) = Jim ule,t) = Joz = b ot - o (48)

wherein the constant has been determined from the integnalitton

C

/ Uso(z)dr = 0,

-C
which follows from (4.6b). This second test replicates thkdviour expected of solutions
to (2.71) because the initial condition (2.80) does not oconfto the steady-state shape,
and so will induce movement of the bulk fluid through which finee surface will
relax towards its coordinate-system-dependent quieswefite, (2.89) or (2.90). The
consistency of the numerical scheme is illustrated throsigth a test by varying the
discretization parameters and tracking the behavioureasdlution converges from (4.6b)

towards (4.8).

Evolution equation (4.5) is simulated using parameter $gts= {N = 20,dt =
1077}, Py = {N = 26,dt =5 x 1078} andP; = {N = 32,dt = 10~®}. The behaviour
of the system is displayed using results obtained with patansetP, in Figure 4.4.
These results are representative of results obtained aitmpeter set®; andPs, which

are not presented in the interest of clarity as the valu¥ «f used in the definition (3.16)
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Figure 4.4: Snapshots of solutions to (4.5) with initial conditionsegiby(top) u; (x, 0) of (4.6a),
and(bottom) us(z, 0) of (4.6b). N = 26 anddt = 5 x 10~%. Red symbols represent snapshots
taken att = 0.01 (A), t = 0.02 (o), t = 0.1 (+) andt = 0.5 (x). Solid black lines denote the
initial conditions, and dotted lines represefiap) analytic solutions (4.7) at the relevant point in

time, and(bottom) the steady state (4.8). Arrows show the direction of indnggime.

of C', whence (4.5) - (4.8) are all altered by the spatial diszagion. Figure 4.5 plots the
time-evolution of the maximum error in the simulations gginitial conditionu; (4.6a)
that approximate (4.7), and the convergence towards thestate (4.8) of simulations

using initial conditionu, (4.6b).

The upper plot of Figure 4.4 shows the numerical solutionsally approximate the
exact solution (4.7): the level of accuracy is quantifiedhia tpper plot of Figure 4.5,

which shows the logarithm of the maximum absolute error betwthe exact solution
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and its numerical approximation, obtained using each selisafretization parameters.
The rapid convergence from initial conditien of (4.6b) to the steady state is shown in
the lower plot of Figure 4.4; by = 0.1, the difference between the numerical simulation
and the steady state has a maximum relative errér2of 10-3%. Furthermore, the lower
plot of Figure 4.5 shows that, after: 0.25, the discrepancy between the steady state and
the numerical solution is small enough that it is dominatgetvors introduced through

the numerical scheme itself. The relative magnitude of tivaerical error is found to be
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Figure 4.5: Logarithm of the maximum absolute difference betweénp) the numerical- and
analytical (4.7) solutions in simulations using initialnchtion (4.6a), andbottom) simulations
using the homogeneous initial condition (4.6b) and thedstestate (4.8), displaying rapid
convergence. Colours represent numerical discretizgtavameter set®, = {N = 20,dt =

1077}, Py = {N =26,dt =5 x 1078} andP3 = {N = 32, dt = 10~ %}.
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negligible: the largest steady error in the lower plot oftffg4.5 occurs in the parameter-
setPs; simulations, and is of orde&?(10~'°) in the approximation of a function of order
O(107).

These results show the numerical scheme to be accurate asidtemt in the solution

of the linear partial differential equation (4.5) with iaitconditions (4.6).

4.2.2 Test of nonlinear evolution equatior(2.71)

Further tests of the consistency of the numerical schemen@anecarried out on the
nonlinear evolution equation for the film thickness (2.71}he absence of a dynamic
surfactant layer. Simulations are computed using diffesets of numerical parameters,
N anddt, with two different choices for the contact anglee {r/4, 7/2}. Physical
parameters o6 = 5/12 and £ = 0.1 are chosen in order that all terms are included
in the differential equation and its boundary and initiahdiions, and that presented
snapshots of the film profile are easily displayed withoutriayeng closely. A value
of £ = 0.1 represents a significantly higher evaporative flux than tidaesreported in
Mathers (1993), and is not used in subsequent chapters. il condition with small
menisci is formed by setting,,, = 3/4 andr = 4/3 in (2.79), and specifying a blend-
point of b = 0.4. Simulations are integrated to a non-dimensional time ef 1, which

corresponds to five dimensional seconds.

Snapshots of the film profiles from simulations with= /2 andf = /4 are
respectively presented in Figures 4.6 and 4.7, which dysglpid migration towards the
steady-state profile, similar to that shown in the lower gibFigure 4.4. This rapid
convergence towards the quiescent state is shown in Fig8redt < 0.2, as the early
phase of motion generates a near-steady-state profile insgaclation, regardless of the
discretization parameters used. As the simulation pregseshe blug N = 20,dt =

1077} data are seen to diverge slightly from the red and green suivewever, the
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Figure 4.6: Film profiles generated by the film thickness evolution equed2.71) withE = 0.1,

§ =5/12, st = 1, a9 = 5 andd = /2, taken att = 0.5 andt = 1, respectively the higher
and lower datasets. Discretization parameter values géontimerical scheme are represented by:
{N = 20,dt = 1077} (+); {N = 26,dt = 1078} (0), and; {N = 32,dt = 5 x 1077} (L).
The initial condition is denoted by a solid black profile,atied using 201-knot cubic interpolation
splines of the initial data from th& = 32 simulation. Dot-dashed lines denote translations of the

steady state (2.90), and display the quick relaxation ofilimetowards the steady-state profile.

logarithmic vertical scale belies the size of the divergenétt¢ = 1, the maximum
differences between the film profile and the steady statedd ¥ = 20,dt = 1077}
simulations yield a percentage difference of ord¥f0-2%) whend = /2, and of
order®(10~'%) whend = = /4. This consistency in the behaviour of simulations allows

a significant saving to be made in the real-time duration wfutations, enabling the
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coarsest set of discretization parameters to be employddosnfidence that the data

computed by the numerical scheme will be accurate. For tnelations presented in

Figures 4.6 and 4.7, the time taken to reach a non-dimerisiona of ¢ = 1 took

approximately 2 hours for parameter $&¢ = 20, dt = 10~"}, 23 hours for{ N = 26,
dt = 1078}, and 51.5 hours fof N = 32, dt = 5 x 107} on a 2.66 GHz core with 4

GB RAM. Thus the coarsest set of discretization parameggmesents a roughly 25-fold

computational acceleration over the finest set.

The tests presented herein provide a validation of the acguand consistency of

the numerical scheme outlined in Chapter 3, and enabletigegiens of the behavioural

changes caused through altering the parameter valuestitaitear-flow model to be
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Figure 4.7: Snapshots of film profiles at= 0.5 and¢ = 1 from simulations with§ = /4. All

other physical and discretization parameters are as giveigure 4.6.
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Figure 4.8: The maximum absolute difference between the tear-film grafid the evaporatively-
displaced steady states in Figures 4.6 and 4.7, illustraltiat the rapid early dynamics of the film
are not influenced by the choice of discretization pararaet€plour coding is as per Figure 4.6,

and solid and dashed lines respectively denote data fromaiions withd = /2 andd = r /4.

carried out with confidence that the results obtained willeot the physical effects

incorporated in the model.
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4.3 Investigation of the effect of steepness induced by

pinning

As mentioned in Chapter 3, the detailed derivation of nuoartools therein was

driven by the scarcity of information on the numerical sckeramployed in all related
mathematical literature, with the aim that the results gmésd here may be easily
reproduced by others. Furthermore, it is noted that, wighirof the published models
of the tear film, the pinning of the tear film at the mucocutarssjinction significantly

influences the flow dynamics, leading to menisci that eitb&in their original steepness,
or become progressively steeper as time incréasasthe interest of investigating the
errors that accrue when using Chebyshev spectral methalds models of the published
literature, the numerical apparatus of Chapter 3 is apptiedtest function that emulates

the steep-sided initial conditions employed by the exgstimodels.

Following the initial condition of Li & Braun (2012), a testriction with steep

gradients at the ends of the computational domain is defiged a
u(x) = 1+ ka™, (4.9)

with m = 2,4,8 and16, andk = 10 and100. This function is also used to approximate
the non-symmetric film profiles deposited during the ‘eyerapg phase of models that
simulate the blink cycle. In the absence of explicit formstfeese profiles, (4.9) yields a
good approximation to the shape of the deposited fitixtiie central{ = =) plot of Braun

& King-Smith, 2007, Figure 4; and the top-right plot of Ayderet al., 2011, Figure 5).
Variation of m whenk is of orderO(10) allows the derivatives of the initial condition
of Li & Braun (2012), and of the deposited films in Braun & Kigmnith (2007) and
Heryudoncet al. (2007), to be approximated using the spectral machinergelyngk =
0(10%) and varyingn, the derivatives of profiles in the open-eye phase of Aydetral.

IDiscussions of the physical viability of a pinned boundasgdition can be found i2.4.1 anc;2.4.2.



Chapter 4. Validation of Numerical Tools

104

(2011) may be approximated. The absolute error in the ajppation of the derivatives of

(4.9) at all nodal locations is calculated using repeatédmaof the first-order Chebyshev

differentiation matrix (3.15) for various values of the spbdiscretization parametéy,

and the results for each derivative whier- 10 are presented in Figures 4.9 - 4.12.

In Figure 4.9, the sequential increasé\irfrom plot (a) to plot (d) shows an increasing

magnitude of the error in the approximation of the gradiez@rrthe endpoints; ~ +1,

by an amount of orde®(10?). This increase in magnitude witki is not observed in the

central regions near = 0, where the gradient of the function is not as severe. Thus the
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Figure 4.9: Logarithm of the absolute error in the calculation of thet filsrivative of (4.9) when

k =10, and(a) N = 20, (b) N =40, (c) N = 80 and(d) N = 160. Data points are coloured to

denotem = 2, 4, 8 and16.
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Figure 4.10: Logarithm of the absolute error in the calculation of theosetderivative of (4.9)

whenk = 10. All colours and discretization parameters are as per Eigus.

approximation withNV = 20 yields derivative values in the centre of the computational
domain that ar@s accurateas those from the approximation withh = 160, and values

that aremore accurateéhan theN = 160 approximation near the interval end points.

The data presented in Figures 4.10 - 4.12 demonstrate thain#gnitude of the
error in the numerical calculation of higher derivativesws with both the order of
differentiation and the number of spatial discretizati@d®s used in the approximation.
For each derivative, the errors of largest magnitude araddn approximations with
N = 160, and theN = 160 results also show the largest range of magnitudes in the

numerical error. Importantly, the results of Figures 4.91-24dentify the errors of largest
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Figure 4.11: Logarithm of the absolute error in the calculation of thedhierivative of (4.9)

whenk = 10. All colours and discretization parameters are as per EigL.

magnitude in the calculation of derivatives as those fourkdeaends of the computational
domain. This means that tear-flow models that use both pinmerdsci and Chebyshev

discretizatiod will exhibit dynamics that are driven by regions of the congtional

2Braunet al. (2012), and Li & Braun (2012). Heryudomal. (2007) use a mapped Chebyshev spectral
method that reduces the clustering of nodes near +1, which method is applicable when solutions
have high gradients away from boundaries or are smooth giwaut the interval (Heryudonet al., 2007,
Appendix B). Notably, as pinned film profiles fail to satishetfirst option above, placing fewer nodes in the
menisci will reduce the resolution in those regions, andragsforming the Chebyshev collocation nodes
(3.2), the near-minimax accuracy of the interpolant (3:8)i¢h motivated the choice of Chebyshev spectral
methods ing3.1.1) will be reduced. Thus, a significant trade-off is mhdeveen numerical stability and

the accuracy of simulations when employing such a transdtam.
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domain in which there is a high degree of numerical inacgura®loreover, as the
menisci steepen over time (particularly in the presengeirmiedevaporative thinning),

the underlying dynamics will becommoreinaccurate as the simulations progress.

The location of the largest errors in Figures 4.9 - 4.12 arasethe magnitude of each
derivative of the functionu(x) of (4.9) attains its maximum at = +1. The derivatives
in these positions are approximated using the first and @8t rof the Chebyshev
differentiation matrix, which itself contains the entrifdargest magnitude. Hence, in the
finite-precision arithmetic of the computer simulatiore gixteen-digit representation of

a derivative of high magnitude is to be calculated using ixatntries which themselves
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Figure 4.12: Logarithm of the absolute error in the calculation of therfowerivative of (4.9)

whenk = 10. All colours and discretization parameters are as per Eigu8.
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are large and evaluated only to sixteen-digit accuracy.

The predetermination of the location of the largest erno®duced by the numerical
scheme gives justification for the use of initial conditionigh shallower gradients than
those used in the published literature. This justificatemiaddition to the requirement,
imposed by the thin-film lubrication approximation, thdtwariation of quantities in the
direction perpendicular to the ocular surface is of o) relative to variation along
the surface. This same approximation is employed in all tioelets of the published
literature (with the exception of Zubkaost al, 2013), yet the issue of pinning a film,
which has been has been scaled to have a thickness of@fdgrwith a meniscus height

of orderO(10) or O(100) is not addressed in these works.

4.4 Summary and discussion

The tests and results presented in this chapter were medivhy the need to
validate the accuracy of Chebyshev differentiation, thenoary-condition and spectral-
integration procedures, and the combined numerical schemed of the spectral spatial

discretization and fourth-order, explicit Runge-Kuttad-stepping outlined in Chapter 3.

The accuracy of numerical approximations of derivativegamied though the use
of Chebyshev differentiation matrices has been demoestrat Figures 4.1 and 4.2,
wherein the maximum absolute error in the numerically-ivieta derivatives converges
spectrally to zero with increasing values 8t reaching the round-off plateau enforced
by the finite-precision arithmetic fav > 42. Moreover, the results illustrate that first
derivatives calculated using the alternative form (3.19)8’, derived using the identities
of (3.14), are more accurate than derivatives obtainedyubmoriginal form (3.8) for the
majority of values of N. This spectrally-accurate calculation of derivative®al the
spatial discretization to be carried out with significaridwer nodes than required in the

finite difference schemes of (for example) Braun & Fitt (20)38elding a considerable
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reduction in the amount of computational resource requmexlitomate the simulations.
Through a comparison of different methods for calculatinghbr derivatives, results
show that repeated multiplication usifid") as defined in (3.15) yields the optimum
error minimization, even when compared to the errors obthithrough use of the
newly-derived, explicit, higher-order differentiationatnices 0f§3.1.2. As a result of

this evidence, (3.15) will be used in the calculation of atidatives in the simulations

presented in subsequent chapters.

The accuracy of the spectral integration method®8 is demonstrated in Figure
4.3, which shows the absolute error in the calculation ofintegral (3.26) for a variety
of integrands (4.3). In all cases tested, the integral isiobtl to machine precision for

values ofN as low ast2.

Calibration of the numerical scheme .2 using both linear and nonlinear test
evolution equations has shown the scheme to yield consistenlts for a variety of
combinations of spatial and temporal discretization patans. These results give
confidence that the results obtained using a coarse set@ktimtion parameters are

both sufficiently accurate and computationally efficient.

An experimental study of the error in the numerical appration of derivatives of a
steep-sided function (4.9) i%.3 has shown that the use of Chebyshev spectral methods
to approximate the derivatives of such functions leads talleed boundary errors of
large magnitude, which moreover increase with increading his evidence casts doubt
on the results of prior models that have used spectral msttimsded in the footnofe
on page 106) in the simulation of film profiles with steep, gidmenisci. This doubt
occurs as, in addition to the universal absence of a phyaigaiment to support pinnidg
and the invalidation of assumptions made through employingttie-film lubrication

approximation in the derivation of such models, the resglfiuid dynamics are driven

3i.e. an argument suggesting why the contact line shoultip’pssteriorly along the pre-wetted margin

of the eyelid.
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by those regions of the computational domain that contanalgest numerical errors.
As such, the results ¢#.3 complement the modelling constraints enforced on tesgmt
model through use of the lubrication approximation, jysti§ the shallow menisci
employed in the simulations of subsequent chapters. Bgiiki the results presented
herein appear to contradict the conclusions made in Apgehdif Li & Braun (2012),
wherein data from a test problem (but little detail on the lenpentation) suggests that
spectral methods are well-suited to the approximationedsisided functions, and that
the accuracy of such approximations improves with increpsi. However, it is noted
that the tests in Li & Braun (2012) include both spatial andperal discretization, with
the time-stepping carried out usingAVLAB’s ode15s solver, hence these results may
not be comparable to the purely-spatial datgo8. Finally, it is important to note that the
results in Figures 4.9 - 4.12 were obtained through usespeatrally-accuratenethod for
the approximation of derivatives, hence they pose furthestjons about the numerical
errors encountered by models that use lower-order mettsods @s finite differences) in

their spatial discretization.

With the numerical scheme now outlined and tested, it isiagplith confidence in
Chapter 5 to model the effect of physical parameters on sitions of the isolated film-
thickness evolution equation (2.71), and in Chapter 6 toehtite coupled behaviour of
the full tear-flow model, (2.71) and (2.72).
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Chapter 5

Dynamics of a Lipid-free Tear Film

The dynamics of the tear film and its adsorbed lipid surfactaa uncoupled in this
chapter to allow the modelling of a (hypothetical) ‘cleagat film in which the surfactant
concentration,), is set to zero. The evolution equation (2.71) for the thedsof
the tear film,h, is solved subject to the boundary and initial conditionscdssed in
Chapter 2, allowing the dynamics of the Newtonian fluid witkteess-free interface of
(dimensional) surface tensien to be studied. This simplified model allows the effects
of substrate curvature, evaporation and the contact andteced through the eyelid
boundary conditions to be isolated, and their effects olesbwithout the additional

advective influence of the lipid surfactant.

The results obtained are compared and contrasted with sitiniaictant-free, draining
models for the tear film in the published literature (Wai@l., 1996; Milleret al., 2002;
Braun & Fitt, 2003; Jonest al, 2005; Winteret al, 2010; Makiet al, 2010a; Maki
et al, 2010b; Braunet al, 2012; Li & Braun, 2012; Zubko\wet al, 2013). Before
proceeding, it is important to note the significant diffeses between the derivation
presented in Chapter 2 and the modelling used to developubkshed models. With
the exception of Jonest al. (2005) and Zubkowet al. (2013), all assert that the free

surface is tangentially immobile, replacing the tangémiamentum balance (2.29) with
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U-t = 0%. Furthermore, the menisci are pinned with boundary valfiesder 0 (10) (and
orderO(100) in the case of Zubkoet al., 2013), with central plateau thicknesses scaled to
be of orderO(1). Such menisci are not feasible in this model§4s identifies the errors
inherent with the spectral approximation of such profiles],anoreover, their presence
introduces steep gradients that invalidate the assungaiithe lubrication approximation
upon which this model is derived. This invalidation is olvselin Zubkovet al. (2013),
wherein a comparison of a lubrication model with full Navi&tokes simulations in
the meniscus regions identifies significant differencesh@velocity profiles inside the
menisci, with the lubrication model predicting contactelivelocities that conflict with the
pinned Dirichlet boundary conditionsf( §2.4.2). The tear-flow dynamics within all prior
models is dominated by the Dirichlet pinning, which leadsmeniscus-induced thinning
that creates the so-called ‘black lines’ (McDonald & Brubgk 971; Milleret al., 2002);
these lines are impossible to replicate using the modekpted herein, which allows
movement of the contact line along the eyelid margin. Fin&lliinteret al. (2010), Maki

et al. (2010a), and sections of Braun & Fitt (2003) enforce boupdanditions o/,

at each eyelid, which effectively specifies the pressurbedd points. Such a boundary
condition is not used in this model as it cannot be motivatedgpealing to the physical

environment in which a real tear film exist#.(§2.4.1).

Unless otherwise stated, all simulations presented withisichapter have an initial
condition (2.80) formed using,,, = 1, »r = 2 and a blend poinb = 0.4; numerical

simulations are discretized using parame{e¥s= 20, dt = 2 x 1078},

1This condition is used within the lubrication approximatim yield a vanishing azimuthal velocity,
u = 0, at the free surface. Such an approximation is valid in thiecBatral plateau region of the tear
film but, in the steep menisci, the tangent vector aligns notwrgely with the direction perpendicular to the
ocular surface; hence in these regions, this boundary ttondor the governing equations should change
to fiu + fov = 0, wheref; and f, are functions ofi:. No such amendment is made in the models that

employ this boundary condition.



Chapter 5. Dynamics of a Lipid-free Tear Film 113

5.1 The effect of environmental parametersy and £

To demonstrate the influence of environmental factors ordyimamics of the tear film,
the curvature of the ocular substrate and the evaporative fluxy, are altered. Values
of § = 0 andd = 5/12 are respectively chosen to model a flat cornea with a Cartesia
coordinate system, and a substrate with a realistic cooueaature. The evaporative flux
E = 1.503 x 1072 is used to approximate the experimentally-obtained refNtathers
(1993) after the rescaling (2.58), which scaling promotexperative effects to leading-
order in the mass balance (2.53). Data from evaporativelations are contrasted with
non-evaporative results obtained with= 0. To isolate these physical effects, all other
parameters in the model are fixed with valuestof 1, oy = 5, andd = 7/2 employed

in the results presented in Figures 5.1 - 5.4. As mentionegbge 52, this value df is
uncharacteristically large for the tear film, and effedii@odels an unscaled film that is
nearly flat in the menisci. Howevet,is chosen for numerical accuracy@s3 highlights
the adverse affect of narrow contact angles on the apprdiximaf derivatives near the
boundaries. Discussions warranting the introductiord afre given in§2.4.1, and the

effects of varying the contact angle are presentefbia.

The influences of evaporation and substrate curvature oevbieition of the tear-
film flow are displayed in Figure 5.1, which shows the latedtith = 1) film profiles,
corresponding to a dimensional time of five seconds (a shout,realistic, human
interblink duration — Berger & Corrsin, 1974). As 4.2, migration towards the
steady-state profile is observed in each case. This migraistarkly different from
the movement of the tear film in the aforementioned publisivedks, as the novel
Neumann boundary condition (2.76) for the contact angleaalthe contact line to slip
to its natural level. Hence the profiles of Figure 5.1 do naplily the characteristic
meniscus-induced thinning that is observed in all prior eied The effect of substrate

curvature is illustrated by the dotted lines representitg dteady-state profiles, which
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are evaporatively displaced whén # 0 and given byh..(§) — Et. Blue and green
dotted lines display the Cartesian form of the (displacéeBdy state, and red and purple
the curvilinear form withy = 5/12. By comparison with the Cartesian steady states,

the curvature of the eye causes a marginal thickening oftdeglg-state profile near the
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Figure 5.1: Snapshots of film profiles at = 0.01 (+) and¢ = 1 (x) obtained with varying
substrate-curvature and evaporative paramefeasd F, and a scaled contact angletf= = /2.
Colours represent{§ = 0, E = 0}; {6 = 5/12, E = 0}; {6 = 0, £ = 1.503 x 10~?}, and;
{6 = 5/12, B = 1.503 x 10~%}. Note that att = 0.01, red and blue profiles are plotted but
overlay closely. Steady states and evaporatively disglateady states (calculated fasg (§) —
Et) are denoted by colour-specific dotted lines. The solidiblae displays a 201-knot cubic
interpolation spline of the initial data when= 0, and the apices of the menisci reaeff =

+C,0) = 2.
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lower eyelid € = C) and a corresponding thinning near the upper eyélid (—C'). This
bulge over the inferior cornea whén# 0 reflects the changing orientation of the gravity
vector relative to the ocular surface@s varied in the curvilinear coordinate system; at
the upper lid a component of the gravity vector pushes dovem tipe tear film, whilst at
the lower lid the same component acts to pull the fluid awasnftbe ocular surfacect.

Figure 2.2).

The effect of constant evaporation is shown to lead to a gmligblacement of the film
profiles in each coordinate system, supporting the corausi Braun & Fitt (2003) that
evaporation causes thinning across the tear film (excepegbinned menisci in Braun
& Fitt’'s model). The effect of evaporation is shown in the gmeand purple datasets
of Figure 5.1. Comparisons between the displayed steadgsssmd the numerically-
simulated profiles show the constant loss of mass from theesys have a negligible
effect on the evolution of the film towards its steady-statgfile, as evidenced by the
maximum difference between the= 1 datasets and the appropriate steady-state profile.
Whend = 0, |h(£,1) — (hoo(§) — E)|lee = 5.2 x 10~ in both evaporative scenarios,
the values agreeing to ordé&(10~%). Similarly, whens = 5/12 the maximum difference
between numerically-simulated data and the evaporatdisjylaced steady statefisl x
10~* in both evaporative cases, with agreement to of@e0—?). That these maximum
differences from different evaporative scenarios agregitih a high order suggests that

the value ofE’ has negligible effect on the transient film dynamics.

The non-evaporative profilesi#at= 0.01 in both coordinate systems are represented in
Figure 5.1 by the closely overlaying red and blue plus sitimsy demonstrate the rapid
relaxation of the tear film towards a near-steady-stateeshEpe subsequent motion of the
film gives rise to a slower, gravity-driven transition towarthe steady state (or displaced
steady state whef # 0). The effect of gravitational drift on the tear film is alsoselbved
in the models mentioned on page 111, enhancing the menisdused thinning near the

upper eyelid. The close overlaying of the datasets-at).01 shows substrate curvature to
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have little influence on the initial relaxation phase of teartfilm evolution, the profiles

displayed differing by a maximum amount® x 1074,

Motivated by the (relatively) rapid early dynamics, the &ebur of the{s = 5/12,
E = 0} simulation (the red data of Figure 5.1) is displayed in Fégbu2 fort € [0, 0.05],
and shows the swift retraction of the menisci occurringtfer 5 x 10~3 (corresponding
to the first2.5 x 10~2 dimensional seconds). This dataset is representativecofahy
dynamics in all the simulations displayed in Figure 5.1. Timéal retraction of the

menisci, coupled with a more minor drop in the fluid depth ie tbgion close tg = 0,

HE

05
§/C

Figure 5.2: Initial dynamics of the simulation with = 5/12 and E = 0 (cf. Figure 5.1), for
t € [0,0.05]. Snapshots are spaced temporally by a &tep- 10~3. All discretization parameters

are as before. The lower lid is positioned towards the lafiehside of the plot.



Chapter 5. Dynamics of a Lipid-free Tear Film 117

results in the film profile bulging upwards in regions arogrd +0.7 to conserve mass.
Hence the initial movement of the tear film acts to thickenrégions associated with
significant thinning in models that pin the meniscus, raioifty that Dirichlet boundary
conditions are required in order to generate black-lineabigur in simulations. At both
eyelids, the rapid recession of the contact lines quickhsgles, giving way to a slower
rate of recession at the upper Igl££ —C'), whilst the lower-lid contact line recedes until
t ~ 1.2 x 1072, when its direction of motion changes and it begins advanback up the

eyelid.

The change in the direction of motion of the lower-lid comtlwe is shown more
clearly in Figure 5.3, which tracks the position of the upaed lower contact lines over
time in simulations that represent bath= 0 and £ # 0 in the curvilinear coordinate
system withy = 5/12. The effect of evaporation on the early dynamics of the flow
is shown to be negligible as, at each eyelid, the positionth@fcontact lines in each
evaporative scenario overlay closely, differing by an amaf order©(1073) at each
eyelid whent = 0.1. After the initial recession and subsequent change of timec
of motion of the lower-lid contact line, the slow advancetep the eyelid marginally
overshoots the steady-state position by an amount of @¢&s—*) whent > 0.19 in the
E = 0 simulation. In contrast, wheh # 0, the long-term effect of evaporation is evident
as the position of the lower-lid contact line undergoes asdachange of direction of
motion close tat = 0.18. At this time, constant evaporative losses diminish the film
profile at a faster rate than the contact line’s advancingoigl. The upper-lid contact
line positions exhibit a monotonic convergence towardsstieady-state profile in both
evaporative scenarios. In the datasets at each eyelid fféxt ef evaporation can be
observed through the steady separation of the data at gteats in the lower plot of
Figure 5.3, reinforcing the assertion that evaporatiolypka minor role in the overall
dynamics of the tear-film flow. This minor role is expectedtigh the scalings (2.58)
employed in the derivation of the model, which scalings potarevaporative effects to

leading-order in the interfacial mass balance (2.53). Toaia physically accurate, this
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Figure 5.3: Temporal evolution of the contact-line positions with= 5/12. (Top) ¢ € [0,0.1],

and (bottom) ¢ € [0,1]. Dashed coloured lines denote the following contact-limeation and
evaporative-parameter pairings§ = C, E = 0}; {¢ = —C, E = 0}; {{ = C, E = 1.503 x
1072}, and;{¢ = —C, E = 1.503 x 10~ }. Colour-coordinated dotted lines represent the steady-

state contact line positioris,,(=C') — Et. Note that the axis scalings are different in each plot.

promotion leads to the value &f = 1.503 x 10~2 used within simulations for which all
terms are expected to be of ord@(1), whence evaporation has only a large-time effect

on the tear film dynamics.

Figure 5.4 displays the effect of the substrate curvaturtherconservation of mass
(in the absence of evaporation) and the-component of the stress tensit,,, (2.10),
evaluated at the contact lines. This component represeatsxira stress, above that of

atmospheric pressure, exerted on the contact line by theesifahe tear-film profile, and
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is not discussed in previous works on the tear film despitdaige gradients induced
in the film thickness through the pinning of the menisci. laled, marginal-surface
coordinates the stress component’s dimensional form is

U
Tww(gawat) = _% (p — Pavm — 262'Uw) . (51)

In the upper plot of Figure 5.4, the rapid initial dynamicssaa jump in the mass of the

system; at = 10~* the relative percentage increase in mass in both coordiyatems is
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Figure 5.4: Temporal variation, in non-evaporative simulatiots £ 0), of (top) the percentage
change in mass with varied substrate curvatdre: 0, anddé = 5/12; and(bottom) the logarithm
of the modulus ofT',, (2.10) at the contact lines. Solid and dot-dashed linessely denote
data att = C, and¢ = —C, with colours as in the upper plot. In each row, the larget phows
the early dynamics withh € [0,0.1], whilst the smaller plot displays € [0.1,1]. The use of

dashed red lines in the upper plot is purely for clarity,wlftg both traces to be seen.
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6.9x1072%. In each simulation this value subsequently decreaseshirept.47 x 10~2%
whent = 10~? in thed = 0 simulation, and..42 x 1072% at the same time in the= 5/12
simulation. After these initial jumps, the mass in the systés quasi-constant throughout
the remainder of the simulations, with the finaK 1) percentage change (relative to the
initial conditions) in mass found to be48 x 1072% whend = 0, and4.41 x 1072%
whené = 5/12. To identify the mass-conserving properties of the evotugquation
and numerical scheme during the slower phases of motiomeheentage changes are
renormalized against the mass in the system-at10~3. Relative to these masses, the
percentage change in mass per time-step over the peried10~3, 1] (corresponding
t0 4.995 x 107 steps) is found to be.37 x 10712% with § = 0, and—2.64 x 10~2%
with § = 5/12. These figures pay testament to the accuracy of the integratheme
of Chebyshev spatial discretization coupled with fourtdes Runge-Kutta time-stepping

described in Chapter 3, and also to the spectral integratiocedure 0£3.3.

In the lower plot of Figure 5.4T,,., shows marked differences between the large-time
behaviours in the Cartesian and curvilinear formulatidris initial contact-line stress at

each eyelid in both datasets plotted is
T,.(£C,h,0) = —1.3 x 10° Pa~ —1.3Pqy,

where the minus sign denotes that this stress acts in thesipptirection toe,, (i.e.
towards the ocular surface). In the absence of a Dirichlehtdary condition, this excess
pressure causes the rapid retraction of the menisci deskirithe preceding paragraphs,
which allows the stresses to dissipate. The sharp downwakess exhibited at both
eyelids whent < 7 x 1073 in thed = 5/12 data, and at = 1072 in the upper-lid data
whené = 0 represent the change in the sign of (5.1) from negative tdgipesThe extra

stress at the lower lid in the= 0 simulation remains negative for all times tested.

The differences between the large-time stress behaviouthén Cartesian and
curvilinear simulations (and the differences betweerssee at = +C whend = 5/12)

are caused by the position-dependent force of gravity ictinélinear coordinate system.
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When the contact angle is specified tas= 7/2, the contact-line stresses (5.1) in the
Cartesian and curvilinear formulations may be simplifiedabseh, (+C, ¢) = 0. In this

case, these stresses are given by

U()Oéo.A
TO = Tww‘ = _’ui< 204h2h - Cgh ) and
€=+C, b=r/2,5=0 27, \© 3333 IE
,LLU() OéoA
¢=+C f=r/2, 60 el { c L© 3333 (1—e ) hee

— 52h] — €0 st h?sin <6§> } ,
(5.2)

wherein the pressure and radial velocity have been sutestiusing (2.65). After the
rapid early dynamics the film profile has reached a near-gtstade shape, which profile
then slowly evolves towards the true steady state. When0, the overlaying blue data
series in the lower plot of Figure 5.4 occur because the gtsiade (2.89) is a third-order
polynomial in¢ with a second derivative that is an odd function. As such,ftheth

derivative inT? is removed and the remaining term has the same modulus-atC'.

When§ # 0, the steady state (2.90) is formed from a combination ofsteandental
functions, and has derivatives that are neither odd nor.ewihen these derivatives
are substituted int@'* cancellations yield the difference between a positionedégnt
gravitational term, and a constant that is related to thiéaininass in the systentf,
§2.4.3). This position dependence, which causes the gtiavitd term to have opposite
signs at each lid, gives rise to the unequal contact-liressas when # 0. Note that,
in all cases displayed in Figure 5.4, the magnitude of thesstfor large times is less
than525 Pa. This value is three orders of magnitude smaller thardatdratmospheric
conditions, thus the stresses do not induce movement ofutiiedliring the latter stages

of evolution.
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5.2 The effect of boundary and initial conditions

In addition to the influence of environmental factors on thelation of the tear film, the
fluid dynamics are also found to be highly dependent on bathbtiundary conditions
imposed at the eyelids and the initial configuration of tleefsurface. The contact angle
f at the three-phase contact line specifies the valug af the eyelids through boundary
condition (2.76), which determines the shape of the api¢gheomenisci and further
affects the boundary condition fag. (2.77). Alterations to the initial condition enable
the effects of shallower menisci on the transient dynamicthe tear-film flow to be
observed. In this subsection, results are presented fnmumaiions with fixed parameter
values ofst = 1, ap = 5,6 = 5/12 andE = 1.503 x 1072, It is important to reiterate
here that) is ascaledcontact angle, and as such is unphysically large for thefilear
this rescaling is required both to maintain validity of thesamptions of the thin-film
lubrication approximation used in the derivation of the mlpdnd to ensure accuracy in
the numerical approximation of spatial derivativek §4.3). Nevertheless, in the absence
of a boundary condition specifying the contact angle inpmodels of the tear film, all

results presented below are novel to the field of tear-film eHond).

Figure 5.5 displays the effect of the contact angle on therlatages of the tear-
film evolution. Each initial condition is obtained using tharameter values listed at
the beginning of this chapter, hence the differences in tit&i shape of the menisci
are caused solely through the enforced contact angle. Teet eff the contact angle is
shown more notably in the profilestat 1 which, as in Figure 5.1, show near-steady-state
behaviour. Whe# 7/2, the non-zero value df; at the eyelids forces the film thickness
to decrease with increasing distance from each boundaig. CBuses the central region
of the tear film to form a shallow trough, and consequentlgaserve mass, the contact
lines react by rising up the eyelids by comparison with he- 7 /2 profile. Hence,

despite the boundary conditions being enforced at +C, their influence dramatically
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Figure 5.5: Film profiles att = 1 (x) with colours representing contact angleséo& /2,
0 = /3, andd = 7 /4. For each contact angle, solid and dotted lines respegtplet the initial
condition and evaporatively displaced steady-state profihe blue dataset repeats the purple data

presented in Figure 5.1.

affects the evolving global file profile. This is in contrastthe results of the published
tear-film drainage models (listed on page 111), wherein éméral plateau region of the
flow is primarily influenced by gravity and evaporation, wiitie pinned menisci primarily
affecting the level of thinning at the meniscus-plateangowhich thinning results in the
formation of ‘black lines’ (Milleret al, 2002). The redistributive effect of gravity is
illustrated in Figure 5.5 as, for afl values, the contact line at the lower ljd= C' is

located higher on the eyelid than at the uppeglid —C.

The dimensional contact-line velocities are obtained fioasimulated film-thickness
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profiles by calculating (+C, h, t) from (2.65), and re-dimensionalising using tesatz
(2.41). The evolution of the earlyt (< 5 x 1072) contact-line velocities from the
simulations presented in Figure 5.5 is displayed in the upfm of Figure 5.6, showing
that the initial dynamics quickly subside, giving way toslmovement towards the steady
profile (cf. Figure 5.2). For each value éfdisplayed, the speeds of recession induced
by the initial condition are given in the first line of Tablel5These speeds are extremely
large when considered in the context of a meniscus of d&pth 10~° m, and are several

orders of magnitude greater than those predicted from fttialiconditions in the models
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0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
t

logg |Tww|
N
AN

0
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
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Figure 5.6: (Top) Dimensional contact-line velocities, afottom) logarithm of the magnitude
of T, (2.10) at the contact lines ferc [0,5 x 10~2], with parameter values and colour-coding
as in Figure 5.5. Dashed and dotted datasets respectiyalysent quantities obtained@t= C'

and¢ = —C. A discussion of the initial velocities is given in the text.
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Table 5.1: The initial receding contact-line velocities, which ard dsplayed in the upper plot

of Figure 5.6. All velocities are dimensional and expressathits of m s™!.

t 0=m/2 0=n/3 0=n/4

0 1 0.91 0.85
10741 092x 102 1.1x103 1.3x1073

of Braun & Fitt (2003) and Maket al. (2010a), respectively (2.84) and (2.85). However,
the movement of the contact lines leads to dissipation ofttesses, with the result that
the contact-line speeds are rapidly diminished, reachiegvalues in the second line of
Table 5.1 byt = 10~%. These speeds are all of the same order as those in (2.84) and
(2.85).

This deceleration continues: at= 10~3 the magnitude of the receding contact-line
velocities in each simulation is of ordéx(10~> m s™'), and for each dataset the receding
velocity at the lower lid is smaller than that at the upper lithe direction of motion
of the lower-lid contact line is reversed in all three datad®y a nondimensional time
of t = 1.3 x 1072, with the reversal in direction occurring first in the simida with
9 = w/4, and last wherd = 7/2. This change in direction of motion reaffirms that
the meniscus-driven dynamics rapidly diminish, beingaept by gravitational drift that
pulls the tear fluid towards the impermeable lower lid. Theuaculation of fluid causes
the film profile to bulge outwards from the substrate, wheifinge dontact line slowly

advances along the lower lid to reach its steady-stateiposit

The rapid diminution of the contact-line velocities — in eflsesy(+C, h,0.1) =
O(107" ms™1) — ensures that, for moderate and late times, the movemehé @iintact
line (and the entire free surface) is increasingly influehlog a speed of recession that

is attributed to the constant evaporative flux. The velocdsnponent normal to the free
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surface is readily obtained by rearranging the mass baknbe free surface (2.7)
(U - US> h=2
P

As the simulations evolve towards the quiescent steade,sthé late-time bulk fluid
velocity, U, is assumed to be negligible as all dynamic movement ceddsmg the
unit normal (2.26) and the free-surface velocity (2.27) ehanging to scaled, marginal-
surface coordinates, the evaporative speed of recessitimeofuasi-steady profile is

approximated by

- 1/2

202h2

N (1 + ﬁ) ~—15x10°ms!, (5.3)
€

wherein tildes have been re-appended to non-dimensiaraédvariables for clarity, and
parameter values are taken from Table 2.1. Note that, by adlmansional time ot =
0.26, contact-line velocities in all simulations in Figure 51@ &f orderO(107 m s™'),
whence the dominant factor determining the location of thwetact line is the constant
rate of evaporation. The evaporative speed of recessi@h ibattributed toall points
across the tear film, thus, in collaboration with the lowent jpif Figure 5.3, it highlights
the contradiction inherent within all prior evaporative aiets of the tear film: that in the
absence of a suction force drawing fluid up to the pinned teigh meniscus thickness
mustbe diminished through the evaporative loss of fluid. Acaagtli, such models could

be trivially amended to contain a time-dependent Dirichtaindary condition
h(£C,t) = hpw — Et, (5.4)

where h,, IS the non-evaporative pinning height. In addition to dl#ing the
contradiction described above, the use of such a boundagitcan in pinned models
would complement the observation that the eyelids mairdaigher temperature than
the cornea (Tomlinsoet al, 2011), which observation identifies that evaporative loss

should be enhanced in the menisci.
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The lower plot of Figure 5.6 shows that a reductiorfimcreases the magnitude of
the late-time stresses at the contact line. Moreover, indécalso yields a reduction in
the disparity between the late-time stresses at each eyddidh reduction is enhanced in
Figure 5.6 through the logarithmic scaling of the stress.eWh /2, the expression
for the stress component (5.1) cannot be simplified throwgting /. equal to zero at
the contact line, as substituted in (5.2). Instead, the reg@e form of (5.1) is found to

contain terms proportional t; andhgheee which, asf is reduced, become dominant in

Figure 5.7: The effect of the initial condition upon the transient dymesrof the flow is illustrated
using(top) an initial condition withhy, = 3/4, r = 4/3, andb = 0.4 (cf. §4.2.2), andbottom)
the simulations of Figure 5.5. Crosses denote film profilés=a).1, and colour coding and line
styles are as per Figure 5.5. The upper dataset was simuisitegl discretization parameters of

N =20 anddt = 107
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the calculation of the stress. Through the specificatiomeftoundary conditions (2.76)
and (2.77), the derivatives andh, are individually found to have similar magnitudes

at both contact lines
|he(C 1) = |he(=C 1) and  |heee(C, )] = |heee(—C, 1)1 ;

hence, by reducing, the magnitudes ot at each contact line are found to coincide at

late times.

The influence of the initial condition on the subsequent fiynamics is illustrated
by contrasting simulations that use the initial conditidr§4.2.2 with results previously
discussed in this section. The initial condition §f.2.2 has shallower menisci, and a
thinner central plateau region than the initial conditieed throughout this chapter. By
reducing the height of the initial condition, and hence tbkeimne of fluid, the evolution of
the tear film is slowed. This slowing is illustrated by compgrthe differences between
the numerically-simulated data@at= 0.1, and the evaporatively-translated steady states
in the upper and lower plots of Figure 5.7, as shown in Tat#e Bhis data demonstrates
that the redistribution of fluid by gravity has occurred ®arin the simulations that
use the taller initial condition, the maximum differencasthis case being an order of
magnitude smaller than those from simulations using thdlemiaitial condition. This
slowing of the fluid dynamics in thinner films is expected, las velocities (2.65) and

evolution equation (2.71) are proportional to positive posvofh. Importantly, without

Table 5.2: The maximum differencd|h(£,0.1) — (ks (§) — 0.1F) ||, between the evaporatively
displaced steady-state profiles, and the simulated data=ad.1 in the datasets shown in Figure

5.7.

Initial conditon | §=n/2 O=x/3 H=x/4

ho(€) from§4.2.2| 21 x 1072 2.4 x 1072 2.7 x 1072
ho(¢) from§5 | 47x 107 7.0x 1078 9.1 x 1073
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the inclusion of intermolecular forces in the bulk fluid sgeensor (2.10) in the derivation
of the tear-film model, which forces affect the stability apecially thin regions of the
tear film (see, for example, Ruckenstein & Jain, 1974; Je&s@motberg, 1992; Oron

et al, 1997), the positive powers afin (2.71) preclude the film from rupturing through

fluid advection alone; rupture is only achievable throughpevrative loss whe# > 0.

The size of the menisci, coupled with the contact angle aéytedid, has a significant
effect on the behaviour of the tear film. In the case of theahdondition of§4.2.2, the
steady-state profile at= 0 is predicted to be thicker than the initial condition at toér
meniscus whefi = 7 /3, and thicker at both menisci whén= = /4. (This remains true of
the evaporatively displaced steady states shownr-=afd. 1 in the upper plot of Figure 5.6.)
Hence, in the simulations with = 7/3 andd = 7 /4, the rapid initial retraction of the
menisci is quickly reversed as the contact lines start taade along the eyelid to reach
their steady positions. These advancing contact-linedspaee found to be two orders of
magnitude greater than those observed in Figure 5.6, liefiettiat the advancement is
not simply due to overshoot of the initial retraction of themisci (which is seen at the
lower lid in all simulations, see Figure 5.3), but that ingaeases the initial retraction is
contrary to the motion that is required for the film to reachsteady state, hence these
contact lines advance at a faster rate than those for whiglmthal retraction aids the

redistribution of the film under gravity.

The reduction in the height of the menisci affects the mamgiatof the initial
recessional velocities of the contact lines as, in each latn using the initial
condition of§4.2.2, the contact lines initially recede with dimensiovelbcities of order
O(102 m ™), (cf. Table 5.1). This magnitude is reduced through the smalkgadity
between the height of the central plateau and the contaes,lwhich induces smaller
stresses acting along the line of the eyelid margin. Theentfte of taller menisci driving
faster film dynamics is also observed in Braun & Fitt (2003),steeper menisci are

seen to yield faster rupture times. However, the incre&girapid thinning that leads
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to the rupture observed in Braun & Fitt (2003) is driven byming the menisci at
greater heights, whereas, through allowing contact-limvement, the present model
predicts rupture times that are not dependent on the hefghteanenisci, with rupture
being a large-time evaporative effect that occurs aftentariscus-driven dynamics have
subsided. In the present model, the height of the menisgi affécts the magnitude of

the initial movement of the tear film.

5.3 Summary and discussion

The drainage of the tear film under the influence of gravitypbstate curvature,
evaporation and the contact angle specified at the thresepbantact line has been
studied in this chapter, allowing comparisons to be dravith vasults from models within
the published literature. In the absence of the interfastisdsses induced through the
modelling of a heterogeneous adsorbed surfactant laysrhiapter allows the dynamic
behaviour of the dissipative film-thickness evolution dgura(2.71) to be studied in

isolation.

The novel boundary condition (2.76) that specifies the airdagle between the
eyelid and the free surface at the three-phase contact difeund to have a strong
influence on the film profile, primarily as it allows the corttke to slip along the eyelid
margin. This behaviour is unseen in all previously-puldimodels for drainage of the
tear film, wherein Dirichlet boundary conditions precludatact-line movement, giving
rise to flows that are driven by ever-steepening menisci ditthinishing contact angles
(see, for example, Braun & Fitt, 2003, Figure 2). MoreovachsDirichlet pinning has
been shown to be unphysical in the presence of evaporation fine tear film, and a
pseudo-pinned boundary condition (5.4) suggested to amaédi the issue. By tracking
the temporal evolution ofl,, (5.1) at the contact lines, the present model shows the

stresses induced by the menisci are dissipated as the fheidigtributed to its equilibrium
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position. A discussion of this stress is conspicuously atiseall of the existing tear-film
models in the published literature, as the steepness of émesai would generate large
contact-line stresses that could well lead to de-pinnintheffilm. Furthermore, at the
feet of the menisci (where they join the flat plateau regioerdkie centre of the eye), the
high curvatures in the free surface would induce large press Thus in flows that pin
the menisci, the spatial limits of the menisci are liableeddrations that experience large
stresses, which stresses could damage the delicate apithiasues surrounding the tear
film. In the absence of explicit forms for the late-time filnoples in these models, it has

not been possible to calculate such stresses here.

In addition to allowing slip of the contact line, the contactgled enforced through
(2.76) affects the velocity of the contact line, and als® gaintly with gravity to specify
the position and value of the thinnest part of the tear film. sgh, when steady
evaporation (which is found to have only large-time thimnieffects) is included in
the model, the site of rupture and the time taken for the filnmemch zero depth are
strongly dependent of (for a given initial volume of tear fluid). For example, in the
three simulations presented in Figure 5.5, the time to mepaind the position at which
rupture occurs are displayed in Table 5.3. In all cases,ithesttaken to reach rupture
are significantly longer than the duration of a normal hunraarblink of roughly five
to eight seconds (Berger & Corrsin, 1974); via (2.41), therdst nondimensional time
presented here,,_, = 65.2, corresponds dimensionally tominutes26 seconds. The
negligible effect of evaporation on transient film dynamics §5.1) coupled with the
large dimensional times to rupture support the concludiam it has only a minor effect
on the dynamics of the tear film, and that evaporation musinacbncert with another

deficiency to develop the dry-eye phenomenon studied irexample, Mathers (2004).

Importantly, through comparisons of the novel contactgtippage behaviour of the
tear film enabled through boundary condition (2.76) with bledaviours demonstrated

in existing models of the tear film, it is hypothesized herat tthe human tear film
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exhibits both pinning and slipt the contact line, but that pinning is the cause of dry-
eye phenomena such as the ‘black lines’ (McDonald & Bruhak@vl; Miller et al,
2002). Such contact-line behaviour is supported byithetro results of Leiskeet al.
(2011), in which dynamic wetting experiments using wateptits coated with insoluble
Meibomian lipid show the contact line to exhibit both pingiand de-pinning. In this
so-called ‘bi-behavioural’ model for the contact line, gteess-induced slip of ‘normal’
tear films towards their steady-state profiles allows fluidetove the menisci, washing
across the film to thicken the plateau regions as observéuhyfor example, Figure 5.2.
Conversely, maladies of the eyelid margin may generat@nsgihat resist the contact-
line stresses causing the menisci to pin, which pinning aslitg shown in the existing
literature (listed on page 111) to create significantlyntieid regions at the feet of the
menisci. Under this hypothesis, the treatment of aqueetfisient dry-eye diseases would
need to focus on possible issues at the eyelid margins, hélexpress aim of thinning
the menisci, rather than thickening the central plateaouthin the use of tear substitutes

(Holly & Lemp, 1977; Jossiet al,, 2009).

Variation of the parametef has shown the influence of the underlying corneal
curvature on tear-film dynamics to be small but non-vanghin Figure 5.1, comparison
of non-evaporative results obtained in Cartesian and lboear coordinate systems at
t = 1 shows the latter system to yield a tear-film profile tha0.1% thinner at the

upper eyelid and).19% thicker at the lower lid than the former, which discrepasacie

Table 5.3: Non-dimensional time to rupture and site of rupture in thre¢hsimulations shown in

Figure 5.5.
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are attributed to the position-dependent force of grawtative to the substrate in the
curvilinear formulation. Whilst this marginal dependeraed appears to support the
conclusions of Brauret al. (2012) — that the curvature of the cornea does not have a
significant effect on the thinning of the tear film — the diifgy stresses at the two eyelids
shown in Figures 5.4 and 5.6 indicate that the retention afrazeros is important in

the model, leading to a more accurate representation ofytiendics occurring in the tear

film.

Finally, the thickness and shape of the initial profile hasseen to have a significant
effect on the early dynamics of the tear flow, as thinner filista inhibit movement,
leading to slower bulk-fluid velocities acting under theiséributive influence of gravity.
Furthermore, the combination of the contact angle and tlgghhef the menisci compared
to the central plateau can cause different behaviours ircdméact-line velocities; for
small menisci and contact angles, the position of the ststatg contact line can lie
anterior to the initial condition. In such cases, the mamssat the lower lid (and also at
the upper lid for sufficiently small contact angles) advaraleng the eyelid after its initial
stress-induced drop. The advancing contact-line speesisninlations with such initial
configurations are seen to be orders of magnitude greatertilgaadvancing velocities

exhibited by films with taller initial menisci.

Overall, the study of the isolated tear-film dynamics goedriby the evolution
equation (2.71), and subject to the boundary conditiong6j2and (2.77), has shown
that the flow can be broken down into three distinct phasest, fa rapid retraction
of the menisci caused by relaxation of the capillary stressduced by the initial
condition; second, a period of slow movement as gravity aectbntact-angle boundary
conditions act to redistribute the tear film towards its @yestate profile; and third, a
steady diminution of the late-time, near-steady-statdilpronder the action of constant
evaporation, which leads to eventual tear-film rupture m dbsence of the restorative

action of a blink.
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The influence of a non-uniform distribution of lipid surfant on the underlying tear-
film thickness is studied in the subsequent chapter, wheesiults from simulations of
the pair of coupled evolution equations (2.71) and (2.78)maesented. These results are
compared to the ‘clean-surface’ results discussed in thapter, and to those of models

within the published mathematical literature on the tean fil
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Chapter 6

Simulations of the Coupled System

The coupled dynamics of the tear film and the adsorbed lipifasiant at its free
surface are now studied through the numerical simulatioreguiations (2.71) and
(2.72), respectively governing the time-evolution of tHefthicknessh and surfactant
concentration). Results from the coupled system are presented alongsditi-free
results of Chapter 5, demonstrating the effect of the lipicet upon the dynamics of the
underlying tear film. Comparisons are also made with thelte$nom other published
models of the tear film that incorporate the dynamics of thiel surfactant (Berger, 1973;
Berger & Corrsin, 1974; Jones al, 2006; Braun & King-Smith, 2007; Heryudoret
al., 2007; Aydemiret al, 2011; Zubkovet al., 2012). In addition to the differences
in the derivation of these models mentioned in Chapter 5€pBhl), many of these
models include the opening phase of the blink cycle of dinoerad duration).2 seconds
(Doane, 1980), followed by a drainage flow during the intekbperiod (lasting at least
five seconds: Berger & Corrsin, 1974; Heryudaial,, 2007). Accordingly, the results
from this model are compared only with the interblink dynesmeported in such papers,
which interblink represents at ledsi% of the blink-cycle duration. It is highlighted that,
in respect to the differences in the mathematical derimatithe aim of this chapter is to

illustrate how the redistributive effects of a motile setint layer can be observed in a
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model that does not pin the menisci.

Throughout this chapter, the physical parameters witherttodel are fixed with
values ofay = 5, st = 1,0 = 5/12 andE = 1.503 x 10~2 in order that the influence of
1) may be observed clearly. The initial condition for the filnickness (2.80) is formed
using the same parameter values as in Chapter 5; specifibglly= 1, » = 2 and
b = 0.4. Numerical discretization parameters{df = 20, dt = 2 x 1078} are employed
in all simulations. Two initial conditions), (), are used to model different post-blink
surfactant configurations. The first is a uniform distribatigiven by (2.82b), which
models a ‘pleated-drape’ distribution (McDonald, 196869Pwhere the lipid layer has
unfolded behind the upper lid to leave a homogeneous laytrrfatively, a non-uniform
initial condition is defined by (2.83) using a minimum contration ofy,,, = 3/4. This
distribution models a lipid layer that has lagged behind upstroke of the upper lid
(Berger & Corrsin, 1974; Owens & Phillips, 2001; Brehal,, 2004), and is thus more

highly-concentrated towards the lower lid= C.

6.1 Coupled film thickness and surfactant concentration

results

To illustrate the effect of the lipid surfactant on the mowsmof the tear film, results
from simulations that use each of the tHrigtial surfactant concentration distributions in
(2.82) and (2.83) are presented. In addition, variatiomefdontact anglé), at the three-
phase contact line allows the combined influence @ind the novel boundary condition
(2.76) to be investigated.

Figures 6.1 and 6.2 respectively display coupled snapsiats, ¢) andqy (€, t) taken

from simulations using the three initial conditions for thigrfactant concentration and

Including they = 0 simulations of Chapter 5.
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a contact angle of = 7/2.2 The redistributive influence of surfactant on the tear-
film dynamics is demonstrated in Figure 6.1 as, by compangitimthe surfactant-free
data, the red and blue datasets at each instant displaykenimg of the tear film over
the superior ocular surfac& (< 0), and a corresponding thinning over the inferior

surface. This superior thickening is shown more markedlyhien red profiles, which

2Such an angle is unphysically large for the tear film, but guied through the constraints of the

lubrication approximation used in the derivation of thisdeb See;2.4.1 for further discussion oF
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Figure 6.1: Snapshots of film profiles at= 0.1 (dotted lines){ = 1 (dot-dashed lines) and= 2
(dashed lines), witld = /2. Colours represent the initial condition for the coupledatant:
uniform vy; non-uniforms)g, and;:> = 0. The initial height profile is shown as a solid black line,
and the evaporatively displaced steady state is displayed-al (+), andt = 2 (x). The green

dataset repeats the purple data presented in Figure 5.1.
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Figure 6.2: Snapshots of the surfactant concentrations coupled tolthefofiles of Figure 6.1.
Line styles and colours are as per Figure 6.1, with solidslidenoting the two different initial

conditions. Steady-state profiles are not shown as theyayvidre uniform initial condition.

correspond to a non-uniforgy, indicating that a lipid layer that lags behind the opening
eyelid can generate significant bulk flow. These resultseagrelitatively with those
of Joneset al. (2006, Figure 9), wherein superior drift of the central g&at region of
the tear film is exhibited during the draining phase and, wnvee the non-uniform initial
surfactant distribution rapidly migrates towards a unii@teady-state distribution, which
agrees with the behaviour in Figure 6.2. The late-time data ¢ 1, corresponding
to dimensional times greater than five seconds) of Figuredérhonstrates that, after
the initial v-induced drift, the tear film tends towards its steady-spatdile (2.90) as

described irt5.1. This persistence of movement in the coupled simulatagrees with
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Table 6.1: The maximum difference between the simulated data showrigiaré 6.1 and the

evaporatively displaced steady-state film profile (2.90).

Non-uniformey, Uniform g =0

1A(€,1) = (hoo(€) — E) || 8.81x 1073  2.75x 1073 5.10 x 10~*
1h(€,2) = (hoo(€) = 2F)||lse | 1.78 x 107 1.01 x 1073 510 x 10~*

thein vivo observations of Németét al. (2002), which reports changes to the regularity
of the tear film for up to 10 seconds after a blink, and Tableidehtifies that the early
superior drift of fluid counteracts the effect of gravitai@d redistribution, delaying the
onset of gravitational drift and yielding tear-film profildst depart from the steady state
by an amount greater than that seen in thes 0 simulation. This postponement of
gravitational effects is discussed further§g.2. Additionally, fort > 1, the relaxation
of the surfactant concentration distributions in Figurg tawards the uniform steady-
state represents a slow upward drift of surfactant thatagneement with the majority of
observations in King-Smitbt al. (2009).

The feedback between the temporal evolutiong ahd+) is well-illustrated by first
considering the blue dataset in Figure 6.2, which corredpda a uniforn),. In the
absence of any variation ify, the redistribution of) during the early stages of motion is
caused solely through fluid advection. By 0.1, the rapid retraction of the tear menisci
results in an increased lipid concentration over the cenfttiee eye, with a corresponding
reduction near the eyelids. Reducifigcauses a local increase in the surface tension,
which manifests itself in the stress conditions, (2.48) &hd9), at the free surface. This
increased tension acts to flatten the free surface and ‘fwillf in from the surrounding
regions, whence the feedback loop is closed by noting tleaatbrementioned superior
thickening of the tear film at= 0.1 in Figure 6.1 occurs in the same position as the lowest
surfactant concentrations in Figure 6.2. Importantly, gipper € < 0) region of the

uniform-y, dataset at = 0.1 in Figure 6.2, which initial condition emulates McDonald’s
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(1968, 1969) ‘pleated drape’ distribution, displays bebawthat is contrary to the initial
drift reported in Berger & Corrsin (1974), Owens & Phillipa001) and King-Smitlet
al. (2009), as thesi vivo observations identify only superiorly directed movemeit o
the superficial lipid layer, whereas the blué, 0.1) data suggests an initial migration of
surfactantlownthe eye into the central region from the rapidly-retractipger meniscus.
By comparison, the non-uniformy (red) trace at = 0.1 in Figure 6.2 agrees with the
observations, as the drop in concentration near the lowgf li= () drives surfactant

molecules up the surface of the tear film, increasing theastaht concentration over the
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Figure 6.3: Collated(top) film thicknesses an¢bottom) surfactant concentrations at the contact
lines from the simulations in Figures 6.1 and 6.2. Solid aasheéd lines respectively denote data
at¢ = C'and¢ = —C. Colour-coding is as per Figure 6.1, with dotted black lisRewing the

steady-state values (which are evaporatively displacéaeimpper plot).
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central portions of the tear film. Downward movement of lipidlecules initially located
close to the upper lid can again be inferred from the drop irceatration forx < —0.7
in the non-uniformey, simulation; however, it is noted that vivo data on the movement
of the lipid layer close to the upper lid immediately aftediabis difficult to acquire due
to the rapid nature of the eyelid motion, and the presencgelfished hence the model

predictions for the non-uniforng, are not necessarily at odds with observations.

To further illustrate the effect of the lipid surfactant drettear-film dynamics, the
contact-line datah(+C,t) andvy(+C,t), from the simulations in Figures 6.1 and 6.2
is collated in Figure 6.3, and the early-time behaviour efsdame simulations across the
full computational domain is displayed in Figure 6.4. Aftiee initial drop of the menisci,
Figure 6.3 demonstrates the significant redistributiveafbf the non-uniform),, as for
t € [5x1073,0.19], the film is thicker at = —C than at¢ = C. This inverted behaviour
is not observed in either of the other two simulations. Thimduced redistribution is
more clearly demonstrated via a comparison of Figures §,4(l6x and (d), in which
the latter is greatly thickened over the superior regiopgcHically: h(—C,0.2) from
plot (d) is 4.1% thicker than its counterpart in plot (a), a2d% thicker than in plot
(b). Furthermore, whilst the superior thickening is lesgiobs in Figure 6.4 (b) than in
plot (a), the initial behaviour is significantly differembim that in the)y = 0 simulation.
The superior thickening and inferior thinning in Figure 4 qualitatively replicates the
early-time behaviour observed by Benededtaal. (1984) and Zhwet al. (2007) and,
moreover, the superiorly directed drift supports the higpsis, of Brown & Dervichian
(1969), Holly & Lemp (1977) and Broet al. (2004), that the movement of the lipid
layer after a blink can act to thicken the tear film to its fillickness after a blinkct.
§1.1.1). Notably, the)(¢,0.2) datasets of Figures 6.4 (c) and (e), corresponding to one
dimensional second, both show a near-uniform surfactasttilolition that qualitatively
agrees with the observations of Berger & Corrsin (1974), @& Phillips (2001) and

3cf. Braun & King-Smith (2007, Figure 18a), King-Smit al. (2009, Figures 4b, 4c and 5b), and the
lack of data points foX/L > 0.8 in Berger & Corrsin (1974, Figure 8).



Chapter 6. Simulations of the Coupled System 142

(@

1.25
124
Qo
~
W 115
= 0
11- | 0.1
0
-1 02t
¢/C
y | b . c
Los  .,.__() 15 (©)
= , L w1254
S < S x
< 115 )
g oS 075 0
= | 0.1 03 0.1
0 0
-1 0.2 t -1 0.2 t
§/C §/C
L . d S S (e
1.25() 2 ()
= . ._ _ <15 '
5 1.2 X <
~ ~
W 1.15 X
= 0o =03 0
11= | 0.1 9~ | 0.1
0 0
1 02 t 1 02 t
§/C §/C

Figure 6.4: Numerical simulation of (2.71) and (2.72) showiltigft) h, and (right)  for
t € [0,0.2], collating the results of Figures 6.1 and 6.2, in which thetact angle i9 = 7 /2.
Snapshots are displaced temporally by a ¥¢p= 10~2. The lower lid is positioned towards the
left-hand side of each plo{a) v = 0; (b, c) uniform y; and(d, €) non-uniformzy. h(&,0) is

omitted due to the disparity in scales.
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King-Smithet al. (2009), wherein the rapid initial movement of the lipid lapeibsides

after roughly one second.

Importantly, it should be noted that the upward drift of teartfilm in bothy) # 0
simulations is predicted by a leading-order model from Wwhfee scalings 0§2.2.2 have
removed all inertial effects. Hence, the film is being adedqiurely through interaction
with the heterogeneous surfactant distribution. As dbsdriabove, this superior drift
counteracts the effect of gravity leading to a tear film tlsanore-uniformly distributed
across the corneal surface for a greater period of time,iwkienportant for visual acuity
as the tear film forms the first refractive interface encowgatdy light entering the eye
(Bronet al,, 1997; Nemettet al., 2002). Notably, the use of the novel boundary condition
(2.76) rather than Dirichlet pinning enables thenduced redistribution to occur across
the whole domain, rather than in the central plateau region perchéddem the two
menisci as shown in Jonexg al. (2006, Figure 9) and Aydemigt al. (2011, Figure
5). In addition to the contact-line movement engendereddayntdary condition (2.76),
this redistribution of the bulk fluid further alleviates tlo@portunity for ‘black lines’

(McDonald & Brubaker, 1971; Milleet al,, 2002) to be generated.

Under the action of the evolution equation (2.72), the totaks of surfactant (2.87)
in the system shows the same qualitative behaviour as thevegorative, fluid mass
data of Figure 5.4: specifically, for each of the initial cdiwhs, vy, the rapid initial
dynamics cause an increase in the total mass of surfactainteche$.114% by ¢t =
3 x 1073, After this increase the change in mass remains almostaatstith a mass loss
of orderO(1072%) occurring over the period € [3 x 1073, 1] in both simulations. This
guasi-steady period yields a percentage change in massneestep of approximately
—3 x 1071°% for each of thet.985 x 107 time-steps required to integrate the solutions
duringt € [3 x 1073, 1], demonstrating the accuracy of the numerical scheme apiglie

leading-order evolution equation (2.72).

The influence of) on tear films with a non-vanishing gradient of film thicknessat
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the contact line is displayed in Figures 6.5 - 6.7, in which 7/3. (Results ford = /4
are qualitatively the same and are not presented.) In eaatefithe non-zero gradient
reduces the severity of the initial retraction of the meinist Figure 5.6), which reduced
advection yields a smaller disturbance to the early evahutif ;). Nevertheless, Figure
6.5 shows the presence of surfactant to lead to an earlyethiicl of the tear film over
the superior cornea that persists throughout the periodaditgtional redistribution of
the fluid, repeating the qualitative behaviour of the- 7/2 simulations. A comparison
of the data at = 0.1 in Figures 6.2 and 6.6 shows the displacement of/tlakstributions

from their respective initial conditions to be greater in th= 7/2 simulations.

The evolution of the coupled system fore [0,0.2] andf = /3 is displayed in
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Figure 6.5: Snapshots of film profiles taken at the same times as thosgund6.1, with) = /3.

All line styles are as per Figure 6.1.
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Figure 6.6: Snapshots of the surfactant concentrations coupled tolthgfofiles of Figure 6.5,

with data displayed using the same line styles as in Figite 6.

Figure 6.7, wherein the-induced superior drift of the tear film is discernable byimgt
the comparative reduction in the film thickness at the lovigr A(C,¢), in plots (a),
(b) and (d). A comparison of Figures 6.7 (c) and (e) with tleeiunterparts in Figure
6.4 further corroborates the reduced magnitude of thealrdynamics wherd = /3,
as they distributions show less distortion in this case, and, maeecshows a similar
near-uniform surfactant distribution to have been readmned = 0.2, reaffirming the
model prediction that the rapid initial movement of thedifayer subsides during the first
dimensional second (Berger & Corrsin, 1974; Owens & PH|IR001; King-Smittet al.,,
2009). These results show that the novel boundary condiigi6) has a greater effect on

the overall dynamics of the tear-film flow than the initialtdisution of surfactanty (&),
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despite the latter’s redistributive influence during theyeghases of the flow. This occurs
because the value ékffectively specifies the magnitude of the initial flow chateaistics,
and also specifies the shape of the steady state to whichahélie migrates after the

1-induced drift has subsided.

-1 0.2 t

-1 0.2 t

¢/C §/C
Figure 6.7: Early behaviour of the coupled system with a contact anglﬁa:efw/?), collating the

results of Figures 6.5 and Figure 6.6. All other details arpex Figure 6.4.
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6.2 The influence of surfactant on physiologically-

significant quantities

In addition to studying the effect af and its initial condition on the distribution of the
tear film, and on the transient dynamics of the coupled syg&ifl) and (2.72), the
presence of lipid is shown to cause significant changes tonihenum film thickness,
han = ger[xiic%][h(g /C,t)], and to the evolution of the contact-line stresses and itedec
These quantities are of physiological importance in thday@ystem: an increase in,,
will yield a film that is less susceptible to evaporationtindd rupture, and (as mentioned
in §5.3) the stresses at the contact line in simulations witmgihnmenisci may reach
levels that are pathological to the epithelial cells of tlyeliel margin. The dissipation
of such stresses during simulations of this model is idextibly tracking their temporal
evolution. Despite their importance, the stresses at théacbline remain undiscussed
in all prior works on the tear film, and movement of the contaa is precluded by the

modelling in all such works.

In the absence of surfactamt,, is located towards the upper lid due to the influence
of gravity. In the presence of surfactant, the superiorhgated drift of the bulk fluid
leads to an increase ihy, as shown in Figure 6.8, a result that is also observed in
Aydemir et al. (2011). For each of the contact angles tested, the drifbated to the
non-uniforme, causes the greatest increaseéjjp by comparison with the uniforngy
andy = 0 simulations, this increase occurring earlier in the sirtiates for) = 7 /2
than ford = 7/3. The influence of the superior drift o, is best-demonstrated by
the {non-uniformyy, § = 7/2} dataset of Figure 6.8, in collaboration with Figure 6.4
(d). In this case, the location @f,, is shifted to the inferior half of the palpebral fissure
fort < 0.22, and is also shown to increase during the same time peritet,\ahich the
y-induced drift subsides and gravitational redistributidthe film leads to a reduction in

hwn, the position of which rapidly moves through the computadiacdomain to the upper
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lid (¢ = —C) for all timest > 0.26. In each of the) = 7/3 simulations that include
surfactantp,,, is marginally increased and displaced towards the uppér tdmparison
with the«) = 0 simulation. This location converges towards the= 0 value with time.
Importantly, the late-time behaviour in Figure 6.8 showet tihe presence of surfactant
leads to a thicker value df,,, for times up tot = 2 (corresponding to ten dimensional
seconds, i.e. exceeding a normal interblink period), whiehaviour suggests that the

presence of the superficial lipid layer helps to prevent exatmpn-induced rupture by
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Figure 6.8: Minimum film thicknesses in simulations with differen distributions, and contact
angles of(top) 6 = /2, and(bottom) 6 = /3. Line colours denote the system withuaiform
g, anon-uniformeyy andy = 0. Dotted black lines plot the evaporatively displaced mimimof
the steady-state profile (2.90). In each row, the largerghiotvs the early dynamics forc [0, 0.5],

whilst the smaller plot displayse [0.5, 2]. Note the different vertical scales in each plot.
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causing large-time thickening of the film. As such, the filmekening evidence augments
the hypothesis (Mishima & Maurice, 1961; Mathers, 1993;ig¢& Tomlinson, 1997)
that the lipid layer plays an important role in preventingeration-induced rupture.
However, this hypothesis is based on the lipid forming aibato evaporation, an effect
not captured in the modelling of Chapter 2, thus it is onlyftime-thickening effects of the
surfactant that are claimed by the present model. Notalelyritrease okh,,, appears to
require simply thgresencef surfactant, rather than requiring the initial condittorbe
seeded with surface-tension gradients that promote upavétaf bulk fluid through the
specification of a non-uniforngy,. Hence both the ‘pleated-drape’ (McDonald, 1968)
and lagging-lipid-layer (Berger & Corrsin, 1974, for exde)pmodels for surfactant

deposition are predicted to generate an increase in themamifilm thickness.

The evolution of the dimensional contact-line velocities f € [4 x 107*,0.1] is
displayed in Figure 6.9, wherein the initial velocities araitted due to the disparity in
scales. For each value éftested, the presence of a non-uniformis found to alter the
initial recessional velocities of the contact lines by anoant of order©(10=% m s™)
by comparison with the) = 0 velocities reported in Table 5.1. Hence the effect of
surfactant on the initial recession of the menisci is foumtie negligiblé. Despite this,
the behaviour of the contact-line velocities during thdyedynamics of the flow is found
to be markedly altered by the presence of surfactant. Féresae ofd, the inclusion of
surfactant is observed to cause a non-monotonic reductitheimagnitude of the contact-
line velocity at each eyelid far < 0.005, with the direction of motion briefly changing
to advance up the eyelid in the simulations witk: 7 /3 andr /4. No such fluctuation in
this period is observed in the = 0 datasets, which progress rapidly towards their steady-
state profiles (as evidenced by the green data=a0.1 in Figures 6.1 and 6.5). As such,
the slowing of the fluid dynamics caused by the fluctuatiorieén) = 0 simulations both
reduces the severity of the initial contact-line movemant effectively marks the start

of the process of upward drift of the tear film.

4The uniformy, generates no change to the initial velocities &5 ¢) depends onbg;.
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Figure 6.9: Dimensional contact-line velocities in simulations withntact angles oftop) 6 =
7/2, (middle) § = =/3, and (bottom) § = /4, with (left) ¢ € [0,0.01], and (right) ¢ €
[0.01,0.1]. Velocities at the lower{ = C) and upper{ = —C) lids are respectively represented
by dashed and dotted lines, and datasets are coloured agper 6.8. Note the different vertical

scales. This behaviour is precluded by the modellingllimelated studies.
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For each contact angle, the red, non-unifapgdata att = 0.01 in Figure 6.9 shows
the advancing velocity of the lower-lid contact ling £ (') to be less (in some cases,
more negativethan the advancing velocity of the upper-lid contact liGe{ —C'). This
is a result of the)-induced drift of the bulk fluid towards the upper lid, whichfg as
mentioned above, increases the global minimum film thickhgg. This contact-line-
velocity trend is reversed by = 0.1 (i.e. the red datasets cross), demonstrating the
influence of gravitational redistribution as the lower-tidntact line advances, and the
upper-lid contact line recedes. A similar velocity inversis not observed in the = 0
or uniform-y simulations, yet it should be noted that, for- 0.04, the dashed green
traces show the largest advancing velocities at the loweirdicating that the presence
of surfactant impedes the gravitational drift of the teanfiimaintaining the thicker values

of hyn exhibited for large times in Figure 6.8.

Figure 6.10 displays the effect of surfactant®p,, (2.10) evaluated at the contact
lines, a quantity that has, to the author’'s knowledge, na@nbeeported in any of
the previous literature on the tear film despite its phygjmal importance. For each
simulation, the stress induced by the initial condition®'js,(+C,0) = —1.33 x 10° Pa
whenf = /2, and T,,(+C,0) = —1.18 x 10° Pa whend = =/3, where the
negative sign denotes that this pressure pushes down orotitact lines, causing the
initial retraction observed in Figures 6.4 and 6.7. In a Emanalysis to that on the
initial recessional velocities, the uniforgy distribution is found to have no effect on
the initial contact-line stresses. Furthermore, the noifeem ¢, alters T, (£C,0)
by an amount of orde©(10~2 Pa) by comparison with the) = 0 value, reinforcing
that ¢, has a negligible influence on the initial dynamics of the-féar model. The
presence of surfactant delays the onset of the change 0b8ifjn,, by comparison with
they = 0 data, again demonstrating the slowing of the early dynami¢ke coupled
system. However, this delay has a lesser impact upon theot@ievolution ofT,,,
than the contact angle, which angle can be seen to strorfglst éifie time at whictT,,

changes sign, regardless of the coupledistribution — the reader’s attention is drawn to
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Figure 6.10: Logarithm of the modulus oI’ (2.10), evaluated at the three-phase contact line

for (top) # = =/2, and(bottom) § = =/3. Line styles are as per Figure 6.9. Note the differing

horizontal and vertical scales in each plot.

the differing horizontal scales in Figure 6.10.

The large-time behaviour in Figure 6.10 shows the stressésealower lid to be

increased by the presence of lipid, with the non-unifafgrdataset yielding the largest

lower-lid stresses for each value &f This trend is reversed at the upper lid, with the

1 = 0 simulation showing the greatest upper-lid stress. Thd&ereinces in the contact-

line stresses reflect the level ofimpact that the surfattasihad on the transient dynamics

of the flow, specifically: the (red) non-uniformyy simulations experience the greatest

level of ¢-induced drift, and thus depart from thie= 0 dataset by the greatest amount.

At each lid, the large-time evolution of the lipid distrilmr to its spatially-uniform steady
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state (2.91) causes the contact-line stresses to monaligréionverge towards the = 0
stress values, as @Hdependence ity vanishes, removing the., term fromv (2.65), and
hence fromT,,, (5.1). Notably, in Figure 6.10, the convergence of the sesdowards
thevy = 0 values has not occurred by= 1, corresponding to five dimensional seconds,
which agrees with the results of Némeghal. (2002) and King-Smitket al. (2009),
both of which report slow movement of the tear film persistaftgr the initial rapid
movements that take place in the first second after depogilerger & Corrsin, 1974,
Owens & Phillips, 2001).

6.3 Summary and discussion

This chapter studies the results from simulations of theqgfaoupled evolution equations
(2.71) and (2.72) with the aim of showing that the model dstiin Chapter 2 can capture
the redistributive effects of the lipid surfactant that @édeen observed both vivo by
ophthalmologists, and in prior mathematical models in &llmbich, unlike here, the

menisci are pinned.

The results of Figures 6.1 - 6.7 demonstrate that, by com@anwith they = 0
data of Chapter 5, the presence of surfactant leads to eethiiods of the tear film over
the superior cornea during the early stages of flow, with aesponding thinning over
the inferior cornea. These results replicaterivo observations (Benedettt al., 1984;
Zhu et al,, 2007), and support the hypothesis that the lipid surfagikays an important
role in the formation of a stable tear film after a blink (seea@ter 1 for further details).
Furthermore, the rapid migration gf from a non-uniform distribution to a near-steady
state by a dimensional time of one second in Jated. (2006, Figure 9) is corroborated
by thet (¢, 0.2) distributions of Figures 6.4 and 6.7, which distributiotsashow near-
steady-state behaviour at a dimensional time of one secdr cessation of rapid

movement of the lipid layer by this time is in agreement within vivo observations of
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Berger & Corrsin (1974) and Owens & Phillips (2001), whichod that lipid movement
persists for roughly one second. After the rapid initial dymcs, slow movement of both
the film thickness profile and the lipid distribution towattigir respective steady states
is shown to persist throughout the remainder of the blinkegyars observed in Nemeét

al. (2002) and King-Smitlet al. (2009). Moreover, the slow evolution of the lipid layer
for (non-dimensional) € [1, 2] shows a superiorly directed drift of surfactant that agrees
with the majority of observations made by King-Sméhal. (2009). This directed large-
time lipid movement is not observed in Joretsl. (2006), wherein the steady-state lipid
distribution is reached after roughly one dimensional sd¢cor in Aydemiret al. (2011,
Figure 4, bottom right) and Zubkaat al. (2012, Figure 3, centre), both of which preclude
solely-upward drift during the interblink period as thairfactant lies in reservoirs close

to both eyelids after the opening phase of the blink.

These results demonstrate that both realigtimduced redistribution of the tear
film and realistic large-time drift of the surfactant layee gredicted by a model that
eschews Dirichlet pinning of the menisci in favour of the R&unn boundary condition
(2.76) for the film-thickness evolution equation. Notably,the absence of pinning,
the redistribution of the tear film occurs across wieole cornea, further alleviating the
opportunity for the build-up of ‘black-line’ thinning (M#r et al, 2002) that persists in
the pinned models of Jonesal. (2006), Heryudonet al. (2007), Aydemiret al. (2011)
and Zubkovet al. (2012). Through such results the use of boundary condior6)
opens up a new way to look at the tear film that is intended tongumg and complement
the existing studies through the so-called ‘bi-behaviburadel hypothesized i%5.3.
In this model, the tear-film contact lines may exhibit bothrpng and slip, with pinned
behaviour generating the meniscus-induced thinning eciele in the existing literature,
which thinning accelerates rupture of the tear film. Thys lséhaviour may be exhibited
by healthy tear films, which do not experience rupture orelrg-symptoms during normal
interblink times. Such ‘bi-behavioural’ movement at thetaxt lines is supported by the

in vitro observations of Leisket al. (2011).
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The initial superiorly directed drift of fluid is shown to baleanced in simulations
that use a non-uniforny,, identifying that the two-stage deposition process of Brow
& Dervichian (1969), Berger & Corrsin (1974) and Holly & Len{f©977) generates a
significant surge of fluid up the eye after the cessation ofenmnt of the upper lid
that agrees qualitatively with the observations of BergeZ@&rsin (1974) and Owens &
Phillips (2001). Comparatively, a uniformy, that emulates McDonald’s (1968, 1969)
‘pleated drape’ behaviour generates a less-significaokehing of the tear film over
the superior cornea, and also predicts an initial downwand @f lipid from near the
upper lid that has not been observadivo (Berger & Corrsin, 1974; Owens & Phillips,
2001; King-Smithet al, 2009). Importantly, these results illustrate that thespnee of
surfactant at the start of an interblink period, even in darni layer, acts to thicken the

tear film by comparison with the = 0 case, as also reported in Ayderatral. (2011).

For eachy, tested, the surfactant-induced drift of bulk fluid during ihitial phase
of the flow increases the minimum film thickness for internagelito-large times, by
comparison with clean films, as shown in Figure 6.8 (2.9 x 10-2 whend = /2, and
¢t > 0.19 whend = 7/3). This thickening is reduced over time as the surfactantatés
towards its steady-state distribution (2.91), and graadis to move the film towards its
steady-state profile (2.90). However, noting that 2 corresponds to 10 dimensional
seconds, the thickening is shown to persist throughoutiadal/puman interblink period,
and film profilesh(¢, 2) displayed in Figures 6.1 and 6.5 identify that the model does
not predict rupture of the tear film to be an issue under noguatitions. Due to the
persistence of the thickening of the tear film from lipidiceéd advection, the present
model predicts that for the0% of patients who suffer both aqueous-deficient dry eye and
Meibomian gland dysfunction (Bron, 2001), emphasis dutiegtment should be put on
improving the quality of the lipid layer, in tandem with aNng slippage of the contact
lines at the eyelid margins, to increase the longevity ofitit@ct tear film by improving

the level of superior thickening.
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An analysis of the evolution of contact-line positions, omlies and stresses,
respectively displayed in Figures 6.3, 6.9 and 6.10, shdwspresence of surfactant
to have a significant effect on the transient dynamics of #er film during the
period between the initial retraction of the menisci and slidsequent gravitational
redistribution. A discussion of the evolution of these eamttine quantities is novel
to the field of tear-film modelling, with dynamic changes te ttontact-line positions
and velocities being enabled in the present model througinéw Neumann boundary
condition (2.76), employed in favour of the Dirichlet pingi of the menisci used in
all prior modelS. The effect ofy,, on the initial contact-line stresses and velocities is
demonstrated to be negligible, hence the initial dynamied simulations are dominated
by the falling menisci. As the menisci fall, the rapid reéessof the contact lines and
adjacent fluid advects the lipid towards the centre of the eyeating concentration
gradients that subsequently act to advect the underlyigfilen. Figures 6.9 and 6.10
show the surfactant to significantly alter the early evolutdf the contact-line velocities
and stresses, slowing the dynamics of the tear-film flow byparmon with they = 0
simulations, before the aforementioned advection of tHk thuid. At later times, the
contact-line quantities are shown to tend towards/te 0 datasets as the influence of the
surfactant layer subsides and the coupled system movesdswssteady state. As such,
the coupled model predicts the dissipation of contactdinesses through slippage at the
eyelid margins, which precludes the build-up of pressunes tould harm the cellular

structure of the eyelid.

A discussion of the conclusions drawn from the modellinghef tear film is given in
the following chapter. Amendments are moreover suggestadill improve both the
representation of physical processes that are importatieirevolution of the tear-film

flow, and the mathematical modelling techniques used in ¢én@ation of future models.

SEvidence in Chapter 5 has shown such pinning to be implagitthe presence of evaporation, and,
moreover, fixed boundary values have been shown to contnaifcthe non-zero contact-line velocities

predicted within existing modelgf §2.4.2, and discussions in Zubketal., 2013).
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Chapter 7

Conclusions

“It is good to have an end to journey toward; but it is the joaynthat

matters, in the end= Ernest Hemingway (1899 - 1961)

On account of the individual detailed and cross-referamsiimmaries given at the ends
of each of the preceding chapters, the main emphases of kapkec are reiterated here.

A brief description of possible future work is also given.

7.1 Summary of findings

A pair of coupled evolution equations modelling the movetra@rthe human tear film
under the influence of its superficial lipid surfactant laigederived in Chapter 2. To
investigate the influence of the curved corneal substratieetear-film flow, the equations
of motion are derived using a novel curvilinear coordingt&am in which the curvature
of the cornea is specified in terms of a parametethat quantifies the departure from
the rectilinear coordinate system used in all prior stufiath the exception of Brauet

al., 2012). In this way, the neglect or inclusion of terms agsihrough the curvature
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of the substrate can be investigated and calibrated. Reg@texistence of similar thin-
film approximations in the mathematical literature on tree tém (and, moreover, within
studies of rimming and coating flows) a full derivation of thedel is presented not only
for completeness, but mainly in order that a correqtriori scaling of the governing
equations is made before asymptotic approximations ameked: All field variables
and non-dimensional groupings of physical parameters @aked in terms of a small
parameter before asymptotic expansions of the field variables are rtadensure that
all variables in the equations are of ord®(1). This assumption, made through the
thin-film lubrication approximation, enables the pair ofifarmly-valid, leading-order
evolution equations for the film thickness and surfactamtceatration to be derived,
and furthermore provides an understanding of the limit @frtivalidity. Specifically,
as mentioned i132.3, if any variables or derivatives in the evolution eqoiasi become
larger tharO(1), the assumptions employed in the derivation of the modehaedidated,
and the ordering used in the derivation ceases to be asyimp#&sd such, the evolution
equations presented in Chapter 2 are claimed only to reprédse motion of the human

tear film in an ‘O(1) gradient” régime.

A discussion of the boundary conditions used in the modglifithe fourth-order
evolution equation for the film thickness (2.71) leads to tdlaxation of the Dirichlet
pinning conditions, used iall previously published tear-film models, in favour of the
development of boundary condition (2.76) — for the gradiehthe film thickness,
he — at the eyelids; a development that is novel to the field of-tiesv modelling.
The use of pinned boundary conditions is motivated, in thetiey literature, by the
presence of the mucocutaneous junction: a point on thecdeyedirgin at which the
wettability changes, the region anterior to the mucocuiaegunction being unwettable
due to the presence of lipid. Dirichlet boundary conditians eschewed in the present
model as such a change in wettability is seen only to preséairr@er to fluid flowing
anteriorly along the eyelid, and hence it does not give rise to a phygigadtifiable

reason for the film not to sliposteriorlyi.e. towards the ocular surface, along the
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pre-wetted eyelid margin. Furthermore, the pinning thessin all prior models is
at least one order of magnitude greater than the thicknesiseo€entral film profile,
immediately invalidating the approximations used in theivd¢ion of such models.
This invalidation is demonstrated by the results of Zublaival. (2013), wherein
fluid velocities in the meniscus of a pinned lubrication4apgmation simulation predict
contact-line movement, contradicting the enforced bonndandition. Nevertheless,
a comparison of results from the lubrication-approximatinodel and simulations of
the full Navier-Stokes equationgb{d.) in the meniscus region shows the computed
film profiles of the lubrication model to be qualitatively acate, despite pinning of the
meniscus at a level that is nearly two orders of magnitudatgrehan the central film
thickness. It is felt, however, that this similarity of rétsus born of the scenario being
modelled, specifically: a thin film coupled to a largganedmeniscus, thus there is very

little movement the film can exhibit that could lead to a siigaint difference in results.

The development of boundary condition (2.76) adds a sigmficomplexity to the
processes required to simulate the tear-film model. Howdéwvierfelt that the condition
yields a more physically-realistic flow, especially in caséhere pinning of the menisci
is in direct contradiction with evaporation of the tear filithis modelling contradiction
is highlighted by the observation that the eyelids maingamgher temperature than the
cornea (Tomlinsort al., 2011), and thus will act to enhance evaporation at the conta
line. By allowing slip of the contact line, the use of boundaondition (2.76) has
opened up a completely new area for tear-film modelling,ughowhich newly reported
agreements withn vivo observations are enabled. These novel results are intended
to augment the existing results in the published literatwith the aim that a better

understanding of tear-film dynamics may ultimately be otséli

Motivated by the scant level of information on numerics pded in the existing
literature on the tear film, the numerical methods employeddlve the tear-flow

model are described in detail and subsequently tested ipt€fsa3 and 4, respectively.
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Chebyshev spectral methods are employed due to their @dgr-oonvergence properties
in the approximation of smooth functions, such as thoseireduwnder the assumptions
of the lubrication approximation used in Chapter 2. In theesize of Dirichlet boundary
conditions in the model, non-trivial modifications of exigt Chebyshev-differentiation
methods are developed to yield a procedure that enforcedNéwsnann boundary
conditions with spectral accuracy. Furthermore, to imprihe accuracy in the numerical
approximation of the higher-order derivatives presentim ¢volution equations, novel
third- and fourth-order Chebyshev differentiation mats@are explicitly derived i§3.1.2
and their performance is shown§d.1.1 to be less accurate than approximations obtained
through repeated action of the first-order differentiatiatrix (3.15). This reduction
in the accuracy of derivatives calculated with the expliagher-order differentiation
matrices is attributed to the combined effects of the fipitecision arithmetic inherent
in computer simulations, and the increasing magnitude ofdber’ matrix entries as
the order of differentiation increases. Thus, by comparistith the first-order matrix,
the finite-precision representation of the entries in higirder matrices has a greater
absolute error, which adversely affects the accuracy ohtimeerical approximations. In
all tests of the differentiation matrices, and of a newly ffied version of the spectral
integration routine of Trefethen (2000), the numerical ragpnations are shown to
be accurate to within the tolerance of the round-off platkauN = 40 Chebyshev
discretization points. Hence the Chebyshev spectral etization employed allows a
significant saving to be made in the computational resoueceiired to simulate the
coupled system, by comparison with the number of discriebizgooints required in the
finite-difference simulations of, for example, Braun & KRD03). Importantly, unlike the
descriptions given in much of the prior literature, the nogihoutlined in Chapter 3 have
been made transparent in order that they may be implemendegpendently not only
to reproduce the results presented within this thesis, lsotta model other nonlinear
evolution equations on a bounded spatial domain in the poesef (only) Neumann

boundary conditions.
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Motivated by the results of existing models that employ sémethods to simulate
steep, pinned menisc§4.3 contains an investigation of the errors encounteredhén t
spectral approximation of derivatives of steep-sided fions. The results presented in
Figures 4.9 - 4.12 show that the magnitude of the error in pipeaximation of derivatives
is largest at the ends of the computational domain, and, onergthat these largest
errors grow as the numbel], of spatial discretization points is increased. Henceghes
results identify that the regions of the flow that drive thelertying fluid dynamics in
such steep-sided models are the very regions rthatcontain the greatest numerical
errors. Significantly, the spatial distribution of disezation error is not discussed in the
existing literature. Furthermore, it is important to ndtattthe results of Figures 4.9 -
4.12 are obtained usingspectrally-accuratenethod, thus motivating the question of the
magnitude of the errors associated with the (mere) secatel-gpatial finite-difference
schemes used in prior tear-flow models. Importantly, thesalts illustrate that what is
happening in vicinity of the steep-sided menisci in othedsais is clear from neither a
numerical point of view — as described above — nor from a mlodgpoint of view
— through the violation of assumptions of the lubricatiorpgximation used in the

derivation of each model.

In Chapters 5 and 6 the validated numerical methods of Ch&8péee employed in
the integration of the coupled evolution equations deswgikear-film flow. Simulations
in the absence of the superficial lipid layer are present&himpter 5, and illustrate that
the novel boundary condition (2.76) yields behaviour tkatnseen irall prior models
of the tear film. Without the pinning of the contact lines, tmenisci defined in the
initial conditions rapidly retract towards the corneal stnate in reaction to the stresses
manifest at the contact line by the shape of the free surfadeis relaxation of the
menisci precludes the tear film from developing the menisedgced thinning observed
within other models, and hence is unable to predict phenansémilar to the ‘black
line’ observations made in ophthalmic studies (McDonald &liBaker, 1971; Broret

al., 2011). Itis noted, however, that such thinning is possillly through the violation
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of the lubrication approximation, as mentioned previoubly pinning the menisci at a
level that is (at least) an order of magnitude thicker thancintral film height. Through
variation of the contact angle formed between the tear filththe eyelid, the magnitude
of the large-time contact-line stresses is seen to incredlseecreasing angle, suggesting
that significant stresses may develop within models thath@rmenisci, particularly in
models that predict ever-steepening menisci. Somewhadrtebly, a discussion of the
stresses at the contact line is also novel for the field otftear modelling, despite the
damage that large stresses could cause to the underlyirigabpinc tissues that house
the tear film. Additionally, the development of large stesssuggests that pinning of the
menisci may be an extreme case for the tear film, and that thessts may be alleviated

through de-pinning of the contact line.

Motivated by the behaviour of the contact line in simulasiari the present model,
§5.3 advances a so-called ‘bi-behavioural’ model for the fia, in which both slip
and pinning are permitted at the contact line. Such a model ipeuged by then vitro
results of Leiskeet al. (2011), wherein a dynamic wetting experiment using a Metbum
coated droplet is shown to exhibit pinning and de-pinninghef contact line. As such,
under the ‘bi-behavioural’ model, pinning of the contacilis suggested to cause dry-
eye pathologies through meniscus-induced thinning (asodstrated by other tear-film
models) and stress-induced damage to the eyelid margiepthbination of which may
form a viscious circle of damage to the eye. Accordinglyp gf the contact line is
suggested to occur in healthy eyes, and through the hypsihsssuggested that dry-eye
diseases could be treated by encouraging contact-linpaglgpalong the eyelid margin.
Hence, rather than thickening the bulk film, the focus of dyg-treatment is shifted to

thinning the menisci, allowing the redistribution of flulkbughout the tear film.

The surfactant-free model also reveals that the novel lnoear coordinate system,
which incorporates corneal curvature, yields only margditierences in the tear-film

distribution when compared to a Cartesian model. Neveastiseby tracking the behaviour
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of the contact-line stresses, the presence of a curvedratédss, for the first time,
illustrated to alter the behaviour of the fluid significantlijhus corneal curvature is an
important feature of the ocular system that should be ireduidr accurate modelling of
tear-film behaviour. Constant evaporation of bulk fluid frdme tear film is observed
to have only long-term thinning effects, which, in the alzsef meniscus-induced
thinning, do not predict rupture of the tear film during a natiuman interblink period

of approximately five to eight seconds (Berger & Corrsin,4A)97

Finally, the results from the full coupled system presemteGhapter 6 demonstrate
that the presence of the lipid surfactant at the free suréddbe tear film generates a
redistribution of the underlying bulk fluid that increaség tminimum thickness of the
film, agreeing qualitatively with the results of Aydereiral. (2011). Through modelling
an initial lipid distribution that emulates the behaviodraolipid layer that lags behind
the rapidly-opening upper lid, a significant thickening loé¢ ttear film over the superior
cornea is observed in the early stages of the interblinkodeualitatively replicating
the in vivo results of Benedettet al. (1984) and Zhuet al. (2007). These results
support the two-stage deposition model of Brown & Dervioh{z969), Holly & Lemp
(1977) and Broret al. (2004), in which the creation of a stable tear film after albim
dependent on surfactant-induced thickening of the sup&sar film after the cessation
of movement of the upper lid. The duration of early lipid laypovements is shown
to agree with the dimensional time of approximately one sdcobservedn vivo by
Berger & Corrsin (1974) and Owens & Phillips (2001), and thelation of the surfactant
distribution towards a uniform steady state over the same period is similar to that
observed in the model of Jonesal. (2006). Furthermore, the present model predicts
a large-time counter-gravitational drift of surfactantiagends towards its steady-state
distribution, which agrees with tha vivo observations of King-Smitkt al. (2009) and,
moreover, shows that movement of the tear film persists thiganitial surfactant-induced
redistribution, agreeing with the observations of Néemethal. (2002). Through its

redistributive effects, the presence of surfactant is fowralter the behaviours of both the
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velocity and the stress at each contact line during the gdidges of the flow. After these
early changes, the contact-line velocities and stresgesesan to converge towards the

surfactant-free values (observed in Chapter 5) as the mflief the surfactant subsides.

7.2 Future work

The primary emphasis of the work contained this thesis, wbBimphasis motivated the
meticulous derivation of Chapter 2, has been to ensurelibaidrrect physical behaviours
are represented in a model that adheres to the assumptioths imats derivation.
Accordingly, this methodology has meant that there are aomumodelling opportunities

that may be further explored for the model as a draining flovinduthe interblink period.

Firstly, tests of pathological tear films can be carried aihg the existing model to
emulate dry-eye phenomena reported in the ophthalmiatiies (see, for example, Holly
& Lemp, 1977). Such tests should employ initial configunasi@f the coupled system
that have a: (i) reduced aqueous component; (ii) reduced liptd mass; (iii) poorly-
spread or discontinuous lipid layer, or; (iv) combinatidriteese maladies. Through such
alterations to the initial conditions, the dynamics of tébns that are more prone to
rupture can be studied and the combined film-thickeningceffef contact-line slippage

and surfactant heterogeneity tested to observe how theyeliaye dry-eye symptoms.

Secondly, the boundary conditions for the film thicknesslgian equation (2.71)
may be amended in line with the newly postulated ‘bi-behardad model. This
amendment would add further complexity to the treatmentheftioundary conditions
by creating a stick-slip model (Huh & Scriven, 1971; Thompsb Robbins, 1990) in
which the contact line is permitted to exhibit both behavsouWithin such a model,
simulations would remain pinned until the contact-lineestr attains a given threshold
level, after which the tear film would evolve as shown in thesgnt model. Re-pinning of

the contact line would occur when the contact-line streséaarvelocity drops to a given
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level, or when the advancing contact line reaches the muaoneaus junction, forming
the anterior-most limit of the contact-line position. Iretabsence of ophthalmic data for
the contact-line stresses in tear flow, a range of threslegkeld may have to be tested by
the model. A further level of complexity can be added by mibgigla dynamic contact
angle between the tear film and the eyelid margin, in whichrihatro results of Leiske
et al. (2011, Figure 4) may be used to inform the contact-angle\netg as this data
shows that the contact angle of spreading Meibum-coatepsdiloes not adhere to the
theoretical predictions of the Cox-Voinov law (Voinov, BTCox, 1986). Through such
amendments, the model can be employed to generate thebtststeresis curves for the

tear film, the validity of which may be tested throuighvivo observation.

Thirdly, the model can be amended to solve the full Naviek&s equations on the
computational domain, whilst retaining the novel slip (oclsslip) boundary conditions
at the contact line. Results from such a model could then bgpaced and contrasted
with the pinned results of Zubkost al. (2013). As noted in Chapter 2, the equations
of motion studied in Chapters 5 and 6 are leading-oaggroximationgo the governing
equations of fluid motion and their associated boundary itiong: through the use of
the thin-film lubrication approximation, the flow is effaatly depth-averaged, with the
result that subtle behaviour within the menisci is impolesib resolvé. By adapting the
present model to solve the full Navier-Stokes equatioresyéitrictions of the lubrication
approximation will be circumvented, thus allowing the us&abtler menisci and/or smaller

contact angles without invalidating assumptions inheirettie derivation of the model.

Finally, the modelling of environmental factors affectitige tear film may be
improved. The evidence of Chapter 5 identifies that the ¢ureaof the corneal substate
has a non-trivial influence on the evolution of the tear filmenide, the existing model

would be improved by adding further detail to the shapingh® torneal bulge over

This is highlighted ir§2.4.2 by the contradiction between pinned boundary camtand the predicted

contact-line velocities in existing models, and also shawubkovet al. (2013)
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the iris and pupil, in addition to the curvature of the sptariorbit. By adding a
position-dependent substrate curvature, the underlyatigftuid dynamics may be subtly
altered. This amendment has an obvious extension to thellimgdaf the tear flow in the
presence of a contact lensf.( Trinh et al, 2014, and references therein). Additionally,
the influence of the lipid layer as a barrier to evaporation lba studied by updating
the heuristic constitutive relationship for the evapa@inass flux (2.34). Furthermore,
recent publications by Braun and co-authors (Wirgeal, 2010; Li & Braun, 2012)
update the modelling of both the corneal wettability and ¢waporative flux. Such
amendments could also be incorporated into the presentinm@low a comparison

of results.

The options described above demonstrate that there is amdldiverse number of
areas into which the present model can be expanded as a singiteng flow. The
further extension to three dimensions, or to simulate abilitk cycle, identify that
exploring human tear-film dynamics is an area that is dentfeexciting future modelling

opportunities.
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Appendix

A Alternative differentiation matrices

The alternative forms of the higher-order Chebyshev dfiiation matrices are now
presented. The trigonometric identities (3.14) are useidhfwove the round-off error

in the floating-point calculation of the entries in equasi@8.10) - (3.12).

The alternative form of the second-order Chebyshev diftgmdon matrix (3.10) is

(N —1 . o
5 i=j7=0andi=j =N,
GV = N2 i=j,i=11)N -1
3sin(jn/N) ’ ’ ’
2(—1)7 IN2 41 1 L
( ) < 2/ - - - Ay - y % J, t= 07
PO _ 1+9;n \6sin’(j7/2N)  2sin*(j7/2N)
Y 2(—1)7+N 2N*+1 1 it =N
1+6j0 \6cos?(jm/2N) 2cos*(jm/2N) )’ S =
(_1)i+j+1 x;
14 6j0 + djn (2 sin?(im /N) sin[(i + j)7/2N] sin[(j — i)7/2N]
1
£, i=1(1)N — 1.
oS + )7 /2] sin2[(j—i)7r/2N]>’ g i=10)

(A.1)
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The alternative entries of the third-order differentiatioatrix (3.11) are

([ 2N® — 7TN* —7TN? 4+ 12 ,
; i1=7=0,
210
ING — TN* — 7TN2 412 o
- ’ 1=7= Nv
210
z; (233; (N2 —1) - 2N? — 13) -
— , i=7,1=1(1)N —1,
4sin®(jm/N)
2(—1)7 Nt -1 . 2N*+1 N 3
1+ 6,5 \10sin*(j7/2N)  4sin*(jm/2N)  4sinS(jn/2N) )’
D¥ — i#7,1=0,
ij
2(—1)N+i+! N*—1 N2 41 . 3
1+ dj0 10cos?(jm/2N)  4cost(jm/2N)  4cosb(jm/2N) )’
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(A.2)
and finally, the alternative fourth-order Chebyshev ddfgration matrix (3.12) is
( N® — 12NS + 21N* + 62N?% — 72
945 ’
N*sin*(jm/N) — 5N? 22 sin®(jm /N) — (62 + 8323 4 16)
5 sin®(jm/N) ’
i=j,i=1(1)N -1,
9T A=Y ((N* 5N 4+ 4)(2N’+3)  N' -1
1+ 0;n 210 sin?(j7/2N) 10sin*(j7/2N)

t=j7=0andi=j =N,

N 2N? 4+ 1 3 £ =0
. - i i=
4sin®(jm/2N)  4sin®(jn/2N) )’ o ’




Appendix 169
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