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Abstract
Mathematical models and numerical methods are developed for analysing and simulating

the spatio-temporal evolution of the tear film coating the anterior surface of the human

eye during an interblink period. The novelty of the work is ontwo distinct fronts.

• First, a systematic approach is taken to ensure that the (coupled) model evolution

equations — one each for film thickness and lipid-surfactantconcentration —

arising from asymptotic thin-film approximations of the Navier-Stokes equations,

are uniformly valid when realistic ophthalmic data are usedin the parameterisation.

In this way, the present model does not — as occurs in related literature —

yield results that are in conflict witha priori approximation hypotheses. More

specifically, novel results are obtained on the effects of substrate curvature by

proposing a specific coordinate system in which: the influence of curvilinearity on

the evolution of the tear film can be parameterised, and; the limiting case recovers

the Cartesian models of related literature. Additionally,the evolution equations are

developed using sophisticated bespoke computer-algebra (MAPLE) techniques that

permit the correcta priori scalings — of the competing effects of gravity, inertia,

evaporation and surface tension — that guarantee the above-mentioned uniform

validity. A novel consideration of the physical viability of boundary conditions at

three-phase contact line on the eyelid in the existing mathematical literature leads

to the proposal, implementation and investigation of novelNeumann boundary

conditions that are supported by the results of recentin vitro experimental work.

• Second, bespoke spectral numerical methods are developed for solving the thin-

film approximations, yielding hitherto-unseen explicit formulæ for high-order

Chebyshev differentiation matrices. Inherent errors are quantified, thereby yielding

an explicit understanding of both the modelling limitations and the plausibility of

results. A suite of post-processing tools is developed to negotiate the complexities

of implementing the novel boundary conditions in a spectralenvironment. All
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numerical techniques are validated on test problems; a highdegree of both accuracy

and efficiency is demonstrated. An analysis is presented of the errors incurred in

the numerical approximation of the (steep) film-profile gradients near the eyelids;

the results of this error analysis prompt questions on the accuracy of many of the

results of previously published models.

Through the combination of new, uniformly valid, thin-film approximations and bespoke,

fully validated numerical methods, the coupled evolution equations for the thin-film

thickness and lipid surfactant concentration are solved with confidence that the results

obtained are credible. The novel boundary conditions lead to results that predict

behaviours of the tear film that, whilst unseen in all prior relatedmathematicalliterature,

encouragingly align within vivo experimental observations in theophthalmicliterature.

As a result, a novel hypothesis is presented for the behaviour of the tear-film contact line,

through which predictions are made regarding the development and treatment of dry-eye

pathologies. Suggestions for future work conclude the thesis.
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1

Chapter 1

Introduction and Background

The work contained in this thesis studies the movement of a body of fluid that is, quite

literally, right before your eyes! The tear film located on the anterior surface of the eye

is an example of the diverse range of macroscopic thin films offluid that can be found

in both nature and engineering, and it provides the primary focus of the present research.

The fluid dynamics of the tear film are studied through a mathematical model that is

generated from basic physical principles, which model incorporates the interaction of the

fluid with a layer of lipid surfactant found at the free surface of the tear film. Throughout

the modelling process, meticulous care is taken to ensure that any assumptions made in the

derivation are not invalidated by subsequent choices of parameter values: this philosophy

is motivated by the frequent violation of this apparently obvious principle in much existing

related literature.

In addition to novel developments made within the derivation of the mathematical

model for the tear film, a significant proportion of this thesis is dedicated to the numerical

methods employed in finding approximate solutions of the model. The resultant pair of

coupled initial-boundary-value problems (IBVPs)—for thefilm thickness and surfactant

concentration—is, in itself, difficult to tackle due to the non-periodic domain in which the

tear film is located; this difficulty is exacerbated by the absence of any critically-important
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minutiæ in the description of numerical methods used in existing published models of the

tear film (cf. §1.2). Hence the explicit description and derivation of methods in this thesis

is motivated by the aim that all results are readily replicable by the reader.

This introductory chapter is divided into three sections. In the first, the composition

and certain physical properties of the human tear film are discussed, followed by the

physiology of the secretory and drainage systems; these details are pertinent to the

subsequent modelling of the fluid mechanics of the tear film. The second section

comprises a review of published mathematical literature modelling the dynamics of the

tear film. The third section comprises an outline of the structure of the remainder of the

thesis.

1.1 Ophthalmic physiology

The pre-corneal tear film is an essential part of the ocular system: it acts as a barrier to

debris, maintains the outermost cells of the eye, and acts asa lubricating layer for the

rapidly-moving upper eyelid during a blink. The cells of thecornea (the transparent

cap of fibrous material located anterior to the iris and pupil) do not receive a blood

supply, making them reliant on a fresh tear film for their supply of nutrients. Continual

replacement of the tear film allows dead cells and any debris that is not deflected by the

eyelashes to be washed away from the ocular surface. In addition to these functions, the

tear film is the first and major refractive interface of the eye(Bronet al., 1997; Némethet

al., 2002) and so must remain as uniform as possible over the central region of the cornea

in order that its shape does not deleteriously diffract the incident light, thereby affecting

the visual acuity of the eye. In subsequent sections of this thesis, reference is made to

thepalpebralregion of the eye. This term refers to the areas containing the eyelids and

their associated structures, which structures are the location of the secretory and drainage

systems for the tear film. The elliptic opening between the upper and lower eyelids is
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known anatomically as thepalpebral fissure.

1.1.1 Tear-film structure

The ocular surface exposed within the palpebral fissure is covered by the tear film and

its menisci, which form where the fluid abuts the eyelid margins. The tear film is

widely accepted to be formed as a tri-laminar structure (Holly & Lemp, 1973; Bronet

al., 1997); however, recent advances have suggested that the boundaries between the

individual layers are not distinct, leading to blending of the layers (Rolando & Zierhut,

2001; Gipson, 2004; Szczȩsnaet al., 2006). Periodic blinking refreshes and replenishes

the tear film (Snell & Lemp, 1998). A variety of techniques have been devised to measure

the thickness of the tear film, with published measurements ranging from as low as2.7µm

(King-Smithet al., 2000) to as high as46µm (Prydalet al., 1992). The general consensus

within the published data suggests that the true thickness is under10µm; such data can

readily be found in the review articles of Bronet al. (2004) and King-Smithet al. (2004).

The layers of the tri-laminar model of the tear film, from posterior to anterior, are as

follows.

A mucus layer lining the epithelial cells of the cornea. The long-standing model of

Holly (1973) suggests that a deep mucus layer forms a hydrophilic surface to

aid the wetting of the cornea. However, more recent studies (Sharma, 1998, for

example) have shown the epithelial surface to be hydrophilic and as wettable as the

mucus layer. Furthermore, there is evidence that the mucus layer is not distinct,

and is intermixed with the overlying aqueous layer (Rolando& Zierhut, 2001).

Measurements of the thickness of the mucus layer vary widely; Prydalet al. (1992)

suggest that the tear film (of depth∼ 40µm) is largely composed of mucus, whilst

values of roughly1µm are given by Rolando & Refojo (1983) and Nicholset al.

(1985). The modelling of the dynamics of the viscous mucus layer falls outside the



Chapter 1. Introduction and Background 4

scope of this thesis due to its interaction with membrane-associated glycoproteins

at the highly-folded surface of the corneal epithelia (Sharmaet al., 1999; Gipson,

2004).

An aqueous layer consisting principally of water with dissolved salts, enzymes and

proteins (Bronet al., 1997). A diverse range of depths for the aqueous layer have

been reported in the ophthalmic literature; however, the majority fall within the

range of3 - 10µm (Holly & Lemp, 1977; Rolando & Refojo, 1983; Sharma, 1998;

King-Smith et al., 2004). Little dissolved mucin was found in the aqueous layer

by Nagyová & Tiffany (1999), casting into dispute the aforementioned intermixed

mucus-aqueous model of Rolando & Zierhut (2001) and others.

A lipid layer at the free surface of the tear film. This layer is composed chiefly of wax

esters, cholesterol esters and phospholipids, and is75 - 100 nm thick (McDonald,

1969; Holly & Lemp, 1977; Norn, 1979; Bronet al., 1997; Goto & Tseng,

2003). The presence of the lipid layer reduces evaporative losses from the aqueous

layer (Mishima & Maurice, 1961; Mathers, 1993; Craig & Tomlinson, 1997), and

decreases the surface tension of the film, increasing its stability (Holly, 1973; Bron

et al., 2004). Furthermore, inhomogeneous distributions of superficial lipid have

been suggested to drive flows within the underlying aqueous layer through the

induced gradients in surface tension (Brown & Dervichian, 1969; Berger & Corrsin,

1974; Holly & Lemp, 1977; King-Smithet al., 2009).

A schematic diagram of the tear film is shown in Figure 1.1. Themathematical analysis

presented in Chapters 2et seq.employs the tri-laminar model of the tear film in order to

develop equations describing the interaction between a deep aqueous fluid covered with

a superficial surfactant layer. As noted above, the movementof the mucus layer is not

studied.

The rate of evaporation from the aqueous fluid reservoir of the tear film is a major
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Figure 1.1: A cross-sectional schematic view of the tear film showing thetri-laminar model.

Layer thicknesses are not represented to scale, and the depth of the pre-corneal mucus layer is

omitted as its dynamics are not within the scope of this work.

factor in so-called ‘dry eye’ disorders (Holly & Lemp, 1977;Craig & Tomlinson, 1997;

Tomlinsonet al., 2011), symptoms of which are reported by “nearly half of women

between the ages of 35 and 60” and are prevalent in “10 – 15% of the older adult

population” (Mathers, 2004). These disorders are divided into two major classes:aqueous

or tear-deficientdry eye, in which there is a reduction in the volume of the aqueous layer

of the tear film, and;evaporativedry eye, which is caused by excessive evaporation and

is associated with deficiencies of the lipid layer (Baudouin, 2001; Bron, 2001; Tomlinson

& Khanal, 2005). Ophthalmologists have derived a variety oftechniques to quantify the

rates of evaporation from normal and dry eyes in an effort to find a treatment for the

disorder. Average rates of evaporation from normal eyes of4 × 10−6, 15 × 10−6 and

4 × 10−7 kg m−2 s−1 were respectively obtained by Rolando & Refojo (1983), Mathers

(1993) and Craig & Tomlinson (1997); further collated results may be found in the review

articles of Mathers (2004) and Tomlinson & Khanal (2005). Inall cases, the rates of

evaporation from the eyes of subjects with lipid-layer deficiencies were higher than those

from eyes with normal lipid layers. King-Smithet al. (2008) argue that high humidities

induced in the experimental apparatus of the studies above (and others) have caused the

results published in the literature to be lower than the truerate of evaporation from normal
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eyes; they suggest the rate of39 × 10−6 kg m−2 s−1 obtained by Liuet al. (2005) as an

accurate representative value.

Studies of the surface tension of tears have shown that, by comparison with a value

of 7.3 × 10−2 N m−1 for a pure air-water interface, the presence of the superficial lipid

layer markedly reduces the surface free energy of the tear film. Millar (1969) obtained

a measurement of4.6 × 10−2 N m−1 for normal tears, which is similar to the value of

4.36 × 10−2 N m−1 found by Tiffanyet al. (1989). Further corroboration is provided by

the results of Nagyová & Tiffany (1999), in which intact andlipid-depleted tears were

tested to isolate the components responsible for the surface tension: a range of4.2 –

4.6 × 10−2 N m−1 was stated for intact tears.

Observations of the lipid layer during a blink have shown that it is extremely resilient

to the actions of compression and expansion enforced upon itby respectively the descent

and ascent of the upper eyelid (McDonald, 1968, 1969; Mishima & Maurice, 1969; Bron

et al., 2004). Through such observations, McDonald (1968, 1969) suggests that the lipid

layer moves in a manner similar to a ‘pleated drape’, foldingand unfolding in reaction

to the movement of the upper eyelid during a blink. After the upper lid has ceased

moving, an upward drift of the lipid layer is observed for roughly one second (Brown

& Dervichian, 1969; Berger & Corrsin, 1974; Owens & Phillips, 2001; King-Smithet

al., 2009). To explain this phenomenon, Brown & Dervichian (1969), Berger & Corrsin

(1974) and Holly & Lemp (1977) propose that the deposition ofthe tear film is a two-

phase process in which the upper lid first deposits a thin layer of aqueous fluid without

a lipid covering; the lipid layer then lags behind slightly,and is drawn from a reservoir

near the lower lid (Bronet al., 2004) by the induced surface-tension gradient. Through

movement of the lipid layer, viscous drag of aqueous fluid completes the second phase of

deposition, thickening the film to its full depth across the eye. Observations of thickening

of the tear film over the superior cornea after a blink (Benedetto et al., 1984; Zhuet al.,

2007) appear to support this two-phase hypothesis. Contradicting this model, Wonget al.
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(1996) hypothesize that the film “is directly deposited at close to its final thickness by the

rising upper lid”, and hence that the subsequent spreading of the lipid is notessential for

the creation of a stable tear film. Eyelid kinetics observed by Doane (1980) show that,

regardless of the hypothesis used, there is a significant lagbetween the completion of the

upstroke of the upper eyelid and the establishment of a stable tear film, and Némethet

al. (2002) suggest that it can take up to ten seconds for the tear film to stabilize after a

blink. Corroborating these observations, King-Smithet al. (2009) observe a slow upward

drift of the lipid layer persisting after the initially fastdynamics of the first second have

subsided. The modelling of the post-blink distribution of the lipid surfactant is discussed

in §2.4.1.

1.1.2 Palpebral physiology

The components of the tear film are secreted by organs within the palpebral region. The

mucus that forms the posterior layer of the tear film is secreted by thegoblet cellsof the

conjunctiva, which itself is a thin mucous membrane that lines the inner eyelids and the

anterior surface of the eyeball.

Secretion and drainage of the aqueous layer is controlled bythe lacrimal1 apparatus,

which consists of thelacrimal gland, lacrimal lake, lacrimal canaliculi, lacrimal sac,

puncta, andnasolacrimal duct. Thelacrimal glandis the source of the aqueous fluid, and

is situated above the eye towards the lateral side, opening onto the ocular surface at the

junction of the upper eyelid with the eyeball (known as thesuperior conjunctival fornix).

In addition to the main lacrimal gland, a number of small accessory lacrimal glands are

scattered around the upper eyelid. Aqueous fluid accumulates within the area below the

eyelid (theconjunctival sac) and is distributed across the surface of the eye by the periodic

action of blinking.

1 ‘ lacrima’ is the latin word for tear.



Chapter 1. Introduction and Background 8

Drainage of aqueous fluid occurs through thepuncta, which are two small orifices

found at the medial end of the lid margins, and are the openings of thelacrimal canaliculi,

the small tubes that connect the puncta to thelacrimal sac. The muscular action of

blinking opens the puncta onto the ocular surface whilst also pumping the canaliculi,

creating a pressure gradient that draws fluid away from the eyeball (Maurice, 1973; Zhu

& Chauhan, 2005). The lacrimal sac opens into thenasolacrimal duct, which itself drains

into the nasal cavity.

The superficial lipid layer of the tear film is secreted by thetarsal (Meibomian)

glands. These glands are located within the upper and lower eyelids, lying anterior to

the conjunctiva, and opening onto the eye at the lid margins.There are around 20 – 25

glands in each lid (Snell & Lemp, 1998). The secretion of the Meibomian lipid onto

the eyelid margins alters the wettability of the eyelid margin in a transition zone called

the mucocutaneous junctionthat is located immediately posterior to the orifices of the

Meibomian glands. The abrupt change in wettability prescribes the anterior limit of the

tear-film meniscus that forms at the eyelid (Bronet al., 1997). The tear film is stated

by Bron et al. (2011) to always reach the mucocutaneous junction. However, this is

contradicted by the repeatability results of Goldinget al. (1997), which show that the

reach of the tear meniscus up the eyelid margin2 is variable in the same subject. The

pinning of the meniscus at the mucocutaneous junction is an important topic in this thesis,

and is discussed further in§2.4.1.

For more detailed information on the anatomy and physiologyof the eye and palpebral

region, the reader is referred to the text-books by Bronet al. (1997) and Snell & Lemp

(1998), among others.

2called the ‘tear-meniscus width’ (TMW) in the ophthalmic literature.
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1.2 Tear-flow models

A plethora of literature has been published containing mathematical models for thin-

film flows, of which a small subset (cited below) is focussed onthe modelling of the

human tear film. Many papers have been published within the last fifteen years, as

mathematicians and ophthalmologists have started to forgestrong links. The majority

of published work focusses on the movement of the aqueous layer, and its interaction

with the lipid surfactant at the free surface. However, papers have also been published

on the mucus layer, as well as on convection of the humours inside the eyeball itself.

In all literature cited in the following paragraphs, the models are derived using a two-

dimensional Cartesian coordinate system unless explicitly stated otherwise.

Motivated by the results of Brown & Dervichian (1969), a Lagrangian model for the

post-blink drift of the lipid and aqueous layers is presented by Berger (1973) and Berger

& Corrsin (1974), which respectively comprise a PhD thesis and summary article. In

these works, a comparison of simulated results within vivo data leads to a conclusion

that surface-tension gradients are a suitable mechanism for driving the tear film up the

cornea after a blink. As mentioned in§1.1.1, an alternative theory for the post-blink drift

of the tear film is presented in Wonget al. (1996), which models the deposition of the

tear film as a coating process with fluid drawn from the meniscus of the moving upper

lid. This model predicts the thickness of the deposited profile to be proportional to the

speed of the advancing lid. Interblink simulations in Wonget al. (1996) show significant

thinning of the film at the join of the meniscus to the main tearfilm, a phenomenon that

is also studied by Milleret al. (2002), who conclude that the menisci and the interior film

are hydrodynamically isolated by the thinned region. This region of meniscus-induced

thinning is called the ‘black line’ by ophthalmologists (McDonald & Brubaker, 1971;

Holly & Lemp, 1977; Bronet al., 2011), in reference to the reduced fluorescence of the

thinned region when visualized using flourescein dye.
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A significant body of work on the tear film has been published byBraun and co-

authors. Braun & Fitt (2003) model the draining of the tear film under the effects of

gravity and evaporation, concluding that, whilst the two effects are not dominant in the

flow, they can influence the drainage process and so must be included within models. The

full blink cycle is modelled in Braun & King-Smith (2007), using a domain length and

flux boundary conditions that vary sinusoidally in time to simulate periodic movement of

the upper eyelid. A simplified model for the concentration oflipid surfactant is included,

and computed film profiles are matched toin vivo data. Heryudonoet al. (2007) extend

this work by incorporating realistic lid motions and fluid fluxes into the temporal variation

used to simulate the blink cycle. Results are again comparedwith ophthalmic data.

Maki et al. (2008) use an overset-grid method for their spatial discretization, and

extend the model of Heryudonoet al. (2007) to simulate the opening of the eye

followed by reflex tearing from the lacrimal gland; specifically, this is modelled via an

alteration to the fluid influx boundary condition specified atthe upper eyelid. The same

numerical method is employed in Makiet al. (2010a) and Makiet al. (2010b), which

are sister papers modelling the tear film using three-dimensional Cartesian coordinates

on an eye-shaped domain. The two parts study the influence of different boundary

conditions, respectively variable pressures and variablefluxes for papers (a) and (b).

Three-dimensional modelling is retained in Braunet al. (2012) by employing prolate

spheroidal coordinates to incorporate the curvature of theocular substrate. Newtonian

and shear-thinning fluids are modelled, drawing a conclusion that corneal shape does not

have a significant effect on the thinning of the tear film. To the author’s knowledge, this

is the only existing model outside of the present work that includes the influence of the

curved corneal substrate on tear-film dynamics.

The work of Braun & Fitt (2003) is extended in Winteret al. (2010) through the use

of a more-realistic model for the evaporation from the tear film, and a conjoining pressure

to model a simulate corneal surface. Qualitative agreementbetween model results and
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in vivo data is obtained for the speed at which ruptures in the tear film expand. The

temperature distribution within the tear film is studied in Li & Braun (2012) by modelling

the diffusion of heat through the tear film and from the underlying cornea. A parameter

set is found that captures the temperature decreases observed in vivo. A review article on

the mathematical modelling of the tear film is presented in Braun (2012).

A model for the deposition of the tear film is presented in Jones et al. (2005), which

extends the model of Braun & Fitt (2003) by studying the opening phase of the eye

and including a simplistic model for the effects of the superficial lipid layer. Boundary

conditions specifying the influx of fluid from below the opening upper lid are enforced,

and it is found that the deposition of a viable tear film requires an influx of fluid from

under the lid. Joneset al. (2006) extend the work by improving the modelling of the

surfactant layer to study the post-blink movement of lipid.By altering the initial surfactant

distribution, the results of the model are found to support the hypothesis of Brown &

Dervichian (1969), Berger & Corrsin (1974) and Holly & Lemp (1977). A model for the

elastohydrodynamics of the eyelid as a ‘wiper’ mechanism ispresented in Joneset al.

(2008).

Further insight on the deposition of the tear film is given in Pleaseet al. (2011), which

studies the influence of meniscus shape and storage on the filmprofile deposited by the

upper eyelid, modelled in three-dimensional Cartesian coordinates with an elliptic domain

acting as a simplified palpebral fissure. The shape of the deposited tear film is found to

be strongly affected by the geometry of the menisci at the eyelids. Aydemiret al. (2011)

studies the effect of the lipid layer on the deposition and subsequent thinning of the tear

film in the absence of evaporation, and includes an asymptotic study of the early stages

of deposition. Again, the conclusions drawn support the two-stage deposition model of

Brown & Dervichian (1969), Berger & Corrsin (1974) and Holly& Lemp (1977).

A model for the solute concentration within the aqueous layer of the tear film is

coupled to the dynamics of the film thickness and surfactant concentration in Zubkov
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et al. (2012), and used to study hyperosmolarity in the black-lineregions caused by

meniscus-induced thinning. Further meniscus dynamics areexamined in Zubkovet al.

(2013), which compares the tear-film behaviour predicted bya lubrication-approximation

model with the behaviour modelled through solution of the Navier-Stokes equations in the

menisci. Lubrication theory is found to be qualitatively accurateexceptin the menisci,

wherein the Navier-Stokes model predicts a convective mixing region that is absent from

the lubrication model.

With the exception of Pleaseet al. (2011), which models the radius of curvature of the

menisci, a common thread running through the models cited above is the prescription of

the tear-film thickness at the eyelid, to emulate the position of the mucocutaneous junction

introduced in§1.1.2. This so-called ‘pinning’ of the film thickness yieldsa Dirichlet

boundary condition for the resulting partial differentialequation for the evolution of the

tear-film thickness. Further, more detailed, comment on thevalidity of pinning the film

thickness is made in§2.4.1.

In addition to modelling the dynamics of the tear film’s aqueous layer and its

interaction with the superficial lipid layer, a variety of fluid mechanical models have been

inspired by the eye, including: studies of the mucus layer and its interactions with the

cornea and the overlying aqueous fluid (Sharma, 1998; Sharmaet al., 1999); flow of the

aqueous humour in the anterior chamber of the eye (Fitt & Gonzalez, 2006; Avtar &

Srivastarva, 2006); movement-induced dynamics of the vitreous humour (Repetto, 2006);

models of shear-thinning tear substitutes (Jossicet al., 2009); the dynamics of the tear

film in the presence of a contact lens (Trinhet al., 2014), and; the aforementioned studies

of Zhu & Chauhan (2005) and Joneset al. (2008).
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1.3 Outline of the thesis

Having described the palpebral physiology and the existingmodels of the tear film, the

objective of this thesis is to develop a spatio-temporal model for the lacrimal dynamics of

the open eye during the interblink period, which constitutes at least95% of the total blink-

cycle duration (calculated using data from Berger & Corrsin, 1974, and Doane, 1980), and

to employ accurate numerical methods to solve this model. With this motivation in mind,

the structure of this thesis is as follows.

Chapter 2 presents an asymptotic derivation of the thin-filmevolution equations for

the thickness of the tear film and the concentration of lipid surfactant that incorporates

the effects of gravity, hydrostatic pressure, evaporation, and a spatially-varying surface

tension that is dependent on the local concentration of adsorbed surfactant. Despite the

existence of many models for the tear film as outlined above, the present approach is

distinguished from prior work through its meticulous treatment of the asymptotic ordering

of terms within the governing equations, which ordering is achieved through ana priori

rescaling of all variables and physical quantities in the model. Through such scalings, the

leading-order evolution equations are, by construction, uniformly valid in the considered

parameter régime. The modelling of the tear film includes two novel developments

that are hitherto unseen in all other models. The first is the use of a novel curvilinear

coordinate system that allows the curvature of the underlying substrate to be controlled

through variation of a single parameter, allowing the influence of the curved corneal

substrate on the flow dynamics to be quantified. The second is the specification of the

contact angle, formed between the eyelid margin and the freesurface of the tear film, as a

boundary condition for the spatio-temporal evolution equation for the film thickness. Such

a boundary condition represents a significant departure from the modelling inall prior

models for the tear film, as it replaces the Dirichlet ‘pinning’ mentioned above, enabling

the tear film to evolve under the influence of only Neumann boundary conditions. This
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change to the modelling is motivated because, as indicated previously, pinning of the film

does not appear to have a firm physical justification. The specification of the boundary

conditions is addressed fully in§2.4.1.

Following the derivation of the coupled thin-film evolutionequations for the film

thickness and surfactant concentration, Chapters 3 and 4 are respectively devoted to a

detailed description of the numerical methods used in solving the tear-flow model, and

to the validation of the numerical techniques employed. Chapter 3 describes the spatial

discretization process using Chebyshev spectral methods,which are chosen in order to

improve (dramatically) upon the accuracy of the finite-difference methods used in the

solution of the majority of prior tear-flow models (see, for example, Braun & Fitt, 2003;

Joneset al., 2006; Aydemiret al., 2011). To further improve the accuracy of the numerical

scheme, novel explicit forms of the third- and fourth-orderChebyshev differentiation

matrices are derived. The spatial discretization is augmented by post-processing tools that

allow the boundary conditions to be enforced with spectral accuracy, and allow the mass

within the system to be calculated, which mass provides a validation of the accuracy of

the numerical scheme in the absence of evaporation. To remain consistent in the present

transparent approach to numerical modelling, the temporaldiscretization is carried out

using a coupled fourth-order Runge-Kutta scheme that is briefly outlined. Such an

approach is in contrast to a number of tear-film models, whichuse undiscussed proprietary

software packages to carry out temporal integration (see, for example, Braun & Fitt, 2003;

Heryudonoet al., 2007; Makiet al. 2010a; Makiet al., 2010b; Zubkovet al., 2012, 2013).

The presentation of the numerical scheme is made as general as possible in order that

the techniques may be employed, with suitable modifications, to other spatio-temporal

problems on a finite domain. All the methods of Chapter 3 are meticulously tested

in Chapter 4 using model problems with known analytic solutions, giving confidence

that the results obtained through numerical solution of thetear-flow model are accurate

representations of the physical processes included withinthe derivation. Motivated by the

steep menisci in tear-film profiles occurring in the existingophthalmic and mathematical
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literature, Chapter 4 concludes with an analysis of the absolute errors encountered in

the numerical approximation of derivatives of “steep-sided” functions using Chebyshev

spectral methods.

With the numerical methods thus outlined and tested, they are employed in the

solution of the new coupled evolution equations in Chapters5 and 6. More specifically,

Chapter 5 contains results from simulations of the film-thickness evolution equation in

the absence of a motile surfactant layer, allowing the effects of the novel coordinate

system and boundary condition to be observed in isolation. The fully coupled system

of evolution equations is solved in Chapter 6, demonstrating the non-trivial influence of

the surfactant layer on the dynamics of the tear film. In both chapters, the results of the

model are compared and contrasted with both the ophthalmic observations described in

§1.1 and the data from the existing mathematical models for the tear film outlined in§1.2.

Through such comparisons, novel conclusions are drawn regarding the onset of dry-eye

phenomena within the human tear film, which conclusions motivate the formulation of

a new hypothesis for the movement of the tear-film contact line during the interblink

period. This hypothesis enables alternative methods for the treatment of dry-eye diseases

to be suggested.

Finally, a summary of the major emphases of the thesis is given in Chapter 7, in which

possible future developments for the model are also discussed.
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Chapter 2

Governing Equations

This chapter contains the derivation of a mathematical model for describing the

ophthalmic flow introduced in Chapter 1; specifically, the equations describing the

motion of a two-dimensional incompressible, viscous, evaporating fluid coating a curved

substrate enclosed by solid boundaries, with a non-uniformdistribution of adsorbed lipid

surfactant at its free surface are derived. A definition sketch for the flow is given in Figure

2.1.

A pair of coupled spatio-temporal evolution equations, forthe film thickness and the

concentration of surfactant, is derived from first principles under the assumptions that

the characteristic depth of the film is small by comparison with the arc length along

the substrate, and that the concentration of adsorbed surfactant is low enough that the

molecules are not densely packed, and hence can be treated asbeing in an expanded state

(Adam, 1941). The competing effects of gravity, evaporation and capillarity are included

within the modelling. To observe the effect of substrate curvature on the behaviour of

the system, the equations are derived in cylindrical polar coordinates, with a change of

coordinate system to so-called ‘marginal-surface’ coordinates (see§2.2 for details) that

are introduced to admit a simple transition to a Cartesian coordinate system in the fluid as

the radius of curvature of the substrate is increased to infinity. This is done because, with
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the exception of Braunet al. (2012), the literature in this area focusses exclusively ona

Cartesian model, hence this development provides a novel quantification of the effects of

controllablecurvilinearity.

2.1 Derivation of governing equations

The thin-film thickness evolution equation has been derivedto study a diverse range of

applications1. In the majority of formulations, the combination of physical parameters

within the modelled fluid flow yield a Reynolds number that is negligible by comparison

with the dominant terms of the governing equations, and the resulting Stokes-flow

approximation is studied under the assumptions detailed above.

The notation convention used below is as follows: subscripts appended to dependent

variables denote differentiation with respect to the subscript; subscripts in Roman font

are an exception to this rule, and the purpose of such terms will be made clear by the

surrounding text; superscripts are employed to identify terms pertaining to the vapour and

free-surface phases of the system. In equations where such superscripts are present, terms

without superscripts pertain to the fluid phase.

1These include: coating and rimming flows (Moffat, 1977; Pukhnachev, 1977; Hinch & Kelmanson,

2003; Hinchet al., 2004; Benilov & O’Brien, 2005; Noakeset al., 2006, and 2011; Kinget al., 2007;

Kelmanson, 2009a,b; Groh, 2010); biophysical fluid dynamics (Berger & Corrsin, 1977; Borgas &

Grotberg, 1988; Gaver & Grotberg, 1990, and 1992; Halpern & Grotberg, 1992; Wonget al., 1996; Braun &

Fitt, 2003; Joneset al., 2005; Braun & King-Smith, 2007; Aydemiret al., 2011; Zubkovet al., 2012); flow

of surfactant-laden drops and films (Afsar-Siddiquiet al., 2003a,b,c; Warneret al., 2004a,b; Edmonstoneet

al., 2004, and 2005; Jensen & Naire, 2006); stability analyses of evaporating films (Burelbachet al., 1988;

Jooet al., 1991); geophysical flows (Griffiths, 2000; Hindmarsh, 2004; Huppert, 2006), and; fluid flow over

curved substrates (Royet al., 2002; Myerset al., 2002; Howell, 2003), to name a few. Review articles on

thin-film dynamics can be found within Oronet al. (1997), Myers (1998), and Craster & Matar (2009).
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2.1.1 Equations of fluid motion

The Navier-Stokes equations describing the motion of an incompressible Newtonian fluid

are (Acheson, 1990)

ρ
(
Ut + U · ∇U

)
= −∇P + µ∇2U + ρG , (2.1)

whereU (m s−1), P (kg m−1 s−2) andG (m s−2) respectively denote the fluid velocity

field, pressure and gravitational acceleration, with parameters ρ (kg m−3) and µ

(kg m−1 s−1) respectively corresponding to the fluid density and dynamic viscosity. In

an incompressible flow the fluid density remains constant, and the continuity equation is

∇ ·U = 0 . (2.2)

Transport of heat energy within the tear film is modelled using an advection-diffusion

equation (see, for example, Burelbachet al., 1988)

Tt + U · ∇T = κ∇2T , (2.3)

whereT (K) andκ (m2 s−1) are respectively the temperature and fluid thermal diffusivity.

To incorporate the effects of a curved substrate, the tear film is modelled as a layer

of fluid coating the exterior of a cylinder of radiusa (m). In keeping with prior models

of the tear film, the model considers a longitudinal cut through the anterior-posterior axis

of the eye (see, for example, Berger & Corrsin, 1973; Wonget al., 1996; Braun & Fitt,

2003; Joneset al., 2005; Braun & King-Smith, 2007; Aydemiret al., 2011; Zubkob

et al., 2012), whence all derivatives and equations pertaining tovariations parallel with

the axis of the cylinder are henceforth neglected. Thus, theflow can be treated as two-

dimensional, and the cylindrical geometry can be simplifiedto plane-polar coordinates,

(R, θ), as depicted in Figure 2.1, with orthonormal unit vectors perpendicular and parallel

to the ocular substrate defined by

eR = (cos(θ), sin(θ))T and

eθ = (− sin(θ), cos(θ))T .
(2.4)
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For ease of comparison with Cartesian coordinates in the limit of infinite cylinder radius,

the velocity vector is defined non-conventionally, withU andV “reversed” to represent

respectively the radial and azimuthal components of velocity, so that

U = V eR + Ueθ . (2.5)

Equations (2.1), (2.2) and (2.3) require augmentation withboundary conditions in

order to close the system. The fluid is permitted to slip alongthe corneal mucus, but not

to penetrate into the rigid substrate, and the temperature is equal to that of the eye; these

give the respective conditions

U · t̂EYE =
Z

µ
n̂EYE · T · t̂EYE , U · n̂EYE = 0 , and T = TEYE at R = a . (2.6)

The first of these relationships is the Navier slip condition, which relates the tangential

θ

a

χ(θ, t)

R eR

eθ

O G

.

Ω

Figure 2.1: Geometry (in standard plane-polar coordinates) for the incompressible coating-flow

problem on the exterior of an impermeable cylinder of radiusa. The coordinate origin is marked

O, and the locus of the free surface of the fluid is given byχ(θ, t) (see§2.1.2 for further details).

The fluid-filled area is denoted byΩ. Gravity,G, acts in theθ = 3π/2 direction.
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velocity to the shear rate at the substrate (Navier, 1823; Huh & Scriven, 1971). In this

conditionn̂EYE and t̂EYE respectively denote the unit vectors normal and tangentialto the

ocular substrate (identified witheR andeθ in this coordinate system),Z (m) represents the

slip length along the eye, andT (kg m−1 s−2) is the fluid stress tensor, defined in (2.10).

In §2.2.1 the scaling ofZ will mean the effect of slip is found to be negligible in the

model; nevertheless, the Navier slip condition is includedin (2.6) for completeness. At

the free surface, boundary conditions are provided by considering the balances of mass,

momentum and energy (Delhaye, 1974; Shikhmurzaev, 2008). The permeable fluid-

vapour interface is modelled as a mathematical dividing surface of infinitesimal thickness

and density of the same order as the bulk fluid, hence its role as a sink or source of mass

is assumed negligible by comparison with the evaporative mass flux passing through the

boundary (Shikhmurzaev, 2008). The effects of the variablesurfactant layer are modelled

purely within the interface, causing variation in the localsurface tension. The mass

balance at the fluid-vapour interface is thus (Delhaye, 1974, equation 12; Shikhmurzaev,

2008, equation 2.134)

ρ
(
U − US

)
· n̂ = ρV

(
UV − US

)
· n̂ = J , (2.7)

wherein superscriptsS andV respectively denote the surface and vapour2, andn̂ is a unit

normal vector pointing from the fluid into the vapour.J (kg m−2 s−1) is an evaporative

mass flux, and equation (2.7) states that all mass leaving thetear film is transported

into the vapour, with no change of mass in the interface. Through the scalings and

asymptotic expansion respectively made in§2.2 and§2.3 to solve (2.1) and (2.2) for the

fluid velocities, equation (2.7) yields an evolution equation for the height of the tear film

above the ocular surface. The vector momentum balance is

J
(
U − UV

)
− n̂ ·

(
T − TV

)
= −∇s ·T

S , (2.8)

in whichT is the stress tensor corresponding to each phase and∇s represents the surface

2as mentioned on page 18, quantities without a superscript pertain to the fluid
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gradient operator,

∇s ≡ ∇− n̂
∂

∂n
= (I − n̂n̂) · ∇ . (2.9)

The stress tensors in the bulk phases and the interface are respectively defined as

T = −P I + 2µτττ , TV = −P V I + 2µV τττV , and TS = σ (I − n̂n̂) , (2.10)

whereI is the identity matrix,τττ (s−1) is the rate-of-strain tensor in each bulk phase, andσ

(N m−1) is the surface tension. The bracketed term(I − n̂n̂) found in both (2.9) andTS

signifies that the action of each quantity lies solely withinthe interface. Note that through

(2.10), the surface stress tensorTS is expressed in units of force-per-unit-lengthrather

than force-per-unit-area, as used for the bulk stress tensorsT andTV . Equation (2.7) has

been used to simplify the equations of Delhaye (1974, equation 15) and Shikhmurzaev

(2008, equation 4.12) to yield (2.8).

It should be noted here that the divergence term on the right-hand side of

Shikhmurzaev’s momentum balance (4.12) utilises the full,three-dimensional gradient

operator∇ in conjunction with theconstraintthat the normal to the interface satisfies

n̂ · ∇n̂ = 0 . (2.11)

If this constraint were to be relaxed, the terms arising fromthe (non-vanishing) left-hand

side of (2.11) are found to lie within the plane of the free surface. That̂n · ∇n̂ is parallel

to t̂ follows from a standard vector calculus identity (Spiegel,1959), which gives

n̂ · ∇n̂ =
1

2
∇(n̂ · n̂) + (∇× n̂) × n̂ . (2.12)

Since n̂ is a unit normal, the first term on the right-hand side of (2.12) vanishes, but

the second term clearly lies within the plane of the free surface. Then (2.11) and (2.12)

are compatible only if∇ × n̂ either vanishes or is parallel tôn, the latter of which is

impossible: the former requireŝn to be irrotational and conservative.

With the fluid interface defined by a functionf(r, t) = 0, the unit normal iŝn =

∇f/|∇f |, hence one only obtains a conservative field if|∇f | = 1 at all points and times,
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which is not true for general functionsf . That is, the constraint (2.11) is not realisable as

presented. However, itis realisable provided that (2.11) is amended to

n̂ · ∇sn̂ = 0 , (2.13)

in which∇s is the surface divergence operator, (2.9). This can be explicitly proven using

standard Einstein suffix notation as follows:

n̂ · ∇sn̂ = n̂ ·
{[

(I − n̂n̂) · ∇
]
n̂
}
,

= ni ei ·
{(

I − nj nk ej ek
)
·
(
nm,l el em + nm el em,l

)}
,

= ni ei ·
{
nm,l el em + nm el em,l − nj nk nm,k ej em − nj nk nm ej em,k

}
,

= ni nm,i em + ni nm em,i − (ni ni)︸ ︷︷ ︸
=1

nk nm,k em − (ni ni)︸ ︷︷ ︸
=1

nk nm em,k,

= 0 . (2.14)

The balance of energy at the fluid-vapour interface is given by (Delhaye, 1974,

equation 18; Shikhmurzaev, 2008, equation 4.17)

T S
((
ρSSS

)
t

+ ∇ ·

[
ρSUSSS +

qS

T S

])
+

1

T S
qS · ∇T S

+ J

[
Lv +

1

2

(
UV − US

)2
−

1

2

(
U −US

)2
]

+ k∇T · n̂ − kV ∇T V · n̂

+ 2µ (τττ · n̂) ·
(
U −US

)
− 2µV

(
τττV · n̂

)
·
(
UV − US

)
= 0 .

(2.15)

Here, ρS (kg m−2), SS (J kg−1 K−1), qS (W m−1), Lv (J kg−1) and k (W m−1 K−1)

respectively represent the interfacial density, specific entropy of the interface, heat flux

within the interface, latent heat of vaporisation and thermal conductivity. By treating the

interface as a dividing surface, the changes in interfacialdensity and interfacial specific

entropy, and the interior heat flux are taken to be negligiblein the model, whence all

terms in the first line of (2.15) vanish: this is equivalent tomodelling the transport of heat

energy through the interface as a reversible thermodynamicprocess, the first line being

a statement of the second law of thermodynamics within the interface. Equation (2.15),
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with its first line removed through the argument above, is employed in the later workings

of this model. In its reduced form (2.15) balances: the energy required to vaporize the

bulk fluid and the jump in kinetic energy of particles incident on each side of the free

surface (contained in the remaining square bracket); heat fluxes within the bulk phases,

which fluxes are modelled using Fourier’s Law of heat conduction (Fourier, 1822; Kundu

& Cohen, 2002), and; viscous dissipation of heat energy in the bulk phases (contained in

the final line of (2.15)). Furthermore, it should be noted that with the interface modelled

as a dividing surface, any viscous heating that occurs at theinterface will be manifest in

the bulk fluids only, and so will in fact be governed by (2.3) and its analogue in the vapour

(which is not treated herein); such bulk terms would then affect (2.15) through the heat

flux terms. Despite this, the final line is retained in this form for completeness and to

allow comparison to the existing literature. The same (reduced) equation is presented in

Burelbachet al. (1988, equation 2.9); however, the explanation and assumptions leading

to the removal of the first line of (2.15) are not presented therein.

To close the system, a conservation equation is required forthe concentration,Ψ

(molecules m−2), of adsorbed lipid surfactant along the fluid-vapour interface. The

equation for surfactant motion is taken from Berger & Corrsin (1974), which uses the

surface analogue of Reynolds’ transport theorem (Aris, 1962) for the material derivative

of the surfactant concentration in the surface; this yieldsthe evolution equation

Ψt + ∇s ·
(
ΨUS

)
− Ψ

(
US · n̂

)
(∇ · n̂) = DS∇2

sΨ , (2.16)

whereDS (m2 s−1) is the surface diffusivity of surfactant molecules. In addition to the

time derivative and advective terms, the third term on the left-hand side of (2.16) expresses

the change in concentration caused through dilatation: theprocess by which the local area

of the free surface is distorted due to the underlying fluid movement (Aris, 1962; Slattery,

1972; Stone, 1990). Lipid sorption kinetics between the interface and bulk fluid are not

modelled.
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Alternative form of the surfactant-transport equation

An alternative form of equation (2.16) can be found in the brief analysis of Stone (1990),

and it is important to stress here thatUS is the full surface velocity at the interface, and

has not been decomposed into components normal and tangential to the interface. In

Stone (1990), the full surface velocity is decomposed into the coordinate system of the

interface and, through manipulations, a dilatation term isobtained through expansion of

the advective term. Note that, in a potentially confusing clash of notation, Stone’sus is

the tangential component of the surface velocity, rather than the full surface velocity, here

represented byUS; that is,

(us)STONE = (I − n̂n̂) · US ≡ UTANGENTIAL ,

say. The left-hand side of the evolution equation for the conserved surfactant at the

interface presented in Stone (1990, equation 5) contains only terms concerning the time

derivative ofΨ and advection using the full surface velocity, expressed inthe current

notation as

Ψt + ∇s ·
(
ΨUS

)
.

By settingUS = UTANGENTIAL + (US · n̂)n̂, expanding using standard vector calculus

identities (Spiegel, 1959), and noting that the surface gradient operator admits vectors

with no normal component, the advective term above can be manipulated into a form

which contains a dilatation-type term. Through these manipulations, the surfactant-

evolution equation of Stone (1990, equation 7) is

Ψt + ∇s · (ΨUTANGENTIAL) + Ψ
(
US · n̂

)
(∇s · n̂) = DS∇2

sΨ . (2.17)

Comparison of the formulation of equations (2.16) and (2.17) shows that the former

contains a dilatation termab initio, modelled through the time-dependence of the surface

metric (see Aris, 1962, for further details), whereas the latter derives a dilatation term (of

different sign) through advection of the surface. This derived dilatation term is simply an
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artefact of the form of decomposition of the surface velocity, thus, whilst (2.17) appears

to contain dilatative effects, tests using trial geometries confirm that the term is removed

through interaction with the surface divergence of the tangential velocity, yielding the

pure-advective left-hand side of Stone (1990, equation 5).Equation (2.16) is employed in

this thesis as it is in the form of a so-called surface advection-dilatation-diffusion equation.

Calculation of curvature

A further difference between equations (2.16) and (2.17) isin the calculation of the

curvature term within the dilatation; (2.16) uses the full divergence operator acting on̂n,

whereas (2.17) employs the surface divergence. For aunit normal vector, both methods

yield the same result;

∇ · n̂ = ∇s · n̂ , (2.18)

in which the left-hand term is less computationally expensive to evaluate. The surface

gradient operator is defined in (2.9) as(I − n̂n̂) · ∇, hence the proof of (2.18) lies in

showing that the term(n̂n̂ · ∇) · n̂ is equal to zero, which follows from

(n̂n̂ · ∇) · n̂ = [n̂ (n̂ · ∇)] · n̂ ,

= n̂ · (n̂ · ∇) n̂ ,

= n̂ · (n̂ · ∇n̂) , cf. equation (2.12),

= n̂ ·

[
1

2
∇ (n̂ · n̂) + (∇× n̂) × n̂

]
,

= 0 , (2.19)

becausên · n̂ = 1 and(∇× n̂) × n̂ is perpendicular tôn.

2.1.2 Plane-polar equations and free surface geometry

The equations of motion (2.1), (2.2), (2.3), (2.6), (2.7), (2.8), (2.15), and (2.16) are

expanded in plane-polar coordinates, with the free surfaceof the fluid defined in terms
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O

Ω

θ = +δ

θ = −δ

χχχ(θ, t)
θ

G

eR

eθ n

t

a
.

Free surface

.

Cornea

.Upper eyelid

.
Lower eyelid

Figure 2.2: The locus of the free surfaceχχχ at a fixed stationθ, together with the normal,n, and

tangential vector,t, defined at that point. The set of orthonormal basis vectorseR andeθ (2.4) are

also displayed and, for the sake of clarity, the normal and tangential vectors have been expanded

from their unit length. The eyelids are located at polar anglesθ = ±δ, whenceθ is confined to the

interval [−δ, δ]. As previously, the fluid-filled region is labelledΩ.

of the height from the ocular (cylinder) surface using standard differential geometry

techniques (Struik, 1961). In this coordinate system, the Navier-Stokes equations (2.1)

become

ρ

(
Ut + V UR +

UUθ
R

+
UV

R

)
= −

Pθ
R

+ ρG(θ)

+ µ

(
URR +

UR
R

+
Uθθ
R2

−
U

R2
+

2Vθ
R2

)
, (2.20a)

ρ

(
Vt + V VR +

UVθ
R

+
U2

R

)
= −PR + ρG(R)

+ µ

(
VRR +

VR
R

+
Vθθ
R2

−
V

R2
−

2Uθ
R2

)
, (2.20b)

in the azimuthal and radial directions, respectively. The bracketed subscripts on the
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gravitational terms represent the components of the gravity vector, rather than partial

differentiation. Note that these equations differ from thestandard form (see, for example,

Acheson, 1990,§A.2; Kundu & Cohen, 2002,§B2) due to the non-conventional velocity

definition (2.5), whereV andU respectively represent the radial and azimuthal velocity

components. The continuity equation (2.2) becomes

VR +
V

R
+
Uθ
R

= 0 , (2.21)

and the heat equation (2.3) yields

Tt + V TR +
UTθ
R

= κ

(
TRR +

TR
R

+
Tθθ
R2

)
. (2.22)

Associating the normal and tangent vectors to the ocular substrate witheR and eθ,

respectively, the boundary conditions at the eye (2.6) become

U = Z

(
UR −

U

R

)
, V = 0 , and T = TEYE , (2.23)

at R = a, wherein the boundary condition onV has been used to simplify the slip

condition through removal of theVθ term, andZ is the slip length along the cornea.

The locus of the free surface is defined by

χχχ ≡ χ(θ, t)eR . (2.24)

At time t, the curveχχχ is a regular curve inR2, confined by eyelids (see Figure 2.2);

χ(θ, t) > 0, t ≥ 0, θ ∈ [−δ, δ]. A unit tangent vector to the free surface is defined by

t̂ ≡ ‖χχχθ‖
−1χχχθ =

[
χ2 + χ2

θ

]−1/2(
χθ eR + χeθ

)
, (2.25)

wherein the prefactor normalises the vector’s magnitude, reflecting the fact thatχχχ is not a

unit-speed curve. The unit outward-facing normaln̂ (satisfyingn̂ · t̂ = 0) is therefore

n̂ =
[
χ2 + χ2

θ

]−1/2(
χeR − χθ eθ

)
. (2.26)
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The velocity at the free surface is defined as

US ≡
Dχχχ

Dt
=

(
χt +

Uχθ
χ

)
eR + Ueθ , (2.27)

wherein the azimuthal velocityU is evaluated atR = χ.

With the geometry of the free surface thus defined, the balances of mass, momentum

and energy, and the surfactant transport equation may now beexpanded to yield the

boundary conditions at the interface. The vapour phase is modelled as an inviscid gas at

atmospheric pressure,PATM , with a homogeneous temperature distribution. Furthermore,

at the interface, the tangential components of velocity of each phase are taken to be

continuous;

U · t̂ = UV · t̂ = US · t̂ .

Two boundary conditions are derived from the vectorial momentum balance (2.8), whose

scalar product witĥn yields the balance of stresses normal to the interface

−P + PATM +
2µ (χ3VR − χ2χθUR − χχθVθ + χχθU + χ2

θV + χ2
θUθ)

χ (χ2 + χ2
θ)

− J2

(
1

ρ
−

1

ρV

)
= −

σ (χ2 + 2χ2
θ − χχθθ)

(χ2 + χ2
θ)

3/2
,

(2.28)

in which both formulations of equation (2.7) have been used to obtain the evaporative

term, which term can be attributed to the recoil of the surface as fluid particles evaporate.

Similarly, the scalar product of (2.8) witĥt gives the balance of tangential stresses as

µ
[
(χ2 − χ2

θ) (χUR + Vθ − U) + 2χχθ (χVR − V − Uθ)
]

χ (χ2 + χ2
θ)

1/2
= σθ . (2.29)

The energy balance (2.15) at the free surface becomes

J

[
Lv +

1

2
J2

(
1

(ρV )2
−

1

ρ2

)]
+
k (χ2TR − χθTθ)

χ (χ2 + χ2
θ)

1/2

+
µ

(χ2 + χ2
θ)

1/2

[

2χVR − χθ

(
UR +

Vθ
χ

−
U

χ

)](
V − χt −

Uχθ
χ

)
= 0 ,

(2.30)
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wherein the continuous tangential velocities at the interface have been combined with

both forms of (2.7) to obtain the term inside the first square bracket; as in (2.28), this

term can be attributed to the transfer of kinetic energy across the interface as molecules

evaporate from the tear film.

The mass balance (2.7) and surfactant transport equation (2.16), which will yield the

governing pair of coupled spatio-temporal evolution equations for the tear-film flow, are

respectively
ρ (χV − χχt − χθU)

(χ2 + χ2
θ)

1/2
= J , (2.31)

and

Ψt +
Ψχt (χ

2 + 2χ2
θ − χχθθ)

(χ2 + χ2
θ)

2 +
1

χ2 (χ2 + χ2
θ)

{
χΨθ

[
U
(
χ2 + χ2

θ

)
+ χχtχθ

]

+ Ψ
[
χ (χθUR + Uθ)

(
χ2 + χ2

θ

)
+ χθU

(
χχθθ − χ2

θ

)
+ χ2 (χχt + χθχθt)

]}

= DSΨθθ (χ2 + χ2
θ) − χθΨθ (χ + χθθ)

(χ2 + χ2
θ)

2 .

(2.32)

The final diffusive term (containingΨθ) on the right-hand side of (2.32) is omitted in many

works that model the evolution of the surfactant concentration on the tear film (Joneset

al., 2006; Braun & King-Smith, 2007; Heryudonoet al., 2007; Aydemiret al., 2011).

This term arises through the decomposition of the surface Laplacian operator into the

surface divergence operator acting upon the surface gradient of Ψ, and (to the author’s

knowledge) is presented in the tear flow models of only Berger(1973), Berger & Corrsin

(1974), and Zubkovet al. (2012), the first of which contains a meticulous treatment

of the differential geometry at the free surface. The inclusion of this term is shown to

be academic in subsequent sections of this chapter, as an order-of-magnitude analysis

identifies that its impact on the surfactant concentration is minor by comparison with

other terms in (2.32). However, the significance of this termwould be greatly increased

in a physical system with a large surfactant diffusivity or with a free surface that has steep

gradients and/or large curvatures, thus this term should not be omitted from the general

form of the surfactant-transport equation.
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Whilst the coupling of equations (2.31) and (2.32) is clear in the latter through

the advection, dilatation and diffusion terms, it is not currently obvious that surfactant

concentration has any impact on the former. Variations in local surfactant concentration

affect the strength of the surface tension acting along the interface, hence the normal- and

tangential-stress conditions will provide feedback to (2.31) via the boundary conditions

enforced on the bulk pressure and velocity fields. A constitutive relationship is thus

required to link the surface tension to the concentration ofsurfactant at the free surface.

The final term to be considered is the evaporative mass flux,J , which is itself dependent

on the pressure and temperature of the vapour phase, and the local concentration of

surfactant. These additional relationships are discussedin the following section.

2.1.3 Constitutive relationships

A discussion of the colloid chemistry that occurs at a free surface with adsorbed surfactant

molecules falls outside of the scope of this thesis. However, a wealth of literature exists

modelling the influence of adsorbed surfactant on the underlying fluid (see, for example:

Borgas & Grotberg, 1988; Gaver & Grotberg, 1990 and 1992; Warner et al., 2004a

and 2004b; Edmonstoneet al., 2004 and 2005). In the present model, the surfactant

concentration is taken to be dilute at the free surface (known as a ‘liquid-expanded film’:

Adam & Jessop, 1926; Langmuir, 1934; Adam, 1941; Sakata & Berg, 1969). Dilute

concentrations are characterized by the density of molecules in the film being significantly

below the level at which they become tightly packed, which limit is referred to as the

critical micelle limit. For such a regime, the constitutive relationship between the surface

tension and surfactant concentration is taken from Gaver & Grotberg (1992);

σ =
σ0{

1 +

[(
σ0

σm

)1/3

− 1

]
Ψ

Ψm

}3 , (2.33)

whereΨm represents the critical micelle concentration,σ0 is the surface tension of the
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uncontaminated film, andσm is the surface tension of the film whenΨ = Ψm. The

presence of meibomian lipid lowers the surface tension of tears, so thatσm < σ0.

A large quantity of literature is dedicated to the study of fluid evaporating into a

surrounding vapour (Alty, 1931; Wyllie, 1949; Maa, 1967; Palmer, 1976; Higuera,

1987; Burelbachet al., 1988). The equations presented in such papers require accurate

modelling of the changes in temperature and pressure of the vapour phase, as well

as knowledge of the experimentally-obtained evaporation coefficient, a dimensionless

constant that parameterises the likelihood that moleculesfrom one phase that are incident

on the interface are transported through to the other bulk phase, rather than being reflected

back. Within this model, the equations derived in§2.1.2 can be viewed as ‘one-sided’

as they are concerned only with the fluid phase of the system, and so changes in the

vapour phase remain unknown but negligible. Additionally,the data for the evaporation

coefficient of the human eye has not been experimentally obtained.

In the absence of such data, and with the model so defined, a constitutive relationship

for the evaporative mass flux will not be given. The evaporation rate from human eyes

has been measured by the ophthalmic community using a variety of techniques to discern

if there is a notable difference in the rate of evaporation between patients with normal

eyes, and those who suffer from lipid-deficient dry-eye pathologies (see, for example,

Bron et al., 2004; Mathers, 2004; Tomlinson & Khanal, 2005). An evaporation rate of

roughly1.5× 10−5 kg m−2 s−1 is reported for normal eyes in Mathers (1993), and values

of the same magnitude can be found within reviews in the papers mentioned above. This

value is used in the mathematical model of Braun & Fitt (2003). To incorporate the

resistive effects of greater concentrations of surfactantto evaporation from the tear film,

an heuristic model is used for the evaporation mass flux, using the measured value from

above;

J =
J0

1 + A

(
Ψ

Ψm

)B , where J0 = 1.5 × 10−5 kg m−2 s−1. (2.34)
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The positive parametersA andB allow the heuristic model to be altered, controlling

the rate at which evaporation drops as the concentration decreases, and the evaporation

rate at critical micelle concentration, respectively. With the surfactant modelled in dilute

concentrations, it will be found (cf. §2.2.2) that these parameters do not play a role in the

leading-order behaviour of the system.

2.2 Marginal-surface coordinates

To model the effect of substrate curvature, a change of coordinate system is defined

within a marginal surface which, in cylindrical geometry, sits a small distance below

the ocular surface. In the limit that the radius of the cylinder tends to infinity, the distance

between the marginal surface and ocular surface decreases to zero, and the marginal-

surface coordinates coincide with Cartesian coordinates defined on the flat plane, in which

coordinates comparison can be made with all of the existing literature (with the exception

of Braunet al., 2012).

The marginal-surface coordinates are defined as

ξ ≡ −aθ cos δ , and η ≡ R − a cos δ , (2.35)

whereδ is the half-angle of the palpebral fissure, as shown in Figure2.3. The half-length,

L, along the ocular surface remains fixed for all simulations,thereby imposing a constraint

on δ through

aδ = L → lim
a→∞

δ = lim
a→∞

L

a
= 0 . (2.36)

Hence the geometry of the substrate is controlled solely byδ, with δ = 0 corresponding to

a Cartesian plane. Thus defined, coordinates(ξ, η) are configured so that theeη-direction

is the same as that ofeR, whilst eξ is opposite toeθ in order that the prevailing direction

of gravity is aligned with increasingξ. Note that the minus sign in the definition ofξ

in (2.35) accounts for the sign change associated with changing from a left-handed set
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of orthonormal vectors in Figure 2.2 to a right-handed set inFigure 2.3. To simplify

calculations, the azimuthal velocity is re-defined in the marginal-surface coordinates and

the gravity vector can now be defined:

U(ξ,η) = −U(R,θ) , and G = G cos

(
ξ

a cos δ

)
eξ + G sin

(
ξ

a cos δ

)
eη ,

whereG is the gravitational field strength, and the coordinate subscripts onU will be

dropped in subsequent calculations. The locus of the free surface is re-defined according

to (2.35) as

φφφ = φ(ξ, t) eη , with φ(ξ, t) = χ(ξ, t) − a cos δ . (2.37)

O

a cos δ

θ = δ

φφφ

R

θ
O′

G

η

ξ

eR = eη

eθ

eξ

n

t

L

−L

Figure 2.3: Defining sketch for the marginal-surface coordinates(ξ, η) of (2.35). The surface

η = 0 is defined a distancea cos δ from the polar coordinate origin,O, with the origin of the

marginal-surface coordinates,O′, falling on the intersection of this surface and the lineθ = 0.

Orthonormal basis vectorseξ andeη are shown, as well as the transformed normal,n, and tangent,

t. In the marginal-surface coordinates, the locus of the freesurface is given byφφφ.
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2.2.1 Non-dimensional, scaled equations of motion

To make progress with the system of equations (2.20) - (2.22)subject to boundary

conditions (2.23) and (2.28) - (2.30), the thin-film lubrication approximation is employed

with the aim of reducing the equations to a coupled pair of approximate evolution

equations for the film thickness and surfactant concentration. The central principle

underlying the lubrication approximation is an assumptionthat the ratio of fluid activity

in one coordinate direction to that in the other coordinate direction(s) can be characterized

by a small parameter,ǫ, with 0 < ǫ≪ 1, the ultimate goal being to expand each dependent

variable as a power series inǫ to generate an asymptotic hierarchy of terms within each

equation. In making such expansions, the standard theory assumes that all coefficients

multiplying powers ofǫ within the governing equations are of orderO(1); however, it

will be shown in§2.2.2 that this is not the case. A review of the magnitude of terms is

thus required before an expansion can be made.

The lengthscales of the eye yield a convenient small parameter defined as the aspect

ratio between the half-length of the palpebral fissure,L = 5 × 10−3 m, and the

characteristic film height away from the eyelids,d = 5 × 10−6 m (Braun & King-Smith,

2007);

ǫ ≡
d

L
= 10−3 . (2.38)

The perpendicular height of the tear fluid above the ocular substrate,H(ξ, t), is used to

redefine the locus of the free surface

φ(ξ, t) = a(1 − cos δ) + H(ξ, t) . (2.39)

The lengthscales mentioned above, together with equation (2.39), motivate the definition

of the following non-dimensional marginal-surface coordinates and tear-film depth

ξ =
L cos δ

C
ξ̃ , η = a(1 − cos δ) + dω̃ =

L

δ

(
1 − cos δ + ǫδω̃

)
, H = dh̃ , (2.40)

where0 ≤ ω̃ ≤ h̃, andC is a yet-unspecified, orderO(1) constant that scales the

azimuthal direction and is central to the enforcement of theboundary conditions for the
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pair of coupled evolution equations when they are solved using the numerical scheme

that is introduced in Chapter 3.C is introduced here as it permeates through the

equations of motion; however, its definition is deferred to equation (3.16) in§3.2. Note

that equations (2.36) and (2.38) have been used in the definition of η. Here, and in

subsequent definitions, tildes will be used to denote scalednon-dimensional variables, i.e.

variables that are strictly of orderO(1). With the non-dimensional coordinates so defined,

derivatives with respect to the original, dimensional plane-polar coordinates(R, θ) are

transformed via (2.35) and (2.40) into

1

R

∂

∂θ
=

−C

L(1 + ǫδω̃)

∂

∂ξ̃
and

∂

∂R
=

1

d

∂

∂ω̃
.

The dependent variables in the bulk flow are non-dimensionalised using a typical draining

velocity, U0 = 1 × 10−3 m s−1 (Braun & Fitt, 2003). This velocity is used to adopt a

viscous pressure scale and an advective timescale. Temperature is non-dimensionalised

using the difference in temperature between the eye and the ambient environment. The

non-dimensionalansatzemployed within the model to define the orderO(1) ‘tilded’

variables is

(U, V ) = U0(ũ, ǫṽ) , P =
µU0

ǫ2L
p̃ , PATM =

µU0

ǫ2L
p̃ATM ,

T =
(
TEYE − T VSAT

)
Θ̃ + T VSAT , t =

L

U0
t̃ , Z = ǫd ζ̃ ,

(2.41)

in whichµ = 1.002 × 10−3 kg m−1 s−2 is the kinematic viscosity andT VSAT is the vapour

saturation temperature, taken to beT VSAT = 293 K. Theansatz(2.41) contains scalings for

both the velocity normal to the ocular surface and the pressure. The fluid is not allowed

to penetrate the ocular surface, forcing the velocity normal to the surface to be zero at that

point. Furthermore, the fluid is presumed to be extremely thin compared with its length

along the ocular surface, leading to the assumption that radial velocity,V , is an order of

ǫ smaller than the transverse velocity,U , which itself requires no scaling as the draining

velocityU0 is taken along the ocular surface. The pressure terms are scaled in order that

the asymptotic hierarchy obtained from expansion of the normal-stress condition (2.28)
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Table 2.1: Physical parameters for the tear-flow problem. Values of fluid properties are taken for

water, whilst vapour properties are for air at atmospheric pressure at20◦C. The critical surfactant

concentration is a representative value for condensed films(Adam, 1941; Burdon, 1949), and the

surfactant diffusivity is taken from Sakata & Berg (1969). The critical micelle value for the surface

tension is taken from Tiffanyet al. (1989).

Parameter Value Unit Description

L 5 × 10−3 m Half-length of palpebral fissure

d 5 × 10−6 m Typical film depth

U0 10−3 m s−1 Typical velocity

ρ 998.2 kg m−3 Fluid density

ρV 1.2 kg m−3 Vapour density

µ 1.002 × 10−3 kg m−1 s−1 Fluid kinematic viscosity

g 9.81 m s−2 Gravitational acceleration

PATM 1.01 × 105 kg m−1 s−2 Atmospheric pressure

T VSAT 293 K Vapour saturation temperature

TEYE 310 K Eye temperature

k 0.68 W m−1 K−1 Fluid thermal conductivity

κ 1.7 × 10−7 m2 s−1 Fluid thermal diffusivity

Lv 2.3 × 106 J kg−1 Latent heat of vaporization

J0 1.5 × 10−5 kg m−2 s−1 Evaporative mass flux

Ψm 1018 molecules m−2 Critical surfactant concentration

DS 3 × 10−8 m2 s−1 Surfactant diffusivity

σ0 0.073 N m−1 Surfactant-free surface tension

σm 0.045 N m−1 Surface tension whenΨ = Ψm

yields a well-posed system of equations. Additionally, theǫ scaling of the slip length

meansZ falls within the lower limit of the range of values presentedin Braun & King-
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Smith (2007). Similar scalings can be found in other mathematical literature on the tear

film (Braun & Fitt, 2003; Aydemiret al., 2011).

Finally, surfactant-based quantities within the free surface are non-dimensionalised

using their critical micelle values;

Ψ = ǫ2Ψmψ̃ , σ = σmσ̃ , (2.42)

where the scaling of the surfactant concentration reflects that the lipid molecules are

not densely packed. It should be noted that the value ofΨm is taken for a tightly-

packed, condensed film, but that the term itself will be foundto drop out of the non-

dimensional equations; the important factor is theǫ2 scaling, which will affect the

constitutive relationship for the surface tension (2.33).The physical parameters for the

tear-flow model are summarised in Table 2.1.

Upon changing variables, non-dimensionalising, and dropping tildes on all

subsequently presented variables, the differential equations governing the fluid flow are

transformed thus: the transverse Navier-Stokes equation (2.20a) becomes

Re

(
ut + vuω +

Cuuξ
1 + ǫδω

+
ǫδuv

1 + ǫδω

)
= −

C pξ
ǫ2(1 + ǫδω)

+
uωω
ǫ2

+
δ uω

ǫ(1 + ǫδω)

+
C2 uξξ

(1 + ǫδω)2
−

δ2u

(1 + ǫδω)2
+

2ǫδC vξ
(1 + ǫδω)2

+ St cos

(
δξ

C

)
, (2.43a)

and the radial Navier-Stokes equation (2.20b) becomes

ǫ2Re

(
vt + vvω +

C uvξ
1 + ǫδω

−
δ2u

1 + ǫδω

)
= −

pω
ǫ2

+ vωω +
ǫδ vω

1 + ǫδω

+
ǫ2C2 vξξ

(1 + ǫδω)2
−

ǫ2δ v

(1 + ǫδω)2
−

2ǫδC uξ
(1 + ǫδω)2

+ St sin

(
δξ

C

)
. (2.43b)

The continuity equation (2.21) yields

C uξ + (1 + ǫδω)vω + ǫδv = 0 , (2.44)

and the heat equation (2.22) becomes

RePr

(
Θt + vΘω +

C uΘξ

1 + ǫδω

)
=

Θωω

ǫ2
+

δΘω

ǫ(1 + ǫδω)
+

C2 Θξξ

(1 + ǫδω)2
. (2.45)
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The non-dimensional constants introduced in the above equations are formed from

groupings of the physical parameters for the flow;

Re =
ρU0L

µ
, St =

ρgL2

µU0
, and Pr =

µ

ρκ
(2.46)

are respectively the Reynolds number (quantifying the relative importance of inertial

forces to viscous forces), the Stokes number (the ratio of gravitational forces to viscous

forces) and the Prandtl number (the ratio of the rates of viscous diffusion to thermal

diffusion).

At the ocular surface, the boundary conditions (2.6) become

u = ǫζ
(
uω − ǫδu

)
, v = 0 , and Θ = 1 , (2.47)

atω = 0 (this value has already been substituted into the slip boundary condition). It is

important to note here that the scaling of the slip length,Z, in theansatz(2.41) means

that slip effects are observed at orderO(ǫ) in the boundary condition foru; a ‘no-slip’

boundary condition is obtained at leading order in (2.47). At the free surfaceω = h, the

normal- and tangential-stress conditions, (2.28) and (2.29), respectively become

−
p

ǫ2
+
pATM

ǫ2
+

J2
0L

µU0 (1 + A(ǫ2ψ)B)2

(
1

ρV
−

1

ρ

)

+
2

(1 + ǫδh)2 + ǫ2C2 h2
ξ

[

(1 + ǫδh)2 vω − ǫ2C2 vξhξ +
ǫ3δC2 vh2

ξ

1 + ǫδh

+ ǫδC uhξ − (1 + ǫδh)C hξuω +
ǫ2C3 uξh

2
ξ

1 + ǫδh

]

=
αA
(
(1 + ǫδh) ǫC2 hξξ − 2ǫ2δC2 h2

ξ − δ(1 + ǫδh)2
)

(
(1 + ǫδh)2 + ǫ2C2 h2

ξ

)3/2(
1 − ǫ2Bψ/A

)3
,

(2.48)

and
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1

ǫ
(
(1 + ǫδh)2 + ǫ2C2 h2

ξ

)1/2

[
uω

(
ǫC2 h2

ξ − (1 + ǫδh)2
)

+ 2ǫ2δC hξv

+
(
ǫδu− ǫ2C vξ

)(
1 + ǫδh−

ǫ2C2 h2
ξ

1 + ǫδh

)
+ 2ǫ2C2 hξuξ − 2ǫ2(1 + ǫδh)C hξvω

]

= −
3ǫ2αBC ψξ(

1 − ǫ2Bψ/A
)4 .

(2.49)

The constitutive equations (2.33) and (2.34) have been substituted into the stress

conditions and, furthermore, the non-dimensional form of (2.33) has been simplified by

making the substitutions (see Table 2.1)

A ≡
σ0

σm
=

73

45
, and B ≡ A(1 −A1/3) . (2.50)

The balance of energy (2.30) is transformed to

J0L

µU2
0 (1 + A(ǫ2ψ)B)

[
Lv +

J2
0

2

(
1

(ρV )2 −
1

ρ2

)]

+
Θω(1 + ǫδh)2 − ǫ2C2 hξΘξ

ǫBr (1 + ǫδh)
(
(1 + ǫδh)2 + ǫ2C2 h2

ξ

)1/2

+
ǫ
(
(v − ht) (1 + ǫδh) − C uhξ

)

(1 + ǫδh)2
(
(1 + ǫδh)2 + ǫ2C2 h2

ξ

)1/2

{
2(1 + ǫδh)2vω

+ C hξ

[
ǫδu − (1 + ǫδh)uω − ǫ2C vξ

]}
= 0 .

(2.51)

By aggregating the physical parameters within the boundaryconditions at the free surface,

two further non-dimensional numbers that characterize theflow can be obtained in (2.48)

and (2.51), these are

α =
σm
µU0

, and Br =
µU2

0

k (TEYE − T VSAT)
. (2.52)

α is the inverse Capillary number, which measures the relative influence of surface-

tension forces to viscous forces, andBr is the Brinkman number, the ratio of heat
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produced through viscous friction to heat transported by conduction within the fluid. It

should be noted that the first lines of (2.48) and (2.51) contain non-dimensional groupings

of the evaporative mass flux and other physical parameters; these groupings are not

assigned specific names, but their magnitudes will be calculated in§2.2.2, along with

those of all non-dimensional numbers defined above.

Finally, with the redefinition (2.39) of the locus of the freesurface, the pair of coupled

evolution equations (2.31) and (2.32) yield PDEs for the non-dimensional height above

the ocular surface and surfactant concentration, respectively;

ǫ
(
(v − ht) (1 + ǫδh) − C uhξ

)

(
(1 + ǫδh)2 + ǫ2C2 h2

ξ

)1/2
=

J0

ρU0 (1 + A(ǫ2ψ)B)
, (2.53)

and

ψt −
ǫ ψht (1 + ǫδh)

(
ǫC2 hξξ(1 + ǫδh) − 2ǫ2δC2 h2

ξ − δ(1 + ǫδh)2
)

(
(1 + ǫδh)2 + ǫ2C2 h2

ξ

)2

+ ψ



C(uξ + hξuω)

(1 + ǫδh)
+
ǫ
(
δht (1 + ǫδh) + ǫC2 hξhξt

)

(
(1 + ǫδh)2 + ǫ2C2 h2

ξ

)

+
ǫ2 C3 hξu

(
hξξ(1 + ǫδh) − ǫδh2

ξ

)

(1 + ǫδh)2
(
(1 + ǫδh)2 + ǫ2C2 h2

ξ

)





+ C ψξ



 u

(1 + ǫδh)
+

ǫ2C hξht(
(1 + ǫδh)2 + ǫ2C2 h2

ξ

)





=
C2

Pe
(
(1 + ǫδh)2 + ǫ2C2 h2

ξ

)



ψξξ −
ǫhξψξ

(
δ(1 + ǫδh) + ǫC2 hξξ

)

(
(1 + ǫδh)2 + ǫ2C2 h2

ξ

)



 .

(2.54)

Here, the Péclet number on the right-hand side of (2.54) is defined to be the ratio of

advective movement of surfactant molecules to diffusive movement,

Pe ≡
LU0

DS
. (2.55)
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The grouping of physical parameters on the right-hand side of (2.53) also yields a non-

dimensional quantity, the magnitude of which is discussed in the following subsection.

2.2.2 Scaling of non-dimensional terms

Through the scaled non-dimensionalansatz, (2.40) and (2.41), the equations governing

the tear-flow problem (2.43) - (2.45), (2.47) - (2.49), (2.51), and (2.53) - (2.54) have

been transformed to contain non-dimensional variables with magnitude of orderO(1).

However, the non-dimensional numbers defined in§2.2.1 are formed from un-scaled

groupings of the physical parameters in Table 2.1. Before simply expanding all equations

as power series in the small parameter to form a thin-film approximation, the magnitudes

of the non-dimensional groups are first investigated in the spirit of representing, as

accurately as possible, physically-realistic scalings oftheir magnitudes in terms ofǫ.

Using real ophthalmic data for the tear film, the non-dimensional numbers are scaled in

terms ofǫ to obtain a physically-consistent form of the equations of motion. Under such

scalings, the aforementioned governing equations are transformed from generic equations

of lubrication approximation modelling to equations that are claimed to representno more

thanthe flow of tears upon the human eye; this ensures that resultsgenerated by the model

will genuinely merit interpretation.

Using the parameter values collated in Table 2.1, the non-dimensional numbers

defined in (2.46), (2.52) and (2.55) are found to have the following values

Re = 4.98 ≈ ǫ−0.232 ,

St = 2.44 × 105 ≈ ǫ−1.796 ,

P r = 5.90 ≈ ǫ−0.257 ,

α = 4.49 × 104 ≈ ǫ−1.551 ,

Br = 8.67 × 10−11 ≈ ǫ3.354 ,

P e = 167 ≈ ǫ−0.740 .

(2.56)
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The realistic scalings suggested by (2.56) are built into the modelling via a rescaling of

the non-dimensional parameters using

Re = ǫ0 re ,

St = ǫ−2 st ,

P r = ǫ0 pr ,

α = ǫ−3 α0 ,

Br = ǫ3 br ,

P e = ǫ−1 pe ,

(2.57)

wherein all lower-case parameters andα0 are by genuine physical considerations

constants of orderO(1). It should be noted here that the scaling of the inverse capillary

number,α, has been altered to increase the importance of terms relating to surface tension

and surface-tension gradients, respectively arising in the normal- and tangential-stress

conditions at the free surface. One of the primary aims of this work is to study the effects

of variable surface tension on the tear film, hence this rescaling is necessary to promote

such effects in the model. Furthermore, in order that the effects of evaporation from the

bulk fluid occur at leading-order in the balance of mass, the non-dimensional grouping in

(2.53) is rescaled using an orderO(1) parameterE via

J0

ρU0
= 1.50 × 10−5 ≈ ǫ1.608 −→

J0

ρU0
= ǫE . (2.58)

Within the normal-stress condition (2.48) the two non-dimensional groupings model the

transfer of momentum through the interface as fluid molecules evaporate into the vapour

phase. The scaled terms become

J2
0L

ρµU0
= 1.12 × 10−9 ≈ ǫ2.983 −→

J2
0L

ρµU0
= ǫ3m,

J2
0L

ρV µU0

= 9.36 × 10−7 ≈ ǫ2.010 −→
J2

0L

ρV µU0

= ǫ2mV ,

(2.59)

with m andmV defined asO(1) factors. Finally, the three non-dimensional quantities in



Chapter 2. Governing Equations 44

the energy balance at the interface (2.51) are rescaled using

J0LLv
µU2

0

= 1.72 × 108 ≈ ǫ−2.745 −→
J0LLv
µU2

0

= ǫ−3 λ ,

J3
0L

2ρ2µU2
0

= 8.45 × 10−15 ≈ ǫ4.961 −→
J3

0L

2ρ2µU2
0

= ǫ5 K ,

J3
0L

2(ρV )2µU2
0

= 5.85 × 10−9 ≈ ǫ2.744 −→
J3

0L

2(ρV )2µU2
0

= ǫ3 KV ,

(2.60)

whereλ,K andKV are defined to beO(1). These groupings of parameters multiply terms

that respectively model the heat energy released from the bulk fluid phase as molecules

evaporate into the vapour phase, and the kinetic energies ofthe fluid and vapour molecules

themselves.

Upon replacing the non-dimensional numbers and groupings of physical parameters in

the governing equations with their scaled equivalents (2.57) - (2.60), the tear-flow model

now contains factors that are all of orderO(1), with the exception of the small parameterǫ

that governs the relative size of all terms in the equations.Through the use of real physical

data, the equations of motion have been consistently represented, allowing expansions

of the dependent variables as power series inǫ to be made in with confidence that the

asymptotic equations obtained will be uniformly valid and physically viable.

2.3 Asymptotic expansion and leading-order solution

To make progress with the non-dimensional, scaled (subjectto the rescalings detailed in

§2.2.2) set of differential equations (2.43) - (2.45) and associated boundary conditions

(2.47) - (2.49) and (2.51), the field variablesu, v, p, andΘ are expanded as power series

in the small parameterǫ





u(ξ, ω, t)

v(ξ, ω, t)

p(ξ, ω)

Θ(ξ, ω, t)






=

N∑

j=0

ǫj






uj(ξ, ω, t)

vj(ξ, ω, t)

pj(ξ, ω)

Θj(ξ, ω, t)






+ o(ǫN) , (2.61)
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with the aim of transforming the original nonlinear probleminto a hierarchy of linearised

differential equations at each order ofǫ. Through substitution of (2.61) into the

aforementioned governing equations and expanding everything in ǫ, a hierarchy of fully

closed boundary value problems is created at different orders ofǫ, solution of which yields

the coefficient functions of (2.61) that yield uniformly-valid asymptotic expansions for the

field variables. Substitution of the expanded field variables into (2.53) and (2.54) converts

the pair of coupled evolution equations to an asymptotic form.

In keeping with the existing literature on the tear-flow problem, the leading-order

solution to the system of differential equations listed above is sought, and substituted into

the pair of coupled evolution equations to study the dominant behaviours within the tear

film. Making the expansion of the field variables, the leading-order components of all

relevant partial differential equations are

(2.43a): u0, ωω = C p0, ξ − st cos

(
δξ

C

)
,

(2.43b): p0, ω = 0 ,

(2.44): C u0, ξ + v0, ω = 0 , and

(2.45): Θ0, ωω = 0 ,

(2.62)

whereinj = 0 in (2.61) and differentiation with respect to a variable is denoted after a

subscript comma. These equations reveal that the leading-order temperature distribution

is at most a linear function of depth through the tear film. Theradial component of

the momentum equation shows that the pressure gradient through the film is zero, thus

the leading-order pressure field represents a depth-averaged value that is dependent only

upon the azimuthal coordinateξ; this is a typical feature of thin-film lubrication models.

Finally, the azimuthal component of the momentum equation showsu0(ξ, ω, t) to be a

quadratic function of depth,ω, with all ξ- andt-dependence arising throughp0 and the

boundary conditions.

The differential equations (2.62) must be supplemented by the orderO(1) components
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of the expansions of the slip, no-penetration and continuity of temperature boundary

conditions (2.47) at the ocular surface, which are respectively

u0

∣∣∣
ω=0

= 0 , v0

∣∣∣
ω=0

= 0 , and Θ0

∣∣∣
ω=0

= 1 , (2.63)

and the normal- and tangential-stress conditions, (2.48) and (2.49), and energy balance

(2.51) boundary conditions at the free surface

p0

∣∣∣
ω=h

= pATM − α0AC2 hξξ − α0A δ2h ,

u0, ω

∣∣∣
ω=h

= 3α0BC ψξ , and

Θ0, ω

∣∣∣
ω=h

= 0.

(2.64)

The solution of equations (2.62), satisfying the boundary conditions (2.63) and (2.64), is

u0 =

(
hω −

ω2

2

){
α0AC

[
C2 hξξξ + δ2hξ

]
+ st cos

(
δξ

C

)}
+ 3ω α0BC ψξ ,

v0 = −
ω2

6

[
(3h− ω)

{
α0AC2

[
C2 hξξξξ + δ2hξξ

]
− δst sin

(
δξ

C

)}

+ 3C hξ

{
α0AC

[
C2 hξξξ + δ2hξ

]
+ st cos

(
δξ

C

)}
+ 9α0BC

2 ψξξ

]
,

p0 = pATM − α0AC2 hξξ − α0A δ2h ,

Θ0 = 1 .

(2.65)

The velocity and pressure fields in (2.65) demonstrate that the curvature of the substrate

has a non-trivial influence on the leading-order solution tothe tear-flow problem, which

influence is unseen in all prior models of the tear film (with the exception of Braunet al.,

2012). In the Cartesian limit (δ = 0), the leading-order velocity and pressure fields agree

with the solutions of other formulations that employ the tangential stress condition (2.49)

at ω = h (Joneset al., 2005, in their “zero-stress limit”; Joneset al., 2006; Aydemiret

al., 2011; Zubkovet al., 2012, 2013). However, the fluid velocities of (2.65) differboth

from those of formulations that model the free surface to be tangentially immobile, and

from the velocities of Braun & King-Smith (2007) and Heryudonoet al. (2007), in which
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slip at the cornea is modelled as a leading-order effect. Under the scalings of§2.2.2,

the uniform leading-order temperature field of (2.65) differs from the spatially-variable

distributions derived in Braun & Fitt (2003), Winteret al. (2010) and Li & Braun (2012).

Through the form ofu0 in (2.65), two simplifying substitutions can be made that

partition the behaviours influencing the movement of the tear film into the combined

effects of capillarity and gravity, and the effect of surfactant concentration gradients. Two

functions are defined as

M(ξ) ≡ α0AC
[
C2 hξξξ + δ2hξ

]
+ st cos

(
δξ

C

)
, (2.66a)

Ω(ξ) ≡ 3α0BC ψξ , (2.66b)

using which, the leading-order velocity field in (2.65) is simplified to

u0 =

(
hω −

ω2

2

)
M + ωΩ ,

v0 = −C
ω2

6

[
(3h− ω)Mξ + 3hξM + 3Ωξ

]
.

To identify the limits of validity of the leading-order solution (2.65) to the tear-flow

problem, the orderO(ǫ) components of the governing equations and boundary conditions

are considered as these are the terms of largest magnitude that are neglected through

truncation atO(1). The linearised differential equations for the component terms atO(ǫ)

in (2.43) - (2.45) are

u1, ωω = C p1, ξ − δ (u0, ω + Cωp0, ξ) ,

p1, ω = st sin

(
δξ

C

)
,

C u1, ξ + v1, ω = −δ (ωv0, ω + v0) , and

Θ1, ωω = −δΘ0, ω ,

(2.67)

in which all terms on the right-hand side are explicitly known through (2.65). These are

augmented by theO(ǫ) components of the boundary conditions; at the ocular surface

u1

∣∣∣
ω=0

= ζu0, ω , v1

∣∣∣
ω=0

= 0 , and Θ1

∣∣∣
ω=0

= 0 , (2.68)
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and at the free-surface, the stress conditions and energy balance yield

p1

∣∣∣
ω=h

= α0Aδ

(
2C2 hhξξ + δ2h+

1

2
C2 h2

ξ

)
+ 3α0Bδ ψ,

u1, ω

∣∣∣
ω=h

= δ (u0 − h u0, ω) , and

Θ1, ω

∣∣∣
ω=h

= −λbr .

(2.69)

At this point it is instructive to re-iterate that all linearised differential equations,

boundary conditions and solutions presented within this section are obtained under

the inherent assumptions of the long-wavelength, thin-filmlubrication approximation,

specifically: that the ratio of the fluid activity in the coordinate direction through the film

to the fluid activity in the direction along the film is characterized by the small parameter,

ǫ. Through the scalings made in§2.2.1 and§2.2.2,all variables and derivatives in the

leading-order set of differential equations and boundary conditions used to obtain (2.65),

and in (2.67) - (2.69) are assumed to be strictly of orderO(1). When this is not the

case (for example near a steepening front in the free surface, |hξ| ≫ 1; or where the

free surface has a large curvature,|hξξ| ≫ 1) the asymptotic hierarchy formed to enable

solution of the governing equations ceases to be uniformly valid. Scaled into the notation

of the present work, steep gradients and large curvatures are indeed found throughout

the models of the tear film in the published literature. Despite this, a study of the terms

neglected in the orderO(1) differential equations is never undertaken. Hence near the

pinned menisci, where the first and second derivatives of thefree-surface height may be of

orderO(ǫ−1) or larger, terms that were originally omitted through scaling arguments may

need to be promoted in the asymptotic hierarchy, into the leading-order equations. The

invalidation of the assumptions of the lubrication approximation is illustrated in Zubkov

et al. (2013), wherein a comparison of fluid velocities from a lubrication model and from

solution of the full Navier-Stokes equations in a meniscus pinned at a height of order

O(100) shows the lubrication model to omit a convective mixing region that is observed

in the Navier-Stokes model and, moreover, to predict movement of thefixedcontact line.

Notably, qualitative agreement between predicted tear-film thickness profiles from both
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models is demonstrated. However, this similarity of results may be born of the constraints

of the modelled scenario, specifically: a thin film coupled toa large, pinned meniscus,

hence there is very little movement the film could exhibit that would lead to significantly

different results between the two models.

Herein the assumptions employed to obtain the leading-order flow variables (2.65)

are used to inform the choice of boundary and initial conditions in §2.4.1, enforcing

that all expansions used to derive the model evolution equations remain uniformly valid.

With the ordering of the terms in the governing equations (2.43) - (2.45), (2.47) - (2.49),

and (2.51) remaining intact, the leading-order solution (2.65) is henceforth adopted as an

accurate approximation to the tear-flow problem. Through this truncation of the power-

series expansion, it is noted that each field variable in (2.61) is effectively expanded with

only one component term on the right-hand side (u = ǫ0u0, etc.). This notation is relaxed

in the following sections, and so the subscript zeros appended to each field variable in

(2.65) are subsequently removed, the implication being that it is theO(1) system under

consideration. As the leading-order temperature distribution (2.65) is shown to be spatio-

temporally constant, its evolution is not considered in theremainder of this work.

2.4 Coupled evolution equations

The pair of coupled evolution equations for the leading-order tear-flow problem is

obtained through the substitution of the leading-order flowdynamics (2.65) into (2.53)

and (2.54), which are respectively subjected to the rescalings of (2.58) and (2.57). To

simplify the expressions, the functions defined in (2.66) are utilised.

Evaluating the fluid velocity components,u andv (2.65), at the free surface,ω = h,

and substituting into (2.53) allows all spatial derivatives of h to be identified with the

gradient of a mass flux,Q, of fluid along the ocular surface. This flux is defined as
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Q(ξ) ≡

∫ h

0

u dω =
h3

3
M +

h2

2
Ω , (2.70)

and is used to cast the leading-order thin-film evolution equation for the film thickness

into a conservative form given by

ht + CQξ + E = 0 . (2.71)

Upon substitution ofu (2.65) and its derivatives atω = h into (2.54), the leading-order

thin-film evolution equation for the concentration of surfactant at the fluid-air interface

may be expressed as

ψt + CRξ = 0 , (2.72)

in which

R(ξ) ≡ ψ u
∣∣∣
ω=h

=
ψh2

2
M + ψhΩ (2.73)

plays a role that is here called a ‘concentration flux’ for thesurfactant. It should be

noted that the scaling (2.57) of the Péclet number naturally telescopes diffusive terms in

the asymptotic hierarchy of (2.54) to lower than orderO(1), so that the leading-order

evolution equation contains only advective terms in addition to the time derivative.

Equations (2.71) and (2.72) form the pair of coupled evolution equations to be solved

in Chapters 5 and 6. These must be augmented by initial profiles for each distribution,

together with physically-motivated boundary conditions for both the height and surfactant

profiles at the eyelids.

2.4.1 Boundary and initial conditions for h andψ

Evolution equations (2.71) and (2.72) are first-order in time and respectively fourth- and

second-order in the spatial coordinateξ. Thus, in order that the system of equations is

well-posed, (2.71) requires a single initial condition to be enforced on the film thickness,

h, as well as four boundary conditions at the eyelids; similarly, (2.72) requires one initial
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condition, and two boundary conditions to be imposed upon the surfactant concentration,

ψ. Due to the requirement that the initial conditions satisfythe appropriate boundary

conditions, a discussion of the initial conditions is deferred until after the boundary

conditions at the eyelids have been defined.

Contact-angle boundary condition

The first boundary condition forh is specified by the contact angle,θOPHTH, subtended

between the eyelid margin and the free surface of the tear film. The contact angle arises

through the physical interaction of the surface tensions atthe three-phase contact line, at

which point the balance of forces acting along the interfaces between each phase is given

by Young’s law (Young, 1805; Adam, 1941; Snoeijer & Andreotti, 2013)

σSV = σSF + σ0 cos θOPHTH , (2.74)

wherein subscripts SV and SF respectively denote the surface tensions along the solid-

vapour and solid-fluid interfaces, andσ0 is the surface tension of the clean fluid-vapour

interface (cf. Table 2.1). In dimensional coordinates, the contact angle satisfies

cot θOPHTH = ∓
1

χ

∂χ

∂θ

∣∣∣∣
θ=±δ

.

Converting to scaled, non-dimensional, marginal-surfacecoordinates (2.40), the gradient

of the film thickness at the contact line is related to the contact angle through

hξ

∣∣∣
ξ=±C

= ±
1 + ǫδh

ǫC
cot θOPHTH . (2.75)

However, using thein vivo measurements of Johnson & Murphy (2006, page 522) the

contact angle can readily be estimated asθOPHTH ≈ π/6, from which (2.75) yields gradients

of the scaled film thickness of magnitude

| hξ |= O(ǫ−1) ≫ 1 .
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As such, boundary condition (2.75) is not feasible for the present model as it is currently

presented, because it invalidates the constraint that all terms and their derivatives are

strictly of orderO(1) (as mentioned on page 48). To ensure that the ‘long-wavelength’

assumptions (relative toh) of the lubrication approximation remain valid, (2.75) must be

recast in an analogous form, modelling|hξ| as an orderO(1) quantity through the use of

a scaledcontact angle,̂θ, yielding

hξ

∣∣∣
ξ=±C

= ±
1 + ǫδh

C
cot θ̂ , (2.76)

with θ̂ & π/4. Importantly, the constraint placed on̂θ by the lubrication approximation

effectively models an unscaled contact angle that is unphysically large, θOPHTH ≈ π/2,

yielding a tear film that is nearly flat. Nevertheless, the useof (2.76) enables novel

behaviours of the tear film to be observed in Chapters 5 and 6.

The use of boundary condition (2.76) is, to the author’s knowledge, wholly new to the

field of mathematically modelling the tear film. In all previous literature (eg. Braun & Fitt,

2003; Joneset al., 2005; Aydemiret al., 2011) a pair of Dirichlet boundary conditions

are chosen at the contact line, effectivelypinning the height of the fluid and allowing

the film profile to assume any contact angle. Such an approach is justified through a

discussion of the change in the hydrophilicity of the eyelidmargin at the mucocutaneous

junction; the presence of the lipid-secreting Meibomian glands forming an anterior limit

for the tear film on the eyelid. It is accepted that the mucocutaneous junction provides

a barrier to the tear film as it advances, anteriorly, along the eyelid margin. However,

nowhere in the literature is there either given or discusseda physical reason for the tear

film not to recede over the already-wetted and hydrophilic epithelia of the eyelid, which

are not covered by lipid. Hence, in the following sections and chapters, what is believed

to be a pioneering investigation is undertaken that uses the(considerably more difficult to

implement) condition (2.76) as a physically more-justifiable replacement of the ‘Dirichlet

pinning’ used in all prior studies. Through employing boundary condition (2.76), the

tear film is allowed to slip to a level that is naturally definedby the surface energies
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at the three-phase contact line. Thus, by replacingθOPHTH with θ̂ in Young’s law (2.74),

boundary condition (2.76) effectively models a contact line located at a point below the

mucocutaneous junction, where the epithelia both anteriorand posterior to the point of

contact on the eyelid margin are similarly wettable,σSV ≈ σSF. This variation of the

contact-line position complements thein vivo observations of Goldinget al. (1997).

Furthermore, pinning of the tear film at the eyelids appears to be contradictory in

models which include evaporative losses from the bulk fluid,particularly as the eyelid

margins have been shown to maintain a higher temperature than the cornea (Tomlinson

et al., 2011), and hence should enhance evaporation in the meniscus regions. In pinned

models, the thickness of the tear film is reduced in all areasexceptat the eyelids, inducing

increasingly steep gradients in the film profile that themselves will influence the flow

field. By contrast, through allowing the tear film to slip at the eyelid margin in the present

model, the full film profile may be steadily diminished through evaporation without the

creation of artificial flow dynamics.

Velocity-motivated boundary conditions

The remaining boundary conditions for the film thickness,h, and the boundary conditions

for the concentration of surfactant,ψ, are motivated by modelling the eyelids as solid

boundaries in the tear film flow. These cause the azimuthal velocity to vanish at all heights

along the eyelid

u(±C, ω, t) =

[(
hω −

ω2

2

)
M + ωΩ

]

ξ=±C

= 0 , for 0 < ω ≤ h ,

thereby automatically being consistent with zero flux at theeyelids (in the absence of

lacrimal influx or punctal efflux in the derivation of the model). This equation is satisfied

when bothM(ξ) and Ω(ξ) vanish atξ = ±C whence, from (2.66a) and boundary

condition (2.76), a boundary condition can also be derived on third derivative ofh as

hξξξ

∣∣∣
ξ=±C

=
−st cos δ

α0AC3
∓
δ2(1 + ǫδh)

C3
cot θ̂ , (2.77)
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which, under the assumptions of the lubrication approximation, effectively specifies the

rate of change of interfacial curvature at the contact line;and from (2.66b), the first

derivative ofψ satisfies

ψξ

∣∣∣
ξ=±C

= 0 , (2.78)

giving a concentration of surfactant that is spatially constant in the vicinity of the contact

line. Although boundary condition (2.77) was formulated using similar arguments to

those in the published literature, it may be argued that enforcing a boundary condition

on any derivative higher thanhξ is tantamount to enforcing a boundary condition on the

pressure field through the expression forp0 in (2.65). This is an artefact of the modelling,

in which the elimination of the pressure in the velocity fieldintroduceshξξ, hξξξ and

hξξξξ to the evolution equation, about which the original system (2.1) – (2.3) cannot

possibly ‘know’. As such, instead of evolving under the fourth-order partial differential

equation (2.71) for the film thickness, which is a mathematical construction, the real-life

tear film would evolve according to the Navier-Stokes equations and boundary conditions

as presented in§2.1.

As introduced above, the eschewal of a Dirichlet boundary condition within this model

allows slippage of the contact line along the surface of the eyelid as the height of the tear

film evolves. This suggests that adynamiccontact angle,̂θD, should be used to model

the motion-dependent changes to the advancing and recedingcontact angle. However, in

the absence of any data for the behaviour of the contact angleduring dynamic wetting of

the epithelia of the eyelid margin,̂θ is modelled as astaticparameter. Furthermore, the

scaling of the fluid velocity perpendicular to the ocular surface (2.41) and the value ofU0

(cf. Table 2.1) mean that any dynamic model for the contact angle (for example Voinov,

1976) yields perturbations to the specified static angle that are of ordero(1), thus for the

purposes of this thesis a static contact angle is employed,

θ̂D ≃ θ̂ .
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Initial conditions

To close the system, a pair of initial conditions,h0(ξ) andψ0(ξ), must be specified that

respectively define the shape of the tear film and distribution of lipid molecules at the end

of a blink. The initial conditions must be chosen from the setof profiles that satisfy the

boundary conditions (2.76) - (2.78); if this is not the case,the imposition of the boundary

conditions on the system would cause an un-natural forcing on the initial dynamics of the

tear film and the surfactant concentration.

In the published literature many of the initial conditions for the height of the thin film

contain similar characteristics; a wide, flat central region with steep menisci at the eyelids.

In many cases (Braun & Fitt, 2003; Joneset al., 2005; Braun & King-Smith, 2007)

the initial condition consists of a flat-centred, steep-sided, ‘U-shaped’ initial condition

obtained using a high even power of the azimuthal coordinate. Importantly, in all cases it

should be noted that such initial conditions contain very steep gradients near the interval

end points; features that invite the condition|hξ| ≫ 1, which is incompatible with the

assumptions of the lubrication approximation employed in the modelling.

To preclude the artificial introduction of discontinuous derivatives3, a splined initial

condition is used to blend a steep-sided, U-shaped profile with one that has shallower

menisci and satisfies the boundary conditions. The U-shapedprofile is defined as

U(ξ) = hMID

(
1 + (r − 1)

ξ8

C8

)
, (2.79)

wherehMID is the height of the flat central region atξ = 0, andr > 0 is the ratio of the

meniscus height atξ = ±C to the height atξ = 0. A blend pointξ = b is specified, at

3The model of Braun & Fitt (2003) uses a piecewise-continuousinitial conditionh0, which matches

quadratic boundary menisci to a flat central profile. Thus defined, the initial profile has a discontinuous

second derivative ofh0 at the matching points. Furthermore, with gravity included, this initial condition

will fail to satisfy the boundary conditions that are imposed on the third spatial derivative ofh. Not only have

these aspects not been critically questioned, but also theyhave been adopted verbatim by the subsequent

study of Winteret al. (2010).
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which the function,h0, and its derivatives up to fourth-order match those ofU , forming

five constraints onh0.

The forms of functionU(ξ) and boundary condition (2.76) suggest definingh0 as an

even function ofξ. However, boundary condition (2.77) enforces a break in thesymmetry

of h0 when gravity is included in the model, whenceh0 is constructed as the combination

of a symmetry-breaking functionG(ξ) and a polynomial formed of nine even powers ofξ

h0(ξ) ≡ G(ξ) +

8∑

j=0

aj ξ
2j , (2.80)

from which the nine constantsaj are fixed using the constraints described above and four

further requirements that are subsequently outlined.

The symmetry-breaking functionG(ξ) must be determined first and is required to

satisfy six constraints. As such, it is defined as a fifth-order polynomial in single powers

of ξ

G(ξ) =
5∑

j=0

Aj ξ
j , (2.81)

where the six coefficients,Aj , are fixed through enforcing thatG(ξ) satisfies boundary

condition (2.77) and

G
∣∣∣
ξ=±C

= 0 , and Gξ

∣∣∣
ξ=±C

= 0 .

The latter two pairs of conditions ensure thatG(ξ) and its first derivative vanish at the

eyelids, allowing all ‘even-power behaviour’ to be enforced by the polynomial inh0.

Equation (2.80) contains nine free parameters,aj, of which five are fixed through

asserting that the value ofh0 and its first four derivatives match those ofU at the blend

point. The remaining four conditions are

h0

∣∣∣
ξ=0

= hMID , h0

∣∣∣
ξ=C

= r hMID ,
dh0

dξ

∣∣∣∣
ξ=C

=
1 + ǫδrhMID

C
cot θ̂ , and

d3h0

dξ3

∣∣∣∣
ξ=C

=
−st cos δ

α0AC3
−
δ2(1 + ǫδrhMID)

C3
cot θ̂ ,
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in which the restrictions onG(ξ) and the even powers ofξ in (2.80) ensure that all four

boundary conditions are satisfied, and that the meniscus height is identical at both eyelids.

The functionsU , G andh0 may be readily programmed using an algebraic manipulator

such as MAPLE, which can be used to solve for the unknown coefficients in terms of the

orderO(1) parameters in the model. The general form of these coefficients is extremely

cumbersome, and is not presented in this thesis.

To study the effects of surfactant on the thickness of the tear film, three initial

conditions are defined forψ0(ξ). The first models a clean surface with no surfactant,

allowing the bulk fluid to move under the effects of gravity and constant surface tension.

The second models a uniform concentration of surfactant after the eye has opened,

which would create no surface tension gradients to drive theinitial flow characteristics.

Instead, any movement of the fluid would be created from the relaxation of the initial

height profile, which itself would advect the surfactant, causing interaction and feedback

between the coupled equations. Enforcing a uniform initialdistribution of surfactant

is akin to modelling the ‘pleated-drape’ effect observed byMcDonald (1968, 1969), in

which the movement of the lipid layer during a blink resembles that of a curtain gathering

in front of the advancing lid as the eye closes, and subsequently unfolding as the eyelid

opens. These two options are given by

ψ0(ξ) = 0 , for a surfactant-free interface, and (2.82a)

ψ0(ξ) = 1 , for a uniform surfactant distribution, (2.82b)

both of which initial conditions also satisfy boundary condition (2.78).

The third initial condition models a variable distributionof surfactant, in which the

concentration of lipid is higher in the inferior half of the free surface (ξ > 0) than

in the superior half (ξ < 0). This models the delivery of Meibomian lipid of Brown

& Dervichian (1969), Holly & Lemp (1977), and Bronet al. (2004) in which, during

the upstroke of a blink, lipid is drawn from a reservoir located at the lower lid, lagging
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slightly behind the advancing upper eyelid. Despite the rapid spreading of the lipid during

the opening phase, the location of the reservoir leads to a non-uniform distribution of

lipid, with greater concentrations over the inferior cornea, ξ > 0. The initial condition is

constructed as a polynomial consisting of a constant term and odd powers ofξ,

ψ0(ξ) = b0 +

3∑

j=1

bj ξ
2j−1 , (2.83)

in which three of the four coefficients,bj , are fixed by asserting that

ψ0

∣∣∣
ξ=−C

= ψMIN , ψ0

∣∣∣
ξ=0

= ψ̄ , and
dψ0

dξ

∣∣∣∣
ξ=C

= 0 ,

whereψMIN is the minimum concentration of surfactant (found at the upper lid), andψ̄ is

the mean concentration of lipid, taken to beψ̄ = 1 in scaled, non-dimensional variables.

The third condition is a statement of boundary condition (2.78). The remaining coefficient

is fixed using an additional, fictitious boundary condition that is required by the numerical

scheme (see§3.2.2 for details). MAPLE may, again, be used to solve for the coefficients,

bj , in terms of the parameters of the model.

2.4.2 Viability of pinned boundary conditions

Central to the derivation of the initial condition (2.80) isthe enforcement of the

physically-motivated boundary conditions, (2.76) and (2.77), for the evolution equation

(2.71). This enforcement averts an artificial forcing of thesystem when the boundary

conditions are abruptly applied at the initiation of temporal integrations. As previously

mentioned, the specification of only Neumann boundary conditions allows slip of the

three-phase contact line, with the rate of slippage defined by the free-surface velocity at

the eyelid. Boundary condition (2.77) enforces no penetration of the fluid into the eyelid

margin, whence the velocity field at the contact line is purely radial, i.e. tangential to the

eyelid. The initial speed of advancement or recession is specified by the initial conditions

enforced on both the film and the surfactant concentration,cf. (2.65). Thus, by studying
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the initial conditions used within the published literature, the conflict arising between

pinned boundary conditions and the initial speeds and stresses induced at the contact line

is now discussed for two papers that model drainage of the tear film in an open eye.

The initial condition of Braun & Fitt (2003) is formed from quadratic menisci matched

to a flat central profile, as mentioned in a prior footnote3 on page 55. For such an initial

condition, the vertical velocity (Braun & Fitt, 2003, equation 38) is simplified through the

removal of the third and fourth derivatives ofh to

vBF = −
y2

4
hx ,

wherey measures non-dimensional distance from the ocular surface. Using parameter

values taken from Table 1 and Figure 2 of Braun & Fitt (2003), the dimensional velocity

and normal component of the stress tensor acting along the eyelid margin (in Braun &

Fitt’s Cartesian geometry) induced at the three-phase contact line are

vBF = −3.4 × 10−3 m s−1, TBF,yy = 13.6 Pa, at x = LBF ,

vBF = 3.4 × 10−3 m s−1, TBF,yy = 14.0 Pa, at x = −LBF ,
(2.84)

wherex = LBF denotes the lower eyelid, andx = −LBF the upper eyelid; note that

the height profile induces an advancing (anterior) velocityat the upper eyelid. These

velocities, on the order of millimetres per second, are induced within a meniscus that

is modelled to be dimensionally90µm thick, hence they are significant to the tear-film

dynamics in the meniscus regions. These speeds clearly contradict the Dirichlet boundary

conditions enforced in the model of Braun & Fitt (2003), causing the menisci to be un-

naturally held at a fixed height throughout simulations. Thestresses induced at each

contact line are positive, hence the initial condition yields a stress field that acts to push

the contact lines in an anterior direction. Notably, this agrees with the predicted contact-

line motion at the upper lid, but is at odds with the predictedmotion at the lower lid.

In each case the magnitude of the induced normal stress component is four orders of

magnitude smaller than that of standard atmospheric pressure, thus its effect on the fluid

flow would not be expected to be significant.
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A similar contradiction is seen in the model of Makiet al. (2010a) and Makiet al.

(2010b), which may be simplified by taking a cut through the sagittal plane of their three-

dimensional eye to yield a two-dimensional profile. Approximations to the dimensional

contact-line speeds and stresses can then be obtained for the two-dimensional analogue of

the exponentially-decaying initial condition used withinthe model. Temporarily adopting

Maki et al.’s coordinate system, the two-dimensional film profile is studied along the

planex = 0, with they-axis (which runs between the eyelids along the ocular surface)

shifted in order thaty = 0 represents the centre of the plane (Makiet al., 2010a, Figure

2). Thez-axis is identified with the direction normal to the cornea. In the shiftedy-

coordinate, the initial condition (Makiet al., 2010a, equation 9) is approximated by

hMBHK(y) = (h0 − 1) exp

[
−

0.775 − |y|

x0

]
+ 1 , y ∈ [−0.755, 0.755] ,

in which h0 = 13 is the meniscus height, andx0 = 0.1 is a parameter. The upper and

lower eyelids are respectively positioned aty = 0.755 andy = −0.755. Parameter values

from Maki et al. (2010a, Table 1) are used to calculate the dimensional contact-line

velocities and stresses along the eyelid induced through this initial condition, giving

vMBHK = −5.4 × 10−3 m s−1, TMBHK, zz = 11.7 Pa, at y = −0.775 ,

vMBHK = −2.9 × 10−3 m s−1, TMBHK, zz = 11.9 Pa, at y = 0.775 .
(2.85)

Thus relatively large initial speeds of recession are induced in a meniscus of depth65µm.

These speeds are, again, in conflict with the Dirichlet boundary condition enforced upon

the system. Normal stresses of the same magnitude as those in(2.84) are predicted, and

represent a force pushing the contact line in the anterior direction, in opposition to the

initial velocity of the contact line.

The conflict between pinned contact lines and induced velocities arises through

the scalings, (2.40) and (2.41), and the inherent assumptions made in the lubrication

approximation. These cause the leading-order equations and boundary conditions (2.62) -

(2.64) to yield a first-order differential equation forv, with a boundary condition enforced



Chapter 2. Governing Equations 61

at the ocular surface. Hence, there is no mechanism by which to specify the radial velocity

at the contact lines, as this would require boundary conditions to be specified at(±C, h).

Results presented in Chapters 5 and 6 show that recessional contact-line velocities are

observed in the initial dynamics of simulations of (2.71). However, the lack of pinning at

the eyelid enables a swift relaxation of the menisci that dissipates the contact-line stresses

manifest by the initial condition, before a slower, draining flow towards a steady state.

2.4.3 Mass conservation and steady states

The pair of coupled evolution equations (2.71) and (2.72) are obtained through

substitution of the leading-order asymptotic solutions (2.65) to the equations of motion

into equations derived from concepts of mass and surfactantconservation, respectively

(2.7) and (2.16). In the absence of evaporation from the tearfilm, the mass of fluid in the

system must remain constant as the tear-film dynamics act solely to redistribute the tears

around the ocular surface under the influence of gravity and surface tension. Similarly,

with no influx or efflux of surfactant defined, the total amountof lipid must be conserved.

An estimate of the accuracy of the leading-order solutions to the equations of motion is

therefore given by the calculation of the fluid mass and totalamount of surfactant in the

system at a given time.

The dimensional mass,m, of the tear film is obtained in cylindrical polar coordinates

through the integral

m =

∫ δ

θ=−δ

∫ χ

R=a

ρ̂ R dRdθ ,

in which ρ̂ (kg m−2) is an areal density4. Changing to non-dimensional, scaled marginal-

surface coordinates via (2.35) and (2.40), and scaling the non-dimensional mass of fluid

asm = ρ̂Ld m̃, the conservation of fluid mass is observed by calculating (with the tilde

4In a three-dimensional model, an additional integral of thevolumetric density,ρ, along the lateral-

medial axis of the eye would be required;ρ̂may be thought of as the simplified outcome of such an integral.
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notation immediately dropped)

m =
1

C

∫ C

ξ=−C

h +
1

2
ǫδh2 dξ , (2.86)

at timet > 0, and comparing the computed value with the mass obtained from the initial

condition (2.80). For simulations in which evaporation is not modelled, the change in

mass is expected to be negligible.

The quantity of surfactant,mΨ, is calculated through an integral of the surfactant

concentration along the free surface

mΨ =

∫ δ

θ=−δ

Ψ(s) ds ,

in which s is the dimensional length along the free surface of the tear film. In cylindrical

polar coordinates the metric form for the length along the free surface is

ds2 = dR2 + R2 dθ2 , at R = χ .

Asserting, through the thin-film lubrication approximation, thats acts primarily in the

azimuthal direction, the length along the surface and the total amount of surfactant are

respectively non-dimensionalised vias = Ls̃, andmΨ = ǫ2Ψmm̃ψ. Changing to non-

dimensional, scaled marginal-surface coordinates and dropping the tilde notation, the

integral for the non-dimensional total amount of surfactant is

mψ =
1

C

∫ C

ξ=−C

(1 + ǫδh)

(
1 +

ǫ2C2h2
ξ

(1 + ǫδh)2

)1/2

ψ dξ . (2.87)

In addition to checking the accuracy of the evolution equations and their numerical

discretization through the calculation of the integrals above, the large-time behaviour

of the system may also be checked by obtaining the steady-state solutions to the

differential equations, which the film-thickness and surfactant-concentration distributions

will migrate towards as time increases. In the steady state,the time derivatives in (2.71)

and (2.72) are set to zero, leaving a pair of coupled ordinarydifferential equations for
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the steady-state distributionsh∞(ξ) andψ∞(ξ). Integrating these ordinary differential

equations once with respect toξ, the steady state solutions satisfy

h2
∞

(
h∞
3
M +

Ω

2

)
=

k1

C
and

ψ∞h∞

(
h∞
2
M + Ω

)
=

k2

C
,

(2.88)

wherek1 andk2 are constants of integration. These equations are valid throughout the

region for which the partial differential equations are applicable, thus they apply at the

eyelids,ξ = ±C, whereM andΩ are forced to vanish through the boundary conditions,

(2.77) and (2.78). k1 and k2 are accordingly set to zero, and by asserting that both

h∞, ψ∞ 6= 0 at the eyelids, the steady states enforce that

M(ξ) = Ω(ξ) = 0 , ∀ξ ∈ [−C, C] ,

which decouples the ordinary differential equations:M = 0 and boundary condition

(2.76) yield a third-order differential equation forh∞ that is strongly dependent upon the

parameterδ that specifies the coordinate system, and;Ω = 0 gives a homogeneous first-

order differential equation forψ∞. The remaining boundary condition required to solve

each differential equation is obtained through the appropriate mass integral, evaluated

using the initial conditions. This is used to fix the arbitrary constant of integration in each

case.

Equation (2.66a) shows that the differential equation governing the steady film profile

is greatly simplified when the ocular surface is modelled as aCartesian plane,δ = 0. In

this case, the differential equation is readily solved as a polynomial inξ;

h∞(ξ) =
−st

6α0AC3
ξ3 +

cot θ̂

2C2
ξ2 +

st

2α0AC
ξ +

1

2

(
m0 −

cot θ̂

3

)
, δ = 0 , (2.89)

wherem0 is the mass integral (2.86) evaluated using the initial film profile, h0(ξ). In

curvilinear coordinates,δ 6= 0, the equationM = 0 is integrated once with respect toξ to

yield an inhomogeneous, linear, constant-coefficient, second-order ordinary differential
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equation forh∞ with boundary conditions given by (2.76), in which the first integration

adds a constant that is fixed using the mass integral (2.86) ofthe initial condition. The

steady-state height profile for a curved ocular substrate is

h∞(ξ) = c1 cos

(
δξ

C

)
+ c2 sin

(
δξ

C

)
+

st

2α0Aδ2C
ξ cos

(
δξ

C

)
+ c3 , (2.90)

where

c1 =
−(1 + ǫδ c3) cot θ̂

δ(sin δ + ǫ cos δ cot θ̂)
, and

c2 =
st

2α0Aδ2

sin δ − δ−1 cos δ + ǫ cos δ cot θ̂

cos δ − ǫ sin δ cot θ̂
.

The constantc3 is found by the solving the quadratic equation

f(c3) =

(
1

C

∫ C

−C

h∞ +
1

2
ǫδh2

∞ dξ

)
− m0 = 0 ,

from which selecting the positive square root in the standard quadratic formula yields a

physically-realistic steady-state film profile.

The steady-state surfactant concentration distribution is found through settingΩ = 0

in (2.66b), yielding a constant value. With the total amountof surfactant conserved,

the steady-state concentration is the total amount of surfactant calculated from the initial

condition (2.83) divided by the length along the steady-state film profile, giving

ψ∞(ξ) ≡ ψ∞ =

∫
C

ξ=−C
(1 + ǫδh0)

(
1 +

ǫ2C2(dh0/dξ)
2

(1 + ǫδh0)2

)1/2

ψ0 dξ

∫
C

ξ=−C
(1 + ǫδh∞)

(
1 +

ǫ2C2(dh∞/dξ)
2

(1 + ǫδh∞)2

)1/2

dξ

. (2.91)

With the initial conditions (2.80), and (2.82) or (2.83) known, and the geometry and

boundary conditions defining the steady-state film profile (2.89) or (2.90), the uniform

steady stateψ∞ can be obtained from the initial set-up of the tear-flow problem.
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2.5 Summary and discussion

The leading-order thin-film approximations to the tear-flowproblem derived within this

chapter form the basis for the studies in subsequent chapters. Meticulous care has been

taken to employ an accuratea priori scaling when performing asymptotic expansions of

the governing flow equations, ensuring that the expanded equations yield a uniformly-

valid hierarchy of terms when realistic ophthalmic data areused in the IBVP.

Evolution equations (2.71) and (2.72) form a highly-nonlinear pair of coupled

evolution equations respectively describing the changes to the non-dimensional thickness

of the tear film and non-dimensional surfactant concentration. They are both derived

from conservation equations (in the absence of evaporationfrom the bulk fluid;E = 0),

whence any numerical scheme used to model these equations may be validated through

monitoring the mass lost or gained by the system over time. The equations are augmented

by naturally-motivated boundary conditions, derived through a consideration of the

physical conditions in which the tear-flow problem finds itself. Boundary condition (2.76)

is novel to the field of tear-flow modelling, and allows the fluid to slip along the eyelid

margin where previous studies have pinned the menisci at themucocutaneous junction;

this pinning condition appears unphysical when modelling evaporative losses from the

bulk fluid and, moreover, has been found to be in contradiction with the contact line

velocities induced by the initial conditions of existing studies (cf. §2.4.2). Boundary

conditions (2.77) and (2.78) are derived through the modelling of the static eyelids as

impermeable barriers to the tear film. The system of equations is closed through the

specification of initial conditions for the film height (2.80), and surfactant concentration

(2.82) - (2.83), with various surfactant initial conditions allowing the study of different

models arising from the ophthalmic literature.

A further novel development in the derivation of equations (2.71) and (2.72) and their

associated boundary and initial conditions is the use of marginal-surface coordinates
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(2.35) that allow the tear film to be modelled on a substrate ofvariable curvature,

which curvature is controlled through the parameterδ. To the author’s knowledge, all

existing models for the tear film are derived using a Cartesian coordinate system, with

the exception of Braunet al. (2012) in which the tear film is modelled using prolate

spheroidal geometry.δ is treated as an orderO(1) parameter throughout the asymptotic

derivation of the coupled evolution equations, and the influence of the curved substrate

is clearly observable in the leading-order expressions forthe velocity and pressure fields

(2.65). By allowingδ to tend to zero, the substrate is flattened to a Cartesian plane,

whereas, with a realistic ocular radius of approximately0.012 m (Singhet al., 2006), an

upper limit of δ = 5/12 can be obtained from the constraint (2.36) to model the true

curvature of the cornea.

The numerical methods that will be employed to solve the pairof coupled evolution

equations (2.71) and (2.72) are respectively outlined and validated in Chapters 3 and 4. To

study the ‘isolated’ tear flow (i.e. in the absence of a variable surfactant concentration),

(2.71) is solved in Chapter 5 and subjected to a variety of boundary and initial conditions

in order to demonstrate their influence on the dynamics of thetear film. The effects

of substrate curvature and evaporation are also investigated using the isolated system

of Chapter 5. Finally, the effects of the overlying surfactant layer are observed in

Chapter 6 by solving the full coupled system with different initial conditions for the

surfactant concentration (2.82) and (2.83) employed to emulate behaviour observed in the

ophthalmic literature. A comparison of the results from Chapters 5 and 6 will allow the

non-trivial effects of the lipid surfactant on the dynamicsof the tear film to be observed.
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Chapter 3

Numerical Methods

Numerical methods are discussed for the simulation of the nonlinear pair of coupled

evolution equations (2.71) and (2.72). The equations are solved in a non-periodic,

bounded spatial domain that is discretized using Chebyshevspectral methods to convert

the partial differential equations into a system of first-order ordinary differential equations

in time. A fourth-order, explicit Runge-Kutta time-stepping algorithm for coupled

systems of equations is employed to advance the simulationsin time. It is noteworthy that

information on the specific details of implementation of numerical schemes employed in

the published mathematical literature on the tear film is scant, even non-existent. This

is not only unhelpful because of the well-known difficultiesassociated with solvingnon-

periodic IBVPs, but also it moreover precludes completely any possibility of comparison

with the results presently obtained and, indeed, the absence of implementational detail

potentially undermines confidence in the published results. Thus motivated, it is an aim of

this thesis that the numerical algorithms used herein are manifestly clear to the reader, in

order that they may be readily reproduced for the purposes ofcomparison and verification.

The structure of this chapter is as follows. A summary of the theory of approximating

aperiodic functions using Chebyshev spectral methods is presented, and differentiation

matrices for the numerical approximation of second, third,and fourth derivatives are
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derived using novel computer-algebra techniques. Implementation of the boundary

conditions (2.76), (2.77) and (2.78) is discussed, requiring the as-yet-undefined constant

C to be prescribed, and the development of an appropriate (novel) boundary condition

for the surfactant concentration,ψ. To evaluate test quantities obtained using laws of

conservation in§2.4.3, a process of integration using spectral methods is prescribed in

§3.3. Finally, the time-stepping algorithm is briefly outlined.

The notation utilised in this chapter is as follows: approximations of the function

u(x, t) are augmented with a tilde; vectors or matrices that have hadentries removed

are augmented with a hat; upper-case subscripts are used to denote functions that

depend upon the number of nodes employed in the spatial discretization; lower-case

subscripts are used as indices that label components of a particular vector or matrix;

complete vectors and matrices are respectively represented by emboldened lower- and

upper-case letters; square-bracketed superscripts augmenting vectors and matrices denote

their dimensions; differentiation with respect to spatialcoordinatex is represented

by superscript parentheses containing a number denoting the order of the derivative;

differentiation with respect to time,t, is represented by a superscript dot, and; the bounds

of incremented indices are annotated asi = X(Y )Z whereX is the lowest value,Y the

increment, andZ the highest value.

3.1 Chebyshev spectral methods

Spectral methods are used in a diverse range of mathematical, engineering and physical

applications (Boyd, 2001; Canutoet al., 2006, and references therein). The popularity of

spectral methods is derived from their high-order convergence properties when modelling

infinitely-differentiable functions. Furthermore, spectral methods are global in nature:

that is, they use thefull spatial domain to compute an approximation to thelocal

solution using a globally-defined orthonormal basis, and hence they are seen as memory-
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minimizing (Boyd, 2001, page 8) when compared with other methods such as finite

differences or finite elements.

3.1.1 Cardinal function and differentiation matrix

The bounded spatial domain is scaled onto the finite intervalx ∈ [−1, 1], which itself is

discretized with a set of as-yet-undefined nodes{xj} for j = 0(1)N , with N ∈ N. The

values of the functionu(x)1 are known at the nodes, yielding a data set{uj} = {u(xj)}

from which the approximation may be obtained. To interpolate the nodal data set, a

cardinal function,Cj(x), is constructed using a basis of polynomial functions, which,

in this case, are chosen to be Chebyshev polynomials due to their role in near-minimax

interpolation (Atkinson, 1989); theN th Chebyshev polynomial of the first kind is given

by

TN (x) = cosNθ , θ = cos−1 x , N ≥ 0 . (3.1)

The Chebyshev polynomials are bounded:|TN(x)| ≤ 1, from which the nodes are defined

at theN + 1 extrema of the Chebyshev polynomials located at

xj = cos
jπ

N
, j = 0(1)N . (3.2)

This set of nodes{xj}, more commonly known as a Gauss-Lobatto grid, may be

visualized as the projection of points located at equidistant angles around a semi-circular

arc onto the straight line joining the two ends of the arc. This means the nodes are

non-uniformly distributed along the line, their density increasing towards the boundaries,

x = ±1.

For a givenN , the cardinal-function interpolation of the functionu(x) is defined to be

1For simplicity,u is defined as a function ofx only during the derivation of the spatial discretization.

The spatial and temporal discretization processes are fully independent of each other, thus the functionu(x)

defined here may be thought of asu(x, t) at a fixed timet.
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ũN(x) =
N∑

j=0

Cj(x) u(xj) , (3.3)

with (Boyd, 2001)

Cj(x) =
(−1)j+1 (1 − x2)T ′

N(x)

(1 + δj0 + δjN)N2 (x− xj)
, j = 0(1)N , (3.4)

whereinδik is the Kronecker symbol, defined as

δik =





1 if i = k ,

0 otherwise.

The cardinal function (3.4) requires some explanation: theproduct(1−x2)T ′
N (x) vanishes

atall nodes becauseT ′
N(xj) = 0 for j = 1(1)N − 1, and(1−x2) vanishes at the external

pointsx = ±1, which are extrema but not turning points ofTN (x); the remaining terms

ensure that the cardinal function has the filtering property

Cj(xi) = δij , (3.5)

whence the interpolant̃uN in (3.3) is exact at all nodes. Derivatives of the functionu(x)

are approximated by differentiating (3.3), thus the first derivative is approximated by

d

dx

(
u(x)

)
≈ ũ

(1)
N (x) =

N∑

j=0

C
(1)
j (x)u(xj) , (3.6)

with higher derivatives ofu approximated by the corresponding derivative ofCj (3.4).

The discrete nature of the numerical scheme enforces the differential equations (2.71)

and (2.72) to be evaluated and incremented forward in time atonly the nodes{xi}.

By representing the set of interpolation data points{u(xi)} as a vector, the vector of

approximate derivative values at each of the nodes,ũ
(1)
i , may be obtained from (3.6) as

a matrix-vector product through substitutingx = xi into the derivative of the cardinal

function, yielding

ũ
(1)
i = D

(1)
ij uj , where D

(1)
ij ≡ C

(1)
j (xi) , (3.7)
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in which repeated suffices imply summation fromj = 0(1)N . D(1) is called the first-order

Chebyshev differentiation matrix and its entries can be found in texts on spectral methods

(see, for example, Trefethen, 2000). As shown in (3.7), the entries ofD(1) are obtained

through making the substitutionx = xi in the derivative of (3.4). Taylor series expansions

are required to calculate the leading-order terms ofC
(1)
j (xi) in the diagonal cases when

i = j, and when populating the top-left and bottom-right entries, i = j ∈ {0, N}. The

entries of the first-order Chebyshev differentiation matrix are readily determined to be

D
(1)
ij =






1 + 2N2

6
, i = j = 0,

−
1 + 2N2

6
, i = j = N,

−xj

2
(
1 − x2

j

) , i = j, i = 1(1)N − 1,

(1 + δi0 + δiN)

(1 + δj0 + δjN)

(−1)i+j

xi − xj
, i 6= j.

(3.8)

By discretizing the process of differentiation into a matrix-vector multiplication, higher

derivatives of the functionu(x) may be approximated through repeatedly multiplying the

vector of function values,u, by the differentiation matrix

ũ(m) =
(
D(1)

)m
u ,

hence higher-order differentiation matrices can be constructed by using powers of (3.7):

D
(m)
ij =

[(
D(1)

)m]

ij
. (3.9)

Alternatively, explicit forms of the entries of higher-order differentiation matrices may

be obtained through the repeated differentiation and expansion of (3.4) aroundx = xi.

With a view to minimizing the errors associated with the repeated matrix multiplication

implicit in (3.9), these explicit forms are now investigated.
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3.1.2 Higher-order differentiation matrices

Motivated by the aim of obtaining the most accurate possiblefourth-order numerical

differentiation in the modelling of the film-thickness evolution equation (2.71), the

explicit forms of the Chebyshev differentiation matrices up to fourth order are now

derived. The explicit form of the second-order differentiation matrix is well-known, and

can be found in Canutoet al. (2006); however, no formulæ for the elements of the third-

and fourth-order differentiation matrices appear to existin the prior literature.

Differentiating the cardinal function (3.4) twice with respect tox and settingx =

xi, the entries of the second-order differentiation matrix can be obtained. In a similar

procedure to that used to derive the entries of the first-order Chebyshev differentiation

matrix, Taylor series expansions are required to calculatethe entries on the main diagonal,

and the first and last rows of the matrix. The explicit forms ofthe entries are

D
(2)
ij =






N4 − 1

15
, i = j = 0 andi = j = N ,

x2
j (N2 − 1) −N2 − 2

3
(
1 − x2

j

)2 , i = j , i = 1(1)N − 1 ,

2(−1)j

1 + δjN

(
2N2 + 1

3 (1 − xj)
−

2

(1 − xj)
2

)

, i 6= j , i = 0 ,

2(−1)j+N

1 + δj0

(
2N2 + 1

3 (1 + xj)
−

2

(1 + xj)
2

)

, i 6= j , i = N ,

(−1)i+j+1

1 + δj0 + δjN

(
xi

(1 − x2
i ) (xi − xj)

+
2

(xi − xj)
2

)

,

i 6= j , i = 1(1)N − 1 .

(3.10)

Again differentiating the cardinal function and expandingusing Taylor series, the third-

order differentiation matrix is populated with entries, hitherto unpresented, given by
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D
(3)
ij =






2N6 − 7N4 − 7N2 + 12

210
, i = j = 0,

−
2N6 − 7N4 − 7N2 + 12

210
, i = j = N,

xj

(
2x2

j (N2 − 1) − 2N2 − 13
)

4
(
1 − x2

j

)3 , i = j, i = 1(1)N − 1,

2(−1)j

1 + δjN

(
N4 − 1

5 (1 − xj)
−

2N2 + 1

(1 − xj)
2 +

6

(1 − xj)
3

)
, i 6= j, i = 0,

2(−1)N+j+1

1 + δj0

(
N4 − 1

5 (1 + xj)
−

2N2 + 1

(1 + xj)
2 +

6

(1 + xj)
3

)

, i 6= j, i = N,

(−1)i+j

1 + δj0 + δjN

(
x2
i (N2 − 1) −N2 − 2

(1 − x2
i )

2
(xi − xj)

+
3 xi

(1 − x2
i ) (xi − xj)

2 +
6

(xi − xj)
3

)

, i 6= j, j = 1(1)N − 1.

(3.11)

Finally, taking the fourth derivative of (3.4), the entriesin the fourth-order Chebyshev

differentiation matrix are the newly determined

D
(4)
ij =






N8 − 12N6 + 21N4 + 62N2 − 72

945
, i = j = 0 andi = j = N,

N4
(
1 − x2

j

)2
− 5N2 x2

j

(
1 − x2

j

)
−
(
6x4

j + 83x2
j + 16

)

5
(
1 − x2

j

)4 ,

i = j, i = 1(1)N − 1,

4(−1)j

1 + δjN

(
(N4 − 5N2 + 4) (2N2 + 3)

105 (1 − xj)
−

2 (N4 − 1)

5 (1 − xj)
2

+
2 (2N2 + 1)

(1 − xj)
3 −

12

(1 − xj)
4

)

, i 6= j, i = 0,

4(−1)j+N

1 + δj0

(
(N4 − 5N2 + 4) (2N2 + 3)

105 (1 + xj)
−

2 (N4 − 1)

5 (1 + xj)
2

+
2 (2N2 + 1)

(1 + xj)
3 −

12

(1 + xj)
4

)
, i 6= j, i = N,

...
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D
(4)
ij =






(−1)i+j+1

1 + δj0 + δjN




−xi

(
2x2

i (N2 − 1) − 2N2 − 13
)

(1 − x2
i )

3
(xi − xj)

+
12 xi

(1 − x2
i ) (xi − xj)

3

+
4
(
x2
i (N2 − 1) −N2 − 2

)

(1 − x2
i )

2
(xi − xj)

2
+

24

(xi − xj)
4



 , i 6= j, i = 1(1)N − 1.

(3.12)

The process of differentiating (3.4) and expanding may be continuedad infinitumto derive

differentiation matrices of all orders. However, as the highest order derivative in (2.71)

and (2.72) is of fourth-order, matrices up to only this orderhave been derived. The

workings required to obtain the entries of the differentiation matrices are readily carried

out using the algebraic manipulator MAPLE.

The accuracy of the derived matrices (3.10) - (3.12) is tested against repeated action

of the first-order Chebyshev differentiation matrix (3.8) in §4.1.1. Before such tests are

carried out, the accuracy of the differentiation matrices may first be improved by making

use of trigonometric identities.

3.1.3 Alternative formulations

In addition to the derivation of explicit forms of the Chebyshev differentiation matrices,

the accuracy of the numerical scheme may be improved by taking steps to reduce the

round-off error introduced through the explicit definitionof the Chebyshev nodes and

differentiation matrices. Following Weidemann & Reddy (2000), the set of Chebyshev

nodes (3.2) are redefined using the trigonometric identity

cos θ = sin
(π

2
− θ
)

to

xj = sin

[
π

2N
(N − 2j)

]
, j = 0(1)N . (3.13)

The significance of this substitution is not immediately obvious; however, in floating-

point arithmetic it yields a set of collocation nodes{xj} that are perfectly symmetrically
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spaced about the origin, which is not the case when employing(3.2). The round-off

error in the entries of the Chebyshev differentiation matrices can be further reduced by

noting that the denominators in the third and fourth lines of, for example, (3.8), contain

differences of quantities that are nearly equal for certainvalues ofi andj. To improve

accuracy, the following identities are used to replace differences of trigonometric terms

with multiplications (see Canutoet al., 2006):

xi − xj = cos
iπ

N
− cos

jπ

N
= 2 sin

[
(i+ j)π

2N

]
sin

[
(j − i)π

2N

]
,

1 − xj = 1 − cos
jπ

N
= 2 sin2 jπ

2N
,

1 + xj = 1 + cos
jπ

N
= 2 cos2 jπ

2N
.

(3.14)

The resulting form of the first-order Chebyshev differentiation matrix (3.8) is

D
(1)
i,j =






1 + 2N2

6
, i = j = 0,

−
1 + 2N2

6
, i = j = N,

−xj
2 sin2(jπ/N)

, i = j, i = 1(1)N − 1,

(1 + δi0 + δiN )

(1 + δj0 + δjN)

(−1)i+j

2 sin[(i+ j)π/2N ] sin[(j − i)π/2N ]
, i 6= j.

(3.15)

The identities (3.14) are similarly substituted into the higher-order Chebyshev

differentiation matrices (3.10) - (3.12) to obtain the alternative form of these matrices.

Due to their cumbersome nature, presentation of these is deferred to Appendix A.

3.2 Implementation of boundary conditions

The enforcement of the boundary conditions is a subtle and crucial aspect of the numerical

scheme that is barely mentioned in any of the previous related ophthalmic literature2.

2Maki et al. (2010b, Appendix 3) is a notable exception.
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The boundary conditions (2.76) - (2.78) must be converted into their discrete forms, and

through manipulation of the entries of the relevant differentiation matrices, the conditions

are applied with spectral accuracy to the profiles obtained numerically at each time-

step. Because this model employs only Neumann boundary conditions, the values of

the film-thickness and surfactant-concentration distributions atall nodes betweenand

including the simulated eyelid positions must be found using the evolution equations

(2.71) and (2.72). In the absence of Dirichlet boundary conditions, the fourth-order spatial

derivatives in (2.71) therefore warrant the addition of four fictitious ‘ghost’ nodes outside

the solution domain of the evolution equations (Smith, 1985). The values ofh andψ at

these ghost nodes may then be extrapolated from the interior(i.e. physical) data as shown

below.

3.2.1 Ghost-node scalings and methods

Because all physical and ghost nodes are restricted to the Chebyshev interval,x ∈ [−1, 1],

the eyelid locations are symmetrically positioned atx2 = C andxN−2 = −x2. This yields

the definition

C ≡ cos
2π

N
, (3.16)

which specifies the constant that appears in (2.40) and reoccurs through each subsequent

differentiation with respect toξ. The ghost nodes are located outsidex ∈ [−C,C],

occupying positionsx0, x1, xN−1 andxN .

At each time-step, the evolution equations must be temporally integrated at

the Chebyshev nodes using the complete film-thickness and surfactant-concentration

distributions at the start of the time-step. The boundary conditions are then enforced

at x = ±C, and spectral extrapolation determinesh andψ at the ghost nodes using the

newly-obtained interior profiles forh andψ. To demonstrate the method, the boundary-

condition procedure forh is outlined briefly below for the unknown functionu(x). A
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x8 x7 x6 x5 x4 x3 x2 x1 x0

−1 −C 0 C 1

(2.71)

(2.72)

(2.76)
(2.77)

(2.76)
(2.77)

(2.78)
(3.23)

(2.78)
(3.23)

Figure 3.1: The spatial distribution of the Gauss-Lobatto grid (3.2) whenN = 8. Filled circles

denote physical data points, and empty circles represent ghost nodes. Within a time-step, the

evolution equationsare solved at each of the colour-coded nodes to determineh andψ. The

boundary conditionsare then applied at pointsx2 = C andx6 = −C, and spectral extrapolation

from the newly-obtained physical data yields the ghost-node values. The additional boundary

condition (3.23) is discussed in§3.2.2.

sketch of the computational domain is given in Figure 3.1.

The calculation of all nodal derivatives occurs via a matrix-vector multiplication.

Since the boundary conditions (2.76) and (2.77) respectively specify the first and third

derivatives, and are enforced at nodesx2 andxN−2, the entries in the second and(N−2)th

rows of both the first- and third-order Chebyshev differentiation matrices are isolated.

These entries are subdivided into those that multiply the known interior values (columns

2 to N − 2) and those that multiply the ghost-node data (columns0, 1, N − 1, and

N). The data set{uj} is also split into its interior and ghost values, and the partitioned

entries assembled into the following matrix-vector system, in which each of the four rows

represents one of the four boundary conditions in (2.76) and(2.77)

D̂
[4×4]
GHOSTû

[4×1]
GHOST + D̂

[4×(N−3)]
INNER û

[(N−3)×1]
INNER = b[4×1] , (3.17)

wherein the vectors are defined as

û
[4×1]
GHOST = (ũ0, ũ1, ũN−1, ũN)T , (3.18a)

û
[(N−3)×1]
INNER = (ũ2, · · · , ũN−2)

T , (3.18b)
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and the entries ofb are obtained from the boundary conditions (2.76) and (2.77)as

b[4×1] =





(1 + ǫδũ2) cot(θ)/C

−(1 + ǫδũN−2) cot(θ)/C

−st cos(δ)/(αAC3) − (1 + ǫδũ2) cot(θ)/C3

−st cos(δ)/(αAC3) + (1 + ǫδũN−2) cot(θ)/C3





((2.76) atx = C)

((2.76) atx = −C)

((2.77) atx = C)

((2.77) atx = −C)

.

(3.18c)

The entries of the boundary condition matrices are

D̂
[4×4]
GHOST =





D
(1)
2,0 D

(1)
2,1 D

(1)
2,N−1 D

(1)
2,N

D
(1)
N−2,0 D

(1)
N−2,1 D

(1)
N−2,N−1 D

(1)
N−2,N

D
(3)
2,0 D

(3)
2,1 D

(3)
2,N−1 D

(3)
2,N

D
(3)
N−2,0 D

(3)
N−2,1 D

(3)
N−2,N−1 D

(3)
N−2,N




(3.19a)

and

D̂
[4×(N−3)]
INNER =





D
(1)
2,2 D

(1)
2,3 · · · D

(1)
2,N−3 D

(1)
2,N−2

D
(1)
N−2,2 D

(1)
N−2,3 · · · D

(1)
N−2,N−3 D

(1)
N−2,N−2

D
(3)
2,2 D

(3)
2,3 · · · D

(3)
2,N−3 D

(3)
2,N−2

D
(3)
N−2,2 D

(3)
N−2,3 · · · D

(3)
N−2,N−3 D

(3)
N−2,N−2




. (3.19b)

With (3.17) thus configured, the first and second rows enforceboundary condition (2.76)

and the third and fourth rows enforce boundary condition (2.77); odd and even rows

respectively represent boundary conditions atx = C and x = −C. The unknown

data values at the ghost nodes are obtained by inverting (3.17); with matrix dimensions

omitted, this gives

ûGHOST = D̂−1
GHOSTb − D̂−1

GHOSTD̂INNER ûINNER , (3.20)

upon which all nodal data in[−1, 1] has been updated, and Chebyshev differentiation can

be performed at the next time-step, the process being repeated as required.

The process outlined above yields data at the four ghost nodes that accommodate

the four boundary conditions for the fourth-order evolution equation (2.71). A slight
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complication arises because thesamenode set has to be employed to integrate the

second-order evolution equation (2.72), which therefore only requires two ghost nodes

to accommodate its Neumann boundary condition (2.78). Thusto avoid an under-

determined system, the values ofψ at the remaining ghost nodes must be specified via

additional ‘ghost boundary conditions’.

3.2.2 Ghost boundary condition forψ

The required ghost boundary condition forψ must be compatible with the natural

boundary condition (2.78), which specifies a vanishing surfactant-concentration gradient

at the eyelids,x = ±C. The specification of a fictitious Dirichlet condition is unfeasible

as the fixed ghost value may vary significantly from the physical value at the eyelid,

creating a large gradient within the ghost region. As the evolution equation (2.72) is

second-order in space, the additional boundary condition is enforced on the gradient ofψ

at the nodes located immediately outside the simulated eyelid positions by proposing that

ψ̃
(1)
1 ∝ −ψ̃

(1)
3 and ψ̃

(1)
N−1 ∝ −ψ̃

(1)
N−3 , (3.21)

which is compatible with the natural boundary condition (2.78), and is tantamount to

modelling a local maximum or minimum inψ at the eyelids through the changing sign of

the concentration gradient on either side of each boundary.

The surfactant concentration is approximated over each of the three-node intervals that

straddle the eyelids,[x3, x2, x1] and[xN−1, xN−2, xN−3], using a quadratic polynomial

interpolant

ψ̃(x) = a0 + a1x + a2x
2 .

The ghost boundary condition is obtained using the same method at each eyelid, which

method is illustrated for the subinterval overx = x2. First, boundary condition (2.78) is

employed to solve fora1 in terms ofa2, yielding

a1 = −2a2x2 .
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Then by evaluating̃ψ(1) at nodesx1 andx3, an expression fora2 may be obtained from

each location. Equating these expressions, and defining theconstant

c ≡
x1 − x2

x3 − x2
=

xN−1 − xN−2

xN−3 − xN−2
, (3.22)

the additional boundary conditions are found to be

ψ̃
(1)
1 = c ψ̃

(1)
3 , and ψ̃

(1)
N−1 = c ψ̃

(1)
N−3 , (3.23)

in which the fractional constantc is negative, satisfying the original proposal for the ghost

boundary condition (3.21).

With the additional boundary condition thus obtained, a matrix-vector system akin to

(3.17) is created for (2.78) and (3.23) as

D̂
[4×4]
ψ,GHOST

ψ̂ψψ
[4×1]

GHOST + D̂
[4×(N−3)]
ψ,INNER

ψ̂ψψ
[(N−3)×1]

INNER = b
[4×1]
ψ , (3.24)

in which ψ̂ψψGHOST andψ̂ψψINNER are respectively analogous to (3.18a) and (3.18b), andbψ = 0

because (2.78) yields a vanishing gradient at the eyelids and (3.23) is expressed using

only differentiation matrix entries. The entries of the boundary condition matrices are

D̂
[4×4]
ψ,GHOST =





D
(1)
2,0 D

(1)
2,1 D

(1)
2,N−1 D

(1)
2,N

D
(1)
N−2,0 D

(1)
N−2,1 D

(1)
N−2,N−1 D

(1)
N−2,N

D
(1)
1,0−cD

(1)
3,0 D

(1)
1,1−cD

(1)
3,1 D

(1)
1,N−1−cD

(1)
3,N−1 D

(1)
1,N

−cD
(1)
3,N

D
(1)
N−1,0−cD

(1)
N−3,0 D

(1)
N−1,1−cD

(1)
N−3,1 D

(1)
N−1,N−1−cD

(1)
N−3,N−1 D

(1)
N−1,N

−cD
(1)
N−3,N





(3.25a)

and

D̂
[4×(N−3)]
ψ,INNER

=





D
(1)
2,2 · · · D

(1)
2,N−2

D
(1)
N−2,2 · · · D

(1)
N−2,N−2

D
(1)
1,2 − cD

(1)
3,2 · · · D

(1)
1,N−2 − cD

(1)
3,N−2

D
(1)
N−1,2 − cD

(1)
N−3,2 · · · D

(1)
N−1,N−2 − cD

(1)
N−3,N−2




. (3.25b)
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3.3 Spectral integration

The spectral differentiation methods described in§3.1 for the solution of (2.71) and (2.72)

can be adapted to provide relatively cost-free numerical integration of the free-surface

profile and the surfactant-concentration distribution. Hence an efficient and accurate

computation of the bulk fluid mass (2.86) and the total amountof lipid surfactant (2.87)

can be made as the partial differential equations are integrated. This data gives an insight

into the accuracy of (2.71) and (2.72), which are leading-order approximations to the

governing equations in§2.2.1. Each of the integrals is of the form

I =

∫ C

x=−C

f(x) dx , (3.26)

allowing the method of spectral integration outlined in Trefethen (2000) to be amended

to approximate such an integral. Differentiating both sides of (3.26), the integral may be

restated as an ordinary differential equation for an unknown functionu(x)

u′(x) = f(x) , u(−C) = 0 , (3.27)

from which the value of the integral (3.26) is given byI = u(C). The differential

equation is discretized on the Chebyshev collocation nodes(3.13) as

D(1) ũ = f , (3.28)

whereinũ2(≡ ũ(C)) is the spectral approximatioñI of the integralI sought in (3.26).

The boundary condition of (3.27) enforces thatũN−2 = 0. This means that the(N −

2)th column ofD(1) has no effect on (3.28) as its entries are all multiplied by zero, and the

(N − 2)th row of D(1) represents an equation that does not require solution, the unknown

ũN−2 having been specified by (3.27) with ahomogeneousDirichlet boundary condition.

To impose the boundary condition, the(N − 2)th column and row ofD(1) are removed to

create anN ×N matrix
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D̂(1) =





D
(1)
0,0 · · · D

(1)
0,N−3 D

(1)
0,N−1 D

(1)
0,N

...
. . .

...
...

...

D
(1)
N−3,0 · · · D

(1)
N−3,N−3 D

(1)
N−3,N−1 D

(1)
N−3,N

D
(1)
N−1,0 · · · D

(1)
N−1,N−3 D

(1)
N−1,N−1 D

(1)
N−1,N

D
(1)
N,0 · · · D

(1)
N,N−3 D

(1)
N,N−1 D

(1)
N,N





, (3.29)

and similarly the(N − 2)th entries ofũ andf are removed, yielding the system

D̂(1) û = f̂ .

Obtaining the inverse of the matrix̂D(1) and noting that̃u2 is the only data point required

as it approximatesu(C) in (3.27), the spectral approximatioñI to the integral (3.26) is

found by calculating the scalar product of the third row of(D̂(1))−1 with f̂

Ĩ =
N∑

j=0

[(
D̂(1)

)−1
]

2,j

f̂j . (3.30)

The accuracy of the spectral integration procedure (3.30) is tested in§4.1.2.

3.4 Time-stepping method

To close the numerical discretization of the system (2.71) and (2.72), a method must

be employed to advance the solutions through time. Within the existing literature on

the tear film, little to no detail is given on the temporal integration scheme used to

simulate the models. For example, Joneset al. (2005) and Joneset al. (2006) simply

state that their solutions are “advanced in time using a semi-implicit method [in which]

the non-linear terms are evaluated at the current time level, [and] the linear terms are

treated at the future time level”; thus the order of the error is not discussed. This is

a critical issue as inferences are drawn relating to the issue of so-called ‘black lines’

(see, for example, Milleret al., 2002), defined by the location of the domain at which

h→ 0+, i.e. where|h| may be comparable to the order of the unknown error. The present
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concerns are augmented further by observations regarding the approximation of fourth

derivatives of steep-sided functions near the boundary (cf. §4.3). In many cases, the first-

order ordinary differential equations resulting from the spatial discretization are integrated

using proprietary software packages such as DASPK3 (Braun & Fitt, 2003; Braun & King-

Smith, 2007), DASSL3 (Maki et al., 2010a; Makiet al., 2010b), MATLAB ’s ode15s3

(Heryudonoet al., 2007; Li & Braun, 2012) andode23s3 (Winter et al., 2010), and

modules within COMSOL3 (Zubkov et al., 2012; 2013). Aydemiret al. (2011) use

an implicit backward Euler discretization with a Newton-Raphson method. Despite the

obvious benefits to be gained from using such software packages, it is felt that the use

of so-called ‘black-box’ time integrators masks the level of error in the approximate

solutions, and hence violates the explicitly-stated aim ofthis chapter: that the algorithms

used in the numerical scheme are manifestly transparent to the reader. Thus motivated,

the time-stepping method is briefly outlined here.

To remain consistent with the approach of§3.1, in which Chebyshev spectral methods

are employed to achieve a high accuracy in the spatial discretization, high-order Runge-

Kutta methods are used to discretize the first-order temporal derivative in each of the

evolution equations. Runge-Kutta methods are used to approximate the solution to the

differential equation

u̇ =
du

dt
= f(t, u) , (3.31)

3 Both DASSL and DASPK use variable-order, variable-stepsize backward difference formulæ within

a ‘predictor’ step, followed by an iterative ‘corrector’ step (Brenanet al., 1989; Li & Petzold,

1999). Information on MATLAB packages can be found in Shampine & Reichelt (1997), revealing that

ode15s uses quasi-constant stepsize backward differences, andode23s uses a linearly implicit scheme.

COMSOL (2012a; 2012b, pages 348 - 352) identify that the software’s time-dependent solver uses

backward differences or a generalised-alpha method. Importantly, each software package allows an error

tolerance to be set for the solution calculated at every time-step, through which the package varies its

time discretization parameters. Hence, whilst the documents listed herein give some information on the

discretization errors, it is not possible to know the errorsimplicit in the results of published ophthalmic

models without knowing the minutiæ of the software-packageconfiguration.
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in which u = u(t). The time is discretized using a time-steph from initial time t0

to time t = tn = t0 + nh, with n ∈ N. Approximations tou(tn) are notated as̃un.

The well-known, fourth-order, explicit Runge-Kutta method (see, for example, Atkinson,

1989; Iserles, 1996) used to integrate (3.31) is extended tomodel the coupled system of

equations in two dependent variables

u̇ = f(t, u, v) ,

v̇ = g(t, u, v) ,

which represents the(h, ψ) system of (2.71) and (2.72). The time-step integration is given

by the algorithm

k1 = h f(tn, ũn, ṽn) , l1 = h g(tn, ũn, ṽn) ,

k2 = h f

(
tn +

h

2
, ũn +

k1

2
, ṽn +

l1
2

)
, l2 = h g

(
tn +

h

2
, ũn +

k1

2
, ṽn +

l1
2

)
,

k3 = h f

(
tn +

h

2
, ũn +

k2

2
, ṽn +

l2
2

)
, l3 = h g

(
tn +

h

2
, ũn +

k2

2
, ṽn +

l2
2

)
,

k4 = h f(tn + h, ũn + k3, ṽn + l3) , l4 = h g(tn + h, ũn + k3, ṽn + l3) ,

ũn+1 = ũn +
1

6

(
k1 + 2k2 + 2k3 + k4

)
, ṽn+1 = ṽn +

1

6

(
l1 + 2l2 + 2l3 + l4

)
.

(3.32)

Through this algorithm, the solution is iterated forwards in time using a weighted average

of four estimates of the solution in the intervalt ∈ [tn, tn+1].

3.5 Summary and discussion

The goals motivating this chapter were to outline the numerical methods and post-

processing techniques to be used in the solution of the pair of coupled evolution equations

(2.71) and (2.72) on a non-periodic spatial domain. Due to the scant level of detail in the

descriptions of numerical algorithms used in the existing mathematical literature on the

tear film, an explicit aim of this chapter has been that all methods employed can be readily
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reproduced by the reader. As such, it is hoped that the presented techniques are adopted

for the modelling of further related evolution equations onbounded spatial domains.

Chebyshev spectral methods have been used to discretize allspatial derivatives

in the system of evolution equations. In an effort to improvethe accuracy in the

calculation of derivatives up to fourth-order, explicit formulæ for the entries of higher-

order Chebyshev differentiation matrices have been derived. Of these formulæ, the author

believes the third- and fourth-order differentiation matrices to be hitherto-unpublished in

mathematical literature, despite the method for their derivation being readily available.

Further improvements to the accuracy of the matrices have been made through the use of

simple trigonometric identities. All testing and validating of Chebyshev differentiation

matrices presented herein occurs in Chapter 4.

Motivated by the lack of information regarding the enforcement of boundary

conditions in existing models on the tear film, a procedure has been outlined in which

spectral extrapolationallows the boundary conditions to be enforced upon the discretized

system. In the absence of Dirichlet conditions that pin the menisci at the eyelids, the

boundary-condition procedure for the fourth-order evolution equation (2.71) warrants the

addition of four ghost nodes within the Chebyshev domainx ∈ [−1, 1], as depicted in

Figure 3.1. The specification of the boundary-condition procedure for the second-order

(2.72) on thesameset of collocation nodes reveals the need for an additional “ghost”

boundary condition (3.23) forψ, which condition is informed by the natural boundary

condition (2.78). The hybrid matrices and vectors requiredby the boundary-condition

procedures are presented in§3.2.1 and§3.2.2.

A method for the spectral integration of functions across the physical domainx ∈

[−C,C] is outlined in§3.3, which allows the integrals (2.86) and (2.87) to be computed

as (2.71) and (2.72) are solved. These integrals respectively represent the total fluid mass

and the total amount of surfactant within the coupled system, hence tracking the value of

such conservation integrals allows the accuracy of the evolution equations to be tested:
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specifically, (2.71) represents the conservation of mass (in the absence of evaporation,

E = 0), and (2.72) represents the concentration distribution ofadsorbed surfactant.

To integrate the solutions in time, a coupled formulation ofthe fourth-order, explicit

Runge-Kutta scheme has been outlined. This method is preferred over the use of

proprietary software packages as it ensures that the time-step size remains fixed and

known to the user, and therefore the error associated with the method can be estimated.
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Chapter 4

Validation of Numerical Tools

Rigorous testing of the numerical methods and boundary condition procedure described

in Chapter 3 is required to validate the techniques to be usedin the integration of the pair

of coupled spatio-temporal evolution equations (2.71) and(2.72). Tests using Chebyshev

methods are carried out in§4.1 to illustrate the spectral accuracy of the differentiation

matrices and spatial-integration procedure, respectively outlined in§3.1 and§3.3. To test

the accuracy of the full numerical scheme, comprising spatial and temporal discretization,

§4.2 contains simulated solutions to both a linear partial differential equation with a

known analytic solution, and the nonlinear film-thickness evolution equation (2.71).

These tests demonstrate the accuracy of the boundary-condition procedure outlined in

§3.2, and the fourth-order, explicit Runge-Kutta time-stepping algorithm of§3.4. Novel

insights on the applicability of Chebyshev spectral methods in the approximation of

derivatives of functions containing steep gradients (which model the menisci at the

eyelids)near boundariesare presented in§4.3.

The notation of Chapter 3 is retained herein, with tildes augmenting numerical

approximations to functions and their derivatives. Functions that have been differentiated

are represented by superscript parentheses denoting the order of differentiation.

Quantities that depend upon the numberN of spatial discretization nodes are identified
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with a subscript.

4.1 Testing Chebyshev differentiation and integration

The spectral convergence of numerically-approximated derivatives and integrals to their

analytical values as the spatial discretization parameterN is increased is illustrated

in this section. Calibrations are performed using a varietyof test functions defined

using both polynomial and transcendental terms. The improved performance of the

alternative differentiation matrices (those which employthe identities in (3.14) to

replace differences of trigonometric terms with products)over their original forms is

demonstrated. Furthermore, the errors arising through useof the explicit higher-order

matrices, of which the third- and fourth-order matrices represent novel developments

within this thesis, are compared to the errors arising through repeated action of the first-

order differentiation matrix, identifying the optimum method for generating higher-order

spatial derivatives, which method introduces the minimum error from the discretization

process.

4.1.1 Differentiation-matrix accuracy

The accuracy of the Chebyshev differentiation matrices in their original form, (3.8) -

(3.12), and their alternative form, (3.15) and (A.1) - (A.3), is tested in this section. Three

test functions are defined using a combination of purely-transcendental terms, purely-

polynomial terms, and a mixture of polynomial and transcendental terms. These are

u(x) = exp(sin(3x)) ,

v(x) = x5 + x4 + x3 + x2 + x+ 1 , and

w(x) = 1 − x+ 4x2 + x exp(−3x) cos(2x) + 3x3 sin(3x) .

(4.1)
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Each function is differentiated four times both analytically and numerically, and the

analytically calculated derivatives are evaluated at the Chebyshev nodes{xj}. Higher

derivatives are obtained using both the original and alternative forms of the explicit

differentiation matrix of relevant order, and also using repeated action of both forms,

(3.8) and (3.15), of the first-order matrix. At the nodes, theinfinity norm of the percentage

absolute error in the approximation
∥∥∥% error inf̃ (k)

N

∥∥∥
∞

= max
x∈[−1,1]

[
100

∣∣∣∣∣
f̃

(k)
N

f (k)
− 1

∣∣∣∣∣

]
, (4.2)

is obtained. This is shown to converge to zero rapidly with increasingN and, forN & 40,

the limiting factor in the accuracy of the calculation of thederivative is shown to be the

precision of the machine itself. In each test case, the symmetrically-distributed form of

the Gauss-Lobatto grid (3.13) is used in favour of the original definition (3.2).

Results from tests of the accuracy of both forms, (3.8) and (3.15), of the first-

order differentiation matrix are presented in Figure 4.1, which show that, for values of

N ≥ 20, the maximum absolute error in the first derivative of each function in (4.1)

is less than0.01%. As N is increased, both test functions containing transcendental

functions display rapid convergence to zero of the maximum absolute error, which error

reaches the numerical round-off plateau located between10−10 − 10−8%. For all values

of N shown in Figure 4.1, the accuracy of the approximate gradient of the polynomial

functionv(x) is such that the round-off error of the finite-precision machine swamps the

differentiation error. This occurs because, forN ≥ 5, the fifth-order polynomial can

be represented accurately by the linear combination of Chebyshev polynomials used in

the cardinal function interpolant (3.3). A slight positivegradient with increasingN is

observable in the data falling within the round-off plateau, reflecting the accumulation,

with N , of rounding errors from the manipulation of matrices of size (N + 1)× (N + 1),

which themselves are populated with entries of large magnitude.

Importantly, the coloured pairs of symbols in Figure 4.1 demonstrate the improved

performance of the alternative first-order Chebyshev differentiation matrix (3.15) over
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that of the original matrix (3.8). In the falling limbs of thetranscendental test-function

data, the accuracy of the interpolant (which is dependent uponN) dominates the error

calculation, leading to data points that overlie each other. Within the round-off plateau,

the vast majority of coloured symbol pairs appear with the blue data pointbelowthe red

point, showing the improved accuracy in the calculation of the entries of the first-order

differentiation matrix computed via (3.15).

For higher orders of differentation, the behaviour of the error for each function in
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Figure 4.1: Logarithm of the maximum percentage absolute error in the numerical approximation

of the first derivative obtained using the Chebyshev differentiation matrix inits original form (3.8)

andits alternative form (3.15)for N = 8(2)60. Test functions (4.1) are denoted byu (crosses),

v (dots) andw (circles). Blue circles and crosses overlie their red counterparts in each of the

descending limbs, giving the impression that only blue dataexists for these values ofN .
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(4.1) is qualitatively the same as that displayed in Figure 4.1 for the first derivative,

but the magnitude of the errors is greater. Four methods of calculation are available

to approximate higher-order derivatives, these are: (i) repeated application of the first-

order matrix (3.8); (ii) the appropriate explicitly-derived matrix (3.10) - (3.12), and;

methods (i) and (ii) with the alternative formulations of the matrices, respectively (3.15)

and (A.1) - (A.3). The accuracy of the hitherto-unseen explicit third- and fourth-order

differentiation matrices (3.11) and (3.12) is evidenced inFigure 4.2, which figure contains
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Figure 4.2: Logarithm of the maximum percentage absolute error in the numerical approximation

of (left) w(3)(x), and(right) u(4)(x), forN = 8(2)60. In both plots, colours and symbols denote:

matrices defined in their original form; matrices defined in their alternative forms using (3.14); ◦

the colour-specific explicitly-derived matrix, and;× multiple applications of the colour-specific

first-order matrix.
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the maximum percentage errors in the approximations ofw(3)(x) and u(4)(x). These

results are representative of the results from the second- to fourth-order derivatives of all

three test functions in (4.1). These similar results are notpresented, but they all support

the conclusions that are drawn below.

The data located in the round-off plateaux of Figure 4.2 showthat, in the majority

of cases, the best-performing method for calculating a higher derivative is multiple

application of the alternative first-order matrix (3.15), represented graphically by blue

crosses. The overlaying data in the descending limbs both illustrates the accuracy of

the explicit formulæ, and identifies that all four methods for calculating the derivative

are primarily dependent on the accuracy of the interpolant,rather than the accuracy

of the representation of matrix entries. As in Figure 4.1, itis only in the round-

off plateaux that differences are observed between the performances of the different

calculation methods, which differences identify that repeated matrix multiplication using

the first-order matrices shows a marked improvement over that of the explicitly-derived

formulæ of§3.1.2. An explanation for the large errors attributed to theexplicit formulæ

is that, for all values ofN , the entries in the top-left and bottom-right corners of the

differentiation matrices grow asN2k, wherek is the order of differentiation. Thus asN

is increased, the accumulated errors are magnified through the use of steadily-growing

(N + 1)× (N + 1) matrices containing entries of high magnitude, which entries can only

be represented to a finite degree of accuracy by finite-precision arithmetic. Alternatively,

through repeated action of the first-order matrix, the accumulation of errors is reduced

because the magnitude of the entries within the matrix is significantly lower; for example

whenN = 60, D(1)
0,0 is of orderO(103), whereasD(4)

0,0 is of orderO(1011). Hence, the

errors in the finite-precision representation ofD(1) are of a smaller magnitude the errors

in the formulation ofD(k) for k = 2, 3, 4.

Despite the efforts made to generate the novel, explicit, higher-order Chebyshev

differentiation matrices, the results presented in Figures 4.1 and 4.2 support the use



Chapter 4. Validation of Numerical Tools 93

of repeated applications of the alternative form (3.15) ofD(1) to calculateall spatial

derivatives required for the modelling of the pair of coupled evolution equations (2.71)

and (2.72).

4.1.2 Testing spectral integration

The accuracy of the spectral integration procedure of§3.3 is now tested using five

functions formed from a mixture of polynomial and transcendental terms

s1(x) = (1 + x)4 ,

s2(x) = exp(x2) sin
πx

C
,

s3(x) = exp
(
sin

πx

C

)
,

s4(x) = 1 − x+ 2x2 + x cos
πx

C
+ 3x3 sin

πx

C
,

s5(x) = 4 cos
5πx

C
.

(4.3)

These functions are chosen because, forx ∈ [−C,C]: s1 and its gradient increase

monotonically withx; s2, s3 ands4 all contain multiple turning points and are formed

from combinations of transcendental and polynomial functions, and;s5 is a rapidly-

oscillating function with steep gradients. For each test function in (4.3), the integral

Ii =

∫ C

−C

si(x) dx , (cf. (3.26)) (4.4)

is performed analytically in MAPLE using 20-digit precision arithmetic, and compared

to the N-node spectral approximatioñIi,N of Ii calculated through the Chebyshev

integration procedure (3.30) in MATLAB using standard IEEE 754 64-bit double-precision

arithmetic, with a machine-ǫ of 2.22 × 10−16: results are presented in Figure 4.3.

The improvement in the accuracy of the spectral approximation with increasingN

is clearly demonstrated by the test functionss3(x), s4(x), ands5(x), which respectively

reach the round-off plateau at roughly10−14 whenN = 42, 22 and42. The spectral
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Figure 4.3: The convergence withN of the error|Ii − Ĩi,N |, for the various test functions of

(4.3), calculated forN = 8(2)60. The test integrandssi(x) are represented by the colour scheme

i = 1, 2, 3, 4, 5. For all functions tested, the round-off plateau, at|Ii − Ĩi,N | ≈ 10−14, is reached

whenN = 42. The omitted red data point whenN = 8 is because the numerical integration

is exact. Absoluterather thanrelative errors (cf. Figures 4.1 and 4.2) are shown asIi = 0 for

i = 2, 5, and all other integrals are of orderO(1).

integration ofs1(x) and s2(x) yields errors in the round-off plateau for all values of

N tested. As in§4.1.1, an explanation for the rapid convergence of the errorin these

functions in comparison to, for example, the error convergence in the integral ofs5(x) in

Figure 4.3 may be obtained by considering the error in the interpolation of the functions

using (3.3). Fors1(x) ands2(x), the interpolant (3.3) yields a maximum error of order

O(10−6) for the range ofN displayed in Figure 4.3. The maximum errors in the
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interpolation ofs5(x) whenN = 10, 20, and30 are respectivelyO(10), O(10−1), and

O(10−5); this marked improvement in the interpolation is reflected in the greater accuracy

of the spectral approximation (3.30) of the integral. The errors in the interpolation of

s5(x) with low N arise through interpolating a rapidly-oscillating function using a coarse

discretization mesh.

4.2 Validation of the numerical scheme

To ensure that the dynamics observed in the subsequent chapters are due to the tear-

flow model, and not spurious artefacts of the numerical scheme and associated parameter

combinations used within simulations, two tests of the fullnumerical scheme are carried

out in which the discretization parameters,N and dt, are varied to demonstrate the

consistency of spatio-temporal integrations. Both tests compute the solutions to partial

differential equations containing first-order temporal derivatives and fourth-order spatial

derivatives, complemented with Neumann boundary conditions specified upon the first-

and third derivatives at the ends of the computational domain: such boundary conditions

are compatible with those of the full tear-flow model.

4.2.1 Linear test simulation

Preliminary tests of the numerical scheme are carried out using a linear partial differential

equation containing an inhomogeneous forcing function, augmented by homogeneous

Neumann boundary conditions. The IBVP is given by

ut + C4uxxxx = 24C4 − 72C2x2 , ux(±C, t) = 0 , uxxx(±C, t) = 0 . (4.5)

Two initial conditions are specified to test different attributes of the numerical scheme,

u1(x, 0) = 1 −
7C2

5
x2 + x4 −

1

5C2
x6 + sin

(πx
2C

)
, (4.6a)
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and

u2(x, 0) = 0 . (4.6b)

Initial condition u1 in (4.6a) satisfies the evolution equation and boundary conditions

(4.5) exactly, and demonstrates the accuracy of the numerical scheme as it approximates

the temporal evolution of the explicitly-known analytic solution

u(x, t) = 1 −
7C2

5
x2 + x4 −

1

5C2
x6 + exp

(
−
π4t

16

)
sin
(πx

2C

)
. (4.7)

Initial condition u2 in (4.6b) fails to satisfy the evolution equation, and enables the

convergence of the scheme towards a steady-state solution to be tested. The steady

solution to (4.5) subject to initial condition (4.6b) is

u∞(x) ≡ lim
t→∞

u(x, t) =
31C4

105
−

7C2

5
x2 + x4 −

1

5C2
x6 , (4.8)

wherein the constant has been determined from the integral condition
∫ C

−C

u∞(x) dx = 0 ,

which follows from (4.6b). This second test replicates the behaviour expected of solutions

to (2.71) because the initial condition (2.80) does not conform to the steady-state shape,

and so will induce movement of the bulk fluid through which thefree surface will

relax towards its coordinate-system-dependent quiescentprofile, (2.89) or (2.90). The

consistency of the numerical scheme is illustrated throughsuch a test by varying the

discretization parameters and tracking the behaviour as the solution converges from (4.6b)

towards (4.8).

Evolution equation (4.5) is simulated using parameter setsP1 = {N = 20, dt =

10−7}, P2 = {N = 26, dt = 5 × 10−8} andP3 = {N = 32, dt = 10−8}. The behaviour

of the system is displayed using results obtained with parameter setP2 in Figure 4.4.

These results are representative of results obtained with parameter setsP1 andP3, which

are not presented in the interest of clarity as the value ofN is used in the definition (3.16)
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Figure 4.4: Snapshots of solutions to (4.5) with initial conditions given by(top) u1(x, 0) of (4.6a),

and(bottom) u2(x, 0) of (4.6b).N = 26 anddt = 5 × 10−8. Red symbols represent snapshots

taken att = 0.01 (△), t = 0.02 (◦), t = 0.1 (+) andt = 0.5 (×). Solid black lines denote the

initial conditions, and dotted lines represent:(top) analytic solutions (4.7) at the relevant point in

time, and(bottom) the steady state (4.8). Arrows show the direction of increasing time.

of C, whence (4.5) - (4.8) are all altered by the spatial discretization. Figure 4.5 plots the

time-evolution of the maximum error in the simulations using initial conditionu1 (4.6a)

that approximate (4.7), and the convergence towards the steady state (4.8) of simulations

using initial conditionu2 (4.6b).

The upper plot of Figure 4.4 shows the numerical solutions closely approximate the

exact solution (4.7): the level of accuracy is quantified in the upper plot of Figure 4.5,

which shows the logarithm of the maximum absolute error between the exact solution
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and its numerical approximation, obtained using each set ofdiscretization parameters.

The rapid convergence from initial conditionu2 of (4.6b) to the steady state is shown in

the lower plot of Figure 4.4; byt = 0.1, the difference between the numerical simulation

and the steady state has a maximum relative error of6.2×10−3%. Furthermore, the lower

plot of Figure 4.5 shows that, aftert ≈ 0.25, the discrepancy between the steady state and

the numerical solution is small enough that it is dominated by errors introduced through

the numerical scheme itself. The relative magnitude of the numerical error is found to be
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Figure 4.5: Logarithm of the maximum absolute difference between:(top) the numerical- and

analytical (4.7) solutions in simulations using initial condition (4.6a), and(bottom) simulations

using the homogeneous initial condition (4.6b) and the steady state (4.8), displaying rapid

convergence. Colours represent numerical discretizationparameter setsP1 = {N = 20, dt =

10−7}, P2 = {N = 26, dt = 5 × 10−8} andP3 = {N = 32, dt = 10−8}.
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negligible: the largest steady error in the lower plot of Figure 4.5 occurs in the parameter-

set-P3 simulations, and is of orderO(10−10) in the approximation of a function of order

O(10−1).

These results show the numerical scheme to be accurate and consistent in the solution

of the linear partial differential equation (4.5) with initial conditions (4.6).

4.2.2 Test of nonlinear evolution equation(2.71)

Further tests of the consistency of the numerical scheme arenow carried out on the

nonlinear evolution equation for the film thickness (2.71) in the absence of a dynamic

surfactant layer. Simulations are computed using different sets of numerical parameters,

N anddt, with two different choices for the contact angle,θ̂ ∈ {π/4, π/2}. Physical

parameters ofδ = 5/12 andE = 0.1 are chosen in order that all terms are included

in the differential equation and its boundary and initial conditions, and that presented

snapshots of the film profile are easily displayed without overlaying closely. A value

of E = 0.1 represents a significantly higher evaporative flux than the value reported in

Mathers (1993), and is not used in subsequent chapters. An initial condition with small

menisci is formed by settinghMID = 3/4 andr = 4/3 in (2.79), and specifying a blend-

point of b = 0.4. Simulations are integrated to a non-dimensional time oft = 1, which

corresponds to five dimensional seconds.

Snapshots of the film profiles from simulations withθ̂ = π/2 and θ̂ = π/4 are

respectively presented in Figures 4.6 and 4.7, which display rapid migration towards the

steady-state profile, similar to that shown in the lower plotof Figure 4.4. This rapid

convergence towards the quiescent state is shown in Figure 4.8 for t < 0.2, as the early

phase of motion generates a near-steady-state profile in each simulation, regardless of the

discretization parameters used. As the simulation progresses, the blue{N = 20, dt =

10−7} data are seen to diverge slightly from the red and green curves; however, the
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Figure 4.6: Film profiles generated by the film thickness evolution equation (2.71) withE = 0.1,

δ = 5/12, st = 1, α0 = 5 and θ̂ = π/2, taken att = 0.5 and t = 1, respectively the higher

and lower datasets. Discretization parameter values for the numerical scheme are represented by:

{N = 20, dt = 10−7} (+); {N = 26, dt = 10−8} (◦), and;{N = 32, dt = 5 × 10−9} (△).

The initial condition is denoted by a solid black profile, created using 201-knot cubic interpolation

splines of the initial data from theN = 32 simulation. Dot-dashed lines denote translations of the

steady state (2.90), and display the quick relaxation of thefilm towards the steady-state profile.

logarithmic vertical scale belies the size of the divergence. At t = 1, the maximum

differences between the film profile and the steady state in the {N = 20, dt = 10−7}

simulations yield a percentage difference of orderO(10−2%) when θ̂ = π/2, and of

orderO(10−1%) whenθ̂ = π/4. This consistency in the behaviour of simulations allows

a significant saving to be made in the real-time duration of simulations, enabling the
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coarsest set of discretization parameters to be employed with confidence that the data

computed by the numerical scheme will be accurate. For the simulations presented in

Figures 4.6 and 4.7, the time taken to reach a non-dimensional time of t = 1 took

approximately 2 hours for parameter set{N = 20, dt = 10−7}, 23 hours for{N = 26,

dt = 10−8}, and 51.5 hours for{N = 32, dt = 5 × 10−9} on a 2.66 GHz core with 4

GB RAM. Thus the coarsest set of discretization parameters represents a roughly 25-fold

computational acceleration over the finest set.

The tests presented herein provide a validation of the accuracy and consistency of

the numerical scheme outlined in Chapter 3, and enable investigations of the behavioural

changes caused through altering the parameter values within the tear-flow model to be
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Figure 4.7: Snapshots of film profiles att = 0.5 andt = 1 from simulations witĥθ = π/4. All

other physical and discretization parameters are as given in Figure 4.6.
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Figure 4.8: The maximum absolute difference between the tear-film profile and the evaporatively-

displaced steady states in Figures 4.6 and 4.7, illustrating that the rapid early dynamics of the film

are not influenced by the choice of discretization parameters. Colour coding is as per Figure 4.6,

and solid and dashed lines respectively denote data from simulations withθ̂ = π/2 andθ̂ = π/4.

carried out with confidence that the results obtained will reflect the physical effects

incorporated in the model.



Chapter 4. Validation of Numerical Tools 103

4.3 Investigation of the effect of steepness induced by

pinning

As mentioned in Chapter 3, the detailed derivation of numerical tools therein was

driven by the scarcity of information on the numerical schemes employed in all related

mathematical literature, with the aim that the results presented here may be easily

reproduced by others. Furthermore, it is noted that, withinall of the published models

of the tear film, the pinning of the tear film at the mucocutaneous junction significantly

influences the flow dynamics, leading to menisci that either retain their original steepness,

or become progressively steeper as time increases1. In the interest of investigating the

errors that accrue when using Chebyshev spectral methods inthe models of the published

literature, the numerical apparatus of Chapter 3 is appliedto a test function that emulates

the steep-sided initial conditions employed by the existing models.

Following the initial condition of Li & Braun (2012), a test function with steep

gradients at the ends of the computational domain is defined as

u(x) = 1 + k xm , (4.9)

with m = 2, 4, 8 and16, andk = 10 and100. This function is also used to approximate

the non-symmetric film profiles deposited during the ‘eye opening’ phase of models that

simulate the blink cycle. In the absence of explicit forms for these profiles, (4.9) yields a

good approximation to the shape of the deposited film (cf. the central (t = π) plot of Braun

& King-Smith, 2007, Figure 4; and the top-right plot of Aydemir et al., 2011, Figure 5).

Variation ofm whenk is of orderO(10) allows the derivatives of the initial condition

of Li & Braun (2012), and of the deposited films in Braun & King-Smith (2007) and

Heryudonoet al. (2007), to be approximated using the spectral machinery. Bysettingk =

O(102) and varyingm, the derivatives of profiles in the open-eye phase of Aydemiret al.

1Discussions of the physical viability of a pinned boundary condition can be found in§2.4.1 and§2.4.2.
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(2011) may be approximated. The absolute error in the approximation of the derivatives of

(4.9) at all nodal locations is calculated using repeated action of the first-order Chebyshev

differentiation matrix (3.15) for various values of the spatial discretization parameterN ,

and the results for each derivative whenk = 10 are presented in Figures 4.9 - 4.12.

In Figure 4.9, the sequential increase inN from plot (a) to plot (d) shows an increasing

magnitude of the error in the approximation of the gradient near the endpoints,x ≈ ±1,

by an amount of orderO(102). This increase in magnitude withN is not observed in the

central regions nearx = 0, where the gradient of the function is not as severe. Thus the
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Figure 4.9: Logarithm of the absolute error in the calculation of the first derivative of (4.9) when

k = 10, and(a)N = 20, (b) N = 40, (c)N = 80 and(d) N = 160. Data points are coloured to

denotem = 2, 4, 8 and16.
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Figure 4.10: Logarithm of the absolute error in the calculation of the second derivative of (4.9)

whenk = 10. All colours and discretization parameters are as per Figure 4.9.

approximation withN = 20 yields derivative values in the centre of the computational

domain that areas accurateas those from the approximation withN = 160, and values

that aremore accuratethan theN = 160 approximation near the interval end points.

The data presented in Figures 4.10 - 4.12 demonstrate that the magnitude of the

error in the numerical calculation of higher derivatives grows with both the order of

differentiation and the number of spatial discretization nodes used in the approximation.

For each derivative, the errors of largest magnitude are found in approximations with

N = 160, and theN = 160 results also show the largest range of magnitudes in the

numerical error. Importantly, the results of Figures 4.9 - 4.12 identify the errors of largest
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Figure 4.11: Logarithm of the absolute error in the calculation of the third derivative of (4.9)

whenk = 10. All colours and discretization parameters are as per Figure 4.9.

magnitude in the calculation of derivatives as those found at the ends of the computational

domain. This means that tear-flow models that use both pinnedmenisci and Chebyshev

discretization2 will exhibit dynamics that are driven by regions of the computational

2Braunet al. (2012), and Li & Braun (2012). Heryudonoet al. (2007) use a mapped Chebyshev spectral

method that reduces the clustering of nodes nearx = ±1, which method is applicable when solutions

have high gradients away from boundaries or are smooth throughout the interval (Heryudonoet al., 2007,

Appendix B). Notably, as pinned film profiles fail to satisfy the first option above, placing fewer nodes in the

menisci will reduce the resolution in those regions, and, bytransforming the Chebyshev collocation nodes

(3.2), the near-minimax accuracy of the interpolant (3.3) (which motivated the choice of Chebyshev spectral

methods in§3.1.1) will be reduced. Thus, a significant trade-off is madebetween numerical stability and

the accuracy of simulations when employing such a transformation.
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domain in which there is a high degree of numerical inaccuracy. Moreover, as the

menisci steepen over time (particularly in the presence ofpinnedevaporative thinning),

the underlying dynamics will becomemoreinaccurate as the simulations progress.

The location of the largest errors in Figures 4.9 - 4.12 arises as the magnitude of each

derivative of the functionu(x) of (4.9) attains its maximum atx = ±1. The derivatives

in these positions are approximated using the first and last rows of the Chebyshev

differentiation matrix, which itself contains the entriesof largest magnitude. Hence, in the

finite-precision arithmetic of the computer simulation, the sixteen-digit representation of

a derivative of high magnitude is to be calculated using matrix entries which themselves
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ũ

(4
)

N
(x

i)
∣ ∣ ∣)

Figure 4.12: Logarithm of the absolute error in the calculation of the fourth derivative of (4.9)

whenk = 10. All colours and discretization parameters are as per Figure 4.9.
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are large and evaluated only to sixteen-digit accuracy.

The predetermination of the location of the largest errors introduced by the numerical

scheme gives justification for the use of initial conditionswith shallower gradients than

those used in the published literature. This justification is in addition to the requirement,

imposed by the thin-film lubrication approximation, that all variation of quantities in the

direction perpendicular to the ocular surface is of orderO(ǫ) relative to variation along

the surface. This same approximation is employed in all the models of the published

literature (with the exception of Zubkovet al., 2013), yet the issue of pinning a film,

which has been has been scaled to have a thickness of orderO(1), with a meniscus height

of orderO(10) orO(100) is not addressed in these works.

4.4 Summary and discussion

The tests and results presented in this chapter were motivated by the need to

validate the accuracy of Chebyshev differentiation, the boundary-condition and spectral-

integration procedures, and the combined numerical schemeformed of the spectral spatial

discretization and fourth-order, explicit Runge-Kutta time-stepping outlined in Chapter 3.

The accuracy of numerical approximations of derivatives obtained though the use

of Chebyshev differentiation matrices has been demonstrated in Figures 4.1 and 4.2,

wherein the maximum absolute error in the numerically-obtained derivatives converges

spectrally to zero with increasing values ofN , reaching the round-off plateau enforced

by the finite-precision arithmetic forN ≥ 42. Moreover, the results illustrate that first

derivatives calculated using the alternative form (3.15) of D(1), derived using the identities

of (3.14), are more accurate than derivatives obtained using the original form (3.8) for the

majority of values ofN . This spectrally-accurate calculation of derivatives allows the

spatial discretization to be carried out with significantlyfewer nodes than required in the

finite difference schemes of (for example) Braun & Fitt (2003), yielding a considerable
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reduction in the amount of computational resource requiredto automate the simulations.

Through a comparison of different methods for calculating higher derivatives, results

show that repeated multiplication usingD(1) as defined in (3.15) yields the optimum

error minimization, even when compared to the errors obtained through use of the

newly-derived, explicit, higher-order differentiation matrices of§3.1.2. As a result of

this evidence, (3.15) will be used in the calculation of all derivatives in the simulations

presented in subsequent chapters.

The accuracy of the spectral integration method of§3.3 is demonstrated in Figure

4.3, which shows the absolute error in the calculation of theintegral (3.26) for a variety

of integrands (4.3). In all cases tested, the integral is obtained to machine precision for

values ofN as low as42.

Calibration of the numerical scheme in§4.2 using both linear and nonlinear test

evolution equations has shown the scheme to yield consistent results for a variety of

combinations of spatial and temporal discretization parameters. These results give

confidence that the results obtained using a coarse set of discretization parameters are

both sufficiently accurate and computationally efficient.

An experimental study of the error in the numerical approximation of derivatives of a

steep-sided function (4.9) in§4.3 has shown that the use of Chebyshev spectral methods

to approximate the derivatives of such functions leads to localized boundary errors of

large magnitude, which moreover increase with increasingN . This evidence casts doubt

on the results of prior models that have used spectral methods (listed in the footnote2

on page 106) in the simulation of film profiles with steep, pinned menisci. This doubt

occurs as, in addition to the universal absence of a physicalargument to support pinning3,

and the invalidation of assumptions made through employing thethin-film lubrication

approximation in the derivation of such models, the resulting fluid dynamics are driven

3i.e. an argument suggesting why the contact line shouldn’t slip posteriorly along the pre-wetted margin

of the eyelid.
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by those regions of the computational domain that contain the largest numerical errors.

As such, the results of§4.3 complement the modelling constraints enforced on the present

model through use of the lubrication approximation, justifying the shallow menisci

employed in the simulations of subsequent chapters. Strikingly, the results presented

herein appear to contradict the conclusions made in Appendix 2 of Li & Braun (2012),

wherein data from a test problem (but little detail on the implementation) suggests that

spectral methods are well-suited to the approximation of steep-sided functions, and that

the accuracy of such approximations improves with increasingN . However, it is noted

that the tests in Li & Braun (2012) include both spatial and temporal discretization, with

the time-stepping carried out using MATLAB ’s ode15s solver, hence these results may

not be comparable to the purely-spatial data of§4.3. Finally, it is important to note that the

results in Figures 4.9 - 4.12 were obtained through use of aspectrally-accuratemethod for

the approximation of derivatives, hence they pose further questions about the numerical

errors encountered by models that use lower-order methods (such as finite differences) in

their spatial discretization.

With the numerical scheme now outlined and tested, it is applied with confidence in

Chapter 5 to model the effect of physical parameters on simulations of the isolated film-

thickness evolution equation (2.71), and in Chapter 6 to model the coupled behaviour of

the full tear-flow model, (2.71) and (2.72).
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Chapter 5

Dynamics of a Lipid-free Tear Film

The dynamics of the tear film and its adsorbed lipid surfactant are uncoupled in this

chapter to allow the modelling of a (hypothetical) ‘clean’ tear film in which the surfactant

concentration,ψ, is set to zero. The evolution equation (2.71) for the thickness of

the tear film,h, is solved subject to the boundary and initial conditions discussed in

Chapter 2, allowing the dynamics of the Newtonian fluid with astress-free interface of

(dimensional) surface tensionσ0 to be studied. This simplified model allows the effects

of substrate curvature, evaporation and the contact angle enforced through the eyelid

boundary conditions to be isolated, and their effects observed without the additional

advective influence of the lipid surfactant.

The results obtained are compared and contrasted with othersurfactant-free, draining

models for the tear film in the published literature (Wonget al., 1996; Milleret al., 2002;

Braun & Fitt, 2003; Joneset al., 2005; Winteret al., 2010; Makiet al., 2010a; Maki

et al., 2010b; Braunet al., 2012; Li & Braun, 2012; Zubkovet al., 2013). Before

proceeding, it is important to note the significant differences between the derivation

presented in Chapter 2 and the modelling used to develop the published models. With

the exception of Joneset al. (2005) and Zubkovet al. (2013), all assert that the free

surface is tangentially immobile, replacing the tangential momentum balance (2.29) with
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U·t̂ = 01. Furthermore, the menisci are pinned with boundary values of orderO(10) (and

orderO(100) in the case of Zubkovet al., 2013), with central plateau thicknesses scaled to

be of orderO(1). Such menisci are not feasible in this model, as§4.3 identifies the errors

inherent with the spectral approximation of such profiles, and, moreover, their presence

introduces steep gradients that invalidate the assumptions of the lubrication approximation

upon which this model is derived. This invalidation is observed in Zubkovet al. (2013),

wherein a comparison of a lubrication model with full Navier-Stokes simulations in

the meniscus regions identifies significant differences in the velocity profiles inside the

menisci, with the lubrication model predicting contact-line velocities that conflict with the

pinned Dirichlet boundary conditions (cf. §2.4.2). The tear-flow dynamics within all prior

models is dominated by the Dirichlet pinning, which leads tomeniscus-induced thinning

that creates the so-called ‘black lines’ (McDonald & Brubaker, 1971; Milleret al., 2002);

these lines are impossible to replicate using the model presented herein, which allows

movement of the contact line along the eyelid margin. Finally, Winteret al. (2010), Maki

et al. (2010a), and sections of Braun & Fitt (2003) enforce boundary conditions onhξξ

at each eyelid, which effectively specifies the pressure at these points. Such a boundary

condition is not used in this model as it cannot be motivated by appealing to the physical

environment in which a real tear film exists (cf. §2.4.1).

Unless otherwise stated, all simulations presented withinthis chapter have an initial

condition (2.80) formed usinghMID = 1, r = 2 and a blend pointb = 0.4; numerical

simulations are discretized using parameters{N = 20, dt = 2 × 10−8}.

1This condition is used within the lubrication approximation to yield a vanishing azimuthal velocity,

u = 0, at the free surface. Such an approximation is valid in the flat central plateau region of the tear

film but, in the steep menisci, the tangent vector aligns moreclosely with the direction perpendicular to the

ocular surface; hence in these regions, this boundary condition for the governing equations should change

to f1u + f2v = 0, wheref1 andf2 are functions ofhξ. No such amendment is made in the models that

employ this boundary condition.
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5.1 The effect of environmental parameters,δ andE

To demonstrate the influence of environmental factors on thedynamics of the tear film,

the curvature of the ocular substrate,δ, and the evaporative flux,E, are altered. Values

of δ = 0 andδ = 5/12 are respectively chosen to model a flat cornea with a Cartesian

coordinate system, and a substrate with a realistic cornealcurvature. The evaporative flux

E = 1.503 × 10−2 is used to approximate the experimentally-obtained resultof Mathers

(1993) after the rescaling (2.58), which scaling promotes evaporative effects to leading-

order in the mass balance (2.53). Data from evaporative simulations are contrasted with

non-evaporative results obtained withE = 0. To isolate these physical effects, all other

parameters in the model are fixed with values ofst = 1, α0 = 5, andθ̂ = π/2 employed

in the results presented in Figures 5.1 - 5.4. As mentioned onpage 52, this value of̂θ is

uncharacteristically large for the tear film, and effectively models an unscaled film that is

nearly flat in the menisci. However,θ̂ is chosen for numerical accuracy as§4.3 highlights

the adverse affect of narrow contact angles on the approximation of derivatives near the

boundaries. Discussions warranting the introduction ofθ̂ are given in§2.4.1, and the

effects of varying the contact angle are presented in§5.2.

The influences of evaporation and substrate curvature on theevolution of the tear-

film flow are displayed in Figure 5.1, which shows the late-time (t = 1) film profiles,

corresponding to a dimensional time of five seconds (a short,but realistic, human

interblink duration – Berger & Corrsin, 1974). As in§4.2, migration towards the

steady-state profile is observed in each case. This migration is starkly different from

the movement of the tear film in the aforementioned publishedworks, as the novel

Neumann boundary condition (2.76) for the contact angle allows the contact line to slip

to its natural level. Hence the profiles of Figure 5.1 do not display the characteristic

meniscus-induced thinning that is observed in all prior models. The effect of substrate

curvature is illustrated by the dotted lines representing the steady-state profiles, which
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are evaporatively displaced whenE 6= 0 and given byh∞(ξ) − Et. Blue and green

dotted lines display the Cartesian form of the (displaced) steady state, and red and purple

the curvilinear form withδ = 5/12. By comparison with the Cartesian steady states,

the curvature of the eye causes a marginal thickening of the steady-state profile near the
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Figure 5.1: Snapshots of film profiles att = 0.01 (+) and t = 1 (×) obtained with varying

substrate-curvature and evaporative parameters,δ andE, and a scaled contact angle ofθ̂ = π/2.

Colours represent:{δ = 0, E = 0}; {δ = 5/12, E = 0}; {δ = 0, E = 1.503 × 10−2}, and;

{δ = 5/12, E = 1.503 × 10−2}. Note that att = 0.01, red and blue profiles are plotted but

overlay closely. Steady states and evaporatively displaced steady states (calculated ash∞(ξ) −

Et) are denoted by colour-specific dotted lines. The solid black line displays a 201-knot cubic

interpolation spline of the initial data whenδ = 0, and the apices of the menisci reachh(ξ =

±C, 0) = 2.
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lower eyelid (ξ = C) and a corresponding thinning near the upper eyelid (ξ = −C). This

bulge over the inferior cornea whenδ 6= 0 reflects the changing orientation of the gravity

vector relative to the ocular surface asξ is varied in the curvilinear coordinate system; at

the upper lid a component of the gravity vector pushes down upon the tear film, whilst at

the lower lid the same component acts to pull the fluid away from the ocular surface (cf.

Figure 2.2).

The effect of constant evaporation is shown to lead to a simple displacement of the film

profiles in each coordinate system, supporting the conclusion of Braun & Fitt (2003) that

evaporation causes thinning across the tear film (except at the pinned menisci in Braun

& Fitt’s model). The effect of evaporation is shown in the green and purple datasets

of Figure 5.1. Comparisons between the displayed steady states and the numerically-

simulated profiles show the constant loss of mass from the system to have a negligible

effect on the evolution of the film towards its steady-state profile, as evidenced by the

maximum difference between thet = 1 datasets and the appropriate steady-state profile.

Whenδ = 0, ‖h(ξ, 1) − (h∞(ξ) − E)‖∞ = 5.2 × 10−4 in both evaporative scenarios,

the values agreeing to orderO(10−8). Similarly, whenδ = 5/12 the maximum difference

between numerically-simulated data and the evaporativelydisplaced steady state is5.1 ×

10−4 in both evaporative cases, with agreement to orderO(10−9). That these maximum

differences from different evaporative scenarios agree tosuch a high order suggests that

the value ofE has negligible effect on the transient film dynamics.

The non-evaporative profiles att = 0.01 in both coordinate systems are represented in

Figure 5.1 by the closely overlaying red and blue plus signs;they demonstrate the rapid

relaxation of the tear film towards a near-steady-state shape. The subsequent motion of the

film gives rise to a slower, gravity-driven transition towards the steady state (or displaced

steady state whenE 6= 0). The effect of gravitational drift on the tear film is also observed

in the models mentioned on page 111, enhancing the meniscus-induced thinning near the

upper eyelid. The close overlaying of the datasets att = 0.01 shows substrate curvature to
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have little influence on the initial relaxation phase of the tear-film evolution, the profiles

displayed differing by a maximum amount of3.9 × 10−4.

Motivated by the (relatively) rapid early dynamics, the behaviour of the{δ = 5/12,

E = 0} simulation (the red data of Figure 5.1) is displayed in Figure 5.2 fort ∈ [0, 0.05],

and shows the swift retraction of the menisci occurring fort < 5 × 10−3 (corresponding

to the first2.5 × 10−2 dimensional seconds). This dataset is representative of the early

dynamics in all the simulations displayed in Figure 5.1. Theinitial retraction of the

menisci, coupled with a more minor drop in the fluid depth in the region close toξ = 0,
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Figure 5.2: Initial dynamics of the simulation withδ = 5/12 andE = 0 (cf. Figure 5.1), for

t ∈ [0, 0.05]. Snapshots are spaced temporally by a step∆t = 10−3. All discretization parameters

are as before. The lower lid is positioned towards the left-hand side of the plot.
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results in the film profile bulging upwards in regions aroundξ ≈ ±0.7 to conserve mass.

Hence the initial movement of the tear film acts to thicken theregions associated with

significant thinning in models that pin the meniscus, reinforcing that Dirichlet boundary

conditions are required in order to generate black-line behaviour in simulations. At both

eyelids, the rapid recession of the contact lines quickly subsides, giving way to a slower

rate of recession at the upper lid (ξ = −C), whilst the lower-lid contact line recedes until

t ≈ 1.2×10−2, when its direction of motion changes and it begins advancing back up the

eyelid.

The change in the direction of motion of the lower-lid contact line is shown more

clearly in Figure 5.3, which tracks the position of the upperand lower contact lines over

time in simulations that represent bothE = 0 andE 6= 0 in the curvilinear coordinate

system withδ = 5/12. The effect of evaporation on the early dynamics of the flow

is shown to be negligible as, at each eyelid, the positions ofthe contact lines in each

evaporative scenario overlay closely, differing by an amount of orderO(10−3) at each

eyelid whent = 0.1. After the initial recession and subsequent change of direction

of motion of the lower-lid contact line, the slow advancement up the eyelid marginally

overshoots the steady-state position by an amount of orderO(10−4) whent > 0.19 in the

E = 0 simulation. In contrast, whenE 6= 0, the long-term effect of evaporation is evident

as the position of the lower-lid contact line undergoes a second change of direction of

motion close tot = 0.18. At this time, constant evaporative losses diminish the film

profile at a faster rate than the contact line’s advancing velocity. The upper-lid contact

line positions exhibit a monotonic convergence towards thesteady-state profile in both

evaporative scenarios. In the datasets at each eyelid, the effect of evaporation can be

observed through the steady separation of the data at greater times in the lower plot of

Figure 5.3, reinforcing the assertion that evaporation plays a minor role in the overall

dynamics of the tear-film flow. This minor role is expected through the scalings (2.58)

employed in the derivation of the model, which scalings promote evaporative effects to

leading-order in the interfacial mass balance (2.53). To remain physically accurate, this
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Figure 5.3: Temporal evolution of the contact-line positions withδ = 5/12. (Top) t ∈ [0, 0.1],

and (bottom) t ∈ [0, 1]. Dashed coloured lines denote the following contact-line location and

evaporative-parameter pairings:{ξ = C, E = 0}; {ξ = −C, E = 0}; {ξ = C, E = 1.503 ×

10−2}, and;{ξ = −C,E = 1.503×10−2}. Colour-coordinated dotted lines represent the steady-

state contact line positionsh∞(±C) − Et. Note that the axis scalings are different in each plot.

promotion leads to the value ofE = 1.503 × 10−2 used within simulations for which all

terms are expected to be of orderO(1), whence evaporation has only a large-time effect

on the tear film dynamics.

Figure 5.4 displays the effect of the substrate curvature onthe conservation of mass

(in the absence of evaporation) and theωω-component of the stress tensor,Tωω (2.10),

evaluated at the contact lines. This component represents the extra stress, above that of

atmospheric pressure, exerted on the contact line by the shape of the tear-film profile, and
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is not discussed in previous works on the tear film despite thelarge gradients induced

in the film thickness through the pinning of the menisci. In scaled, marginal-surface

coordinates the stress component’s dimensional form is

Tωω(ξ, ω, t) = −
µU0

ǫ2L

(
p− pATM − 2ǫ2vω

)
. (5.1)

In the upper plot of Figure 5.4, the rapid initial dynamics cause a jump in the mass of the

system; att = 10−4 the relative percentage increase in mass in both coordinatesystems is
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Figure 5.4: Temporal variation, in non-evaporative simulations (E = 0), of (top) the percentage

change in mass with varied substrate curvature:δ = 0, andδ = 5/12; and(bottom) the logarithm

of the modulus ofTωω (2.10) at the contact lines. Solid and dot-dashed lines respectively denote

data atξ = C, andξ = −C, with colours as in the upper plot. In each row, the larger plot shows

the early dynamics witht ∈ [0, 0.1], whilst the smaller plot displayst ∈ [0.1, 1]. The use of

dashed red lines in the upper plot is purely for clarity, allowing both traces to be seen.
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6.9×10−2%. In each simulation this value subsequently decreases, reaching4.47×10−2%

whent = 10−3 in theδ = 0 simulation, and4.42×10−2% at the same time in theδ = 5/12

simulation. After these initial jumps, the mass in the systems is quasi-constant throughout

the remainder of the simulations, with the final (t = 1) percentage change (relative to the

initial conditions) in mass found to be4.48 × 10−2% whenδ = 0, and4.41 × 10−2%

whenδ = 5/12. To identify the mass-conserving properties of the evolution equation

and numerical scheme during the slower phases of motion, thepercentage changes are

renormalized against the mass in the system att = 10−3. Relative to these masses, the

percentage change in mass per time-step over the periodt ∈ [10−3, 1] (corresponding

to 4.995 × 107 steps) is found to be2.37 × 10−12% with δ = 0, and−2.64 × 10−12%

with δ = 5/12. These figures pay testament to the accuracy of the integration scheme

of Chebyshev spatial discretization coupled with fourth-order Runge-Kutta time-stepping

described in Chapter 3, and also to the spectral integrationprocedure of§3.3.

In the lower plot of Figure 5.4,Tωω shows marked differences between the large-time

behaviours in the Cartesian and curvilinear formulations.The initial contact-line stress at

each eyelid in both datasets plotted is

Tωω(±C, h, 0) = −1.3 × 105 Pa ≈ −1.3PATM ,

where the minus sign denotes that this stress acts in the opposite direction toeω (i.e.

towards the ocular surface). In the absence of a Dirichlet boundary condition, this excess

pressure causes the rapid retraction of the menisci described in the preceding paragraphs,

which allows the stresses to dissipate. The sharp downward spikes exhibited at both

eyelids whent < 7 × 10−3 in theδ = 5/12 data, and att = 10−2 in the upper-lid data

whenδ = 0 represent the change in the sign of (5.1) from negative to positive. The extra

stress at the lower lid in theδ = 0 simulation remains negative for all times tested.

The differences between the large-time stress behaviour inthe Cartesian and

curvilinear simulations (and the differences between stresses atξ = ±C whenδ = 5/12)

are caused by the position-dependent force of gravity in thecurvilinear coordinate system.
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When the contact angle is specified asθ̂ = π/2, the contact-line stresses (5.1) in the

Cartesian and curvilinear formulations may be simplified becausehξ(±C, t) = 0. In this

case, these stresses are given by

T0 ≡ Tωω

∣∣∣
ξ=±C, θ̂=π/2, δ=0

= −
µU0α0A

ǫ2L

(
ǫ2C4h2hξξξξ − C2hξξ

)
, and

T+ ≡ Tωω

∣∣∣
ξ=±C ,θ̂=π/2, δ 6=0

= −
µU0

ǫL

{
α0A

ǫ

[
ǫ2C4h2hξξξξ − C2 (1 − ǫ2δ2h2)hξξ

− δ2h
]
− ǫδ st h2 sin

(
δξ

C

)}
,

(5.2)

wherein the pressure and radial velocity have been substituted using (2.65). After the

rapid early dynamics the film profile has reached a near-steady-state shape, which profile

then slowly evolves towards the true steady state. Whenδ = 0, the overlaying blue data

series in the lower plot of Figure 5.4 occur because the steady state (2.89) is a third-order

polynomial in ξ with a second derivative that is an odd function. As such, thefourth

derivative inT0 is removed and the remaining term has the same modulus atξ = ±C.

Whenδ 6= 0, the steady state (2.90) is formed from a combination of transcendental

functions, and has derivatives that are neither odd nor even. When these derivatives

are substituted intoT+ cancellations yield the difference between a position-dependent

gravitational term, and a constant that is related to the initial mass in the system (cf.

§2.4.3). This position dependence, which causes the gravitational term to have opposite

signs at each lid, gives rise to the unequal contact-line stresses whenδ 6= 0. Note that,

in all cases displayed in Figure 5.4, the magnitude of the stress for large times is less

than525 Pa. This value is three orders of magnitude smaller than standard atmospheric

conditions, thus the stresses do not induce movement of the fluid during the latter stages

of evolution.
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5.2 The effect of boundary and initial conditions

In addition to the influence of environmental factors on the evolution of the tear film, the

fluid dynamics are also found to be highly dependent on both the boundary conditions

imposed at the eyelids and the initial configuration of the free surface. The contact angle

θ̂ at the three-phase contact line specifies the value ofhξ at the eyelids through boundary

condition (2.76), which determines the shape of the apices of the menisci and further

affects the boundary condition forhξξξ (2.77). Alterations to the initial condition enable

the effects of shallower menisci on the transient dynamics of the tear-film flow to be

observed. In this subsection, results are presented from simulations with fixed parameter

values ofst = 1, α0 = 5, δ = 5/12 andE = 1.503 × 10−2. It is important to reiterate

here that̂θ is a scaledcontact angle, and as such is unphysically large for the tearfilm:

this rescaling is required both to maintain validity of the assumptions of the thin-film

lubrication approximation used in the derivation of the model, and to ensure accuracy in

the numerical approximation of spatial derivatives (cf. §4.3). Nevertheless, in the absence

of a boundary condition specifying the contact angle in prior models of the tear film, all

results presented below are novel to the field of tear-film modelling.

Figure 5.5 displays the effect of the contact angle on the latter stages of the tear-

film evolution. Each initial condition is obtained using theparameter values listed at

the beginning of this chapter, hence the differences in the initial shape of the menisci

are caused solely through the enforced contact angle. The effect of the contact angle is

shown more notably in the profiles att = 1 which, as in Figure 5.1, show near-steady-state

behaviour. When̂θ 6= π/2, the non-zero value ofhξ at the eyelids forces the film thickness

to decrease with increasing distance from each boundary. This causes the central region

of the tear film to form a shallow trough, and consequently, toconserve mass, the contact

lines react by rising up the eyelids by comparison with theθ̂ = π/2 profile. Hence,

despite the boundary conditions being enforced atξ = ±C, their influence dramatically
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Figure 5.5: Film profiles att = 1 (×) with colours representing contact angles ofθ̂ = π/2,

θ̂ = π/3, andθ̂ = π/4. For each contact angle, solid and dotted lines respectively plot the initial

condition and evaporatively displaced steady-state profile. The blue dataset repeats the purple data

presented in Figure 5.1.

affects the evolving global file profile. This is in contrast to the results of the published

tear-film drainage models (listed on page 111), wherein the central plateau region of the

flow is primarily influenced by gravity and evaporation, withthe pinned menisci primarily

affecting the level of thinning at the meniscus-plateau joins, which thinning results in the

formation of ‘black lines’ (Miller et al., 2002). The redistributive effect of gravity is

illustrated in Figure 5.5 as, for all̂θ values, the contact line at the lower lidξ = C is

located higher on the eyelid than at the upper lidξ = −C.

The dimensional contact-line velocities are obtained fromthe simulated film-thickness
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profiles by calculatingv(±C, h, t) from (2.65), and re-dimensionalising using theansatz

(2.41). The evolution of the early (t ≤ 5 × 10−2) contact-line velocities from the

simulations presented in Figure 5.5 is displayed in the upper plot of Figure 5.6, showing

that the initial dynamics quickly subside, giving way to slow movement towards the steady

profile (cf. Figure 5.2). For each value of̂θ displayed, the speeds of recession induced

by the initial condition are given in the first line of Table 5.1. These speeds are extremely

large when considered in the context of a meniscus of depth2d = 10−5 m, and are several

orders of magnitude greater than those predicted from the initial conditions in the models
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Figure 5.6: (Top) Dimensional contact-line velocities, and(bottom) logarithm of the magnitude

of Tωω (2.10) at the contact lines fort ∈ [0, 5 × 10−2], with parameter values and colour-coding

as in Figure 5.5. Dashed and dotted datasets respectively represent quantities obtained atξ = C

andξ = −C. A discussion of the initial velocities is given in the text.
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Table 5.1: The initial receding contact-line velocities, which are not displayed in the upper plot

of Figure 5.6. All velocities are dimensional and expressedin units of m s−1.

t θ̂ = π/2 θ̂ = π/3 θ̂ = π/4

0 1 0.91 0.85

10−4 0.92 × 10−3 1.1 × 10−3 1.3 × 10−3

of Braun & Fitt (2003) and Makiet al. (2010a), respectively (2.84) and (2.85). However,

the movement of the contact lines leads to dissipation of thestresses, with the result that

the contact-line speeds are rapidly diminished, reaching the values in the second line of

Table 5.1 byt = 10−4. These speeds are all of the same order as those in (2.84) and

(2.85).

This deceleration continues: att = 10−3 the magnitude of the receding contact-line

velocities in each simulation is of orderO(10−5 m s−1), and for each dataset the receding

velocity at the lower lid is smaller than that at the upper lid. The direction of motion

of the lower-lid contact line is reversed in all three datasets by a nondimensional time

of t = 1.3 × 10−2, with the reversal in direction occurring first in the simulation with

θ̂ = π/4, and last when̂θ = π/2. This change in direction of motion reaffirms that

the meniscus-driven dynamics rapidly diminish, being replaced by gravitational drift that

pulls the tear fluid towards the impermeable lower lid. The accumulation of fluid causes

the film profile to bulge outwards from the substrate, whence the contact line slowly

advances along the lower lid to reach its steady-state position.

The rapid diminution of the contact-line velocities – in allcases,v(±C, h, 0.1) =

O(10−7 m s−1) – ensures that, for moderate and late times, the movement of the contact

line (and the entire free surface) is increasingly influenced by a speed of recession that

is attributed to the constant evaporative flux. The velocitycomponent normal to the free
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surface is readily obtained by rearranging the mass balanceat the free surface (2.7)

(
U − US

)
· n̂ =

J

ρ
.

As the simulations evolve towards the quiescent steady state, the late-time bulk fluid

velocity, U, is assumed to be negligible as all dynamic movement ceases.Using the

unit normal (2.26) and the free-surface velocity (2.27), and changing to scaled, marginal-

surface coordinates, the evaporative speed of recession ofthe quasi-steady profile is

approximated by

χt = −
J

ρ

(
1 +

ǫ2C2h̃2
ξ

(1 + ǫδh̃)2

)1/2

≈ −1.5 × 10−8 m s−1 , (5.3)

wherein tildes have been re-appended to non-dimensional, scaled variables for clarity, and

parameter values are taken from Table 2.1. Note that, by a non-dimensional time oft =

0.26, contact-line velocities in all simulations in Figure 5.6 are of orderO(10−9 m s−1),

whence the dominant factor determining the location of the contact line is the constant

rate of evaporation. The evaporative speed of recession (5.3) is attributed toall points

across the tear film, thus, in collaboration with the lower plot of Figure 5.3, it highlights

the contradiction inherent within all prior evaporative models of the tear film: that in the

absence of a suction force drawing fluid up to the pinned height, the meniscus thickness

mustbe diminished through the evaporative loss of fluid. Accordingly, such models could

be trivially amended to contain a time-dependent Dirichletboundary condition

h(±C, t) = hPIN −Et , (5.4)

where hPIN is the non-evaporative pinning height. In addition to alleviating the

contradiction described above, the use of such a boundary condition in pinned models

would complement the observation that the eyelids maintaina higher temperature than

the cornea (Tomlinsonet al., 2011), which observation identifies that evaporative loss

should be enhanced in the menisci.
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The lower plot of Figure 5.6 shows that a reduction inθ̂ increases the magnitude of

the late-time stresses at the contact line. Moreover, reducing θ̂ also yields a reduction in

the disparity between the late-time stresses at each eyelid, which reduction is enhanced in

Figure 5.6 through the logarithmic scaling of the stress. When θ̂ 6= π/2, the expression

for the stress component (5.1) cannot be simplified through setting hξ equal to zero at

the contact line, as substituted in (5.2). Instead, the expanded form of (5.1) is found to

contain terms proportional toh2
ξ andhξhξξξ which, asθ̂ is reduced, become dominant in
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Figure 5.7: The effect of the initial condition upon the transient dynamics of the flow is illustrated

using(top) an initial condition withhMID = 3/4, r = 4/3, andb = 0.4 (cf. §4.2.2), and(bottom)

the simulations of Figure 5.5. Crosses denote film profiles att = 0.1, and colour coding and line

styles are as per Figure 5.5. The upper dataset was simulatedusing discretization parameters of

N = 20 anddt = 10−7.
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the calculation of the stress. Through the specification of the boundary conditions (2.76)

and (2.77), the derivativeshξ andhξξξ are individually found to have similar magnitudes

at both contact lines

|hξ(C, t)| ≈ |hξ(−C, t)| and |hξξξ(C, t)| ≈ |hξξξ(−C, t)| ;

hence, by reducinĝθ, the magnitudes ofTωω at each contact line are found to coincide at

late times.

The influence of the initial condition on the subsequent film dynamics is illustrated

by contrasting simulations that use the initial condition of §4.2.2 with results previously

discussed in this section. The initial condition of§4.2.2 has shallower menisci, and a

thinner central plateau region than the initial condition used throughout this chapter. By

reducing the height of the initial condition, and hence the volume of fluid, the evolution of

the tear film is slowed. This slowing is illustrated by comparing the differences between

the numerically-simulated data att = 0.1, and the evaporatively-translated steady states

in the upper and lower plots of Figure 5.7, as shown in Table 5.2. This data demonstrates

that the redistribution of fluid by gravity has occurred earlier in the simulations that

use the taller initial condition, the maximum differences in this case being an order of

magnitude smaller than those from simulations using the smaller initial condition. This

slowing of the fluid dynamics in thinner films is expected, as the velocities (2.65) and

evolution equation (2.71) are proportional to positive powers ofh. Importantly, without

Table 5.2: The maximum difference,‖h(ξ, 0.1)− (h∞(ξ)− 0.1E)‖∞, between the evaporatively

displaced steady-state profiles, and the simulated data att = 0.1 in the datasets shown in Figure

5.7.

Initial condition θ̂ = π/2 θ̂ = π/3 θ̂ = π/4

h0(ξ) from §4.2.2 2.1 × 10−2 2.4 × 10−2 2.7 × 10−2

h0(ξ) from §5 4.7 × 10−3 7.0 × 10−3 9.1 × 10−3
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the inclusion of intermolecular forces in the bulk fluid stress tensor (2.10) in the derivation

of the tear-film model, which forces affect the stability of especially thin regions of the

tear film (see, for example, Ruckenstein & Jain, 1974; Jensen& Grotberg, 1992; Oron

et al., 1997), the positive powers ofh in (2.71) preclude the film from rupturing through

fluid advection alone; rupture is only achievable through evaporative loss whenE > 0.

The size of the menisci, coupled with the contact angle at theeyelid, has a significant

effect on the behaviour of the tear film. In the case of the initial condition of§4.2.2, the

steady-state profile att = 0 is predicted to be thicker than the initial condition at the lower

meniscus when̂θ = π/3, and thicker at both menisci when̂θ = π/4. (This remains true of

the evaporatively displaced steady states shown att = 0.1 in the upper plot of Figure 5.6.)

Hence, in the simulations witĥθ = π/3 and θ̂ = π/4, the rapid initial retraction of the

menisci is quickly reversed as the contact lines start to advance along the eyelid to reach

their steady positions. These advancing contact-line speeds are found to be two orders of

magnitude greater than those observed in Figure 5.6, reflecting that the advancement is

not simply due to overshoot of the initial retraction of the menisci (which is seen at the

lower lid in all simulations, see Figure 5.3), but that in these cases the initial retraction is

contrary to the motion that is required for the film to reach its steady state, hence these

contact lines advance at a faster rate than those for which the initial retraction aids the

redistribution of the film under gravity.

The reduction in the height of the menisci affects the magnitude of the initial

recessional velocities of the contact lines as, in each simulation using the initial

condition of§4.2.2, the contact lines initially recede with dimensionalvelocities of order

O(10−2 m s−1), (cf. Table 5.1). This magnitude is reduced through the smaller disparity

between the height of the central plateau and the contact lines, which induces smaller

stresses acting along the line of the eyelid margin. The influence of taller menisci driving

faster film dynamics is also observed in Braun & Fitt (2003), as steeper menisci are

seen to yield faster rupture times. However, the increasingly-rapid thinning that leads
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to the rupture observed in Braun & Fitt (2003) is driven by pinning the menisci at

greater heights, whereas, through allowing contact-line movement, the present model

predicts rupture times that are not dependent on the height of the menisci, with rupture

being a large-time evaporative effect that occurs after themeniscus-driven dynamics have

subsided. In the present model, the height of the menisci only affects the magnitude of

the initial movement of the tear film.

5.3 Summary and discussion

The drainage of the tear film under the influence of gravity, substrate curvature,

evaporation and the contact angle specified at the three-phase contact line has been

studied in this chapter, allowing comparisons to be drawn with results from models within

the published literature. In the absence of the interfacialstresses induced through the

modelling of a heterogeneous adsorbed surfactant layer, this chapter allows the dynamic

behaviour of the dissipative film-thickness evolution equation (2.71) to be studied in

isolation.

The novel boundary condition (2.76) that specifies the contact angle between the

eyelid and the free surface at the three-phase contact line is found to have a strong

influence on the film profile, primarily as it allows the contact line to slip along the eyelid

margin. This behaviour is unseen in all previously-published models for drainage of the

tear film, wherein Dirichlet boundary conditions preclude contact-line movement, giving

rise to flows that are driven by ever-steepening menisci withdiminishing contact angles

(see, for example, Braun & Fitt, 2003, Figure 2). Moreover, such Dirichlet pinning has

been shown to be unphysical in the presence of evaporation from the tear film, and a

pseudo-pinned boundary condition (5.4) suggested to ameliorate the issue. By tracking

the temporal evolution ofTωω (5.1) at the contact lines, the present model shows the

stresses induced by the menisci are dissipated as the fluid isredistributed to its equilibrium
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position. A discussion of this stress is conspicuously absent in all of the existing tear-film

models in the published literature, as the steepness of the menisci would generate large

contact-line stresses that could well lead to de-pinning ofthe film. Furthermore, at the

feet of the menisci (where they join the flat plateau region over the centre of the eye), the

high curvatures in the free surface would induce large pressures. Thus in flows that pin

the menisci, the spatial limits of the menisci are liable to be locations that experience large

stresses, which stresses could damage the delicate ophthalmic tissues surrounding the tear

film. In the absence of explicit forms for the late-time film profiles in these models, it has

not been possible to calculate such stresses here.

In addition to allowing slip of the contact line, the contactangleθ̂ enforced through

(2.76) affects the velocity of the contact line, and also acts jointly with gravity to specify

the position and value of the thinnest part of the tear film. Assuch, when steady

evaporation (which is found to have only large-time thinning effects) is included in

the model, the site of rupture and the time taken for the film toreach zero depth are

strongly dependent on̂θ (for a given initial volume of tear fluid). For example, in the

three simulations presented in Figure 5.5, the time to rupture and the position at which

rupture occurs are displayed in Table 5.3. In all cases, the times taken to reach rupture

are significantly longer than the duration of a normal human interblink of roughly five

to eight seconds (Berger & Corrsin, 1974); via (2.41), the shortest nondimensional time

presented here,th=0 = 65.2, corresponds dimensionally to5 minutes26 seconds. The

negligible effect of evaporation on transient film dynamics(cf. §5.1) coupled with the

large dimensional times to rupture support the conclusion that it has only a minor effect

on the dynamics of the tear film, and that evaporation must actin concert with another

deficiency to develop the dry-eye phenomenon studied in, forexample, Mathers (2004).

Importantly, through comparisons of the novel contact-line-slippage behaviour of the

tear film enabled through boundary condition (2.76) with thebehaviours demonstrated

in existing models of the tear film, it is hypothesized here that the human tear film
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exhibits both pinning and slipat the contact line, but that pinning is the cause of dry-

eye phenomena such as the ‘black lines’ (McDonald & Brubaker, 1971; Miller et al.,

2002). Such contact-line behaviour is supported by thein vitro results of Leiskeet al.

(2011), in which dynamic wetting experiments using water droplets coated with insoluble

Meibomian lipid show the contact line to exhibit both pinning and de-pinning. In this

so-called ‘bi-behavioural’ model for the contact line, thestress-induced slip of ‘normal’

tear films towards their steady-state profiles allows fluid toleave the menisci, washing

across the film to thicken the plateau regions as observed within, for example, Figure 5.2.

Conversely, maladies of the eyelid margin may generate regions that resist the contact-

line stresses causing the menisci to pin, which pinning is readily shown in the existing

literature (listed on page 111) to create significantly-thinned regions at the feet of the

menisci. Under this hypothesis, the treatment of aqueous-deficient dry-eye diseases would

need to focus on possible issues at the eyelid margins, with the express aim of thinning

the menisci, rather than thickening the central plateau through the use of tear substitutes

(Holly & Lemp, 1977; Jossicet al., 2009).

Variation of the parameterδ has shown the influence of the underlying corneal

curvature on tear-film dynamics to be small but non-vanishing. In Figure 5.1, comparison

of non-evaporative results obtained in Cartesian and curvilinear coordinate systems at

t = 1 shows the latter system to yield a tear-film profile that is0.21% thinner at the

upper eyelid and0.19% thicker at the lower lid than the former, which discrepancies

Table 5.3: Non-dimensional time to rupture and site of rupture in the three simulations shown in

Figure 5.5.

θ̂ th=0 ξh=0/C

π/2 74.1 −1

π/3 70.0 −0.11

π/4 65.2 −0.06
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are attributed to the position-dependent force of gravity relative to the substrate in the

curvilinear formulation. Whilst this marginal dependenceon δ appears to support the

conclusions of Braunet al. (2012) – that the curvature of the cornea does not have a

significant effect on the thinning of the tear film – the differing stresses at the two eyelids

shown in Figures 5.4 and 5.6 indicate that the retention of a non-zeroδ is important in

the model, leading to a more accurate representation of the dynamics occurring in the tear

film.

Finally, the thickness and shape of the initial profile has been seen to have a significant

effect on the early dynamics of the tear flow, as thinner films act to inhibit movement,

leading to slower bulk-fluid velocities acting under the redistributive influence of gravity.

Furthermore, the combination of the contact angle and the height of the menisci compared

to the central plateau can cause different behaviours in thecontact-line velocities; for

small menisci and contact angles, the position of the steady-state contact line can lie

anterior to the initial condition. In such cases, the meniscus at the lower lid (and also at

the upper lid for sufficiently small contact angles) advances along the eyelid after its initial

stress-induced drop. The advancing contact-line speeds insimulations with such initial

configurations are seen to be orders of magnitude greater than the advancing velocities

exhibited by films with taller initial menisci.

Overall, the study of the isolated tear-film dynamics governed by the evolution

equation (2.71), and subject to the boundary conditions (2.76) and (2.77), has shown

that the flow can be broken down into three distinct phases: first, a rapid retraction

of the menisci caused by relaxation of the capillary stresses induced by the initial

condition; second, a period of slow movement as gravity and the contact-angle boundary

conditions act to redistribute the tear film towards its steady-state profile; and third, a

steady diminution of the late-time, near-steady-state profile under the action of constant

evaporation, which leads to eventual tear-film rupture in the absence of the restorative

action of a blink.
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The influence of a non-uniform distribution of lipid surfactant on the underlying tear-

film thickness is studied in the subsequent chapter, whereinresults from simulations of

the pair of coupled evolution equations (2.71) and (2.72) are presented. These results are

compared to the ‘clean-surface’ results discussed in this chapter, and to those of models

within the published mathematical literature on the tear film.
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Chapter 6

Simulations of the Coupled System

The coupled dynamics of the tear film and the adsorbed lipid surfactant at its free

surface are now studied through the numerical simulation ofequations (2.71) and

(2.72), respectively governing the time-evolution of the film thicknessh and surfactant

concentrationψ. Results from the coupled system are presented alongside the lipid-free

results of Chapter 5, demonstrating the effect of the lipid layer upon the dynamics of the

underlying tear film. Comparisons are also made with the results from other published

models of the tear film that incorporate the dynamics of the lipid surfactant (Berger, 1973;

Berger & Corrsin, 1974; Joneset al., 2006; Braun & King-Smith, 2007; Heryudonoet

al., 2007; Aydemiret al., 2011; Zubkovet al., 2012). In addition to the differences

in the derivation of these models mentioned in Chapter 5 (page 111), many of these

models include the opening phase of the blink cycle of dimensional duration0.2 seconds

(Doane, 1980), followed by a drainage flow during the interblink period (lasting at least

five seconds: Berger & Corrsin, 1974; Heryudonoet al., 2007). Accordingly, the results

from this model are compared only with the interblink dynamics reported in such papers,

which interblink represents at least95% of the blink-cycle duration. It is highlighted that,

in respect to the differences in the mathematical derivations, the aim of this chapter is to

illustrate how the redistributive effects of a motile surfactant layer can be observed in a
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model that does not pin the menisci.

Throughout this chapter, the physical parameters within the model are fixed with

values ofα0 = 5, st = 1, δ = 5/12 andE = 1.503 × 10−2 in order that the influence of

ψ may be observed clearly. The initial condition for the film thickness (2.80) is formed

using the same parameter values as in Chapter 5; specifically, hMID = 1, r = 2 and

b = 0.4. Numerical discretization parameters of{N = 20, dt = 2 × 10−8} are employed

in all simulations. Two initial conditions,ψ0(ξ), are used to model different post-blink

surfactant configurations. The first is a uniform distribution given by (2.82b), which

models a ‘pleated-drape’ distribution (McDonald, 1968; 1969) where the lipid layer has

unfolded behind the upper lid to leave a homogeneous layer. Alternatively, a non-uniform

initial condition is defined by (2.83) using a minimum concentration ofψMIN = 3/4. This

distribution models a lipid layer that has lagged behind theupstroke of the upper lid

(Berger & Corrsin, 1974; Owens & Phillips, 2001; Bronet al., 2004), and is thus more

highly-concentrated towards the lower lid,ξ = C.

6.1 Coupled film thickness and surfactant concentration

results

To illustrate the effect of the lipid surfactant on the movement of the tear film, results

from simulations that use each of the three1 initial surfactant concentration distributions in

(2.82) and (2.83) are presented. In addition, variation of the contact angle,̂θ, at the three-

phase contact line allows the combined influence ofψ and the novel boundary condition

(2.76) to be investigated.

Figures 6.1 and 6.2 respectively display coupled snapshotsof h(ξ, t) andψ(ξ, t) taken

from simulations using the three initial conditions for thesurfactant concentration and

1Including theψ ≡ 0 simulations of Chapter 5.
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a contact angle of̂θ = π/2.2 The redistributive influence of surfactant on the tear-

film dynamics is demonstrated in Figure 6.1 as, by comparisonwith the surfactant-free

data, the red and blue datasets at each instant display a thickening of the tear film over

the superior ocular surface (ξ < 0), and a corresponding thinning over the inferior

surface. This superior thickening is shown more markedly inthe red profiles, which

2Such an angle is unphysically large for the tear film, but is required through the constraints of the

lubrication approximation used in the derivation of this model. See§2.4.1 for further discussion of̂θ.
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Figure 6.1: Snapshots of film profiles att = 0.1 (dotted lines),t = 1 (dot-dashed lines) andt = 2

(dashed lines), witĥθ = π/2. Colours represent the initial condition for the coupled surfactant:

uniformψ0; non-uniformψ0, and;ψ ≡ 0. The initial height profile is shown as a solid black line,

and the evaporatively displaced steady state is displayed at t = 1 (+), andt = 2 (×). The green

dataset repeats the purple data presented in Figure 5.1.
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Figure 6.2: Snapshots of the surfactant concentrations coupled to the film profiles of Figure 6.1.

Line styles and colours are as per Figure 6.1, with solid lines denoting the two different initial

conditions. Steady-state profiles are not shown as they overlay the uniform initial condition.

correspond to a non-uniformψ0, indicating that a lipid layer that lags behind the opening

eyelid can generate significant bulk flow. These results agree qualitatively with those

of Joneset al. (2006, Figure 9), wherein superior drift of the central plateau region of

the tear film is exhibited during the draining phase and, moreover, the non-uniform initial

surfactant distribution rapidly migrates towards a uniform steady-state distribution, which

agrees with the behaviour in Figure 6.2. The late-time data (at t ≥ 1, corresponding

to dimensional times greater than five seconds) of Figure 6.1demonstrates that, after

the initial ψ-induced drift, the tear film tends towards its steady-stateprofile (2.90) as

described in§5.1. This persistence of movement in the coupled simulations agrees with
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Table 6.1: The maximum difference between the simulated data shown in Figure 6.1 and the

evaporatively displaced steady-state film profile (2.90).

Non-uniformψ0 Uniformψ0 ψ ≡ 0

‖h(ξ, 1)− (h∞(ξ) − E)‖∞ 8.81 × 10−3 2.75 × 10−3 5.10 × 10−4

‖h(ξ, 2)− (h∞(ξ) − 2E)‖∞ 1.78 × 10−3 1.01 × 10−3 5.10 × 10−4

the in vivo observations of Némethet al. (2002), which reports changes to the regularity

of the tear film for up to 10 seconds after a blink, and Table 6.1identifies that the early

superior drift of fluid counteracts the effect of gravitational redistribution, delaying the

onset of gravitational drift and yielding tear-film profilesthat depart from the steady state

by an amount greater than that seen in theψ ≡ 0 simulation. This postponement of

gravitational effects is discussed further in§6.2. Additionally, fort > 1, the relaxation

of the surfactant concentration distributions in Figure 6.2 towards the uniform steady-

state represents a slow upward drift of surfactant that is inagreement with the majority of

observations in King-Smithet al. (2009).

The feedback between the temporal evolutions ofh andψ is well-illustrated by first

considering the blue dataset in Figure 6.2, which corresponds to a uniformψ0. In the

absence of any variation inψ0, the redistribution ofψ during the early stages of motion is

caused solely through fluid advection. Byt = 0.1, the rapid retraction of the tear menisci

results in an increased lipid concentration over the centreof the eye, with a corresponding

reduction near the eyelids. Reducingψ causes a local increase in the surface tension,

which manifests itself in the stress conditions, (2.48) and(2.49), at the free surface. This

increased tension acts to flatten the free surface and ‘pull’fluid in from the surrounding

regions, whence the feedback loop is closed by noting that the aforementioned superior

thickening of the tear film att = 0.1 in Figure 6.1 occurs in the same position as the lowest

surfactant concentrations in Figure 6.2. Importantly, theupper (ξ < 0) region of the

uniform-ψ0 dataset att = 0.1 in Figure 6.2, which initial condition emulates McDonald’s
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(1968, 1969) ‘pleated drape’ distribution, displays behaviour that is contrary to the initial

drift reported in Berger & Corrsin (1974), Owens & Phillips (2001) and King-Smithet

al. (2009), as thesein vivo observations identify only superiorly directed movement of

the superficial lipid layer, whereas the blueψ(ξ, 0.1) data suggests an initial migration of

surfactantdownthe eye into the central region from the rapidly-retractingupper meniscus.

By comparison, the non-uniform-ψ0 (red) trace att = 0.1 in Figure 6.2 agrees with the

observations, as the drop in concentration near the lower lid (ξ = C) drives surfactant

molecules up the surface of the tear film, increasing the surfactant concentration over the
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Figure 6.3: Collated(top) film thicknesses and(bottom) surfactant concentrations at the contact

lines from the simulations in Figures 6.1 and 6.2. Solid and dashed lines respectively denote data

at ξ = C andξ = −C. Colour-coding is as per Figure 6.1, with dotted black linesshowing the

steady-state values (which are evaporatively displaced inthe upper plot).
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central portions of the tear film. Downward movement of lipidmolecules initially located

close to the upper lid can again be inferred from the drop in concentration forξ < −0.7

in the non-uniform-ψ0 simulation; however, it is noted thatin vivo data on the movement

of the lipid layer close to the upper lid immediately after a blink is difficult to acquire due

to the rapid nature of the eyelid motion, and the presence of eyelashes3, hence the model

predictions for the non-uniformψ0 are not necessarily at odds with observations.

To further illustrate the effect of the lipid surfactant on the tear-film dynamics, the

contact-line data,h(±C, t) andψ(±C, t), from the simulations in Figures 6.1 and 6.2

is collated in Figure 6.3, and the early-time behaviour of the same simulations across the

full computational domain is displayed in Figure 6.4. Afterthe initial drop of the menisci,

Figure 6.3 demonstrates the significant redistributive effect of the non-uniformψ0, as for

t ∈ [5× 10−3, 0.19], the film is thicker atξ = −C than atξ = C. This inverted behaviour

is not observed in either of the other two simulations. Theψ-induced redistribution is

more clearly demonstrated via a comparison of Figures 6.4 (a), (b) and (d), in which

the latter is greatly thickened over the superior regions, specifically: h(−C, 0.2) from

plot (d) is 4.1% thicker than its counterpart in plot (a), and2.9% thicker than in plot

(b). Furthermore, whilst the superior thickening is less obvious in Figure 6.4 (b) than in

plot (a), the initial behaviour is significantly different from that in theψ ≡ 0 simulation.

The superior thickening and inferior thinning in Figure 6.4(d) qualitatively replicates the

early-time behaviour observed by Benedettoet al. (1984) and Zhuet al. (2007) and,

moreover, the superiorly directed drift supports the hypothesis, of Brown & Dervichian

(1969), Holly & Lemp (1977) and Bronet al. (2004), that the movement of the lipid

layer after a blink can act to thicken the tear film to its full thickness after a blink (cf.

§1.1.1). Notably, theψ(ξ, 0.2) datasets of Figures 6.4 (c) and (e), corresponding to one

dimensional second, both show a near-uniform surfactant distribution that qualitatively

agrees with the observations of Berger & Corrsin (1974), Owens & Phillips (2001) and

3cf. Braun & King-Smith (2007, Figure 18a), King-Smithet al. (2009, Figures 4b, 4c and 5b), and the

lack of data points forX/L > 0.8 in Berger & Corrsin (1974, Figure 8).
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Figure 6.4: Numerical simulation of (2.71) and (2.72) showing(left) h, and (right) ψ for

t ∈ [0, 0.2], collating the results of Figures 6.1 and 6.2, in which the contact angle iŝθ = π/2.

Snapshots are displaced temporally by a step∆t = 10−2. The lower lid is positioned towards the

left-hand side of each plot.(a) ψ ≡ 0; (b, c) uniform ψ0; and(d, e) non-uniformψ0. h(ξ, 0) is

omitted due to the disparity in scales.
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King-Smithet al. (2009), wherein the rapid initial movement of the lipid layer subsides

after roughly one second.

Importantly, it should be noted that the upward drift of the tear film in bothψ 6= 0

simulations is predicted by a leading-order model from which the scalings of§2.2.2 have

removed all inertial effects. Hence, the film is being advected purely through interaction

with the heterogeneous surfactant distribution. As described above, this superior drift

counteracts the effect of gravity leading to a tear film that is more-uniformly distributed

across the corneal surface for a greater period of time, which is important for visual acuity

as the tear film forms the first refractive interface encountered by light entering the eye

(Bronet al., 1997; Némethet al., 2002). Notably, the use of the novel boundary condition

(2.76) rather than Dirichlet pinning enables theψ-induced redistribution to occur across

the whole domain, rather than in the central plateau region perched between the two

menisci as shown in Joneset al. (2006, Figure 9) and Aydemiret al. (2011, Figure

5). In addition to the contact-line movement engendered by boundary condition (2.76),

this redistribution of the bulk fluid further alleviates theopportunity for ‘black lines’

(McDonald & Brubaker, 1971; Milleret al., 2002) to be generated.

Under the action of the evolution equation (2.72), the totalmass of surfactant (2.87)

in the system shows the same qualitative behaviour as the non-evaporative, fluid mass

data of Figure 5.4: specifically, for each of the initial conditions, ψ0, the rapid initial

dynamics cause an increase in the total mass of surfactant that reaches0.114% by t =

3×10−3. After this increase the change in mass remains almost constant, with a mass loss

of orderO(10−2%) occurring over the periodt ∈ [3 × 10−3, 1] in both simulations. This

quasi-steady period yields a percentage change in mass per time-step of approximately

−3 × 10−10% for each of the4.985 × 107 time-steps required to integrate the solutions

duringt ∈ [3 × 10−3, 1], demonstrating the accuracy of the numerical scheme applied to

leading-order evolution equation (2.72).

The influence ofψ on tear films with a non-vanishing gradient of film thickness,hξ, at
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the contact line is displayed in Figures 6.5 - 6.7, in whichθ̂ = π/3. (Results for̂θ = π/4

are qualitatively the same and are not presented.) In each figure, the non-zero gradienthξ

reduces the severity of the initial retraction of the menisci (cf. Figure 5.6), which reduced

advection yields a smaller disturbance to the early evolution ofψ. Nevertheless, Figure

6.5 shows the presence of surfactant to lead to an early thickening of the tear film over

the superior cornea that persists throughout the period of gravitational redistribution of

the fluid, repeating the qualitative behaviour of theθ̂ = π/2 simulations. A comparison

of the data att = 0.1 in Figures 6.2 and 6.6 shows the displacement of theψ distributions

from their respective initial conditions to be greater in the θ̂ = π/2 simulations.

The evolution of the coupled system fort ∈ [0, 0.2] and θ̂ = π/3 is displayed in
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Figure 6.5: Snapshots of film profiles taken at the same times as those in Figure 6.1, witĥθ = π/3.

All line styles are as per Figure 6.1.
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Figure 6.6: Snapshots of the surfactant concentrations coupled to the film profiles of Figure 6.5,

with data displayed using the same line styles as in Figure 6.2.

Figure 6.7, wherein theψ-induced superior drift of the tear film is discernable by noting

the comparative reduction in the film thickness at the lower lid, h(C, t), in plots (a),

(b) and (d). A comparison of Figures 6.7 (c) and (e) with theircounterparts in Figure

6.4 further corroborates the reduced magnitude of the initial dynamics when̂θ = π/3,

as theψ distributions show less distortion in this case, and, moreover, shows a similar

near-uniform surfactant distribution to have been reachedby t = 0.2, reaffirming the

model prediction that the rapid initial movement of the lipid layer subsides during the first

dimensional second (Berger & Corrsin, 1974; Owens & Phillips, 2001; King-Smithet al.,

2009). These results show that the novel boundary condition(2.76) has a greater effect on

the overall dynamics of the tear-film flow than the initial distribution of surfactantψ0(ξ),
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despite the latter’s redistributive influence during the early phases of the flow. This occurs

because the value ofθ̂ effectively specifies the magnitude of the initial flow characteristics,

and also specifies the shape of the steady state to which the tear film migrates after the

ψ-induced drift has subsided.
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Figure 6.7: Early behaviour of the coupled system with a contact angle ofθ̂ = π/3, collating the

results of Figures 6.5 and Figure 6.6. All other details are as per Figure 6.4.
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6.2 The influence of surfactant on physiologically-

significant quantities

In addition to studying the effect ofψ and its initial condition on the distribution of the

tear film, and on the transient dynamics of the coupled system(2.71) and (2.72), the

presence of lipid is shown to cause significant changes to theminimum film thickness,

hMIN = min
ξ∈[−C,C]

[h(ξ/C, t)], and to the evolution of the contact-line stresses and velocities.

These quantities are of physiological importance in the ocular system: an increase inhMIN

will yield a film that is less susceptible to evaporation-induced rupture, and (as mentioned

in §5.3) the stresses at the contact line in simulations with pinned menisci may reach

levels that are pathological to the epithelial cells of the eyelid margin. The dissipation

of such stresses during simulations of this model is identified by tracking their temporal

evolution. Despite their importance, the stresses at the contact line remain undiscussed

in all prior works on the tear film, and movement of the contactline is precluded by the

modelling in all such works.

In the absence of surfactant,hMIN is located towards the upper lid due to the influence

of gravity. In the presence of surfactant, the superiorly directed drift of the bulk fluid

leads to an increase inhMIN as shown in Figure 6.8, a result that is also observed in

Aydemir et al. (2011). For each of the contact angles tested, the drift attributed to the

non-uniformψ0 causes the greatest increase inhMIN by comparison with the uniform-ψ0

andψ ≡ 0 simulations, this increase occurring earlier in the simulations for θ̂ = π/2

than for θ̂ = π/3. The influence of the superior drift onhMIN is best-demonstrated by

the {non-uniformψ0, θ̂ = π/2} dataset of Figure 6.8, in collaboration with Figure 6.4

(d). In this case, the location ofhMIN is shifted to the inferior half of the palpebral fissure

for t < 0.22, and is also shown to increase during the same time period, after which the

ψ-induced drift subsides and gravitational redistributionof the film leads to a reduction in

hMIN , the position of which rapidly moves through the computational domain to the upper
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lid (ξ = −C) for all timest ≥ 0.26. In each of thêθ = π/3 simulations that include

surfactant,hMIN is marginally increased and displaced towards the upper lidin comparison

with theψ ≡ 0 simulation. This location converges towards theψ ≡ 0 value with time.

Importantly, the late-time behaviour in Figure 6.8 shows that the presence of surfactant

leads to a thicker value ofhMIN for times up tot = 2 (corresponding to ten dimensional

seconds, i.e. exceeding a normal interblink period), whichbehaviour suggests that the

presence of the superficial lipid layer helps to prevent evaporation-induced rupture by
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Figure 6.8: Minimum film thicknesses in simulations with differentψ0 distributions, and contact

angles of(top) θ̂ = π/2, and(bottom) θ̂ = π/3. Line colours denote the system with auniform

ψ0, anon-uniformψ0 andψ ≡ 0. Dotted black lines plot the evaporatively displaced minimum of

the steady-state profile (2.90). In each row, the larger plotshows the early dynamics fort ∈ [0, 0.5],

whilst the smaller plot displayst ∈ [0.5, 2]. Note the different vertical scales in each plot.
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causing large-time thickening of the film. As such, the film-thickening evidence augments

the hypothesis (Mishima & Maurice, 1961; Mathers, 1993; Craig & Tomlinson, 1997)

that the lipid layer plays an important role in preventing evaporation-induced rupture.

However, this hypothesis is based on the lipid forming a barrier to evaporation, an effect

not captured in the modelling of Chapter 2, thus it is only thefilm-thickening effects of the

surfactant that are claimed by the present model. Notably the increase ofhMIN appears to

require simply thepresenceof surfactant, rather than requiring the initial conditionto be

seeded with surface-tension gradients that promote upwarddrift of bulk fluid through the

specification of a non-uniformψ0. Hence both the ‘pleated-drape’ (McDonald, 1968)

and lagging-lipid-layer (Berger & Corrsin, 1974, for example) models for surfactant

deposition are predicted to generate an increase in the minimum film thickness.

The evolution of the dimensional contact-line velocities for t ∈ [4 × 10−4, 0.1] is

displayed in Figure 6.9, wherein the initial velocities areomitted due to the disparity in

scales. For each value ofθ̂ tested, the presence of a non-uniformψ0 is found to alter the

initial recessional velocities of the contact lines by an amount of orderO(10−6 m s−1)

by comparison with theψ ≡ 0 velocities reported in Table 5.1. Hence the effect of

surfactant on the initial recession of the menisci is found to be negligible4. Despite this,

the behaviour of the contact-line velocities during the early dynamics of the flow is found

to be markedly altered by the presence of surfactant. For each value ofθ̂, the inclusion of

surfactant is observed to cause a non-monotonic reduction in the magnitude of the contact-

line velocity at each eyelid fort < 0.005, with the direction of motion briefly changing

to advance up the eyelid in the simulations withθ̂ = π/3 andπ/4. No such fluctuation in

this period is observed in theψ ≡ 0 datasets, which progress rapidly towards their steady-

state profiles (as evidenced by the green data att = 0.1 in Figures 6.1 and 6.5). As such,

the slowing of the fluid dynamics caused by the fluctuations intheψ 6= 0 simulations both

reduces the severity of the initial contact-line movement,and effectively marks the start

of the process of upward drift of the tear film.

4The uniformψ0 generates no change to the initial velocities asv(ξ, t) depends onψξξ.
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Figure 6.9: Dimensional contact-line velocities in simulations with contact angles of(top) θ̂ =

π/2, (middle) θ̂ = π/3, and (bottom) θ̂ = π/4, with (left) t ∈ [0, 0.01], and (right) t ∈

[0.01, 0.1]. Velocities at the lower (ξ = C) and upper (ξ = −C) lids are respectively represented

by dashed and dotted lines, and datasets are coloured as per Figure 6.8. Note the different vertical

scales. This behaviour is precluded by the modelling inall related studies.
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For each contact angle, the red, non-uniform-ψ0 data att = 0.01 in Figure 6.9 shows

the advancing velocity of the lower-lid contact line (ξ = C) to be less (in some cases,

more negative) than the advancing velocity of the upper-lid contact line (ξ = −C). This

is a result of theψ-induced drift of the bulk fluid towards the upper lid, which drift, as

mentioned above, increases the global minimum film thickness hMIN . This contact-line-

velocity trend is reversed byt = 0.1 (i.e. the red datasets cross), demonstrating the

influence of gravitational redistribution as the lower-lidcontact line advances, and the

upper-lid contact line recedes. A similar velocity inversion is not observed in theψ ≡ 0

or uniform-ψ0 simulations, yet it should be noted that, fort > 0.04, the dashed green

traces show the largest advancing velocities at the lower lid, indicating that the presence

of surfactant impedes the gravitational drift of the tear film, maintaining the thicker values

of hMIN exhibited for large times in Figure 6.8.

Figure 6.10 displays the effect of surfactant onTωω (2.10) evaluated at the contact

lines, a quantity that has, to the author’s knowledge, not been reported in any of

the previous literature on the tear film despite its physiological importance. For each

simulation, the stress induced by the initial conditions isTωω(±C, 0) = −1.33 × 105 Pa

when θ̂ = π/2, and Tωω(±C, 0) = −1.18 × 105 Pa whenθ̂ = π/3, where the

negative sign denotes that this pressure pushes down on the contact lines, causing the

initial retraction observed in Figures 6.4 and 6.7. In a similar analysis to that on the

initial recessional velocities, the uniform-ψ0 distribution is found to have no effect on

the initial contact-line stresses. Furthermore, the non-uniform ψ0 altersTωω(±C, 0)

by an amount of orderO(10−3 Pa) by comparison with theψ ≡ 0 value, reinforcing

that ψ0 has a negligible influence on the initial dynamics of the tear-film model. The

presence of surfactant delays the onset of the change of signof Tωω by comparison with

theψ ≡ 0 data, again demonstrating the slowing of the early dynamicsin the coupled

system. However, this delay has a lesser impact upon the temporal evolution ofTωω

than the contact angle, which angle can be seen to strongly affect the time at whichTωω

changes sign, regardless of the coupled-ψ distribution – the reader’s attention is drawn to
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the differing horizontal scales in Figure 6.10.

The large-time behaviour in Figure 6.10 shows the stresses at the lower lid to be

increased by the presence of lipid, with the non-uniform-ψ0 dataset yielding the largest

lower-lid stresses for each value ofθ̂. This trend is reversed at the upper lid, with the

ψ ≡ 0 simulation showing the greatest upper-lid stress. These differences in the contact-

line stresses reflect the level of impact that the surfactanthas had on the transient dynamics

of the flow, specifically: the (red) non-uniform-ψ0 simulations experience the greatest

level ofψ-induced drift, and thus depart from theψ ≡ 0 dataset by the greatest amount.

At each lid, the large-time evolution of the lipid distribution to its spatially-uniform steady
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state (2.91) causes the contact-line stresses to monotonically converge towards theψ ≡ 0

stress values, as allξ-dependence inψ vanishes, removing theψξξ term fromv (2.65), and

hence fromTωω (5.1). Notably, in Figure 6.10, the convergence of the stresses towards

theψ ≡ 0 values has not occurred byt = 1, corresponding to five dimensional seconds,

which agrees with the results of Némethet al. (2002) and King-Smithet al. (2009),

both of which report slow movement of the tear film persistingafter the initial rapid

movements that take place in the first second after deposition (Berger & Corrsin, 1974;

Owens & Phillips, 2001).

6.3 Summary and discussion

This chapter studies the results from simulations of the pair of coupled evolution equations

(2.71) and (2.72) with the aim of showing that the model derived in Chapter 2 can capture

the redistributive effects of the lipid surfactant that have been observed bothin vivo by

ophthalmologists, and in prior mathematical models in all of which, unlike here, the

menisci are pinned.

The results of Figures 6.1 - 6.7 demonstrate that, by comparison with theψ ≡ 0

data of Chapter 5, the presence of surfactant leads to a thickening of the tear film over

the superior cornea during the early stages of flow, with a corresponding thinning over

the inferior cornea. These results replicatein vivo observations (Benedettoet al., 1984;

Zhu et al., 2007), and support the hypothesis that the lipid surfactant plays an important

role in the formation of a stable tear film after a blink (see Chapter 1 for further details).

Furthermore, the rapid migration ofψ from a non-uniform distribution to a near-steady

state by a dimensional time of one second in Joneset al. (2006, Figure 9) is corroborated

by theψ(ξ, 0.2) distributions of Figures 6.4 and 6.7, which distributions also show near-

steady-state behaviour at a dimensional time of one second.The cessation of rapid

movement of the lipid layer by this time is in agreement with the in vivo observations of
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Berger & Corrsin (1974) and Owens & Phillips (2001), which report that lipid movement

persists for roughly one second. After the rapid initial dynamics, slow movement of both

the film thickness profile and the lipid distribution towardstheir respective steady states

is shown to persist throughout the remainder of the blink cycle, as observed in Némethet

al. (2002) and King-Smithet al. (2009). Moreover, the slow evolution of the lipid layer

for (non-dimensional)t ∈ [1, 2] shows a superiorly directed drift of surfactant that agrees

with the majority of observations made by King-Smithet al. (2009). This directed large-

time lipid movement is not observed in Joneset al. (2006), wherein the steady-state lipid

distribution is reached after roughly one dimensional second, or in Aydemiret al. (2011,

Figure 4, bottom right) and Zubkovet al. (2012, Figure 3, centre), both of which preclude

solely-upward drift during the interblink period as their surfactant lies in reservoirs close

to both eyelids after the opening phase of the blink.

These results demonstrate that both realisticψ-induced redistribution of the tear

film and realistic large-time drift of the surfactant layer are predicted by a model that

eschews Dirichlet pinning of the menisci in favour of the Neumann boundary condition

(2.76) for the film-thickness evolution equation. Notably,in the absence of pinning,

the redistribution of the tear film occurs across thewholecornea, further alleviating the

opportunity for the build-up of ‘black-line’ thinning (Miller et al., 2002) that persists in

the pinned models of Joneset al. (2006), Heryudonoet al. (2007), Aydemiret al. (2011)

and Zubkovet al. (2012). Through such results the use of boundary condition (2.76)

opens up a new way to look at the tear film that is intended to augment and complement

the existing studies through the so-called ‘bi-behavioural’ model hypothesized in§5.3.

In this model, the tear-film contact lines may exhibit both pinning and slip, with pinned

behaviour generating the meniscus-induced thinning evidenced in the existing literature,

which thinning accelerates rupture of the tear film. Thus slip behaviour may be exhibited

by healthy tear films, which do not experience rupture or dry-eye symptoms during normal

interblink times. Such ‘bi-behavioural’ movement at the contact lines is supported by the

in vitro observations of Leiskeet al. (2011).
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The initial superiorly directed drift of fluid is shown to be enhanced in simulations

that use a non-uniformψ0, identifying that the two-stage deposition process of Brown

& Dervichian (1969), Berger & Corrsin (1974) and Holly & Lemp(1977) generates a

significant surge of fluid up the eye after the cessation of movement of the upper lid

that agrees qualitatively with the observations of Berger &Corrsin (1974) and Owens &

Phillips (2001). Comparatively, a uniformψ0 that emulates McDonald’s (1968, 1969)

‘pleated drape’ behaviour generates a less-significant thickening of the tear film over

the superior cornea, and also predicts an initial downward flux of lipid from near the

upper lid that has not been observedin vivo (Berger & Corrsin, 1974; Owens & Phillips,

2001; King-Smithet al., 2009). Importantly, these results illustrate that the presence of

surfactant at the start of an interblink period, even in a uniform layer, acts to thicken the

tear film by comparison with theψ ≡ 0 case, as also reported in Aydemiret al. (2011).

For eachψ0 tested, the surfactant-induced drift of bulk fluid during the initial phase

of the flow increases the minimum film thickness for intermediate-to-large times, by

comparison with clean films, as shown in Figure 6.8 (t > 2.9 × 10−2 whenθ̂ = π/2, and

t > 0.19 whenθ̂ = π/3). This thickening is reduced over time as the surfactant migrates

towards its steady-state distribution (2.91), and gravityacts to move the film towards its

steady-state profile (2.90). However, noting thatt = 2 corresponds to 10 dimensional

seconds, the thickening is shown to persist throughout a typical human interblink period,

and film profilesh(ξ, 2) displayed in Figures 6.1 and 6.5 identify that the model does

not predict rupture of the tear film to be an issue under normalconditions. Due to the

persistence of the thickening of the tear film from lipid-induced advection, the present

model predicts that for the70% of patients who suffer both aqueous-deficient dry eye and

Meibomian gland dysfunction (Bron, 2001), emphasis duringtreatment should be put on

improving the quality of the lipid layer, in tandem with allowing slippage of the contact

lines at the eyelid margins, to increase the longevity of theintact tear film by improving

the level of superior thickening.
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An analysis of the evolution of contact-line positions, velocities and stresses,

respectively displayed in Figures 6.3, 6.9 and 6.10, shows the presence of surfactant

to have a significant effect on the transient dynamics of the tear film during the

period between the initial retraction of the menisci and thesubsequent gravitational

redistribution. A discussion of the evolution of these contact-line quantities is novel

to the field of tear-film modelling, with dynamic changes to the contact-line positions

and velocities being enabled in the present model through the new Neumann boundary

condition (2.76), employed in favour of the Dirichlet pinning of the menisci used in

all prior models5. The effect ofψ0 on the initial contact-line stresses and velocities is

demonstrated to be negligible, hence the initial dynamics of all simulations are dominated

by the falling menisci. As the menisci fall, the rapid recession of the contact lines and

adjacent fluid advects the lipid towards the centre of the eye, creating concentration

gradients that subsequently act to advect the underlying tear film. Figures 6.9 and 6.10

show the surfactant to significantly alter the early evolution of the contact-line velocities

and stresses, slowing the dynamics of the tear-film flow by comparison with theψ ≡ 0

simulations, before the aforementioned advection of the bulk fluid. At later times, the

contact-line quantities are shown to tend towards theψ ≡ 0 datasets as the influence of the

surfactant layer subsides and the coupled system moves towards its steady state. As such,

the coupled model predicts the dissipation of contact-linestresses through slippage at the

eyelid margins, which precludes the build-up of pressures that could harm the cellular

structure of the eyelid.

A discussion of the conclusions drawn from the modelling of the tear film is given in

the following chapter. Amendments are moreover suggested that will improve both the

representation of physical processes that are important inthe evolution of the tear-film

flow, and the mathematical modelling techniques used in the derivation of future models.

5Evidence in Chapter 5 has shown such pinning to be implausible in the presence of evaporation, and,

moreover, fixed boundary values have been shown to contradict with the non-zero contact-line velocities

predicted within existing models (cf. §2.4.2, and discussions in Zubkovet al., 2013).
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Chapter 7

Conclusions

“It is good to have an end to journey toward; but it is the journey that

matters, in the end.”– Ernest Hemingway (1899 - 1961)

On account of the individual detailed and cross-referencing summaries given at the ends

of each of the preceding chapters, the main emphases of each chapter are reiterated here.

A brief description of possible future work is also given.

7.1 Summary of findings

A pair of coupled evolution equations modelling the movement of the human tear film

under the influence of its superficial lipid surfactant layeris derived in Chapter 2. To

investigate the influence of the curved corneal substrate onthe tear-film flow, the equations

of motion are derived using a novel curvilinear coordinate system in which the curvature

of the cornea is specified in terms of a parameter,δ, that quantifies the departure from

the rectilinear coordinate system used in all prior studies(with the exception of Braunet

al., 2012). In this way, the neglect or inclusion of terms arising through the curvature
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of the substrate can be investigated and calibrated. Despite the existence of similar thin-

film approximations in the mathematical literature on the tear film (and, moreover, within

studies of rimming and coating flows) a full derivation of themodel is presented not only

for completeness, but mainly in order that a correcta priori scaling of the governing

equations is made before asymptotic approximations are invoked. All field variables

and non-dimensional groupings of physical parameters are scaled in terms of a small

parameterǫ before asymptotic expansions of the field variables are made, to ensure that

all variables in the equations are of orderO(1). This assumption, made through the

thin-film lubrication approximation, enables the pair of uniformly-valid, leading-order

evolution equations for the film thickness and surfactant concentration to be derived,

and furthermore provides an understanding of the limit of their validity. Specifically,

as mentioned in§2.3, if any variables or derivatives in the evolution equations become

larger thanO(1), the assumptions employed in the derivation of the model areinvalidated,

and the ordering used in the derivation ceases to be asymptotic. As such, the evolution

equations presented in Chapter 2 are claimed only to represent the motion of the human

tear film in an “O(1) gradient” régime.

A discussion of the boundary conditions used in the modelling of the fourth-order

evolution equation for the film thickness (2.71) leads to therelaxation of the Dirichlet

pinning conditions, used inall previously published tear-film models, in favour of the

development of boundary condition (2.76) — for the gradientof the film thickness,

hξ — at the eyelids; a development that is novel to the field of tear-flow modelling.

The use of pinned boundary conditions is motivated, in the existing literature, by the

presence of the mucocutaneous junction: a point on the eyelid margin at which the

wettability changes, the region anterior to the mucocutaneous junction being unwettable

due to the presence of lipid. Dirichlet boundary conditionsare eschewed in the present

model as such a change in wettability is seen only to present abarrier to fluid flowing

anteriorly along the eyelid, and hence it does not give rise to a physically justifiable

reason for the film not to slipposteriorly i.e. towards the ocular surface, along the
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pre-wetted eyelid margin. Furthermore, the pinning thickness in all prior models is

at least one order of magnitude greater than the thickness ofthe central film profile,

immediately invalidating the approximations used in the derivation of such models.

This invalidation is demonstrated by the results of Zubkovet al. (2013), wherein

fluid velocities in the meniscus of a pinned lubrication-approximation simulation predict

contact-line movement, contradicting the enforced boundary condition. Nevertheless,

a comparison of results from the lubrication-approximation model and simulations of

the full Navier-Stokes equations (ibid.) in the meniscus region shows the computed

film profiles of the lubrication model to be qualitatively accurate, despite pinning of the

meniscus at a level that is nearly two orders of magnitude greater than the central film

thickness. It is felt, however, that this similarity of results is born of the scenario being

modelled, specifically: a thin film coupled to a large,pinnedmeniscus, thus there is very

little movement the film can exhibit that could lead to a significant difference in results.

The development of boundary condition (2.76) adds a significant complexity to the

processes required to simulate the tear-film model. However, it is felt that the condition

yields a more physically-realistic flow, especially in cases where pinning of the menisci

is in direct contradiction with evaporation of the tear film.This modelling contradiction

is highlighted by the observation that the eyelids maintaina higher temperature than the

cornea (Tomlinsonet al., 2011), and thus will act to enhance evaporation at the contact

line. By allowing slip of the contact line, the use of boundary condition (2.76) has

opened up a completely new area for tear-film modelling, through which newly reported

agreements within vivo observations are enabled. These novel results are intended

to augment the existing results in the published literature, with the aim that a better

understanding of tear-film dynamics may ultimately be obtained.

Motivated by the scant level of information on numerics provided in the existing

literature on the tear film, the numerical methods employed to solve the tear-flow

model are described in detail and subsequently tested in Chapters 3 and 4, respectively.
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Chebyshev spectral methods are employed due to their high-order convergence properties

in the approximation of smooth functions, such as those required under the assumptions

of the lubrication approximation used in Chapter 2. In the absence of Dirichlet boundary

conditions in the model, non-trivial modifications of existing Chebyshev-differentiation

methods are developed to yield a procedure that enforces theNeumann boundary

conditions with spectral accuracy. Furthermore, to improve the accuracy in the numerical

approximation of the higher-order derivatives present in the evolution equations, novel

third- and fourth-order Chebyshev differentiation matrices are explicitly derived in§3.1.2

and their performance is shown in§4.1.1 to be less accurate than approximations obtained

through repeated action of the first-order differentiationmatrix (3.15). This reduction

in the accuracy of derivatives calculated with the explicithigher-order differentiation

matrices is attributed to the combined effects of the finite-precision arithmetic inherent

in computer simulations, and the increasing magnitude of “border” matrix entries as

the order of differentiation increases. Thus, by comparison with the first-order matrix,

the finite-precision representation of the entries in higher-order matrices has a greater

absolute error, which adversely affects the accuracy of thenumerical approximations. In

all tests of the differentiation matrices, and of a newly modified version of the spectral

integration routine of Trefethen (2000), the numerical approximations are shown to

be accurate to within the tolerance of the round-off plateaufor N & 40 Chebyshev

discretization points. Hence the Chebyshev spectral discretization employed allows a

significant saving to be made in the computational resource required to simulate the

coupled system, by comparison with the number of discretization points required in the

finite-difference simulations of, for example, Braun & Fitt(2003). Importantly, unlike the

descriptions given in much of the prior literature, the methods outlined in Chapter 3 have

been made transparent in order that they may be implemented independently not only

to reproduce the results presented within this thesis, but also to model other nonlinear

evolution equations on a bounded spatial domain in the presence of (only) Neumann

boundary conditions.
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Motivated by the results of existing models that employ spectral methods to simulate

steep, pinned menisci,§4.3 contains an investigation of the errors encountered in the

spectral approximation of derivatives of steep-sided functions. The results presented in

Figures 4.9 - 4.12 show that the magnitude of the error in the approximation of derivatives

is largest at the ends of the computational domain, and, moreover, that these largest

errors grow as the number,N , of spatial discretization points is increased. Hence these

results identify that the regions of the flow that drive the underlying fluid dynamics in

such steep-sided models are the very regions thatmustcontain the greatest numerical

errors. Significantly, the spatial distribution of discretization error is not discussed in the

existing literature. Furthermore, it is important to note that the results of Figures 4.9 -

4.12 are obtained using aspectrally-accuratemethod, thus motivating the question of the

magnitude of the errors associated with the (mere) second-order spatial finite-difference

schemes used in prior tear-flow models. Importantly, these results illustrate that what is

happening in vicinity of the steep-sided menisci in other models is clear from neither a

numerical point of view — as described above — nor from a modelling point of view

— through the violation of assumptions of the lubrication approximation used in the

derivation of each model.

In Chapters 5 and 6 the validated numerical methods of Chapter 3 are employed in

the integration of the coupled evolution equations describing tear-film flow. Simulations

in the absence of the superficial lipid layer are presented inChapter 5, and illustrate that

the novel boundary condition (2.76) yields behaviour that is unseen inall prior models

of the tear film. Without the pinning of the contact lines, themenisci defined in the

initial conditions rapidly retract towards the corneal substrate in reaction to the stresses

manifest at the contact line by the shape of the free surface.This relaxation of the

menisci precludes the tear film from developing the meniscus-induced thinning observed

within other models, and hence is unable to predict phenomena similar to the ‘black

line’ observations made in ophthalmic studies (McDonald & Brubaker, 1971; Bronet

al., 2011). It is noted, however, that such thinning is possibleonly through the violation
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of the lubrication approximation, as mentioned previously, by pinning the menisci at a

level that is (at least) an order of magnitude thicker than the central film height. Through

variation of the contact angle formed between the tear film and the eyelid, the magnitude

of the large-time contact-line stresses is seen to increasewith decreasing angle, suggesting

that significant stresses may develop within models that pinthe menisci, particularly in

models that predict ever-steepening menisci. Somewhat remarkably, a discussion of the

stresses at the contact line is also novel for the field of tear-flow modelling, despite the

damage that large stresses could cause to the underlying ophthalmic tissues that house

the tear film. Additionally, the development of large stresses suggests that pinning of the

menisci may be an extreme case for the tear film, and that the stresses may be alleviated

through de-pinning of the contact line.

Motivated by the behaviour of the contact line in simulations of the present model,

§5.3 advances a so-called ‘bi-behavioural’ model for the tear film, in which both slip

and pinning are permitted at the contact line. Such a model is supported by thein vitro

results of Leiskeet al. (2011), wherein a dynamic wetting experiment using a Meibum-

coated droplet is shown to exhibit pinning and de-pinning ofthe contact line. As such,

under the ‘bi-behavioural’ model, pinning of the contact line is suggested to cause dry-

eye pathologies through meniscus-induced thinning (as demonstrated by other tear-film

models) and stress-induced damage to the eyelid margin, thecombination of which may

form a viscious circle of damage to the eye. Accordingly, slip of the contact line is

suggested to occur in healthy eyes, and through the hypothesis it is suggested that dry-eye

diseases could be treated by encouraging contact-line slippage along the eyelid margin.

Hence, rather than thickening the bulk film, the focus of dry-eye treatment is shifted to

thinning the menisci, allowing the redistribution of fluid throughout the tear film.

The surfactant-free model also reveals that the novel curvilinear coordinate system,

which incorporates corneal curvature, yields only marginal differences in the tear-film

distribution when compared to a Cartesian model. Nevertheless, by tracking the behaviour
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of the contact-line stresses, the presence of a curved substrate is, for the first time,

illustrated to alter the behaviour of the fluid significantly. Thus corneal curvature is an

important feature of the ocular system that should be included for accurate modelling of

tear-film behaviour. Constant evaporation of bulk fluid fromthe tear film is observed

to have only long-term thinning effects, which, in the absence of meniscus-induced

thinning, do not predict rupture of the tear film during a normal human interblink period

of approximately five to eight seconds (Berger & Corrsin, 1974).

Finally, the results from the full coupled system presentedin Chapter 6 demonstrate

that the presence of the lipid surfactant at the free surfaceof the tear film generates a

redistribution of the underlying bulk fluid that increases the minimum thickness of the

film, agreeing qualitatively with the results of Aydemiret al. (2011). Through modelling

an initial lipid distribution that emulates the behaviour of a lipid layer that lags behind

the rapidly-opening upper lid, a significant thickening of the tear film over the superior

cornea is observed in the early stages of the interblink period, qualitatively replicating

the in vivo results of Benedettoet al. (1984) and Zhuet al. (2007). These results

support the two-stage deposition model of Brown & Dervichian (1969), Holly & Lemp

(1977) and Bronet al. (2004), in which the creation of a stable tear film after a blink is

dependent on surfactant-induced thickening of the superior tear film after the cessation

of movement of the upper lid. The duration of early lipid layer movements is shown

to agree with the dimensional time of approximately one second observedin vivo by

Berger & Corrsin (1974) and Owens & Phillips (2001), and the evolution of the surfactant

distribution towards a uniform steady state over the same time period is similar to that

observed in the model of Joneset al. (2006). Furthermore, the present model predicts

a large-time counter-gravitational drift of surfactant asit tends towards its steady-state

distribution, which agrees with thein vivo observations of King-Smithet al. (2009) and,

moreover, shows that movement of the tear film persists afterthe initial surfactant-induced

redistribution, agreeing with the observations of Némethet al. (2002). Through its

redistributive effects, the presence of surfactant is found to alter the behaviours of both the
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velocity and the stress at each contact line during the earlyphases of the flow. After these

early changes, the contact-line velocities and stresses are seen to converge towards the

surfactant-free values (observed in Chapter 5) as the influence of the surfactant subsides.

7.2 Future work

The primary emphasis of the work contained this thesis, which emphasis motivated the

meticulous derivation of Chapter 2, has been to ensure that the correct physical behaviours

are represented in a model that adheres to the assumptions made in its derivation.

Accordingly, this methodology has meant that there are a number modelling opportunities

that may be further explored for the model as a draining flow during the interblink period.

Firstly, tests of pathological tear films can be carried out using the existing model to

emulate dry-eye phenomena reported in the ophthalmic literature (see, for example, Holly

& Lemp, 1977). Such tests should employ initial configurations of the coupled system

that have a: (i) reduced aqueous component; (ii) reduced total lipid mass; (iii) poorly-

spread or discontinuous lipid layer, or; (iv) combination of these maladies. Through such

alterations to the initial conditions, the dynamics of tearfilms that are more prone to

rupture can be studied and the combined film-thickening effects of contact-line slippage

and surfactant heterogeneity tested to observe how they mayrelieve dry-eye symptoms.

Secondly, the boundary conditions for the film thickness evolution equation (2.71)

may be amended in line with the newly postulated ‘bi-behavioural’ model. This

amendment would add further complexity to the treatment of the boundary conditions

by creating a stick-slip model (Huh & Scriven, 1971; Thompson & Robbins, 1990) in

which the contact line is permitted to exhibit both behaviours. Within such a model,

simulations would remain pinned until the contact-line stress attains a given threshold

level, after which the tear film would evolve as shown in the present model. Re-pinning of

the contact line would occur when the contact-line stress and/or velocity drops to a given
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level, or when the advancing contact line reaches the mucocutaneous junction, forming

the anterior-most limit of the contact-line position. In the absence of ophthalmic data for

the contact-line stresses in tear flow, a range of threshold levels may have to be tested by

the model. A further level of complexity can be added by modelling a dynamic contact

angle between the tear film and the eyelid margin, in which thein vitro results of Leiske

et al. (2011, Figure 4) may be used to inform the contact-angle behaviour, as this data

shows that the contact angle of spreading Meibum-coated drops does not adhere to the

theoretical predictions of the Cox-Voinov law (Voinov, 1976; Cox, 1986). Through such

amendments, the model can be employed to generate theoretical hysteresis curves for the

tear film, the validity of which may be tested throughin vivo observation.

Thirdly, the model can be amended to solve the full Navier-Stokes equations on the

computational domain, whilst retaining the novel slip (or stick-slip) boundary conditions

at the contact line. Results from such a model could then be compared and contrasted

with the pinned results of Zubkovet al. (2013). As noted in Chapter 2, the equations

of motion studied in Chapters 5 and 6 are leading-orderapproximationsto the governing

equations of fluid motion and their associated boundary conditions: through the use of

the thin-film lubrication approximation, the flow is effectively depth-averaged, with the

result that subtle behaviour within the menisci is impossible to resolve1. By adapting the

present model to solve the full Navier-Stokes equations, the restrictions of the lubrication

approximation will be circumvented, thus allowing the use of taller menisci and/or smaller

contact angles without invalidating assumptions inherentin the derivation of the model.

Finally, the modelling of environmental factors affectingthe tear film may be

improved. The evidence of Chapter 5 identifies that the curvature of the corneal substate

has a non-trivial influence on the evolution of the tear film. Hence, the existing model

would be improved by adding further detail to the shaping of the corneal bulge over

1This is highlighted in§2.4.2 by the contradiction between pinned boundary conditions and the predicted

contact-line velocities in existing models, and also shownin Zubkovet al. (2013)
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the iris and pupil, in addition to the curvature of the spherical orbit. By adding a

position-dependent substrate curvature, the underlying bulk-fluid dynamics may be subtly

altered. This amendment has an obvious extension to the modelling of the tear flow in the

presence of a contact lens (cf. Trinh et al., 2014, and references therein). Additionally,

the influence of the lipid layer as a barrier to evaporation can be studied by updating

the heuristic constitutive relationship for the evaporative mass flux (2.34). Furthermore,

recent publications by Braun and co-authors (Winteret al., 2010; Li & Braun, 2012)

update the modelling of both the corneal wettability and theevaporative flux. Such

amendments could also be incorporated into the present model to allow a comparison

of results.

The options described above demonstrate that there is a richand diverse number of

areas into which the present model can be expanded as a simpledraining flow. The

further extension to three dimensions, or to simulate a fullblink cycle, identify that

exploring human tear-film dynamics is an area that is dense with exciting future modelling

opportunities.
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Appendix

A Alternative differentiation matrices

The alternative forms of the higher-order Chebyshev differentiation matrices are now

presented. The trigonometric identities (3.14) are used toimprove the round-off error

in the floating-point calculation of the entries in equations (3.10) - (3.12).

The alternative form of the second-order Chebyshev differentiation matrix (3.10) is

D
(2)
ij =






N4 − 1

15
, i = j = 0 andi = j = N,

x2
j (N2 − 1) −N2 − 2

3 sin4(jπ/N)
, i = j, i = 1(1)N − 1,

2(−1)j

1 + δjN

(
2N2 + 1

6 sin2(jπ/2N)
−

1

2 sin4(jπ/2N)

)
, i 6= j, i = 0,

2(−1)j+N

1 + δj0

(
2N2 + 1

6 cos2(jπ/2N)
−

1

2 cos4(jπ/2N)

)
, i 6= j, i = N,

(−1)i+j+1

1 + δj0 + δjN

(
xi

2 sin2(iπ/N) sin[(i+ j)π/2N ] sin[(j − i)π/2N ]

+
1

2 sin2[(i+ j)π/2N ] sin2[(j − i)π/2N ]

)
, i 6= j, i = 1(1)N − 1.

(A.1)
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The alternative entries of the third-order differentiation matrix (3.11) are

D
(3)
ij =






2N6 − 7N4 − 7N2 + 12

210
, i = j = 0,

−
2N6 − 7N4 − 7N2 + 12

210
, i = j = N,

xj

(
2x2

j (N2 − 1) − 2N2 − 13
)

4 sin6(jπ/N)
, i = j, i = 1(1)N − 1,

2(−1)j

1 + δjN

(
N4 − 1

10 sin2(jπ/2N)
−

2N2 + 1

4 sin4(jπ/2N)
+

3

4 sin6(jπ/2N)

)
,

i 6= j, i = 0,

2(−1)N+j+1

1 + δj0

(
N4 − 1

10 cos2(jπ/2N)
−

2N2 + 1

4 cos4(jπ/2N)
+

3

4 cos6(jπ/2N)

)
,

i 6= j, i = N,

(−1)i+j

1 + δj0 + δjN

(
x2
i (N2 − 1) −N2 − 2

2 sin4(iπ/N) sin[(i+ j)π/2N ] sin[(j − i)π/2N ]

+
3 xi

4 sin2(iπ/N) sin2[(i+ j)π/2N ] sin2[(j − i)π/2N ]

+
3

4 sin3[(i+ j)π/2N ] sin3[(j − i)π/2N ]

)
, i 6= j, i = 1(1)N − 1,

(A.2)

and finally, the alternative fourth-order Chebyshev differentiation matrix (3.12) is

D
(4)
ij =






N8 − 12N6 + 21N4 + 62N2 − 72

945
, i = j = 0 andi = j = N,

N4 sin4(jπ/N) − 5N2 x2
j sin2(jπ/N) −

(
6x4

j + 83x2
j + 16

)

5 sin8(jπ/N)
,

i = j, i = 1(1)N − 1,

4(−1)j

1 + δjN

(
(N4 − 5N2 + 4) (2N2 + 3)

210 sin2(jπ/2N)
−

N4 − 1

10 sin4(jπ/2N)

+
2N2 + 1

4 sin6(jπ/2N)
−

3

4 sin8(jπ/2N)

)
, i 6= j, i = 0,

...
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D
(4)
ij =






4(−1)j+N

1 + δj0

(
(N4 − 5N2 + 4) (2N2 + 3)

210 cos2(jπ/2N)
−

N4 − 1

10 cos4(jπ/2N)

+
2N2 + 1

4 cos6(jπ/2N)
−

3

4 cos8(jπ/2N)

)
, i 6= j, i = N,

(−1)i+j+1

1 + δj0 + δjN

(
−xi

(
2x2

i (N2 − 1) − 2N2 − 13
)

2 sin6(iπ/N) sin[(i+ j)π/2N ] sin[(j − i)π/2N ]

+
x2
i (N2 − 1) −N2 − 2

sin4(iπ/N) sin2[(i+ j)π/2N ] sin2[(j − i)π/2N ]

+
3 xi

2 sin2(iπ/N) sin3[(i+ j)π/2N ] sin3[(j − i)π/2N ]

+
3

2 sin4[(i+ j)π/2N ] sin4[(j − i)π/2N ]

)

,

i 6= j, i = 1(1)N − 1.

(A.3)
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