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Abstract 

 

The seasonal timing of plant development is regulated by environmental cues. 

Flowering time is influenced by the temperature and photoperiod experienced during 

vegetative growth, while germination timing is affected by temperatures during seed 

maturation and after dispersal. The timing of each developmental transition also 

determines seasonal conditions experienced during subsequent life stages, however 

the significance and stability of these interactions are not well understood. This work 

aimed to further an understanding of the environmental regulation of plant 

phenology by creating a multi-stage life history model based on Arabidopsis 

thaliana. 

Laboratory and field studies were used to inform predictive models of seed 

development and seed dormancy. The time required to complete seed development 

was mainly affected by temperature, and was therefore sensitive to seasonal 

flowering time. Mean daily temperatures at the end of seed maturation had the 

greatest influence on rates of primary dormancy loss, and post-dispersal 

temperatures determined rates of secondary dormancy induction. Germination 

probabilities were predicted by modelling frequencies of primary and secondary 

dormancy within the seed population. This revealed an abrupt switch from low to 

high germination when mean daily temperatures exceeded 14°C. Thermoinhibition 

was also predicted at high temperatures due to rapid secondary dormancy induction. 

Combining models with a previously described model of flowering time provided a 

framework for investigating the effects of perturbations on entire life history 

phenology. Seed set timing in spring and winter annuals was consistently predicted 

to coincide with mean daily temperatures of 14°C in locations across Northern 

Europe, resulting in the production of both dormant and non-dormant offspring. 

Phenotypic plasticity at each growth phase also served to buffer against modest 

perturbations in germination date, flowering date, and climate in order to maintain 

these specific dispersal conditions. This result was interpreted as evidence for a 

robust bet-hedging germination strategy. 
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Chapter 1: Introduction 

 

1.1 Phenology 

Phenology is the study of the timing of seasonal events and the factors that influence 

them (Leith, 1974). Examples of such events include bud burst and flowering times 

in plants, bird migrations, and insect emergence. Usually these phenomena are 

sensitive to seasonal environmental factors, for example in extratropical regions the 

phenology of the dominant forest tree species is sensitive to winter chilling, 

photoperiod, and temperature (Körner and Basler, 2010). Because temperature 

sensitivity is often important, changes in phenological events are frequently used as 

indicators of climate change. For example, an influential study of 385 British plant 

species reported that spring flowering has advanced an average of 15 days compared 

to 50 years ago (Fitter and Fitter, 2002), and advancing spring phenology closely 

matches the pattern of warming in Europe over the last few decades (Menzel et al., 

2006b). 

However, not all species respond to changing environments in the same way and 

there is concern that mismatches in phenological shifts will result in disruption 

within ecosystem communities (Durant et al., 2005). Some disruption has already 

been observed in vulnerable ecosystems such as in the arctic (Post and 

Forchhammer, 2008). Sowing and harvest dates of many spring and winter crop 

varieties are also advancing, although not as quickly as in wild plants (Menzel et al., 

2006a). This suggests farming practices may not be adapting quickly enough to keep 

pace with the current rate of warming. Understanding the processes that regulate 
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phenological responses is therefore an important goal, and is necessary to anticipate 

the consequences of current and future climates. 

Substantial progress has already been made towards understanding the genetics 

behind important phenological traits in model systems such as Arabidopsis thaliana 

(Wilczek et al., 2010). This annual weed is an ideal subject due to its ability to grow 

easily and rapidly in laboratory conditions. It also has a wide geographic distribution 

encompassing central Asia, Europe and North America, and different ecotypes 

possesses substantial variation in life history phenology (Nordborg and Bergelson, 

1999). It is predominantly a winter annual which germinates in autumn, over winters 

as a vegetative rosette, and then flowers and sets seed the following spring (Baskin 

and Baskin, 1983). Spring annuals can also germinate, flower, and set seed during 

spring or early summer. In some locations Arabidopsis has also been known to 

flower and set seed in autumn (Thompson, 1994), and is capable of completing 

multiple generations in a single year; known as ‘rapid cycling’. Arabidopsis is 

therefore a useful tool to investigate plant phenology and the factors that determine 

life history. 

 

1.2 Germination  

Germination marks the end of seed dispersal; when completed seedlings are fully 

committed to growth in their immediate environment. The timing of this event is 

crucial since it not only determines the seasonal conditions during seedling 

establishment, but also which seasons will be experienced during the adult and 

reproductive phases. Inappropriately timed germination can reduce reproductive 

fitness, and can even be fatal (Biere, 1991). Germination timing is therefore a trait 
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which is subject to intense natural selection (Donohue et al., 2005c), and the 

regulation of germination by seed dormancy is a subject of continuing research. 

Germination itself is a process which involves a series of metabolic and structural 

changes in the seed. The full process includes water uptake, reserve mobilization, 

mRNA and protein synthesis, cell division, embryo growth, and finally culminates in 

the protrusion of the radicle. Plant hormones play a central role in promoting or 

suppressing the onset of germination. Gibberellins (GA) not only promote 

germination, but are absolutely required for its completion. This was demonstrated 

by GA-deficient mutants which were unable to germinate without addition of 

exogenous GA (Karssen et al., 1989; Hilhorst and Karssen, 1992; Derkx and 

Karssen, 1993b). GA is now understood to perform a dual role by increasing the 

growth potential of the embryo, and also weakening the outer tissues covering the 

radicle (Groot and Karssen, 1987; Groot et al., 1988). Collectively these processes 

are coordinated by a complex pattern of GA-regulated gene expression, which also 

includes crosstalk between GA and other plant hormones (Ogawa et al., 2003).  

Abscisic acid (ABA) is a hormone which acts antagonistically to GA by inhibiting 

germination, and promoting seed dormancy. This was demonstrated in lettuce, where 

treatment with ABA led to inhibition of light and GA induced germination (Khan, 

1968). Maintenance of dormancy requires ABA synthesis, and the use of ABA 

inhibitors such as norflurazon is an effective way to alleviate dormancy and promote 

germination (Debeaujon and Koornneef, 2000). Transcriptomic analysis has also 

revealed that a high proportion of genes expressed by dormant seeds contain ABA 

responsive elements, indicating that ABA signalling has an important role to play in 

dormancy (Cadman et al., 2006).  
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The opposing roles of ABA and GA in promoting dormancy and germination 

respectively led to the formulation of the hormone balance theory (Karssen and 

Laçka, 1986). This theory suggests that germination depends on the balance between 

growth promoters (e.g. GA) and growth inhibitors (e.g. ABA). Environmental 

factors such as light and temperature are thought promote either dormancy or 

germination by altering the ratios of these hormones. 

 

1.3 Seed Dormancy 

Seed dormancy is the mechanism which enables seeds to regulate the timing of 

germination. Most seeds have some level of dormancy at maturity, which allows 

them to delay their germination until after a suitable dispersal period. Delayed 

germination also promotes the formation of a soil seed bank. Previous studies have 

estimated that as many as 70,000-90,000 seeds per m² can accumulate in the top 15-

25cm of cultivated soil, and 95% of these were thought to originate from annual 

species (Kropac, 1966; Roberts, 1981; Baskin and Baskin, 1985). Buried seeds can 

also remain viable for many years, and one study found seeds of some species were 

still able to germinate after 100 years of burial (Kivilaan and Bandurski, 1981). The 

existence of a soil seed bank facilitates the long term persistence of a population, and 

is also important for recolonisation following natural disasters such as fire. Seed 

banks also make annual weeds notoriously difficult to eliminate from agricultural 

systems, and an improved understanding of seed dormancy is an important goal for 

the purpose of improving weed management strategies.  

Despite the ecological significance of seed dormancy, until relatively recently it was 

said to be one of the lest well understood aspects of seed biology (Finch-Savage and 

Leubner-Metzger, 2006). One of the difficulties faced by dormancy researchers in 
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the past has been a lack of a universally agreed definition. At present, there is no way 

of directly measuring dormancy, which must instead be measured indirectly via 

germination tests. As a result, dormancy is occasionally used as a term to mean ‘not 

germinating’ and has also been confused with persistence in soil (Thompson et al., 

2003). However, a lack of germination does not necessarily equate to dormancy, and 

could also be caused by a lack of suitable environmental conditions (e.g. light, 

moisture). The state of being non-dormant, but not germinating due to a limiting 

environment has been described as ‘pseudo-dormancy’ or ‘enforced dormancy’, 

although using the term dormancy to describe this state may be misleading. An 

alternative term ‘quiescence’ has therefore been suggested (Baskin and Baskin, 

2004). Researchers have also disagreed on whether light requiring seeds should be 

considered dormant (e.g. Bewley and Black, 1994), or whether light is simply 

required by quiescent seeds to initiate germination (e.g. Vleeshouwers et al., 1995; 

Baskin and Baskin, 2004). However, one of the most commonly used definitions is 

one which attempts to cover these issues, and simply states that dormancy is “the 

failure of an intact viable seed to complete germination under favourable conditions” 

(Bewley, 1997). 

Another interesting point is that germination in a single seed can only be viewed as 

an all-or-nothing trait. However, the depth of dormancy is a continuous measure and 

can take on any value between fully-dormant and non-dormant. Changes in 

dormancy depth can be observed at a population level as a change in the germination 

frequency in particular conditions. Studies of exhumed seeds have also shown that 

seasonal changes in dormancy depth are associated with changes in the range of 

conditions that permit germination (Baskin and Baskin, 1985). In general, seeds with 

the lowest dormancy germinate in the widest range of conditions, whereas increasing 
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dormancy results in a narrowing of this range, until germination is no longer possible 

in any conditions. For this reason, dormancy is also sometimes defined as a seed 

property that determines the range of conditions that permit germination 

(Vleeshouwers et al., 1995). According to this definition, environmental factors such 

as light would only be considered to act on dormancy if they altered the range of 

permissive germination conditions (Finch-Savage and Leubner-Metzger, 2006).  

There are now known to be five major classes of seed dormancy, and confusion in 

the past may have also arisen because the type of dormancy being studied was not 

always stated (Baskin and Baskin, 2004). The work in this thesis focuses on 

physiological dormancy (PD) which is the type of dormancy attributable to 

Arabidopsis seeds, and is also the most common throughout the plant kingdom 

(Finch-Savage and Leubner-Metzger, 2006). PD can also be further subdivided into 

three levels; deep, intermediate, and non-deep (Baskin and Baskin, 2004). Non-deep 

PD can usually be alleviated by a period of dry storage (after-ripening) or a period of 

moist incubation (stratification) at either a high or a low temperature, depending on 

the species’ requirements. Non-deep PD may also be alleviated by scarification or 

removal of the seed coat, or by treating with GA. In contrast however, seeds with 

deep and intermediate PD generally require longer periods of stratification or after-

ripening before they will germinate, and removal of the seed coat or addition of GA 

is usually ineffective (Baskin et al., 2005). A further distinction is also usually made 

between primary and secondary dormancy.  
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1.3.1 Primary dormancy 

Primary dormancy is the type possessed by most seeds at maturity, and is established 

during seed maturation with the involvement of ABA. Arabidopsis mutants which 

are ABA deficient or insensitive have reduced primary dormancy and a tendency for 

precocious germination while still maturing on the mother plant (Karssen et al., 

1983; Koornneef et al., 1984). Pre-harvest sprouting (vivipary) is also responsible 

for substantial yield losses in crop species such as wheat (Clarke et al., 2005), which 

are often less dormant than their wild relatives as a result of domestication and 

selective breeding. In contrast to reduced dormancy phenotypes, overexpression of 

ABA biosynthesis genes leads to an accumulation of ABA, increased primary 

dormancy and delayed germination (Frey et al., 1999; Nambara and Marion-Poll, 

2003).  

There is substantial variation in levels of primary dormancy within A. thaliana 

ecotypes (Evans and Ratcliffe, 1972; Ratcliffe, 1976), making this species a useful 

test subject for studying the genetic basis of this variation. The commonly studied 

laboratory strains Columbia (Col) and Landsberg erecta (Ler) have relatively low 

dormancy, whereas the Cape Verdi Islands ecotype (Cvi) is much more dormant 

when grown in the same conditions. The genetics of primary dormancy 

establishment are still mostly unknown, however one important gene has so far been 

cloned and indentified. This gene, called DELAY OF GERMINATION 1 (DOG1), is 

expressed specifically in seeds during maturation, and coincides with the 

development of primary dormancy (Bentsink et al., 2006). Expression of DOG1 was 

also shown to require the ABA-mediated sugar signalling pathway (Teng et al., 

2008), and variation in DOG1 expression levels are thought to account for some of 

the variation in primary dormancy between ecotypes (Chiang et al., 2011).  
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The environment during seed maturation is also known to affect levels of primary 

dormancy (Fenner, 1991). Temperature has the largest effect, with low temperatures 

generally resulting in seeds with increased dormancy (Schmuths et al., 2006; Kendall 

et al., 2011; Penfield and Springthorpe, 2012). For example, strong correlations 

between dormancy and the mean average daily temperature in the last 30 days of 

seed ripening have been demonstrated in Rosa (VonAbrams and Hand, 1956) and 

Chenopodium bonus-henricus (Dorne, 1981). However in some cases, a low 

temperature treatment can reduce dormancy if given at the appropriate time (Wiesner 

and Grabe, 1972). Furthermore, seed dormancy can even be affected by temperatures 

experienced by the parent plant during the vegetative growth phase (Thomas and 

Raper, 1975; Sawhney et al., 1985). The mechanism which allows such long term 

signals to be transmitted from parent to offspring is unknown, however low 

temperatures during seed maturation are associated with elevated DOG1 expression 

(Chiang et al., 2011).  

Many other factors, including photoperiod (Munir et al., 2001), rainfall (Baskin and 

Baskin, 1975) and even the position of seeds on the parent plant (Gutterman, 1980) 

can affect levels of primary dormancy, although to a lesser extent compared to 

temperature. These so called ‘maternal effects’ also determine the length of 

stratification or after-ripening required to break dormancy (Donohue et al., 2008; 

Footitt et al., 2011; Kendall et al., 2011), and this phenotypic plasticity allows plants 

to produce offspring with dormancy characteristics specific to a particular dispersal 

environment. Primary dormancy is therefore a complex trait determined by both 

genetic and environmental factors, meaning that seasonal reproductive timing is 

central to germination phenology.  
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1.3.2 Secondary dormancy 

After dispersal, seeds may enter secondary dormancy if conditions remain 

unfavourable for germination. Relatively little is known about secondary dormancy, 

as the majority of research has so far focused on primary dormancy. However, it is 

thought that seeds can transition through different levels of secondary dormancy in 

response to seasonal changes, creating an annual dormancy cycle (Baskin and 

Baskin, 2004). Many studies of buried weed seeds have demonstrated these annual 

dormancy cycles by showing that exhumed seeds tend to germinate best at certain 

times of year (Baskin and Baskin, 2001). Evidence has also been published showing 

that dormancy cycling in buried Arabidopsis seeds is associated with seasonal 

patterns of gene expression, which are also correlated with temperature (Footitt et 

al., 2011; Footitt et al., 2013). 

Distinguishing between states of primary and secondary dormancy is difficult, and 

no clear criteria have yet been established. However, there is some evidence that the 

two types of dormancy operate through distinct mechanisms. For example, 

secondary dormancy in wild oats (Avena fatua) can be alleviated with nitrate, 

however seeds with primary dormancy require both after-ripening and nitrate 

(Symons et al., 1986). Similarly, primary dormant seeds of the annual weed 

Sisymbrium officinale are insensitive to GA, however during dormancy cycling GA 

sensitivity remains high and seeds become insensitive to light and nitrate (Derkx and 

Karssen, 1993a). Despite some differences, there is also evidence that a common 

transcriptional mechanism involving ABA signalling is common to different 

dormancy states (Cadman et al., 2006).  
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1.3.3 Light  

Germination in many species requires light. In A. thaliana, light stimulates the 

production of GA (Derkx and Karssen, 1993b) via activation of GA biosynthetic 

genes, which are themselves regulated by phytochromes (Yamaguchi et al., 1998). 

Phytochromes are light sensitive photoreceptors which are synthesised in an inactive, 

red light absorbing form (Pr). Upon exposure to red light, Pr is converted to an active 

far-red light absorbing form (Pfr), and this activation is photoreversible. The 

promotive effect of red light and inhibitory effect of far-red light on germination was 

first discovered in lettuce seeds, however the significance of the phytochromes was 

not realised until their role in the control of flowering was also discovered (Cone and 

Kendrick, 1986). 

It is now known that the Arabidopsis genome contains 5 different phytochrome 

genes (PHYA to PHYE), each with specific sensitivities and functions (Sharrock and 

Quail, 1989). Distinct germination responses to different fluences of red light have 

also been found (Cone et al., 1985b; Kendrick and Cone, 1985). The low fluence 

response (LFR) is mediated by PHYB and permits germination after exposure to 

approximately 1-1000µmol m
-2

 red light (Cone et al., 1985a; Botto et al., 1995; 

Shinomura et al., 1996). The very low fluence response (VLFR) is mediated by 

PHYA, and permits germination after exposure to 10
-4

 – 10
-2

µmol m
-2

 660nm light 

resulting in just 10
-4

 – 10
-2

% of the total phytochrome as Pfr (Cone et al., 1985a; 

Botto et al., 1996). The VLFR is thought to allow germination under dense canopy 

shade. However, since most seed batches contain low levels of endogenous Pfr, the 

VLFR can also lead to germination in complete darkness, unless Pfr is first 

inactivated by a saturating pulse of far-red light (Cone et al., 1985a). 
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The downstream responses to light are mediated by a family of transcription factors 

called PHYTOCHROME INTERACTING FACTORS (PIFs), which bind directly to 

activated phytochrome proteins. The first of these to be discovered was PIF3, which 

was found to interact with both PHYA and PHYB in A. thaliana and rice (Ni et al., 

1998). Genome sequencing also led to the identification of additional members of 

the family based on sequence homology to PIF3. Consequently, some of the family 

members were also named PIF3-like factors (PILs). For example, PIF1 is also 

known as PIL5. This particular protein was found to have a key role in regulating 

germination in response to light, and loss-of-function mutant seeds are capable of 

germination after a normally inhibitory pulse of far-red light, and also in darkness 

(Oh et al., 2004; Penfield et al., 2005) showing that PIL5 is required for dark and far-

red inhibition of germination. PIL5 also inhibits germination by promoting the 

production of two growth repressing DELLA proteins; RGA and GAI (Oh et al., 

2007), which function to repress GA signalling. In addition to this, PIL5 also 

activates genes for GA catabolism and ABA biosynthesis, thereby promoting 

dormancy. Upon light irradiation, the PIL5 protein binds to activated phytochromes 

leading to its degradation (Oh et al., 2006; Shen et al., 2007). Light induced 

degradation of PIL5 therefore promotes germination by simultaneously reducing 

ABA synthesis, and promoting GA accumulation and signalling. 

 

1.3.4 Temperature 

Temperature is one of the most important factors governing both seed dormancy and 

germination (Roberts, 1988). However, it is sometimes difficult to determine 

whether an observed difference is due to an effect of temperature on germination or 

an effect on dormancy. For example, ambient temperatures are correlated with 
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germination rates, however reducing dormancy by pre-treating seeds at low 

temperatures can also lead to increased germination rates (Schmuths et al., 2006). 

Changes in dormancy are also known to affect sensitivity to environmental factors, 

including the temperature ranges under which germination will occur (Baskin and 

Baskin, 1985). 

As mentioned previously, the temperature during seed maturation can have a 

substantial effect on the levels of primary dormancy in mature seeds, and in most 

species low temperatures during seed ripening are associated with increased primary 

dormancy. However, low temperature imbibition, or cold stratification, is also 

commonly used to break dormancy. This dormancy alleviation is thought to be 

caused by an increase in the levels of bioactive GAs found in seeds imbibed at 4°C 

in comparison to those imbibed at 22°C (Yamauchi et al., 2004). The increased GA 

levels at low temperatures also coincide with increased expression of genes 

promoting GA biosynthesis, and reduced expression of genes promoting GA 

degradation (Yamauchi et al., 2004). This suggests an important role for GA 

metabolism during low temperature induced primary dormancy loss during 

imbibition.  

 The mechanism which allows low temperatures to have opposite effects on 

dormancy in imbibed seeds compared to maturing seeds is not well understood. 

However, recent evidence has suggested a role for C-REPEAT BINDING 

FACTORS (CBFs), which are transcription factors known to be involved in the cold 

acclimation pathway (Medina et al., 2011). It was shown that CBFs are required for 

low temperature regulation of DOG1 during seed maturation (Kendall et al., 2011). 

In imbibed seeds however, CBF expression levels were insensitive to temperature, 

suggesting that CBF inactivation may be important to the promotion of germination 
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by low temperatures during imbibition (Kendall et al., 2011). Interestingly, a role for 

a gene known primarily for its involvement in the regulation of flowering; 

FLOWERING LOCUS C (FLC), has also recently been discovered. High levels of 

FLC expression were found to promote germination at low temperatures, however 

this promotion was also maternally controlled and influenced by seed maturation 

temperatures (Chiang et al., 2009). 

In contrast to imbibition at low temperatures, high temperatures can induce 

dormancy and suppress germination; a process called thermo-dormancy or 

thermoinhibition (Negm et al., 1972). This process is thought to rely on maintaining 

high levels of ABA via an increase in gene expression promoting ABA biosynthesis 

and suppressing GA synthesis and signalling (Toh et al., 2008). In contrast however, 

some studies suggest ABA levels are similar in seeds imbibed at different 

temperatures (Ali-Rachedi et al., 2004), and instead increased sensitivity to ABA 

may be responsible for dormancy induction at high temperatures (Leymarie et al., 

2008).  

Although progress has been made in understanding how environmental factors can 

influence the concentrations and sensitivities of key hormones that regulate seed 

dormancy (Figure 1.1), the way in which these factors combine to regulate 

germination timing in the field is not well understood. Summer annuals are generally 

presumed to lose dormancy during winter chilling, which allows germination in 

spring; while winter annuals are thought to lose dormancy during dry after-ripening 

in summer, allowing germination in autumn (Baskin and Baskin, 1985). However, 

some studies have suggested that prolonged chilling over winter may be more likely 

to induce dormancy (Donohue et al., 2007; Penfield and Springthorpe, 2012), and in 

damp temperate climates, after-ripening may not be possible for winter annuals 
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(Footitt et al., 2011). Maternal effects also add an additional layer of complexity to 

the subject of dormancy regulation, and the potential impact of altered climates and 

flowering phenology on seed populations is almost totally unknown.  
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Figure 1.1 Environmental regulation of dormancy and germination by ABA and GA 

Environmental factors such as temperature affect the balance of growth regulating phytohormones 

ABA and GA. Dormancy induction is characterised by an increases in ABA biosynthesis and a 

simultaneous increase in GA catabolism, while dormancy loss is associated with increased GA 

biosynthesis and ABA catabolism. Sensitivity to these hormones also changes with dormancy status, 

and feedback with environmental signals can lead to dormancy cycling. The depth of dormancy also 

alters sensitivity to environmental signals, and germination occurs when seed germination 

requirements overlap with ambient conditions. Adapted from Finch-Savage and Leubner-Metzger, 

2006. 
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1.4 Seed Development 

Successful seed production is crucial to plant fitness. Following fertilization, seed 

development in most higher plants can be broadly divided into two phases; 

morphogenesis and maturation. During morphogenesis, the zygote undergoes a 

defined pattern of cell division and differentiation. Once the basic plant architecture 

is established, cell division stops and the maturation phase begins (Raz et al., 2001). 

This phase involves cell growth and expansion, accumulation of storage proteins and 

lipids, acquisition of desiccation tolerance, and establishment of primary dormancy. 

The whole process is completed in approximately 20 days under standard laboratory 

conditions (Baud et al., 2002). 

Seed development is controlled by a network of at least four master regulators; 

FUSCA3 (FUS3), ABSCISIC ACID INSENSITIVE3 (ABI3), LEAFY COTYLEDON1 

(LEC1), and LEC2 (Raz et al., 2001). Mutations at these loci result in a broad 

spectrum of seed maturation defects including reduced primary dormancy, fewer 

seed storage proteins and reduced desiccation tolerance (Wobus and Weber, 1999; 

Raz et al., 2001; Gutierrez et al., 2007; Holdsworth et al., 2008). LEC1 controls 

embryo morphogenesis, and ectopic expression is sufficient to induce embryonic 

development in adult vegetative tissue (Lotan et al., 1998). LEC2 activates the 

transcription of genes expressed during the maturation phase of seed development, 

including major dormancy regulator DOG1 (Braybrook et al., 2006). LEC2, FUS3 

and ABI3 also have partially redundant roles, such that constitutive expression of 

ABI3 or FUS3 can rescue most of the lec2 mutant phenotypes (To et al., 2006). 

Interactions have also been found amongst these four genes, which together form an 

interconnected network for the regulation of seed maturation (Kroj et al., 2003; 

Kagaya et al., 2005; To et al., 2006) (Figure 1.2). 
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Figure 1.2 Regulation of seed maturation and primary dormancy establishment 

Four major regulators of seed maturation form an interconnected network which coordinates seed 

development. Primary dormancy is induced by the simultaneous promotion of ABA and inhibition of 

GA. Major dormancy gene DOG1 also promotes primary dormancy in response to low seed maturation 

temperatures. Adapted from Holdsworth et al., 2008. 

 

1.5 Regulation of Flowering 

The transition from vegetative growth to flowering is another pivotal event in plant 

development, and has been the subject of a large volume of research over the past 

century. From an evolutionary perspective flowering is critical to successful 

reproduction, and in order to ensure success the environment must be suitable for the 

production of seeds. The seasonal timing of flowering is therefore essential and is 

subject to regulation by a complex network of genetic pathways, which are sensitive 

to a variety of environmental signals. Two major seasonal cues are photoperiod and 

temperature, however as many as five genetic pathways regulating flowering in 

Arabidopsis have been described (Srikanth and Schmid, 2011) (Figure 1.3). 

P
R

IM
A

R
Y D

O
R

M
A

N
C

Y
FUS3

LEC1

LEC2

ABI3

ABA

DOG1

Seed maturation 
regulators

GA



Chapter 1: Introduction  

18 

 

 

Figure 1.3 Genetic pathways involved in the regulation of flowering in A. thaliana 

Several environmentally controlled pathways converge to regulate the major floral integrator FT. Light 

is perceived by photoreceptors in leaves, such as PHYA, which promote the stability of CO in long 

days. Circadian clock protein GI interacts with the photoreceptor FKF1 to promote the degradation of 

CO-repressing CDFs. The CO protein is therefore stabilised in long days, leading to transcriptional 

activation of FT. Repression of flowering is also mediated by FLC, which together with FRI confer a 

vernalisation requirement. This repression is removed by chilling via the vernalisation pathway. The 

autonomous pathway also promotes flowering via suppression of FLC. Ambient temperatures affect 

expression of an additional flowering repressor, SVP, which combines with FLC to inhibit FT.  

 

1.5.1 Regulation of flowering by photoperiod 

Early studies identified that flowering in many species was regulated by day length 

(Garner and Allard, 1920). Plant species were subsequently classified as long-day, 

short-day, or day-neutral depending on the day length that promoted flowering. 

Arabidopsis thaliana is a long-day plant, and the study of flowering time mutants led 

to the identification of several genes involved in the photoperiodic control of 
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flowering. In particular, the genes GIGANTEA (GI), CONSTANS (CO) and 

FLOWERING LOCUS T (FT) were found to have major roles in this pathway 

(Putterill et al., 1995; Fowler et al., 1999b; Kardailsky et al., 1999). FT encodes a 

transcription factor that induces flowering, and acts as a long distance signal between 

leaves and the shoot apical meristem (Jaeger and Wigge, 2007). Activation of FT 

expression in leaves requires CO, a zinc finger transcription factor which is under 

control by the circadian clock (Suarez-Lopez et al., 2001).  

Transcription of CO mRNA is promoted by an interaction between GI and a light 

sensitive ubiquitin ligase called FLAVIN KELCH F BOX 1 (FKF1) (Sawa et al., 

2007). In long days, this interaction results in the degradation of CO repressors 

known as CYCLING DOF FACTORS (CDFs) (Imaizumi et al., 2005). In addition, 

CO protein is stabilised at the end of a long-day photoperiod, but is otherwise 

quickly degraded by the proteasome (Valverde et al., 2004; Laubinger et al., 2006; 

Liu et al., 2008). As a result CO mRNA is more abundant in long days, leading to 

CO protein accumulation, and initiation of flowering via FT activation. 

 

1.5.2 Regulation of flowering by temperature 

Many plant species require a prolonged cold treatment (vernalisation) before 

flowering can occur. In winter annual ecotypes of Arabidopsis, FRIGIDA (FRI) 

promotes the expression of the flowering repressor FLC (Michaels and Amasino, 

1999; Geraldo et al., 2009). FLC binds directly to FT and other flowering promoters 

to suppress their action (Helliwell et al., 2006), however the FLC gene is silenced in 

response to chilling (Gendall et al., 2001). The effect of prolonged chilling is 
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therefore to remove the FLC repression of FT which would otherwise inhibit 

flowering. 

Much of the flowering time variation observed between natural ecotypes of 

Arabidopsis has been attributed to variation at the FLC and FRI loci (Koornneef et 

al., 1994; Gazzani et al., 2003; Stinchcombe et al., 2004; Shindo et al., 2005; 

Stinchcombe et al., 2005a). Mutations resulting in non-functional FRI alleles have 

arisen at least twice during the evolution of Arabidopsis (Johanson et al., 2000). This 

is thought to confer an early flowering phenotype in the absence of vernalisation, 

therefore allowing some ecotypes to behave as summer annuals.  

In addition to the acceleration of flowering by chilling, flowering can also be 

accelerated by elevated temperatures. This effect is partly due to an acceleration of 

growth at warmer temperatures, however Arabidopsis also flowers with fewer leaves 

compared to plants grown at cooler temperatures (Samach and Wigge, 2005; 

Balasubramanian et al., 2006). Suppression of growth rates in response to low 

temperatures during the day has also been linked to a transcription factor called 

SPATULA (SPT; Sidaway-Lee et al., 2010). The so called autonomous pathway is 

also known to play a role in ambient temperature sensing (Blázquez et al., 2003), 

together with another major flowering repressor; SHORT VEGEATIVAE PHASE 

(SVP; Lee et al., 2007).  

 

1.5.3 Modelling flowering time 

Understanding the nature of flowering and predicting when it will occur is of great 

agronomic importance. Modelling this process provides a potentially useful tool to 

assess the effectiveness of various management strategies such as irrigation regimes, 
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planting dates and crop varieties without the need for costly field trials. It is also 

becoming more important to predict the effects of climate change on crops and 

devise strategies to avoid disruption of global food supplies. Consequently, there are 

many examples of models which attempt to predict flowering phenology in annual 

crops (e.g. Summerfield et al., 1991). 

Typically these models measure plant development in growth units which 

accumulate depending on environmental conditions. Thermal time models for 

example use cumulative daily temperatures as an approximation for physiological 

age, and models such as these are commonly used to predict phenological events 

such as seedling emergence, leaf initiation and flowering. The assumption is that 

plants at the same developmental stage will have accumulated the same number of 

units, regardless of their individual histories. Plants should therefore always reach 

flowering stage after accumulating a specific thermal time total. These thresholds are 

easily estimated from empirical data, making these models a convenient method of 

predicting plant growth in variable environments. 

Thermal time models can also be modified to include the effects of various other 

environmental factors. For example, hydrothermal time has been used to model the 

effects of temperature and water potential on germination rates (Bradford, 2002), and 

photothermal models accumulate thermal units according to photoperiod (Nuttonson, 

1955). The effects of vernalisation have been incorporated into a photothermal 

model of flowering in Arabidopsis (Wilczek et al., 2009). This particular model was 

also able to predict the behaviour of several photoperiod and vernalisation pathway 

mutants, and showed that expression of life history was sensitive to germination 

timing.  
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Figure 1.4 Environmental regulation of major life cycle transitions in A. thaliana 

Ambient temperature during vegetative growth influences growth rates to determine how quickly 

seedlings reach adulthood. Chilling and long days accelerate flowering through the vernalisation and 

photoperiod pathways, which converge on the major flowering integrator gene FT (additional regulation 

by the autonomous and ambient temperature pathways are not shown). During seed development, 

temperature regulates levels of primary dormancy via DOG1 expression levels. After dispersal, 

dormancy loss or induction is determined by environmental factors influencing the balance of GA and 

ABA levels, which may result in repeated cycling of dormancy states. Loss of dormancy is also 

associated with an increase in sensitivity to germination cues such as light, leading to germination 

when ambient conditions overlap with germination requirements.   
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1.6 Summary and Aims 

In summary, all stages of plant development, including major transitions such as 

flowering and germination, are sensitive to environmental cues (Figure 1.4). 

Flowering is largely dependent on temperature and photoperiod, while seed 

dormancy and the ability to germinate in favourable conditions is mainly regulated 

by temperature. Flowering time also exerts influence on seed dormancy by dictating 

the seed maturation and post dispersal environment, while germination timing 

dictates the conditions that will be experienced during vegetative growth, thereby 

influencing flowering time. The timing and environmental regulation of all 

developmental stages of plant growth are therefore intrinsically linked. 

A few studies have attempted to address the effects of germination timing on 

flowering phenology (Donohue et al., 2005a; Galloway and Burgess, 2009; Wilczek 

et al., 2009), and researchers are also now beginning to appreciate the importance of 

reproductive timing on seed dormancy through maternal effects and the post-

dispersal environment (Donohue et al., 2005b; Donohue, 2009). However, no study 

has yet attempted to understand the significance of these links in terms of whole life 

cycle phenology. 

This study therefore aimed to reveal key features of Arabidopsis phenology by 

combining flowering, seed dispersal, and seed dormancy behaviours into a single, 

multi-stage life history model. A thermal time model of seed development was 

formulated to enable predictions of seed dispersal timing and maturation 

temperatures, and a model of seed dormancy was developed to predict germination 

responses to maturation and post-dispersal temperatures. The models were then 

combined to provide a framework for investigating environmental regulation of 

whole life cycle phenology. This model was then used to address questions including 
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why plants couple primary dormancy with temperature, and what is the significance 

of flowering at particular times. The effects of perturbing the system by altering 

germination or flowering time were also investigated with the aim of assessing the 

wider effects of particular loci governing these transitions. Effects of altered climates 

and varying locations were also investigated to understand the role and ecological 

significance of phenotypic plasticity. 
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Chapter 2: Materials and Methods 

 

2.1 Plant Growth Media 

2.1.1 Water agar medium 

0.9% water agar was prepared using 9g agarose powder (A1296, Sigma) per litre of 

dH20. Media was autoclaved and poured in a sterile flow hood. 

 

2.1.2 Murashige and Skoog medium 

Half-strength Murashige and Skoog (MS) (Duchefa Biochemie) medium was 

prepared in dH2O, and the pH adjusted to 5.7-5.8 using KOH. Agarose powder was 

added (9g per 1L) and the medium was autoclaved before pouring. 

 

2.2 Plant Material 

Wild type accessions used were Columbia (Col-0) and Landsberg erecta (Ler). 

CCA1-ox (Col background) was described previously by Wang and Tobin (1998). ft-

1(Ler background) described previously by Koornneef et al., (1991) and was 

obtained from the Nottingham Arabidopsis Stock Centre (NASC).  

 

2.3 Seed Preparation 

Each seed batch was sieved through a 250µm mesh (Fisher Scientific) to exclude 

poorly filled seeds. Ethanol bleach solution was made by dissolving 6 Klorsept 
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tablets in 100ml dH20, and then diluting the required amount by 1:20 with 100% 

ethanol. Surface sterilisation of seeds was achieved by first washing with 100% 

ethanol, allowing to stand for 10 minutes in ethanol bleach solution, and then 

washing twice more with 100% ethanol. Any remaining ethanol was removed by 

allowing seeds to air dry in a sterile flow hood before use. 

 

2.4 Stratification Treatments 

2.4.1 For general plant growth 

To promote uniform germination, sterilised seeds were placed on MS agar and 

stratified in darkness at 4°C for 2-3 days in a Sanyo MIR154, before transferring to 

the required germination conditions. 

 

2.4.2 For dormancy experiments 

To investigate seed dormancy, stratification treatments at different temperatures and 

of varying lengths were given prior to germination. Sterilised seeds (5 replicates of 

25-50 seeds) were placed on 0.9% water agar plates which were promptly wrapped 

in foil to exclude light. Stratification treatments were carried out in growth cabinets 

operating at the required temperature. If a change in temperature was required, plates 

were transferred to a second cabinet operating at the required temperature, without 

removing foil. After the required total incubation time, foil was removed and plates 

were transferred to germination conditions. Occasionally, seeds germinated in 

darkness during stratification. These were counted before incubation in light, and 

dark germination was expressed as a percentage of the total number of seeds. 
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2.4.3 For circadian experiments 

Sterilised seeds were pre treated in darkness at either 8°C, 12°C or 16°C, as 

described above. The aim was to determine whether any circadian rhythm could be 

detected in the dormancy of seeds incubating in darkness at constant temperature. 

Dormancy was therefore sampled after regularly spaced intervals (every 3 hours) by 

transferring a single plate from each treatment to germination conditions. 

To ensure sampling could be carried out during normal working hours, the 

experiment was split into two parallel runs. Transcription of circadian clock genes is 

arrested in dry seeds, however the clock quickly restarts upon imbibition (Penfield 

and Hall, 2009). The parallel runs were therefore synchronised in anti-phase by a 12 

hour difference in imbibition start time. An example of the sampling and imbibition 

times of both parallel runs is provided in Table 2.1.  

 

Table 2.1 Example of imbibition and sampling times for circadian experiments 

 Sampling time 
Time since imbibition 

Run 1 Run 2 

D
a
y
 1

 

9.00 am 0 h  

12.00 pm 3 h  

3.00 pm 6 h  

6.00 pm 9 h  

9.00 pm  0 h 

D
a
y
 2

 

9.00 am 24 h 12 h 

12.00 pm 27 h 15 h 

3.00 pm 30 h 18 h 

6.00 pm 33 h 21 h 

D
a
y
 3

 

9.00 am 48 h 36 h 

..
. 

..
. 

..
. 

 



Chapter 2: Materials and Methods 

28 

 

2.5 Germination 

All germination was carried out in a Sanyo MLR350 growth cabinet operating at 

22°C in a long-day photoperiod regime (16h light, 8 hours dark), and light levels set 

at 70-80µmol m² s
-1

. An exception was made when germinating seeds for growth 

rate experiments, which were transferred to the required growth conditions 

immediately after a 2-3 day cold stratification. Seeds were incubated for 10 days 

before transplanting into John Innes seed compost (Levington) in P40 trays. 

For dormancy assays, numbers of germinated and ungerminated seeds were counted 

after 7 days. Germination was scored if the radicle could be seen protruding through 

the seed coat. Non-dormant seeds that germinated during stratification in darkness 

were easily identified by elongated hypocotyls, and were excluded from these 

counts. This was because the purpose of these assays was to observe changes in 

dormancy caused by the stratification pre-treatments. By germinating in darkness, 

non-dormant seeds were in effect removed from the incubating seed population, and 

thus prevented from undergoing further changes in dormancy. Including non-

dormant seeds in germination counts would therefore obscure any changes in 

dormancy occurring in the remaining population, which would only be revealed by 

testing their germination in light. The number of seeds germinating in light was 

therefore expressed as a percentage of the total number of seeds that had not 

germinated during stratification.  
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2.6 Plant Growth 

2.6.1 For growth rate experiments 

To assess the effect of temperature on growth rates plants were grown at 8°C, 12°C, 

15°C, 18°C, 20°C and 25°C in long days (16h light, 8h dark). To assess the effect of 

photoperiod on growth rates, plants were grown in 8, 10, 12, 14, and 16 hours light 

per 24 hour cycle, at 20°C. The required conditions were achieved using Sanyo MLR 

growth cabinets with light levels set to 70-80µmol m² s
-1

, except in the case of short 

day conditions (8h light, 16h dark) where plants were grown in a growth room. 

Plants were checked regularly and watered to prevent the soil from drying out. 

Bolting date and the start of seed set (first mature seed) were recorded for each 

individual plant. 

 

2.6.2 For production of seeds 

Plants were grown in standard long-day conditions (16h light, 8h dark) at 20°C until 

bolting, at which point they were transferred to a cabinet operating at the required 

seed maturation temperature, with a long-day photoperiod. Where an alternating 

diurnal temperature regime was required, cabinets were set to provide the correct 

temperature during light and dark phases, which were each 12 hours in length. Seeds 

were harvested from plants when approximately 50% of siliques had dehisced. 

To investigate the effect of a sustained change in temperature during seed 

maturation, all mature seeds were harvested before transferring plants and remaining 

immature seeds to a second cabinet operating at the required temperature, and long-

day photoperiod. Mature seeds from subsequent harvests were pooled from 5 parent 

plants, and subjected to stratification and germination tests. In all cases, cabinets 



Chapter 2: Materials and Methods 

30 

 

were set to provide 70-80 µmol m² s
-1

, and when required for dormancy experiments, 

freshly harvested seeds were used within 24 hours. 

 

2.7 Field Experiments 

2.7.1 Seed set timing 

All field experiments were conducted in a walled garden within the University of 

York campus grounds. Seedlings for field experiments were germinated in growth 

cabinets and transplanted into seed compost as described above. Before transferring 

to the field site, seedlings were incubated at either 15°C or 8°C for 1 week to allow 

them to acclimatise to temperatures appropriate to the season, and avoid mortality 

due to transplant shock. Upon transfer to the field site, P40 trays were placed in outer 

trays with drainage holes, and stood on the soil surface. To compare growth rates at 

different times of year, fresh trays of seedlings were transferred to the field site at 

regular intervals between October 2011 and February 2014.  

March 2012 was unusually dry, and plants were provided with a small amount of 

additional water. Slug pellets were applied where necessary, and fences around the 

perimeter excluded vertebrate herbivores. Plants were checked regularly, and dates 

for bolting and the start of seed set were recorded for each individual plant. 

 

2.7.2 Seed collection for dormancy experiments 

The dormancy of seeds matured at different times of year was investigated by 

harvesting seeds from plants grown at the field site, and subjecting them to 

stratification and germination tests. Due to natural dispersal, only a small number of 
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seeds could be collected from each parent plant. Seeds from parents belonging to the 

same batch were therefore pooled. Details of harvest dates and numbers of plants 

pooled from each batch are provided in Table 2.2. Stratification and germination was 

carried out as described above. 

 

Table 2.2 Details of harvest dates, and parent plants harvested from field batches 

Batch Harvest date No. of plants 

A 30/05/12 6 

B 30/05/12 6 

C 30/05/12 20 

F 1/08/12 16 

G 21/8/12 14 

 

2.7.3 Seedling emergence 

Emergence timing of field and laboratory grown seeds was investigated following a 

method described previously by Footitt et al. (2011). Briefly, two pots were filled 

with sterile soil up to 3cm from the top. The soil was covered with 125µm nylon 

mesh to prevent seeds from becoming buried too deeply. Seeds were sown evenly 

over the mesh and covered to a depth of 2cm with sterile soil. Pots were then placed 

in holes dug at the field site to ensure soil surfaces were level. At regular intervals 

the soil within the pots was disturbed to expose buried seeds to light. Subsequent 

seedling emergence was recorded, and germinated seedlings were removed. The 

number of seedlings that emerged after each disturbance was expressed as a 

percentage of the total emergence by the end of the experiment.  

Field grown seeds consisted of approximately 500 seeds in total, pooled from 

batches A, B and C which were harvested from the field site on 30
th

 May 2012 (see 
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Table 2.2). Seeds had been stored at room temperature in sealed tubes for 2 weeks 

prior to the start date. It is reasonable to expect seeds dispersed naturally at this time 

would experience a period of dry after-ripening of this length before burial.  

Lab grown seeds consisted of Col-0 seeds matured at 18°C in growth cabinets, as 

described previously. Approximately 500 seeds were obtained by pooling seeds from 

5 parent plants, which had been stored in sealed tubes at room temperature for 6 

weeks. The relatively warm seed maturation temperature, and longer period of dry 

after-ripening was intended to confer reduced dormancy, and enable a comparison 

between the emergence timing of field matured seeds. 

 

2.8 Data Sources 

2.8.1 Temperature loggers 

Ground level temperature was measured at the field site using LogTag TRIX-8 data 

loggers, contained in protective enclosures (LogTag) to protect against water 

damage. Readings were taken every 10 minutes, and data was downloaded at 

monthly intervals. 

 

2.8.2 Temperature and photoperiod data for model simulations 

Temperature data consisting of daily mean, minimum and maximum temperatures 

spanning a period of at least 10 years (where available) was downloaded from 

weather station archives. For each calendar date, these values were averaged over the 

10 year period to create an average annual cycle of mean, minimum and maximum 

daily temperatures. These were converted to estimates of hourly temperature by 
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assuming minimum daily temperatures between the hours of 21:00-02:00, maximum 

temperatures between 09:00-14:00 and mean temperature for the remaining hours.  

Times of sunrise and sunset were also downloaded, and combined with temperature 

estimates to create the basis for photothermal and dormancy model simulations. 

Online sources for temperature and photoperiod data are provided in Table 2.3. 

 

Table 2.3 Details of temperature and photoperiod data used for model simulations 

Location of Weather station 
Date range of 
temperature data 

Location and year of sunrise and sunset data 

Canada, Vancouver 2002-2011
[a]

 Vancouver, 2011 
[c]

 

Cape Verde, Sal 2002-2011
 [a]

 Cape Verde, Praia, 20011 
[c]

 

Finland, Oulu 2002-2011
 [a]

 Oulu, 2011 
[c]

 

France, Dijon 2002-2011
 [a]

 Dijon, 2011 
[c]

 

France, Nantes 2002-2011
 [a]

 Nantes, 2011 
[c]

 

Germany, Landsberg 2002-2011
 [a]

 Landsberg, 2011 
[d]

  

Italy, Catania 2002-2011
 [a]

 Catania, 2011 
[c]

 

Italy, Naples 1995-2004
 [a]

 Naples, 2011 
[c]

 

Lithuania, Vilnius 2002-2011
 [a]

 Vilnius,2011 
[c]

 

Russia, Moscow 2002-2011
 [a]

 Moscow, 2011 
[c]

 

Gran Canaria, Las Palmas 2002-2011
 [a]

 Las Palmas, 2011 
[c]

 

Spain, Valencia 2002-2011
 [a]

 Valencia, 2011 
[c]

 

UK, Edinburgh 2003-2011
 [a]

 Edinburgh, 2011 
[c]

 

UK, York  1999-2011 
[b]

 York, 2011 
[c]

 

USA, Colombia (Missouri) 2002-2011
 [a]

 Kansas City (Missouri), 2011 
[c]

 

 

Data sources: 

[a]. http://www.geodata.us/weather 

[b]. http://weather.elec.york.ac.uk/archive.html 

[c]. http://www.timeanddate.com/worldclock/sunrise.html 

[d]. http://uk.weather.com/climate/sunRiseSunSet-Landsberg/Lech-GMXX1210 

 

  

http://www.geodata.us/weather/
http://weather.elec.york.ac.uk/archive.html
http://www.timeanddate.com/worldclock/sunrise.html
http://uk.weather.com/climate/sunRiseSunSet-Landsberg/Lech-GMXX1210
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Chapter 3: Modelling Seed Dispersal Timing 

 

3.1 Introduction 

The timing of key developmental transitions can affect the expression of subsequent 

traits (Donohue, 2002). Seed development and dispersal timing are good examples of 

this. The season, and hence temperatures experienced while on the mother plant 

determine the level of primary dormancy in mature seeds, and the conditions after 

dispersal determine whether dormancy is lost, or if secondary dormancy is induced. 

The seasonal timing of seed dispersal therefore has a big effect on the germination 

timing of the next generation, which has already been shown to have a large impact 

on life history and fitness (Donohue et al., 2005c; Huang et al., 2010). Knowing 

when seed maturation and dispersal naturally occur will therefore be a key part of 

understanding the link between reproductive phenology and the control of seed 

dormancy by temperature.  

The timing of seed set depends on flowering time. A model to predict bolting, the 

first visible sign of the floral transition, in Arabidopsis was developed by Wilczek et 

al. (2009). They used the concept of thermal time to measure the progression 

towards bolting in environmentally determined units. The model employs a 

photoperiod factor which modifies the rate of thermal unit accumulation according to 

day length, and facilitates accelerated flowering in long days. A vernalisation factor 

also reduces the rate of accumulation until plants are fully vernalised by chilling 

temperatures, thereby mimicking the action of FLC. 
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The work in this chapter was carried out with the aim of producing a model of seed 

development to extend the bolting model described by Wilczek et al. (2009). Three 

different models were developed and parameterised with laboratory data, and their 

performance was also assessed using field experiments. Simulations were then used 

to predict the timing of seed dispersal, the range of temperatures likely to be 

experienced during seed development, and also how these would be affected by 

altered germination or flowering time. 

 

3.2 Results 

3.2.1 The effect of temperature and photoperiod on seed maturation rates 

In order to develop a model capable of predicting the timing of seed set in natural 

environments, developmental rates of seeds grown under controlled laboratory 

conditions were observed. Plants were grown in cabinets under a series of 

photoperiod and temperature regimes. The time in days from bolting to the 

production of the first fully matured seeds were recorded for each plant. The 

reciprocals of these measurements (1/days) were calculated to provide a measure of 

growth rates in each environment. These growth rates could also be interpreted as the 

daily fractional progression towards the production of mature seeds.  

The effects of temperature and photoperiod on growth rates for Columbia (Col-0) 

and Landsberg erecta (Ler) ecotypes are shown in Figure 3.1 and Figure 3.2 

respectively. These results show a clear positive linear trend between growth rate 

and temperature, which is maintained across the full range of temperatures tested. 

The relationship between growth rates and photoperiod is also positive, but only up 

to 12h and 10h days for Col-0 and Ler respectively. In days longer than these 
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thresholds growth rates reached a maximum, suggesting that short days have a rate 

limiting effect while in long days the limiting factor could be temperature. This was 

also supported by the increase in growth rate observed when plants were grown at 

25°C compared to 20°C in 16h days (Figure 3.1). The proportional relationship 

between growth rate and temperature indicates a thermal time approach would be 

appropriate to model this process (Granier et al., 2002), and would also be applicable 

in a wide range of environments. 

 

 

Figure 3.1 The effect of temperature on rates of seed development 

Col-0 (A) and Ler (B) plants were grown under long days (16h light, 8h dark) at constant temperature 

as indicated. Data points represent the mean and SE of at least 4 replicate seed batches per 

treatment. 
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Figure 3.2 The effect of photoperiod on rates of seed development 

Col-0 (A) and Ler (B) plants were grown at constant 20ºC under different photoperiods by varying the 

number of daylight hours per day as shown. Data points represent the mean and SE of at least 4 

replicate seed batches per treatment. 

 

3.2.2 Model development  

Thermal time models have a long history of being used to simulate plant growth and 

provide a way of predicting the timing of developmental transitions. Recent 

examples include flowering (Wilczek et al., 2009), germination (Alvarado and 

Bradford, 2002), and leaf emergence (Granier et al., 2002). The basic premise of a 

thermal time model is to integrate temperature information over time using a 

function such as the one below. 

[1]            
 

 

 

 

The function   describes the development in terms of the temperature at time  , 

which is then integrated from the point of bolting  , up to the point of seed maturity, 

 . This permits the calculation of   , a constant relating to the total thermal time 

required to achieve a switch in development, in this case the production of mature 

seeds.  
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In variable environments it is necessary to approximate this integral with a 

summation of the function over discrete time intervals, typically of one hour. The 

summation function becomes as follows: 

[2]         

 

   

 

 

where      is a function to calculate the thermal time accumulated during the time 

interval    and    is the cumulative total between bolting at   = 1, and seed maturity 

at   =  . If    is known in advance, this concept can be used to determine the value 

of  , and hence the time in hours required to produce mature seeds in any particular 

environment.  

Most thermal time models assume that developmental rates are zero below a critical 

minimum temperature (  ), and linearly proportional to temperature above this 

threshold. The thermal component is therefore calculated as the difference between 

   and the average temperature during the time interval  , or     .  This basic 

concept is used in each of the three models described below, however it was unclear 

from lab experiments what the most appropriate way to model seed maturation rates 

with photoperiod would be. Therefore, three slightly different approaches were 

tested.  

Model 1: Photothermal time model 

One simple way of incorporating the effects of photoperiod on seed growth rates was 

to only allow temperature during daylight hours to contribute to the thermal time 

total. At constant temperatures, this would create a linear relationship between the 

daily growth rate and the day length. This was in contrast to lab data, which showed 
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the growth rate reached a maximum in long days. However, it was anticipated that in 

natural environments long photoperiods would be associated with elevated summer 

temperatures. Therefore, temperature would not be limiting and growth rates in long 

days would continue to have a linear relationship with photoperiod. A similar 

method of using only day time temperatures was also used by Wilczek et al. (2009), 

who found that including temperatures at night led to a reduction in the model 

performance (Figure. S11 in Wilczek et al., 2009). 

 [3]       
                      

         

  

 

Equation [3] was used to quantify hourly thermal unit accumulation. To ensure only 

day time temperatures were used in the calculation of thermal time,      was used as 

a measure of daylight for the hour  . The value of      can range between 0 and 1, 

and represents the fraction of   (in hours) that occurs during daylight.  

Model 2: Thermal time model 

As a test of the assumptions of the first model, a second model was included that 

incorporated both day and night time temperatures into the thermal time calculations. 

As such, photoperiod information was ignored meaning that at constant temperature 

the growth rate with increasing photoperiod would be constant. This was similar to 

the behaviour of lab grown plants in long days, where increasing photoperiod had no 

effect on the growth rate. Equation [4] describes thermal time unit accumulation for 

this model. 

[4]       
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Model 3: Modified photothermal time model 

Data from laboratory experiments suggested that an improved fit might be achieved 

by applying a growth rate modifier to decelerate growth in short days, and limit 

growth to a maximum rate in long days. Justification for this approach also came 

from Wilczek et al. (2009), in which short- and long-day photoperiod thresholds 

were used to determine the rate of progression towards flowering. In the present 

model, the daylight component      employed in model 1 was replaced by a 

modifier      as shown in equation [5].  

 [5]       
                      

         

  

 

The value of the modifier was calculated using photoperiod thresholds     , and 

     as follows: 

[6]       

 
 

 
            

         

         
               

           

  

 

where      is the photoperiod (number of daylight hours) of the day containing hour 

 ,      is the critical long-day photoperiod, and      is the photoperiod at which the 

growth rate theoretically reaches zero. An illustration of the way in which the growth 

rate responds to photoperiod in each model is provided in Figure 3.3. 
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Figure 3.3 Hypothesised relationships between photoperiod and rates of seed development 

Model 1; Growth rates increase proportionally with photoperiod. Model 2; Photoperiod has no effect on 

the growth rate. Model 3; Photoperiod thresholds are used to modify the growth rate between a 

maximum at      and a minimum at     .  

 

3.2.3 Parameter estimation 

Seed development times determined under laboratory conditions were used to 

estimate parameter values for each model using a non-linear least squares method. 

This method searches for parameter values which result in the smallest squared 

difference between observed data and model predictions. This was carried out using 

the fit function in the MATLAB curve fitting toolbox (Mathworks), using a trust 

region algorithm. Optimised parameter values estimated for both Col-0 and Ler 

ecotypes are listed in Table 3.1. 

In accordance with previous studies modelling plant growth responses (e.g. Batlla et 

al., 2009; Gualano and Benech-Arnold, 2009; Wilczek et al., 2009; Watt et al., 2011) 

the coefficient of determination (R²) was used to evaluate model performance. This 

was calculated using equation [7], where     represents the observed data and      

represents values predicted by the model. The value of R² can also be interpreted as 

the fraction of the variance in the observed data that is explained by the model. 
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[7]      
            

                
 

 

 

  

 

Figure 3.4 Observed and predicted time from bolting to seed set in laboratory conditions 

Observed times to seed set from bolting in 10 different environments were used to train each model. 

The solid line indicates the position of points for a perfect model, and the fraction of the variance 

explained by each model is indicated by R² values Data points represent the mean and SE of at least 4 

replicate seed batches per treatment. 
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Figure 3.4 shows seed maturation times predicted by each of the three seed set 

models plotted against observed values, and their respective R² scores. Since this 

data was used to train the models, they were expected to reproduce the data with 

good accuracy. This is true in all cases, and there is little to distinguish between them 

in terms of their performance. Models 1 and 3 perform marginally better, which was 

mainly due to model 2 underestimating seed maturation times in 8h photoperiods. 

However, it was presumed that this would not be relevant in predicting seed set 

times in natural environments since seeds are rarely produced during short days in 

winter. Furthermore, when the 8h data point was excluded from the analysis, the 

performance of model 2 was equivalent to the others. Therefore, in order to assess 

the ability of each model to predict seed set times in a natural environments, further 

validation of the models was carried out using data collected from field experiments.  

 

Table 3.1 Fitted parameter values for three models of seed set timing  

 Parameter symbol Description 
Value 

Col-0 Ler 

M
o

d
e
l 
1
 

   Base temperature (°C) 5.25 4.55 

   Thermal time threshold (°C hours) 5370 5130 

M
o

d
e
l 
2
 

   Base temperature (°C) 5.35 3.25 

   Thermal time threshold (°C hours) 8280 10332 

M
o

d
e
l 
3
 

   Base temperature (°C) 5.50 4.50 

     Short day threshold (hours) 3.50 4.00 

     Long-day threshold (hours) 12.50 11.50 

   Thermal time threshold (°C hours) 8280 8400 
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3.2.4 Field experiments 

In order to validate the three seed set models, Col-0 and Ler plants were grown at a 

field site in York between October 2011 and July 2013. As with lab experiments, 

bolting and seed set dates were recorded for each individual plant. This data is 

summarised in Table 3.2 and Table 3.3 for Col-0 and Ler respectively. 

Herbivory occasionally led to plant mortality, particularly for cohorts bolting in late 

spring, despite precautions to exclude mollusc and vertebrate herbivores. Drought 

during spring 2012 also affected batches D and E, and a particularly harsh winter 

with snow late into 2013 also led to high mortality in batches I, J and K. However, in 

batches where plants survived to produce seeds, a general pattern of decreasing time 

to seed set could be observed for batches bolting later in the year, causing seed 

maturation to occur during increasingly warmer conditions. This trend then reversed 

for batches bolting in late summer, which caused seed maturation to occur during 

cooler autumn conditions (Figure 3.6). 
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Table 3.2 Summary of field observations of bolting and seed set timing for Col-0 in York, UK 

Col 
Transplant 
date 

# 
bolted 

Mean 
bolting date 

SE of 
bolting 
date 
(days) 

# 
reached 
seed set 

Mean 
time to 
seed 
(days) 

SE of 
time to 
seed 
(days) 

Avg. first 
seed date 

A 17/10/2011 6 11/02/2012 7.49 6 78.33 6.76 30/04/2012 

B 08/11/2011 9 23/03/2012 0.78 6 65.33 1.69 28/05/2012 

C 23/12/2011 20 06/03/2012 1.96 20 66.70 1.46 12/05/2012 

D 09/03/2012 14 11/05/2012 1.42 2 50.50 0.50 01/07/2012 

E 13/04/2012 7 24/05/2012 0.00 0 - - - 

F 30/05/2012 16 20/06/2012 0.31 16 41.88 0.38 01/08/2012 

G 28/06/2012 14 14/07/2012 0.73 14 30.14 0.73 14/08/2012 

H 23/08/2012 10 17/09/2012 1.08 9 67.56 5.75 23/11/2012 

I 25/09/2012 0 - - - - - - 

J 10/10/2012 0 - - - - - - 

K 08/10/2013 22 17/4/2013 2.13 8 51.13 4.59 07/06/2013 

L 18/02/2013 15 12/05/2013 2.42 14 45 2.21 26/06/2013 

 

 

Table 3.3 Summary of field observations of bolting and seed set timing for Ler in York, UK 

Ler 
Transplant 
date 

# 
bolted 

Mean 
bolting 
date 

SE of 
bolting 
date 
(days) 

# 
reached 
seed set 

Mean 
time to 
seed 
(days) 

SE of 
time to 
seed 
(days) 

Avg. first 
seed date 

A 17/10/2011 0 - - - - - - 

                        
B 

08/11/2011 5 31/01/2012 12.80 5 96.20 7.12 07/05/2012 

C 23/12/2011 5 27/02/2012 1.00 5 82.40 3.01 19/05/2012 

D 09/03/2012 5 17/05/2012 9.00 0 - - - 

E 13/04/2012 11 22/05/2012 0.00 1 49.00 0.00 10/07/2012 

F 30/05/2012 9 13/06/2012 0.78 9 36.22 0.78 20/07/2012 

G 28/06/2012 0 - - - - - - 

H 23/08/2012 5 14/09/2012 0.00 5 62.80 0.49 15/11/2012 

I 25/09/2012 0 - - - - - - 

J 10/10/2012 0 - - - - - - 

K 08/10/2013 0 - - - - - - 

L 18/02/2013 0 - - - - - - 
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3.2.5 Environmental temperature measurement 

In order to perform simulations, daily maximum, minimum and mean temperature 

data were retrieved from a nearby weather station. To calculate hourly thermal unit 

accumulation, the daily temperature data was used to estimate average hourly 

temperatures by assuming daily minimum temperatures between the hours of 21:00 

and 02:00, daily maximum temperatures between the hours of 09:00 and 14:00, and 

daily mean temperature during the remaining hours. The weather station was situated 

approximately 300m from the field site and approximately 21m above ground level. 

For comparison ground level temperature loggers were also used at the field site 

from September 2012.  

Figure 3.5A shows that the range of temperatures recorded at ground level was often 

greater than those recorded by the weather station, and this range also increased 

dramatically during the summer, particularly for daily maximum temperatures. A 

likely explanation is that heat absorbed by the ground was re-radiated, causing 

ground level air temperatures to reach as much as 28°C above those recorded by the 

weather station. Similarly, ground level temperatures just before dawn could be as 

much as 11ºC cooler than weather station measurements. 

Despite occasionally large discrepancies between the measurement methods, these 

were generally short lived and there was good agreement between daily average 

temperature estimates (Figure 3.5B). Estimates using the two methods differed by 

less than 1 degree (0.8°C) on average. There were just two regions where the 

estimates were noticeably different, one in June and one in July. This was due to 

exceptionally sunny ‘heat wave’ conditions, leading to sustained elevated ground 

level temperatures which were sufficient to affect the mean daily temperature. 

However, it was reasoned that the most relevant periods for plant growth would be 
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spring and early summer where Arabidopsis most commonly flowers and sets seed. 

These weather extremes were also expected to be infrequent and short lived, and 

consequently have a minimal impact on simulation results. It was therefore 

concluded that hourly temperature estimates derived from weather station records 

would provide an acceptable estimate of temperature, and could be used as the basis 

for simulations in locations where ground level temperature data was not available. 
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Figure 3.5 A comparison of temperatures recorded by a weather station, and by ground level 
data loggers 

(A) Estimated hourly temperatures derived from weather station daily maximum, minimum and average 

temperatures (blue), and average hourly temperatures calculated from ground level readings taken 

every 10 minutes (red). (B) A comparison between average daily temperatures calculated from logger 

readings and extracted from the weather station archive.  
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3.2.6 Model validation 

Figure 3.6 shows the predicted time required for Col-0 and Ler to produce seeds 

when bolting was simulated on successive days. The models predicted that from 

January onwards, times would be progressively reduced for later bolting dates. This 

continued until late summer, where warm temperatures combined with long days 

would allow the most rapid seed production. A sudden sharp increase was predicted 

after this point, as later bolting would result in seed development taking place while 

temperatures were steadily decreasing in autumn and winter. Beyond this, predicted 

times to seed set began to decrease again, thereby repeating the annual cycle. All 

three models produced a similar annual pattern and differences between predictions 

were smallest for summer bolting dates, although could be quite large for bolting 

dates in autumn when times to seed set were longest. 

Figure 3.6 also shows the observed times to seed set for batches of Col-0 and Ler 

grown at the field site. The behaviour of plants was similar to the model predictions, 

with later bolting resulting in decreased time to seed set, up to a cut-off bolting date 

in late summer. Batch H bolted beyond this cut-off, and as predicted the time taken 

to produce seeds increased.  

To compare model performance, plots of observed and predicted seed development 

times were produced, along with R² scores for each model (Figure 3.7). These plots 

revealed models were most successful in predicting seed set times in spring and 

summer, when the time required to produce seeds was lowest. Field observations for 

batches bolting at these times were close to the 1:1 line, indicating good model 

performance. 
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Figure 3.6 Model predictions and field observations of seed set timing 

Three models were used to predict seed set timing for each bolting date between Jan 2012 and July 

2013 (solid lines). Simulations were performed using hourly temperatures estimated from weather 

station records. Field observations are labelled with batch letters, and filled circles represent batch 

means. Standard errors for bolting dates (horizontal error bars) and seed set times (vertical error bars) 

are also shown. 
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However, models struggled to accurately predict seed set timing for batch H which 

bolted close to the predicted cut-off date in autumn. This was also a time of extreme 

sensitivity to bolting date, since small changes could lead to very large differences in 

seed set predictions, as illustrated by the steep gradient in Figure 3.6 for autumn 

bolting dates. This is also shown by vertical error bars in Figure 3.7, which were 

calculated using the mean bolting date   one standard error to calculate the range of 

predictions for each batch. For batch H, the mean bolting date for Col-0 was 17
th

 

September   1.08 days (Table 3.2). This resulted in predictions of 203   41 days 

(model 1), and 179   69 days (model 2). Model 3 had already reached a relative 

plateau at the maximum possible seed development time by this bolting date, 

therefore the range of predictions was not as large. 

An additional consideration is that batches for field experiments were germinated in 

the lab in order to transplant at the field site at the desired time. These bolting dates 

would therefore not necessarily be observed in natural populations where 

germination timing is under strict environmental regulation. Bolting in September 

would be considered unusual in this location, and for batch H this resulted in seed 

dispersal being delayed until the end of November and continuing into December 

and January. This would most likely result in a lower seed yield and reduced fitness 

compared to spring bolting varieties. Natural populations are therefore likely to 

avoid bolting at the end of summer in favour of a winter annual life history, where 

bolting is delayed until spring. For these reasons batch H was excluded from R² 

calculations, which instead focused on the more relevant spring and summer bolting 

batches. 

The models that explained the greatest proportion of the variance for Col-0 and Ler 

were model 1 (43%) and model 2 (93%) respectively. These models generally 
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provided good agreement with observed values, and mean absolute prediction errors 

were 8.5 days for Col-0 and 6 days for Ler. 

 

 

Figure 3.7 Observed and predicted time from bolting to seed set in field conditions 

Times from bolting to seed set were predicted by three different models for Col-0 and Ler, and 

compared to observations from field experiments. The solid line indicates the 1:1 line (the position of 

points for a perfect model). The fraction of the variance explained by each model is indicated by R² 

values (Batch H was excluded from R² calculations- see main text for explanations). Vertical error bars 

were calculated using mean bolting date   standard error to calculate the range of predictions for each 

batch. Horizontal error bars indicate the standard error in time to seed set for each batch.  
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3.2.7 Sensitivity analysis 

Sensitivity analysis was performed to assess the relative importance of each 

parameter on the model output. For each of the 3 seed development models, 

parameters were individually set to 105% and 95% of their original estimated value, 

while all other parameters were held constant. The predicted times required produce 

mature seeds for both Col-0 and Ler were then calculated for each of the 

experimental field plantings, using the mean batch bolting date as the simulation 

start point. 

The differences in predicted seed ripening times caused by a 10% change in 

parameter value were converted into a fraction of the original prediction, and divided 

by 0.1 to obtain the relative sensitivity. Equation [8] outlines the formula used for 

this calculation, where    is the change in the model output caused by the 10% 

parameter change, and   is the prediction using original estimated parameters. 

Relative sensitivities were averaged across each of the field batches to calculate the 

overall sensitivity, which can be interpreted as the average fractional change in the 

model output per fractional change in parameter value. 

[8]                       
    

   
 

 

Table 3.4 lists the relative sensitivity calculated for each parameter in the case of 

Col-0 and Ler models. This shows that in all cases the thresholds of the models (  ) 

had the highest sensitivity, followed by the base temperature (  ). Model 3 was 

relatively insensitive to changes in the photoperiod parameters (    and     ), with 

     having the smallest overall effect.  
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Table 3.4 Relative sensitivity calculated for models of seed set in Col-0 and Ler 

 Parameter symbol Description 
Value 

Col-0 Ler 
M

o
d

e
l 
1
 

   Base temperature (°C) 0.66 0.64 

   Thermal time threshold (°C hours) 1.0 1.0 

M
o

d
e
l 
2
 

   Base temperature (°C) 0.83 0.66 

   Thermal time threshold (°C hours) 0.92 0.95 

M
o

d
e
l 
3
 

   Base temperature (°C) 0.51 0.85 

     Short day threshold (hours) 0.0042 0.25 

     Long-day threshold (hours) 0.074 0.66 

   Thermal time threshold (°C hours) 0.58 0.89 

 

3.2.8 Model simulations 

Simulations and field experiments showed that bolting date has a large effect on the 

time required to produce seeds. This is because bolting date determines the 

temperature and photoperiod conditions that are experienced during seed 

development. It was also suggested that not all possible bolting dates would be 

relevant to Arabidopsis growing in the wild, since photoperiod and vernalisation 

requirements would favour bolting in spring or summer. Therefore, bolting dates 

were first predicted using the model described by Wilczek et al (2009). These 

predictions were used as input for the seed set model, which then calculated the date 

of seed dispersal and the temperature during seed maturation. The two models 

combined could therefore be used to examine the effect of germination date on seed 

set timing, and also to determine the range of seed maturation temperatures that are 

most relevant for primary dormancy establishment.  

In addition to predicting plant growth in York, simulations were carried out using 

temperature data from a further 15 locations. These consisted of locations in Europe, 

Asia and North America, which were chosen to represent the distribution of 
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Arabidopsis ecotypes. Daily temperature records were collected from weather station 

archives, and the mean annual temperature cycle in each location was calculated 

using data spanning 10 years. This was also combined with times of sunrise and 

sunset in each location. Bolting and seed set dates were predicted as described 

above, and the maturation temperature was estimated as the mean temperature during 

the week prior to seed set. Output from Col-0 and Ler models were similar, therefore 

only results from Col-0 are presented. Parameter values used were those defined for 

Col-0 in Wilczek et al. (2009), and seed set model 1 listed in Table 3.1. 

Results of simulations using temperature data from York are presented in Figure 3.8. 

Germination in late summer resulted in bolting and seed set during autumn. 

However, germination from mid September onwards resulted in an over wintering 

life history, in which bolting was delayed until the following calendar year. This 

causes the discontinuous appearance of the graph in Figure 3.8A. The steep gradient 

in this region also indicates an area of extreme sensitivity to germination date. 

Similar findings were reported by Wilczek et al. (2009), who demonstrated high 

sensitivity to germination dates in late summer and early autumn in Norwich and 

Cologne. In contrast however, Figure 3.8 shows that germination dates ranging from 

September to March resulted in very little variation in predicted seed set dates, which 

tended to fall in mid to late May. This indicates that the sensitivity of bolting and 

seed set timing to germination date dramatically reduces in autumn and spring, after 

the critical window of high sensitivity in early autumn. This was not reported 

previously in Wilczek et al. (2009), who showed only the predicted time taken to 

reach bolting, rather than bolting date as a function of germination timing.  

As a consequence of the low variation in seed set timing, predicted seed maturation 

temperatures were relatively constant at 12°C for germination dates spanning from 
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September to March (Figure 3.8B). As germination dates progressed into late spring 

and summer, generation times became shorter as warm temperatures and long days 

resulted in rapid flowering. Predicted seed maturation temperatures also increased 

until a cut-off in late summer. Germination at this time resulted in autumn bolting, 

when seed maturation could no longer be completed before the onset of cooler 

temperatures, causing a sharp drop in the predicted maturation temperatures.  

 

 

Figure 3.8 Simulations of bolting and seed set timing in York, UK 

(A) Bolting date (black) and seed set dates (red) were predicted for Col-0 plants germinating on 

successive days. (B) Seed maturation temperatures were predicted from the mean temperature during 

the week prior to seed set.  
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Figure 3.9 Simulations of bolting and seed set timing for in a range of locations 

Bolting dates (black) and seed set dates (red) were predicted for Col-0 germinating on successive 

days in each location.  
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Figure 3.10 Simulations of seed maturation temperatures in a range of locations 

Seed maturation temperatures were predicted from mean temperatures during the week prior to seed 

set. Seed set dates were predicted for each maternal germination date using combined bolting and 

seed set model simulations (see Figure 3.9). 
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Similar results were obtained from simulations in different locations (Figure 3.9 and 

Figure 3.10). A trend related to mean annual temperature was also observed. In 

general, the degree of synchronicity in bolting and seed set dates for autumn and 

spring germination was greater in cooler climates. This was because the switch to 

over wintering occurred earlier in autumn, and also because temperatures remained 

below    for longer in the spring. This meant all plants germinating within a wider 

time frame would not accumulate any photothermal units until the start of the growth 

season, and would therefore fulfil their photothermal requirements at the same time. 

In locations with increasing mean annual temperatures, winters were milder and 

synchronicity in over wintering and spring annual plants decreased. In equatorial 

climates such as Gran Canaria and Cape Verde, growth was not inhibited during 

winter leading to continuous rapid cycling.  

 

3.2.9 Effects of altered flowering time 

Climate change is resulting in altered flowering phenology in many plant species 

(Menzel et al., 2006b). Certain genetic mutations can also affect flowering time, such 

as those affecting genes in the photoperiod or vernalisation pathways. Therefore, to 

investigate potential effects of altered flowering time on seed set timing, the bolting 

model (Wilczek et al., 2009) was used to predict the normal bolting date of a typical 

winter annual germinating in November. This was then adjusted by ±40 days to 

examine the effect on the predicted seed set date (Figure 3.11).  
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Figure 3.11 The effect of altered bolting date on seed set timing 

Bolting date was predicted for a plant germinating on 1
st
 November in each location. This prediction 

was then adjusted by ±40 days as shown, and used to predict seed set date. 
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Predictions in most locations were surprisingly stable despite large perturbations in 

bolting date. For example, adjusted bolting timing had the smallest overall effect in 

Edinburgh, where the range of seed set dates spanned just 25 days in May and July, 

despite simulated bolting dates spanning a total of 80 days. However, altered 

flowering time generally had a much larger effect in warmer climates. For example, 

the relationship between altered bolting and altered seed set timing was close to a 1:1 

ratio in Cape Verde, where an 80 day difference in bolting dates led to an 85 day 

difference in seed set dates.  

Notably, flowering early also had less of an effect on predicted seed set dates than 

flowering late, although only in locations with cold winters. This was because plants 

that bolted before spring temperatures increased above    would not accumulate any 

photothermal units until temperatures increased at the start of the growing season. 

Consequently, flowering early had little or no effect on the number of photothermal 

units accumulated by the start of the growing season, and therefore the predicted 

seed set date was not affected. Conversely, flowering later meant that plants missed 

out on photothermal units at the start of the growing season, meaning their 

requirements for seed production were not met until later in spring or summer.  

 

3.3 Discussion 

3.3.1 Temperature is the dominant environmental factor that determines seed set 

timing 

In this chapter the growth rate characteristics of seeds maturing at different 

temperatures and photoperiods were analysed. This revealed a positive linear 

response between growth rate and temperature in the range 8-25°C. Previous studies 
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of leaf initiation, leaf expansion, and cell division in Arabidopsis, sunflower and 

maize suggest that linear growth rate responses to temperature are common in plants 

(Ben-Haj-Salah and Tardieu, 1995; Granier and Tardieu, 1998; Granier et al., 2002)  

Increasing photoperiod also increased seed developmental rates, however this 

quickly reached a maximum at approximately 10 hours in Ler and 12 hours in Col. 

One explanation for this behaviour is that as plants were grown at increasing 

photoperiods at 20°C, the temperature quickly became the dominant limiting factor. 

Therefore providing more hours of daylight per day had no additional effect since 

growth was already proceeding at the maximum rate permitted by the temperature. 

This theory was also supported by the data, which shows that growth rates had 

reached an apparent maximum in 16h days at 20°C (Figure 3.2). However, growth 

conditions of 16h days and 25°C resulted in an increase in the growth rate (Figure 

3.1).  

The linear relationship between growth rate and temperature suggested that a thermal 

time approach would be suitable to model seed development in Arabidopsis. Three 

models were developed based on data collected from laboratory experiments, each 

differed in the way photoperiod information was incorporated to determine the 

growth rate (Figure 3.3). Each model also performed similarly when predicting 

laboratory data, which was used to constrain the model. The fact that all three 

models also predicted similar behaviour when used to simulate seed set timing in the 

field also showed that altering the way photoperiod was used to predict growth rates 

had little effect. Interestingly, model 2 which disregarded photoperiod and used only 

temperature to predict seed set timing, was the most effective at predicting seed set 

timing in Ler under field conditions. This shows that temperature alone can be an 

adequate predictor of seed set timing in some cases. Furthermore, sensitivity analysis 
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confirmed that predictions made by model 3 were less sensitive to changes in 

photoperiod parameters      and      than the temperature parameter   . 

While temperature is clearly an important factor which determines how quickly 

seeds are produced, it was evident that when plants were grown at the field site other 

factors caused additional variation that could not be accounted for by the models. 

The best models for Col-0 (model 1) and Ler (model 2), explained 43% and 93% of 

the variance in seed set timing, meaning that other unknown factors collectively 

accounted for 57% and 7% of the variance. These may have included environmental 

factors such as water availability, light intensity, and nutrient availability; as well as 

biotic factors such as herbivory and disease. It may also be the case that additional 

factors are more important in different locations and climates and even in different 

seasons. For example water availability might play a more important role in warmer 

climates, or in summer. Therefore, in order to increase confidence in the models and 

extrapolate them to other climates, this should be a subject of future investigation. 

 

3.3.2 Predictions were unaffected by model choice  

Figure 3.6 shows that the models were able to correctly predict the pattern of 

behaviour with changing bolting dates, and the differences between the three models 

were relatively minor. The main differences occurred for bolting dates that would 

have resulted in seeds maturing in short photoperiods. However, because this was 

never observed in the field, the choice of model made very little practical difference 

to predicting the observed plant behaviour. 

Figure 3.7 also illustrates that the relationship between observed and predicted 

values were similar for the three models, however the R² values show large 



Chapter 3: Modelling Seed Dispersal Timing 

64 

 

differences, particularly for Col-0. This was because they were disproportionately 

affected by a small number of large prediction errors, namely predictions of batches 

A and H. Due to the sharp increase in the time to seed set for bolting dates in 

September, the timing of seed set in batch H was overestimated by as much as 163 

days in Col-0 (model 3). This meant the total sum of the squared errors was greater 

than the total variability in the data, leading to negative R² values in all cases. Due 

the sensitivity of predictions around this bolting date, batch H was excluded from all 

R² calculations. However batch A, which bolted very early in the year also had a 

large affect, leading to a negative score for model 3 and a value close to zero for 

model 2 (Col-0). 

R² values are routinely used in the biological literature to evaluate the performance 

of models (e.g. Batlla et al., 2009; Chantre et al., 2009; Wilczek et al., 2009; Watt et 

al., 2011). It provides an easy to understand metric from a simple comparison 

between observed and predicted values, and is usually called the coefficient of 

determination, but has also been referred to as the Nash-Sutcliffe efficiency (Nash 

and Sutcliffe, 1970). As defined in equation [7], R² values can range between 1 and 

  ; where 1 indicates a perfect model, and negative values indicate that the mean of 

the data points would be a better predictor. The use of R² is also re-enforced by 

various statistical packages such as Matlab, which typically report an R² value when 

fitting any statistical model to data. However there is a growing opinion that this 

measure may be inappropriate to evaluate non-linear models (Spiess and Neumeyer, 

2010). In particular, the assumption that the variance of the errors is equal for all 

measurements (homoscedasticity) is violated in non-linear models. This is evident 

from Figure 3.7 which shows smaller deviations between observed and predicted 

values when the time to seed set is short, but increasing deviations as the time to 
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seed set increases. Because all errors are squared, these occasional large values can 

dominate the result of the R² calculation.  

 

3.3.3 The length of seed development is sensitive to bolting date 

Because of the dependence on temperature which varies substantially depending on 

the time of year, predictions of the time required to produce seeds could vary from as 

little as 21 to 207 days depending on the bolting date (Figure 3.6). This relationship 

with bolting date leads to a predictable annual pattern, where successive bolting 

dates early in the year lead to progressively decreasing seed maturation times, caused 

primarily by the effects of increasing temperatures on the growth rate. Bolting dates 

at the start of July result in the shortest seed maturation times, since seed 

development occurs during the warmest time of year. However, bolting in late 

summer leads to plants producing seeds in an environment that becomes 

progressively cooler, resulting in a rapid increase in predicted time to seed set. The 

longest seed development times were predicted for bolting dates in September, 

where seed maturation was not completed until the following spring.  

The sudden transition from short to very long generation time was also reported by 

Wilczek et al. (2009), who observed a brief window of extreme sensitivity to 

germination timing in autumn causing a predicted transition from a rapid cycling to a 

winter annual habit. This phenomenon is a general feature of thermal time models in 

seasonal climates, since it is driven by a reduction in the availability of thermal units 

when temperatures drop in autumn and winter. This transitional period is significant 

for plants because it represents a boundary where initiating flowering could result in 

a serious reduction in fitness if seed production could not be completed. Flowering 
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in late autumn has been observed for Arabidopsis in some locations (Thompson, 

1994; Griffith et al., 2004), however a recent study reported that plants sown in 

Norwich, UK that bolted in September and October suffered from high mortality and 

reduced fitness (Fournier-Level et al., 2013). It would therefore be expected that 

plants that were well adapted to a particular climate would avoid bolting at this time 

and instead opt for an overwintering life history. 

 

3.3.4 Seed set conditions are conserved for spring and winter annuals 

The length of seed maturation depends strongly on the flowering time due to the 

dependence of the growth rate on temperature. Flowering time is under strict 

environmental regulation via several well characterised genetic pathways (Srikanth 

and Schmid, 2011; Andres and Coupland, 2012), which ensure flowering is initiated 

in the appropriate season. In this chapter, a model which simulates the action of the 

vernalisation and photoperiod pathways to predict flowering time (Wilczek et al., 

2009) was used in conjunction with a model of seed set timing in order to limit the 

bolting dates used as input to those that would be most likely to occur in natural 

populations, and also to simultaneously examine the effect of germination date on 

seed set timing. 

The result of these combined simulations showed that for Col-0 growing in York 

(Figure 3.8) a surprisingly wide range of germination dates, specifically from late 

autumn to early spring, led to similar dates of seed set in May. This conservation in 

seed set timing meant that seed maturation was also occurring under similar 

environmental conditions, and the temperature during the week prior to seed 

maturity averaged at approximately 12°C. This seed maturation temperature is 
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relatively cold, and would most likely result in seeds with high primary dormancy in 

Col-0 (Penfield and Springthorpe, 2012). This dormancy is likely to be lost through 

after-ripening during summer, and seeds would then be able to germinate the 

following autumn or spring. Therefore the models predict a stable winter/spring 

annual life history that is robust across a wide range of germination dates. 

Additionally, this pattern of behaviour was consistent across several sites (Figure 

3.9), and only began to break down in warmer climates where milder winters led to 

continued growth and a predicted rapid cycling behaviour all year round. 

As well as predicting winter and spring annual behaviour, the combined models also 

predict rapid cycling for late spring and summer germinants, where flowering and 

seed set occur in the same growing season. This would also result in seeds with 

reduced primary dormancy due to increased seed maturation temperatures. However, 

there is also a critical cut-off for late summer germination dates where plants would 

again revert to a winter annual habit, which was also predicted in Wilczek et al. 

(2009). 

 

3.3.5 Seed set timing is resistant to perturbations in flowering time 

Although the time (in days) required to produce mature seeds after bolting is highly 

sensitive to the bolting date (Figure 3.6), the dynamics of later bolting combined 

with a shortening of seed maturation results in a bunching up of seed set dates. This 

was not shown specifically, however can be seen in Figure 3.8 where germination 

during September results in predicted bolting dates spanning from December through 

to March. However, this large range of bolting dates results in a relatively small 

range of predicted seed set dates in May. Therefore, despite sensitivity of the length 
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(in days) of seed development to flowering time, the timing (calendar date) of seed 

set is surprisingly insensitive to flowering time, at least during part of the year and 

especially for winter annuals.  

This was also demonstrated in different locations by simulating a typical winter 

annual, and adjusting the predicted bolting date (Figure 3.11). Provided winter 

temperatures were sufficiently cold ( <   ), early bolting had little effect on 

predicted seed set dates, although late flowering did result in later seed set. However, 

robustness of seed set timing against changes in flowering time, and also against 

changes in germination timing could be a mechanism which stabilises plant 

phenology against unpredictable environmental fluctuations, such as those caused by 

unseasonal weather conditions. 

 

3.3.6 Conclusions 

The results in this chapter provide an insight into the interacting roles of phenology 

and environment in life histories of Arabidopsis. Combining a previously published 

model of flowering time in the Col-0 ecotype (Wilczek et al., 2009) with a novel 

model of seed set revealed conserved seed set timing and seed maturation 

environments for winter and spring annuals. This was robust against changes in 

germination and flowering time across a number of different locations. A rapid 

cycling habit was predicted for Col-0 growing in warmer climates and for plants 

germinating in summer. However, plants germinating after an autumn cut-off date 

were predicted to revert back to a winter annual habit in temperate climates. 
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Chapter 4: Modelling Seed Dormancy and 

Germination 

 

4.1 Introduction 

The previous chapter highlighted the importance of germination timing to both 

flowering and seed dispersal timing. Several other studies have also shown that 

germination timing is a key factor that determines life history (Donohue et al., 

2005a; Galloway and Burgess, 2009; Wilczek et al., 2009). Understanding how 

plants regulate the timing of germination in response to seasonal cues is therefore 

central to understanding life history phenology as a whole. 

The key to germination timing is seed dormancy, which dictates the ability of seeds 

to respond to favourable germination conditions. Temperature plays a major role in 

the establishment of primary dormancy during seed maturation, with cooler 

temperatures generally resulting in seeds that are more dormant at maturity 

(Schmuths et al., 2006; Donohue et al., 2008; Chiang et al., 2009; Donohue et al., 

2012). Temperature also affects dormancy after seed dispersal, and chilling or cold 

stratification is commonly used to promote germination in dormant seeds. However, 

prolonged chilling has also been shown to induce dormancy in some Arabidopsis 

ecotypes (Finch-Savage et al., 2007; Penfield and Springthorpe, 2012). The effects 

of temperature on dormancy are therefore not straightforward, as the same 

temperature can be dormancy breaking in some circumstances, and dormancy 

inducing in others. Since both maternal and post-dispersal temperatures affect seed 
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dormancy, reproductive timing and seasonal changes in temperature must also 

interact to determine germination behaviour, although this is not well understood.  

A number of models have already been suggested which attempt to link dormancy 

alleviation with environmental factors. Many of these are based on the thermal time 

concept, in which changes in dormancy are associated with accumulated low 

temperature chilling time, or high temperature after-ripening time (e.g. Batlla and 

Benech-Arnold, 2003; Batlla and Benech-Arnold, 2005; Chantre et al., 2009). 

Another common approach is to use threshold models, in which population 

parameters such as base water potential are altered by perceived changes in 

dormancy (Bradford and Somasco, 1994; Bradford, 2002). Thermal time and 

threshold models have also been successfully combined, and used to reproduce 

changes in sensitivity to different germination stimuli as a result of dormancy loss or 

induction (Chantre et al., 2009; Chantre et al., 2010). However these models can 

become complex, requiring distinct parameter sets for specific treatments, i.e. 

different temperature ranges or light treatments. Current dormancy models also tend 

to assume initial levels of primary dormancy are fixed, and are unable to account for 

maternal effects. The work in this chapter was therefore aimed at developing a model 

which incorporates the effects of both pre- and post-maturation temperature on seed 

dormancy, which could be used to predict germination frequencies. The model was 

then used to predict germination behaviour in seeds dispersed at different times of 

year, and in different locations and climates.  
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4.2 Results 

4.2.1 The effect of temperature on seed dormancy 

To quantify the effect of temperature on dormancy, a series of experiments were 

carried out using seeds from the Columbia ecotype (Col-0) matured at different 

temperatures, and then given different stratification treatments. These treatments 

were carried out in darkness to simulate burial, and consisted of incubation on agar 

plates at constant temperatures for varying lengths of time. Dormancy was then 

measured by transferring seeds to germination conditions (22°C; 16h light), and 

counting numbers of germinated and un-germinated seeds after 7 days. Some seeds 

germinated in darkness during the stratification treatments, and by doing so they 

were prevented from undergoing further changes in dormancy. In effect this meant 

they did not receive the full stratification treatment, and could not be considered the 

same as seeds which germinated only after the full treatment plus incubation in light. 

Therefore, dark germinated seeds were not included in the development of this 

model, but are considered separately in the next chapter.  

Figure 4.1 shows the number of seeds germinating at the end of the germination 

assay as a percentage of the total number of seeds (excluding those that germinated 

in the dark). These results reveal a clear trend of reduced primary dormancy with 

increasing maturation temperature. Seeds matured at 12°C were the most dormant, 

and very few germinated after stratification. In seeds matured at 13°C and 14°C 

some dormancy was broken after 1-2 week stratification treatments, however their 

germination did not exceed 25% and secondary dormancy was induced in seeds 

stratified for longer than 2 weeks. Primary dormancy was reduced further in seeds 

matured at 15°C and above, which germinated to almost 100% after stratification at 

4°C. Dormancy was lowest overall in seeds matured at 18°C, and germination in 
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freshly harvested seeds was approximately 40%. As a result of reduced dormancy, 

many seeds matured at 18°C germinated during incubation in the dark. Since dark 

germinating seeds were excluded from this analysis, sample sizes were reduced 

causing the variation and standard error of these measurements to be increased.  

 

 

Figure 4.1 The effect of maturation and stratification temperature on germination in light 

Col-0 seeds matured at 12°C, 13°C, 14°C, 15°C, 17°C, and 18°C were imbibed on water agar, and 

stratified in darkness at constant temperature (indicated by symbols). Seeds were transferred to 

germination conditions (22°C; 16h light) after the stratification time shown, and germinated seeds were 

counted after 7 days. Seeds which germinated in darkness were excluded, and germination in light 

was expressed as a percentage of the remaining total. Data represent the mean and SE of 5 replicate 

seed batches. 

 

The stratification temperature also affected the rate of dormancy loss, which was 

most visible in seeds matured at 15°C. Surprisingly, low temperature stratification 

resulted in a slower rate of dormancy loss, and a later peak in the germination 

compared to warmer temperatures. This did not appear to be the case for seeds 
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matured at 17°C and 18°C; although loss of dormancy occurred rapidly, and 

therefore the effect of stratification temperature may not have been visible at this 

sampling resolution. Stratification at increasingly warmer temperatures also resulted 

in increased rates of secondary dormancy induction, generally resulting in earlier 

peaks and subsequent decreases in the germination. This trend suggests that the 

consistently poor germination observed after stratification at 20°C was due to rapid 

secondary dormancy induction. 

 

4.2.2 Model development 

Totterdell and Roberts (1979) originally proposed that dormancy loss and dormancy 

induction may be occurring simultaneously in seed populations. This notion was 

later used by Batlla et al. (2009) to model germination percentages in the annual 

weed Polygonum aviculare. In their model, rates of dormancy loss and induction 

were independently controlled by temperature, and the combined effect of both 

processes determined the final germination percentage. Population-based approaches 

have also been successful in describing variation in germination rates, as well as how 

this can be affected by changes in dormancy (e.g. Alvarado and Bradford, 2002). 

Ideas from these two approaches were therefore combined in an attempt to model 

dormancy and germination in Arabidopsis. 

Assuming a population of seeds contains a mixture of dormant and non-dormant 

individuals, any random seed will either germinate or will be dormant given 

favourable conditions. Dormancy and germination are therefore mutually exclusive. 

This relationship is defined in equation [9], where      is the probability of 

germination, and      is the probability of dormancy.  
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[9]             

 

Assuming that primary and secondary dormancy are independent processes and that 

a seed can be rendered dormant by either process, the general disjunction rule can be 

used to define the total probability of dormancy using the individual probabilities of 

primary and secondary dormancy,       and      , as shown in equation [10]. 

[10]                                         

 

It is well known that populations of seeds do not germinate synchronously, but 

generally have some kind of distribution in their germination timing. Population 

based threshold models (e.g. Bradford, 2005) typically attribute this variation to 

parameters such as base water potential (ψb), which are thought to be normally 

distributed within populations. In any particular environment, only the fraction of 

seeds with ψb vales exceeding the environmental water potential (ψ) are thought to 

be non-dormant, and therefore capable of germination.  

This idea can also be applied more generally to seed dormancy. Assuming dormancy 

depth is normally distributed within a population, one can imagine a threshold value 

below which a seed is no longer dormant. Assuming that treatments such as chilling 

can change the mean dormancy of the population, applying these treatments would 

shift the entire dormancy distribution of the population. Such a shift would result in a 

proportion of seeds becoming non-dormant as their dormancy is shifted to below the 

threshold. If the mean dormancy changes at a constant rate, the proportion of non-

dormant seeds over time would follow a regular cumulative distribution curve. If the 

seeds were also provided with enough light and moisture to enable germination as 
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soon as dormancy was lost, then a typical cumulative germination curve should be 

observed with increasing incubation time. However, this description only applies to 

the loss of primary dormancy. If seeds were prevented from germinating, for 

example by incubating in darkness, then secondary dormancy would eventually be 

induced. 

 It is often reported that maximum germination percentages are reduced at elevated 

germination temperatures (e.g. Windauer et al., 2012). This can easily be explained 

if dormancy loss and induction are occurring simultaneously. In such cases, 

dormancy induction would be accelerated by the increased temperature, and so some 

of the population would enter secondary dormancy before losing primary dormancy. 

A portion of the population would therefore remain dormant, even when incubated in 

continuous light. The idea of normally distributed dormancy was therefore applied to 

both primary and secondary dormancy individually (Figure 4.2). It was assumed that 

freshly harvested seed populations have initially high mean values of primary 

dormancy (Figure 4.2A) and low mean values of secondary dormancy (Figure 4.2C). 

Over time the mean primary dormancy would decrease, resulting in a cumulative 

reduction in the percentage of primary dormant seeds (Figure 4.2B), while the 

opposite trend was presumed to occur for secondary dormancy (Figure 4.2D). 
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Figure 4.2 An illustration of primary and secondary dormancy frequencies within a seed 
population 

Theoretical normal distributions of primary (A) and secondary (C) dormancy are shown, with fractions 

of dormant seeds (those seeds having dormancy above a threshold) indicated by shading. As the 

mean dormancy (µ) of the population changes, the percentage of the population that is primary (B) or 

secondary (D) dormant follows a cumulative decrease or increase over time. 

 

Logistic functions were chosen to reproduce the desired s-shaped cumulative 

distribution curves. This approach avoided the need to directly quantify population 

parameters such as the mean and standard deviation in dormancy values. The logistic 

functions used to define probabilities of primary and secondary dormancy over time 

are given in equations [11] and [12]; where   is the stratification time in days; 

   and    are the rates of primary dormancy loss and secondary dormancy 

induction; and    and    are offset parameters. 

[11]        
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[12]           
 

           
  

 

Offset parameters were required because a standard logistic curve passes through   = 

0 at   = 0.5, however for the purposes of this model the curves were repositioned so 

that       crosses   = 0 at   = 0.99, and       crosses   = 0 at   = 0.01. That is to 

say, in freshly harvested seeds 99% were presumed to have primary dormancy and 

1% secondary dormancy. Due to the asymptotic nature of the logistic function it was 

not possible to set these initial values to 0% or 100% as this would result in an offset 

of   . These values were therefore chosen as a reasonable approximation. 

 

 

Figure 4.3 An illustration of the offset parameter for primary dormancy 

The red line indicates a standard logistic curve passing through (0,0.5). The offset in   required to 

ensure the curve passes through (0,0.99) is shown by   . 

 

The magnitude of the two offset parameters required to position the curves correctly 

can be found by rearranging equations [11] and [12] making the offset the subject, 

and then substituting values of    0 and either        0.01 or        0.99. This 
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results in equations [13] and [14], which indicate the offset is inversely proportional 

to the rate parameters.  

[13]    
         

  
 

 

[14]     
         

  
 

 

Combining equations [9]-[14] results in a framework for a population based model 

of germination probability over time, which encompasses both primary and 

secondary dormancy dynamics. An example of how these individual probabilities 

can change over time is provided in Figure 4.3. This framework is conceptually 

simple, and requires only the rates of primary dormancy loss and secondary 

dormancy induction (   and   ) to be determined for different temperature 

treatments. A list of parameter symbols and meanings is also provided in Table 4.1. 

 

 

Figure 4.4 An illustration of the dormancy model 

Probabilities of primary dormancy (green), secondary dormancy (black) and germination (red) at 

different times after the start of stratification are shown. 
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Table 4.1 A list of symbols used in the dormancy model 

Symbol Meaning 

     The probability, or relative frequency of germination; defined in equation [9] 

     
The total probability, or relative frequency of dormancy within a population; defined 
in equation [10] 

      The probability, or relative frequency of primary dormancy; defined in equation [11] 

      
The probability, or relative frequency of secondary dormancy; defined in equation 
[12] 

   The rate parameter for primary dormancy loss; defined in equations [18] and [20] 

   The offset parameter for primary dormancy; defined in equation [13] 

   The rate of secondary dormancy induction; defined in equation [19] 

   The offset parameter for secondary dormancy; defined in equation [14] 

   Stratification or imbibition temperature (°C) 

   Seed maturation temperature (°C) 

  Stratification time (days since imbibition) 

Lower case 
parameters; 
 ,   and    

Parameters whose values were determined by fitting the models to the training data  

  The exponential constant 

 

To determine optimised values of    and    at different temperatures, the fit 

function in MALTLAB curve fitting toolbox (Mathworks) was used with a trust-

region algorithm to fit the model to the training data shown in Figure 4.1. This data 

consisted of 30 individual germination time series experiments, each having a 

different combination of maturation and stratification temperature. Fitting of    and 

   values was performed individually for each time series, and the resulting 

parameter values were plotted in order to determine if any relationship with either 

stratification or maturation temperature could be discerned.  

The data presented in Figure 4.1 also suggested that the rate of secondary dormancy 

induction was increased at warmer temperatures. This observation was used to 

inform the model parameterisation by constraining    within boundaries that 

increased with stratification temperature, while    was allowed to vary within fixed 
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boundaries. These conditions led to    values which were relatively constant for a 

given stratification temperature, but which increased with maturation temperature 

(Figure 4.5). It was therefore concluded that primary dormancy should be modelled 

using only maturation temperature, and secondary dormancy should be modelled 

using only the stratification temperature.  

 

 

Figure 4.5 The effect of temperature on fitted dormancy rate parameters 

(A) The rate of primary dormancy loss (  ) and (B) the rate of secondary dormancy induction (  ) 

plotted with stratification temperature. Maturation temperatures are also shown by colour coding. 

Parameter values were determined for each combination of maturation and stratification temperature 

by fitting the model to data from individual germination time series experiments. Values of    were also 

constrained within boundaries that increased with stratification temperature, while    was constrained 

within wider, fixed boundaries. These conditions revealed that    was largely unaffected by 

stratification temperature, but had a positive relationship with maturation temperature. 

 

Linear, logistic and exponential functions were used to model    and    with 

maturation and stratification temperature respectively. The general forms of these 

functions are given in equations [15] – [17]; where   is the rate being modelled 

(either    or   );   is the temperature, either stratification or maturation temperature 

as appropriate; and  ,  , and   are parameters whose values were varied to obtain an 

optimised fit.  
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[15]        

 

[16]   
 

          
 

 

[17]        

 

4.2.3 Parameter estimation 

Each of the 9 possible pair wise combinations of linear, logistic, and exponential 

functions for modelling    and    were tested with the training data. Each 

combination was parameterised using all the training data simultaneously to obtain 

the global best fit, using the same fitting method described in the previous section. 

The goodness of fit in each case was measured using the coefficient of determination 

(equation [7]), values of which are shown in Table 4.2 for each model.  

The highest scoring models were the logistic-exponential and linear-exponential 

models, which were both able to reproduce the training data with equal accuracy (R² 

= 0.83). The extra complexity of the logistic-exponential model, caused by the 

additional parameter compared to the linear-exponential model, did not provide any 

benefit in terms of predictive power. Therefore, the simpler linear-exponential model 

was chosen as the optimum model. Equations for    and    for this model are given 

in equations [18] and [19], where    is the maturation temperature and    is the 

stratification or imbibition temperature.  
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[18]                      

 

[19]                       

 

Table 4.2 Results from fitting 9 possible models to the germination training data 

   model     model  Number of Parameters  Total R²  

Exponential  Exponential  4  0.71  

Exponential  Logistic  5  0.62  

Exponential Linear  4  0.64  

Logistic  Exponential  5  0.83  

Logistic  Logistic  6  0.82  

Logistic  Linear  5  0.75  

Linear  Exponential  4  0.83  

Linear  Logistic  5  0.81  

Linear  Linear  4  0.73  

 

Figure 4.7 shows the model outputs plotted with the training data, including 

predictions of primary dormancy, secondary dormancy and germination probability. 

Each subplot also indicates the R² for the individual time series. Where seeds were 

very dormant, R² scores do not give a good representation of the model fit. Negative 

R² scores can arise when the variance in the data is smaller than the prediction errors, 

and in very dormant populations where the germination is consistently very low, the 

variance is also very small. However, visual inspection of the fits show that the 

model predicts the germination very well overall. The only major exception occurs 

where seeds were matured at 18°C and incubated at 20°C, which resulted in an 

unusual zigzag germination pattern. This could simply be an anomaly in the data, or 

could be evidence of an unusual behaviour under warm maturation and warm 
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stratification conditions. Figure 4.6 also shows the distribution of observed values 

plotted against predicted values from which the total R² was calculated. This shows a 

clear correlation between the model predictions and observed germination, which 

indicates that the model performs well overall. 

 

 

Figure 4.6 The relationship between observed and predicted germination frequencies 

The observed germination values were all the data points used to train the model, also shown in Figure 

4.1. Predicted values for each data point were generated by the model. A good fit of the model to the 

training data is revealed if there is a good 1:1 relationship between observed and predicted values. 
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4.2.4 Model validation 

As a test of the model, stratification experiments were repeated with seeds matured 

at 2 additional temperatures; 16°C and 20°C. The fitted model was then used to 

predict the germination. Figure 4.8 shows model predictions for seeds matured at 

16°C, along with the germination data and R² values. The germination behaviour 

was similar to that observed previously for seeds matured at 15°C and 17°C. In 

general primary dormancy was broken within the first week of stratification, and 

secondary dormancy was induced progressively earlier at warmer temperatures. 

After stratification at 20°C however, dormancy was not broken and germination 

remained close to zero, although the model predicted an increase in germination after 

a stratification period of 1-3 days. Because the variance in the observed germination 

was very low at this temperature, this resulted in a large negative R² value. However, 

the accuracy of predictions was generally good, and the model explained 88% of the 

total variance.  
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Figure 4.8 Model predictions and observed germination of seeds matured at 16°C 

Predicted primary dormancy (green) secondary dormancy (black) and germination (red) percentages 

are shown as coloured lines. Filled circles represent the mean and SE of 5 replicate seed batches. 

Individual R² are shown for each time series, and the total R² = 0.88. 

 

Figure 4.9 shows model predictions and germination of seeds matured at 20°C. In 

contrast to seeds matured at 18°C or below these seeds had very little dormancy, 

with 87% germinating without requiring any stratification. Because of this low initial 

dormancy, many seeds germinated in darkness during the stratification treatments; in 

some cases as many as 100%. Since dark germinating seeds were excluded, the time 

series data from stratification treatments at 8-15°C were truncated. The prediction 

that germination would decrease as a result of secondary dormancy induction was 

therefore untested in some cases. The model did however predict a reduction in 

germination after stratification at 20°C, although germination unexpectedly 

increased again after 4 weeks. At 4°C stratification, the model also predicted a 

gradual reduction in the germination due to secondary dormancy, although the 
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observed germination remained consistently high. These errors, combined with low 

total variance in the data resulted in negative R² scores at all temperatures, with an 

overall score of -1.41. 

  

 

Figure 4.9 Model predictions and observed germination of seeds matured at 20°C 

Predicted primary dormancy (green) secondary dormancy (black) and germination (red) percentages 

are shown as coloured lines. Filled circles represent the mean and SE of 5 replicate seed batches. 

Individual R² are shown for each time series, and the total R² = -1.41. 
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would mean the logistic primary dormancy curve would change direction. Therefore, 

instead of predicting a loss of primary dormancy over time, the model would predict 

an increase. In practice this means seeds would be permanently dormant, which fits 

with the observations during lab experiments (Figure 4.1). However, a rate of zero 

would result in an indeterminate value of primary dormancy due to a division by 

zero. This could cause problems when running simulations with temperature data 

from field experiments, where maturation temperatures of exactly 13.96°C could 

potentially arise.  

To solve this problem an additional condition was imposed on    such that it could 

only assume positive non-zero values. To implement, this required setting a 

minimum value for   , which was chosen to be 10
-4

. The modified formulation of 

   is shown in equation [20]. 

[20]     
                             

                
  

 

This modification had no effect on predictions of seed behaviour in lab experiments. 

The minimum value for    was sufficiently small to ensure that primary dormancy 

loss was predicted to occur extremely slowly when the maturation temperature was 

13°C or below. Therefore secondary dormancy was always induced before primary 

dormancy was lost, ensuring the model correctly predicted that seeds remained 

dormant.  

The maturation temperature for a population of seeds is fixed at the point of 

maturity. Primary dormancy is therefore unaffected by changes temperature after 

maturity, and       can be calculated for any point in time using equations [11], 
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[13] and [20]. This is not the case for secondary dormancy however, which is only 

dependent on the temperature after maturity. In a continuously changing 

environment it is therefore necessary to use discrete time intervals, and use the 

average temperature during each interval to calculate changes in      .  

The rate of change, or the gradient of       also continuously changes, and depends 

on the total stratification time  . For instance, in a freshly harvested seed population 

initial increases in       would be slow, as only the most dormant few individuals 

would gain dormancy (Figure 4.2D). However, increases in       would 

continuously accelerate over time, until the point where half the population had 

gained secondary dormancy. Beyond this point,       would increase progressively 

slower, until the last few seeds with the lowest initial dormancy finally became 

dormant.  

It is not possible however, to use the total stratification time to determine the rate of 

      increase during any time interval. This is because the increase in       is also 

affected by temperature, and therefore time spent at different temperatures would 

result in different amounts of dormancy being gained. For example stratification for 

1 day at 20°C might result in half the population becoming dormant, but at 4°C only 

a small fraction might become dormant in the same period. This is because 

secondary dormancy is induced more slowly at cooler temperatures, and therefore a 

longer stratification period would be required to reach an equivalent dormancy state. 

It is therefore necessary to convert between equivalent stratification times at 

different temperatures in order to correctly calculate changes in dormancy during 

each time interval. 
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It is possible to convert stratification times at a different temperature if initial values 

of      , and    are known. This conversion can therefore be used to calculate the 

new       at each time step in sequence, using known values from the previous time 

step. In general, at the end of any time step  ;    is the stratification time, and     is 

its equivalent value after a change in temperature. Equation [21] shows the 

calculation of     where;        is the known probability of secondary dormancy at 

the end of interval  ; and                 are the rate and offset parameters 

calculated using the temperature from the next interval, i.e. interval    . 

[21] 
    

   
 

        
   

       
          

 

The value of   at the end of the second interval can then be calculated by adding the 

length of an interval (  ) onto     (equation [22]). The secondary dormancy at the 

end of the new time interval can then be calculated with equation [12].  

[22]               

 

The concept is illustrated in Figure 4.10, where the dotted line indicates the 

adjustment in   required to maintain equivalent dormancy after a change in 

temperature. 
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Figure 4.10 An illustration of the frequency of secondary dormancy after a change in 
temperature 

Frequency curves at two different constant temperatures are illustrated by red and blue lines, and the 

frequency of secondary dormancy in a population switching between the two temperatures is traced by 

solid black lines. After incubating at the first temperature until   , the dormancy frequency is   . After a 

change in temperature the adjusted value of   that maintains equivalent dormancy is shown by    . 

The length of a time step is shown by   , after which the value of   becomes    and the dormancy is 

  .  

 

4.2.6 Model Simulations 

Temperature data collected from weather stations was used to simulate seed set on 

each successive day of the year. Primary dormancy, secondary dormancy and 

predicted germination probabilities were calculated for up to 60 days after the seed 

set date. The mean temperature during the week immediately prior to seed set was 

used as the maturation temperature for primary dormancy calculations, and the 

secondary dormancy was calculated in time steps of 1 day using the daily mean 

temperature. The simulation output from York is shown in Figure 4.11 and Figure 

4.12. These figures show that seeds set on the majority of dates are predicted to be 

highly dormant due to maturation temperatures below 14°C (dark areas in Figure 

4.11A). Seeds dispersed during most of the year are therefore likely to remain 

dormant within the soil seed bank, until favourable conditions are able to break 

secondary dormancy. 
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Figure 4.11 Simulations of primary and secondary dormancy in seeds dispersed on different 
dates in York, UK 

Seed set was simulated on each sucessive day of the year. Percentages of primary (A) and secondary 

dormant (B) seeds on each day after the seed set date (for up to 60 days) are indicated by shading.  

 

However, seed set dates ranging from approximately June to September, result in 

maturation temperatures above 14°C (light areas in Figure 4.11A). Seeds produced 

on these dates are predicted to have reduced primary dormancy which is lost quickly 

after dispersal. The elevated mean daily temperatures on these dates also result in a 

predicted increase in the rate of secondary dormancy induction (Figure 4.11B), 

however the corresponding reduction in primary dormancy is sufficient to allow a 

high germination probabilities for a short period after seed set (dark areas in Figure 

4.12A). This is illustrated more clearly in Figure 4.12D, where the predicted peak 

germination is plotted for each seed set date. This reveals a clear window in summer 

where the peak germination reaches high levels. Strikingly, the cut off between dates 

that allow germination and those that do not is very sudden. This switch is caused by 

the change in primary dormancy when maturation temperatures exceed 14°C, which 

was also observed in lab experiments (Figure 4.1). 
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Figure 4.12 Simulations of germination in seeds dispersed on different dates in York, UK 

Seed set was simulated on each sucessive day of the year. Germination percentages were calculated 

for each day after the seed set date (A), using the individual probabilities of primary and secondary 

dormancy (see Figure 4.11). Shading indicates the likelihood of germination. (B) Peak germination 

percentages are plotted for each seed set date (black bars), along with the maturation temperature 

(solid red line). 

 

Simulations were also performed using temperature data from a range of locations, 

in order to assess the effect of different climates on the predicted dormancy and 

germination behaviour (Figure 4.13). Periods of reduced primary dormancy were 

predicted in all locations when maturation temperatures exceeded 14°C. In most 

cases this caused predicted germination levels to peak around 75% for seeds 

dispersed in summer. However, in some locations a reduction in germination during 

the warmest part of the summer was predicted. This was because elevated 

temperatures caused secondary dormancy induction which was rapid enough to 

counteract the reduced primary dormancy caused by elevated maturation 

temperatures. 

To investigate this further, artificial climate data was generated by incrementing 

mean daily temperatures between a minimum winter temperature on the 1
st
 January, 
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and a maximum summer temperature on the 1
st
 of July. Simulations using different 

combinations of minimum winter and maximum summer temperatures showed that a 

period of reduced primary dormancy, and therefore high levels of germination would 

always occur whenever the mean daily temperature exceeded 14°C (results not 

shown). However, secondary dormancy induction increasingly suppressed maximum 

germination levels when temperatures exceeded 20°C, to the extent that germination 

was reduced to 50% at 25°C, and zero at 29°C. 
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Figure 4.13 Simulations of germination in seeds dispersed on different dates in a range of 
locations 

Seed set was simulated on each successive day in each location, and the peak germination was 

plotted for each seed set date (black bars). The mean weekly temperature, used as an estimate of the 

maturation temperature, is also shown (solid red line). In general the predicted germination exceeded 

50% when mean daily temperatures were between 14°C and 25°C. 
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4.3 Discussion 

4.3.1 Temperature affects dormancy rather than seed viability 

A number of previous studies have shown imbibed Arabidopsis seeds undergoing a 

loss of primary dormancy followed by an induction of secondary dormancy (Derkx 

and Karssen, 1993b; Toorop et al., 2005). These studies also found that the process 

of secondary dormancy induction was increased at warmer temperatures, but 

importantly could still be broken by chilling. The viability of Col-0 and Ler seeds 

imbibed for long periods in darkness at 20°C was also confirmed by stratification at 

4°C, which induced high levels of germination (Figure 6.9 and Figure 6.10). 

Additionally, seeds with high initial dormancy due to low maturation temperatures 

become capable of responding to stratification after a period of dry after-ripening 

(data not shown). Together these observations show that temperature mainly affects 

germination by altering dormancy, rather than seed viability.  

 

4.3.2 A new perspective on seed dormancy 

The results presented in this chapter challenge some common assumptions about 

seed dormancy. Firstly, it is often implied that a prerequisite for secondary dormancy 

induction is primary dormancy loss, and a transition through a period of non-

dormancy (Hilhorst, 1998). Currently, the easiest and most common way of 

measuring dormancy is indirectly; by measuring the germination in favourable 

conditions. However, since both primary and secondary dormancy result in a lack of 

germination, it is difficult to distinguish the two states. It is however much easier to 

identify secondary dormancy following primary dormancy loss, since this would 

result in a readily observable increase followed by a subsequent decrease in 
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germination. This is perhaps why this assumption is so widely held, however in 1979 

it was suggested that the germination of Rumex species after varying durations of 

stratification at different temperatures could best be explained if loss of primary 

dormancy and induction of secondary dormancy were occurring simultaneously 

(Totterdell and Roberts, 1979). This idea was subsequently used to explain the 

germination behaviour in a diverse range of species, including for example 

Polygonum aviculare (Batlla et al., 2009). Orobanche spp. (Kebreab and Murdoch, 

1999), Picea sitchensis (Jones et al., 1997), as well as Arabidopsis thaliana (Derkx 

and Karssen, 1993b). The mathematical model presented in this chapter illustrates 

that this behaviour can be predicted very effectively using three simple assumptions; 

primary dormancy loss and secondary dormancy induction occur simultaneously; 

both process are dependent on different aspects of environmental temperature; and 

dormancy states are normally distributed within seed populations. 

The fact that similar models have been used to explain this kind of germination 

behaviour in diverse range of species indicates a potential common mechanism. 

Furthermore, many additional studies report reductions in total germination 

following stratification at supra-optimal temperatures (e.g. Windauer et al., 2012; 

Wang et al., 2013). In light of the current work, it is likely that this reduction is due 

to accelerated secondary dormancy induction, rather than an incomplete loss of 

primary dormancy. Therefore, in order to facilitate an improved understanding of 

seed dormancy it may be necessary to clarify the definition of secondary dormancy. 

Several prominent reviews use definitions which imply primary dormancy loss and 

secondary dormancy induction must occur sequentially, (Hilhorst, 1998; Baskin and 

Baskin, 2004; Finch-Savage and Leubner-Metzger, 2006), however Bewley and 

Black state that secondary dormancy induction can occur in mature primary dormant 
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seeds if conditions are unfavourable for germination (Bewley and Black, 1994; 

Bewley, 1997). Khan and Karssen, 1980, and more recently Penfield and King, 

2009, also define secondary dormancy as states which are induced after seed 

maturity, a definition which is supported by the work presented here.  

Secondly, it is commonly stated that dormancy is broken most effectively by cold 

temperatures. While this may be true in some circumstances, this work suggests that 

in fact brief warm imbibition may be just as effective at breaking primary dormancy. 

This has also been observed in Arabidopsis previously. For example, one study 

reports primary dormancy loss in the Ler ecotype after stratification at 25°C for 70 

hours (Toorop et al., 2005), and similarly Derkx and Karssen, 1993b, describe an 

experiment in which dormancy was lost after just 10 hours stratification at 30°C, but 

was completely re-induced after 2 days. This also illustrates that whilst warm 

temperatures quickly break primary dormancy, they also cause accelerated induction 

of secondary dormancy. 

Furthermore, secondary dormancy is often associated with seasonal dormancy 

cycles, and consequently changes in secondary dormancy are often presumed to 

occur slowly (Finch-Savage and Leubner-Metzger, 2006). These results disagree 

with this viewpoint however, and illustrate that secondary dormancy may be induced 

very rapidly in some circumstances. Therefore, rather than cold temperatures being 

more effective at breaking dormancy, it may be more accurate to consider that cold 

temperatures inhibit secondary dormancy induction, thus ensuring that seeds remain 

in a non-dormant state for longer. 

Finally, the model simulations reveal behaviour that strongly resembles 

thermoinhibition. This is the inhibition of germination at supra-optimal temperatures, 
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sometimes also called thermodormancy (Negm et al., 1972). This phenomenon has 

been studied since at least the 1920’s, where Borthwick and Robbins, 1928, showed 

that germination of lettuce was inhibited at elevated, but sub lethal temperatures. 

Evenari, 1952, later described this state at ‘heat dormancy’ and showed that it could 

be broken to allow germination by removing fruit coats or treatment with O2, CO2 or 

thio-urea. More recent studies have also shown that thermoinhibition occurs as a 

result of a simultaneous increase in ABA content and sensitivity (Tamura et al., 

2006; Leymarie et al., 2008; Toh et al., 2008). Transcriptomic analysis has also 

highlighted similarities between after ripened seeds imbibed at high temperatures 

and dormant seeds imbibed at room temperature (Cadman et al., 2006), suggesting a 

possible common dormancy mechanism. Some authors have even gone as far as 

suggesting that thermoinhibition and secondary dormancy are one and the same 

process (Leymarie et al., 2008; Leymarie et al., 2009). This viewpoint is also 

supported by the model presented in this chapter, in which high temperatures results 

in rapid secondary dormancy induction and reduction in the maximum predicted 

germination. 

Given the relative lack of understanding of secondary dormancy, and also the 

potential importance of secondary dormancy in determining the seasonal timing of 

germination, the field of dormancy research would benefit from wider 

acknowledgement that thermoinhibition and secondary dormancy may be caused by 

the same process. Furthermore, induction of secondary dormancy by short high 

temperature pre-treatments could provide a convenient method for studying 

secondary dormancy more easily. 
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4.3.3 General model discussion  

The nature of the model raises some interesting points for discussion. Firstly, the 

models which were best able to reproduce the training data each featured an 

exponential increase in the rate of secondary dormancy induction with stratification 

temperature (Table 4.2). This agrees with metabolic theory in ecology, where 

biological reaction rates are presumed to follow an Arrhenius temperature 

relationship (Brown et al., 2004). However, the stratification temperature was found 

to have a much smaller effect on the rate of primary dormancy loss, which was 

instead mostly determined by the maturation temperature. 

In the optimum model the rate of primary dormancy loss,   , is calculated as a linear 

function of maturation temperature. This entails a sudden switch from negative    

(or 10
-4

 using equation [20]) to positive    when the maturation temperature reaches 

~14°C. In the case of secondary dormancy however,    has an exponential 

relationship with the stratification temperature. As a consequence secondary 

dormancy induction occurs more quickly than primary dormancy loss when 

prevailing temperatures are greater than 20°C, leading to a prediction of 

thermoinhibition. This behaviour also caused a predicted reduction in the 

germination of seeds dispersed in summer in the hottest locations (Figure 4.13).  

However, there is some uncertainty regarding this prediction due to the fact that 

elevated maturation temperatures resulted in increased germination in darkness 

(Figure 4.9). It is therefore uncertain whether seeds matured at high temperatures 

would be able to delay germination for long enough to enter secondary dormancy. 

This would mean seeds dispersed in summer would be forced to germinate during 

the hottest part of the year. However, there was also some evidence that stratification 
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at 20°C reduced dark germination and allowed secondary dormancy induction in 

seeds matured at 20°C, although this appeared to be only temporary (Figure 4.9). 

This suggests incubation and stratification at equally high temperature may be 

sufficient to induce secondary dormancy and inhibit germination. If this is the case 

and the model predictions are correct, then the combined effect of primary and 

secondary dormancy provide an effective mechanism to restrict the germination of 

newly dispersed seeds to within a specific temperature range. Testing the behaviour 

of seeds matured and stratified at temperatures above 20°C would therefore be a 

good test of the model, and would also inform predictions relating to seeds dispersed 

in summer. 

A final point to note is that this model was parameterised using germination data the 

Col-0 ecotype, which is generally considered to have low dormancy. In general, 

lower dormancy is associated with high latitude, lower mean annual temperatures, 

and high summer precipitation (Kronholm et al., 2012), therefore presumably the 

temperature range in which germination is predicted to occur is one which is 

favourable for seedling establishment in these environments. It may also be possible 

to use the methods described in this chapter to parameterise the model for different 

ecotypes, and examine whether different temperature sensitivities and altered 

dormancy lead to different predicted behaviour, which could be advantageous in 

different climates. 

 

4.3.4 Conclusions 

Germination behaviour after different maturation and stratification temperature 

treatments can be explained by simultaneous primary dormancy loss and secondary 
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dormancy induction. Modelling these processes suggested that the rate of primary 

dormancy loss has a linear relationship with the maturation temperature, whereas the 

rate of secondary dormancy induction has an exponential relationship with 

stratification temperature. Using this model to simulate seed set at different times of 

year suggested that maturation temperatures below 14°C would prohibit germination 

of newly dispersed seeds during most of the year. However, seeds dispersed during 

summer would be likely to germinate within a short time period, resulting in rapid 

cycling behaviour. The model also predicts a reduction in germination frequencies 

when mean daily temperatures exceed 20ºC. Thus, primary and secondary dormancy 

may function to limit germination to within a specific temperature range. However, 

this prediction also depends on seeds becoming buried and remaining dormant in 

darkness for long enough to enter secondary dormancy, which may not be possible at 

high maturation temperatures when germination in darkness is more common. 
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Chapter 5: Modelling Germination in the 

Dark 

 

5.1 Introduction 

Germination in Arabidopsis requires light (Baskin and Baskin, 1983; Cadman et al., 

2006; Finch-Savage et al., 2007), which stimulates the expression of phytochrome-

activated genes for GA biosynthesis (Yamaguchi et al., 1998). Temperature induced 

changes in seed dormancy have also been shown to alter seed sensitivity to GA; 

seeds with higher dormancy generally require larger doses of GA in order to 

germinate, but this requirement can be lowered by cold stratification (Derkx and 

Karssen, 1993b). Loss of dormancy is also accompanied by an increase in light 

sensitivity, causing altered fluence response curves (Cone and Spruit, 1983), and in 

some cases seeds can become extremely sensitive to very low fluences of light. This 

very low fluence response (VLFR) can lead to germination being triggered in 

complete darkness as seeds become sensitive to the low levels of endogenous Pfr 

present in most seed batches (Cone et al., 1985a).  

In the previous chapter, the effects of maturation and stratification temperature on 

seed dormancy were quantified and used to model the likelihood of germination in 

light. However, some germination in darkness was also observed due to seeds 

acquiring the VLFR during stratification. To date, few studies have attempted to 

quantify the relationship between dark germination and environmental temperature, 

and the ecological relevance of this response is not well understood. The work in this 

chapter was therefore aimed at developing a model to predict the likelihood of seeds 



Chapter 5: Modelling Germination in the Dark 

104 

 

acquiring the VLFR during stratification, and hence the probability of germination in 

darkness. The model was then used to investigate the likelihood and ecological 

significance of dark germination in different locations and climates. 

 

5.2 Results 

5.2.1 The effect of temperature on germination during dark stratification 

To quantify the effect of temperature on germination in the dark, freshly harvested 

seeds matured at 6 different temperatures were imbibed on agar plates and 

immediately wrapped in foil to exclude light. Plates were then incubated at 5 

different temperatures for up to 6 weeks. The germination in darkness was sampled 

at regular intervals by removing a plate from each incubating population, and 

counting germinated and ungerminated seeds. The dark germination was then 

expressed as a percentage of the total number of seeds (Figure 5.1).  

There was a clear positive relationship between the maturation temperature and dark 

germination, which was almost exclusively limited to seeds matured at 17°C and 

18°C. The stratification temperature also affected the amount of dark germination 

observed, which was most common between 8°C and 15°C. Increasing the 

maturation temperature to 18°C increased this range, although dark germination at 

4°C and 20°C was still less common, and was also delayed in comparison to the 

other stratification treatments. There was also a tendency for seeds to germinate 

earlier with increasing stratification temperature, although this was not true at 20°C.  
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A cumulative germination curve was expected from these experiments, however 

Figure 5.1 shows the germination decreasing in some cases. The most likely 

explanation for this is seedling mortality. After prolonged stratification in darkness 

eitiolated seedlings became increasingly pale and degraded, making them difficult to 

identify. The number of germinated seeds sampled after long incubation periods, and 

also at warmer temperatures where seedlings degraded more quickly,  were therefore 

likely to have been underestimated. 

 

 

Figure 5.1 The effect of maturation and stratification temperature on germination in darkness 

Col-0 seeds matured at 12°C, 13°C, 14°C, 15°C, 17°C, and 18°C were imbibed on water agar, and 

incubated in darkness at constant temperature (indicated by symbols). Germinated seeds were 

counted after the stratification time shown, and expressed as a percentage of the total seed count. 

Data represent the mean and SE or 5 replicate seed batches.  
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5.2.2 Model development 

Model 1: A logistic model of dark germination probability 

A logistic function was used to model the cumulative probability of dark 

germination       over time  , using equation [23]. Parameters  ,   and   

represent the maximum probability of dark germination, the rate of increase and the 

offset respectively. An example illustration of this model is provided in Figure 5.2. 

[23]       
 

          
 

The offset parameter   determines the position of the curve along the x-axis. To 

ensure the predicted dark germination at the start of the experiment was 1%,   was 

calculated by rearranging equation [23], and substituting       for 0.01 and   for 0. 

This results in equation [24], and also ensures that only parameters   and   require 

additional modelling with temperature.  

[24]   
            

  
 

 

 

Figure 5.2 An illustration of Model 1: A logistic model of dark germination 

The red line indicates the logistic function representing the probability of dark germination,       over 

time. Parameter   determines the maximum or final dark germination probability, parameter   

indicates the offset required to position the curve. The rate of increase is also determined by parameter 

  (not shown).  
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The training data shown in Figure 5.1 was split into 30 individual germination time 

series, one for each unique combination of maturation and stratification temperature. 

The model was then fitted to each data series individually in order to determine 

optimised values for   and   at each temperature combination. The fitted values of 

  and   were then plotted against the temperature to determine if any trends were 

visible (Figure 5.3). Using the parameter values shown in Figure 5.3, the logistic 

model was able to reproduce the training data in Figure 5.1 with good accuracy (R² = 

0.96). 

 

 

Figure 5.3 Effects of temperature on fitted model 1 parameter values 

(A) Parameter  , the maximum probability of dark germination; and (B) Parameter  , the rate of 

increase in the dark germination probability plotted with stratification temperature. Maturation 

temperatures are also indicated by colour coding. Parameter values were determined for each 

temperature combination by fitting the model to data from individual germination time series 

experiments.  

 

The value of parameter   (Figure 5.3A) peaked between stratification temperatures 

of 8°C and 15°C, and the height of the peak was affected by the maturation 

temperature. Very few seeds germinated in darkness if the maturation temperature 

was 15°C or below, and   did not increase above the lower boundary used by the 

fitting algorithm.  
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Equation [25] was formulated to model the combined effect of the stratification 

temperature (  ) and maturation temperature (  ) on  . 

[25]                        

 

 

 

Figure 5.4 An illustration of parameter  , the maximum probability of germination in darkness 

The curve was produced with equation [25], using a=0.02, b=12, c=0.4 and d=18. The value of   was 

also restricted to           .  

 

This function can be plotted in 3 dimensions, with the stratification and maturation 

temperature on the x- and y- axes, and the value of   on the z-axis (Figure 5.4). The 

squared term in equation [25] creates a negative quadratic curve with respect to the 

stratification temperature. Parameter   determines the position of the maximum, and 

therefore represents the optimum stratification temperature. Parameter   determines 

the width of the curve, or the degree to which the probability of dark germination 

decreases at stratification temperatures above and below the optimum. The 
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maximum value for a negative quadratic of this nature is zero, however the addition 

of the exponential component in equation [25] shifts the quadratic curve upwards, 

depending on the maturation temperature. The maturation temperature therefore 

determines the maximum value of  , which occurs at the optimum stratification 

temperature. Parameters   and   determine the steepness and the position of the 

exponential with respect to the maturation temperature. In conjunction with the 

width of the quadratic, determined by parameter  , the maturation temperature also 

determines the range of stratification temperatures where dark germination should 

occur, i.e. where   is greater than zero. In addition, since   represents a probability 

and cannot exceed 1, and also to avoid complex numbers during the calculation of 

the offset,   was restricted by limits of           .  

Using this model, the maximum amount of dark germination is determined by a 

combination of the stratification and the maturation temperature. However, the time 

required for the probability of dark germination to reach   is determined by 

parameter  . Figure 5.3B shows that   generally increased with stratification 

temperature. However, when the value of   was low,   also decreased. This was 

because when there was no germination   had no effect and the fitting algorithm 

therefore arbitrarily chose the lower boundary value.  

For simplicity, a linear equation [26] was chosen to model   with stratification 

temperature. Parameters   and   are the gradient and the y-intercept.   was also 

restricted to values >0 to avoid negative rates.  

[26]         
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Model 2: A model of primary and secondary dormancy frequencies in darkness 

In the previous chapter, a model was described that predicted the probability of 

germination in the light based on predicted frequencies of primary and secondary 

dormancy in seed populations. The results shown in Figure 5.1 also suggest roles for 

both primary and secondary dormancy in dark germination. For example, there was a 

clear positive correlation between the maturation temperature and the amount of dark 

germination, which would be expected if increasing the maturation temperature 

reduced the level of primary dormancy. Dark germination was also suppressed at 

20°C, even in seeds matured at 18°C. This could potentially be explained by 

increased rates of secondary dormancy induction at warm stratification temperatures, 

causing germination to be inhibited. 

It was hypothesised that the same processes leading to dormancy or germination in 

light would also apply in darkness. Furthermore, a framework able to explain 

germination behaviour in both light and dark would indicate a good explanatory 

model. Therefore, the same basic model used to simulate germination in light was 

also used here. Formulas for calculating the probability of primary and secondary 

dormancy,       and      , are given in equations [11-14] in the previous chapter, 

where   is the stratification time in days,    and    are the rates of primary 

dormancy loss and secondary dormancy induction, and    and    are offset 

parameters. These probabilities were then used to calculate the overall probability of 

dormancy     , and hence germination      in equations [9 and 10], however 

     in this case refers to germination in darkness, or      . 

A modification to the basic model was necessary due to differences between seeds 

which required light to germinate, and seeds which germinated in darkness. By 
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definition light requiring seeds do not germinate unless exposed to light, and so 

could enter secondary dormancy during stratification in darkness. In the light model, 

this caused the probability of germination to decrease after prolonged stratification in 

darkness. However, seeds which lost their light requirement due to gaining the 

VLFR were able to germinate in darkness. This germination was cumulative, and 

increasing the probability of secondary dormancy would not affect seeds that had 

already germinated. It was therefore necessary to prevent secondary dormancy from 

causing the germination probability from decreasing. However, it would still be 

possible for some seeds to enter secondary dormancy before gaining the VLFR. The 

role of secondary dormancy in this model is therefore to determine the maximum 

level of dark germination, rather than causing the probability of germination to 

decrease (Figure 5.5).  

 

 

Figure 5.5 An illustration of Model 2: A model of primary and secondary dormancy frequencies 

Probabilities of primary and secondary dormancy were modelled over time using logistic functions. 

These were then used to calculate the total probability of dormancy, and hence germination in the 

dark. Although the probability of a seed being non-dormant decreased due to secondary dormancy 

induction after prolonged stratification, germination in the dark is cumulative. The probaility of dark 

germination was therefore prevented from decreasing. 
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Initial fitting of    and    was performed for each combination of maturation and 

stratification temperature by fitting the model to individual germination time series. 

These fitted parameter values were then plotted with temperature to determine 

whether any trends could be seen (Figure 5.6). Values of    were also constrained 

within boundaries that increased with stratification temperature, since warmer 

temperatures are known to increase the rate of secondary dormancy induction 

(Totterdell and Roberts, 1979; Derkx and Karssen, 1993b; Toorop et al., 2005). 

 

 

Figure 5.6 Effects of temperature on fitted model 2 parameter values 

(A) Parameter   , the rate of primary dormancy loss; (B) parameter   , the rate of secondary 

dormancy induction plotted with stratification temperature. Maturation temperatures are also indicated 

by colour coding. Parameter values were determined for each combination of maturation and 

stratification temperature by fitting the model to individual data series. Values of    were also 

constrained within boundaries that increased with stratification temperature. 

 

Using the    and    values shown in Figure 5.6, the model of primary and secondary 

dormancy could reproduce the training data in Figure 5.1 with good accuracy 

(R²=0.96).    values peaked at stratification temperatures of around 15°C, but the 

height of the peak was affected by the maturation temperature (Figure 5.6A). In this 
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[27]                         

 

Additionally, the value of    was limited to values >0, since a rate of zero would 

result in an indeterminate value during the calculation of the offset,   . Unlike   

from the previous model,    does not represent a probability and so has no upper 

limit. 

To maintain consistency with the model of germination in light, an exponential 

function was used to model    with stratification temperature [28].  

[28]          

 

Model 3: A model of primary and secondary dormancy with a thermal time model of 

germination 

Model 2 was designed to demonstrate that simultaneous temperature-dependent 

primary dormancy loss and secondary dormancy induction can explain the 

germination behaviour of imbibed seeds when they are incubated in continuous 

darkness, as well as when they are placed in light. However, one significant 

difference between model 2 described above, and the model in light described in the 

previous chapter is the effect of the stratification temperature on the rate of primary 

dormancy loss,   . The main factor affecting    in the light was the maturation 

temperature (Figure 4.5A). A small effect of stratification temperature on    in the 

light was observed, however this was negligible and ignoring it still allowed the 

model to predict the germination with good accuracy (Figure 4.6). In contrast 

however, the stratification temperature had a much larger effect on    in the dark, 
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which was evident by the earlier germination of seeds stratified at warmer 

temperatures (Figure 5.1). This was also reflected during the initial fitting of 

parameters   and    in models 1 and 2 (Figure 5.3B and Figure 5.6A), which were 

clearly affected by the stratification temperature.  

Rather than suggesting that temperature affected rates of primary dormancy loss 

differently in light and darkness, it was hypothesised that the effect of stratification 

temperature in the dark may have been due to differences in the germination rate 

caused by temperature. During the collection of the training data, seeds germinated 

in the dark at temperatures ranging from 4°C to 20°C, whereas all germination in the 

light occurred after transferring seeds to 22°C. Germination in the dark therefore 

took place over a much wider range of temperatures than germination in light, 

potentially leading to large differences in germination rates.  

It is generally acknowledged that like many other physiological processes, the rate of 

germination has a positive linear relationship with temperature in the sub-optimal 

range (Hegarty, 1973; Roberts, 1988). This relationship has been used as the basis 

for modelling germination rates in many species using the concept of thermal time 

(Garcia-Huidobro et al., 1982; Washitani and Takenaka, 1984; Washitani, 1985), and 

later hydrothermal time (Gummerson, 1986; Alvarado and Bradford, 2002; Bradford, 

2002). Models such as these generally state that the total thermal time (  ) required 

to complete germination, measured in °C days, can be calculated by multiplying the 

difference in °C between the environmental or stratification temperature (  ) and the 

minimum temperature required for germination (   , by the number of days taken to 

germinate (  ). This relationship can therefore be rearranged to calculate    for any 

given temperature [29], which can be considered to be the time difference between 
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the moment a seed loses dormancy, and completion of germination (i.e. protrusion of 

the radicle). The probability of germination in the dark at time  , is therefore equal to 

the probability that a seed was not dormant,      , at time  -   [30]. 

[29]                

 

[30]                  

 

[31]              

 

     , the probability of non-dormancy, was calculated using equation [31]; where 

     is the probability of dormancy, which was calculated using equation [10]. This 

used individual probabilities of primary and secondary dormancy, which were 

themselves modelled over time using equations [11] and [12]. Parameters    and    

represent the rates of primary dormancy loss and secondary dormancy induction, and 

   and    are offset parameters, calculated using equations [13] and [14]. In order to 

maintain consistency with the model of germination in the light, linear and 

exponential functions were also used to model    and    in the dark (equations [18] 

and [19]) however values for parameters  ,  ,  , and   were determined specifically 

for dark germination by fitting with the dark germination data. 

Additionally, germination in the dark is cumulative and so cannot decrease once it 

has reached a maximum. Therefore, while the probability of non-dormancy can 

decrease as a result of secondary dormancy induction, the germination was prevented 



Chapter 5: Modelling Germination in the Dark 

116 

 

from decreasing. This model is illustrated in Figure 5.7, and a full list of symbols 

used in all three models is provided in Table 5.1. 

 

 

Figure 5.7 An illustration of Model 3: A model of primary and secondary dormancy with a 
thermal time model of germination 

Individual probabilities of primary and secondary dormancy were modelled over time using logistic 

functions. These were then used to calculate the total probability of a non-dormant seed. However, 

germination of non-dormant seeds was delayed depending on the temperature, which was presumed 

to alter the germination rate. This delay was calculated using a simple thermal time model. Although 

the probability of a non-dormant seed decreased due to secondary dormancy induction after prolonged 

stratification, germination in the dark is cumulative. Therefore, the probaility of dark germination was 

prevented from decreasing once the maximum was reached. 
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Table 5.1 A list of symbols used in dark germination models 

Symbol Meaning 
Applies to 
model 

      The probability, or relative frequency of primary dormancy  2 and 3 

   The rate parameter for primary dormancy loss 2 and 3 

   The offset parameter for the primary dormancy equation 2 and 3 

      The probability, or relative frequency of secondary dormancy 2 and 3 

   The rate parameter for secondary dormancy induction 2 and 3 

   The offset parameter for the secondary dormancy equation 2 and 3 

   Stratification, or imbibition temperature (°C) All 

   Seed maturation temperature (°C) All 

     
The total probability or relative frequency of dormancy within a 
population 

2 and 3 

      The probability of germination in the dark All 

      The probability a seed is not dormant, or 1-      2 and 3 

  Stratification time (days since imbibition)  All 

   Thermal time required for germination (°C days) 3 

   
The base germination temperature, i.e. the minimum 
temperature required for germination 

3 

   Time required for germination (days) 3 

Lower case 
parameters; 
 ,  ,  ,  ,  ,    

Parameters whose values were determined by fitting the 
models to the training data  

All 

  The exponential constant All 

  Maximum dark germination 1 

  Rate of dark germination 1 

  The offset for the dark germination equation 1 

 

5.2.3 Parameter estimation 

Parameter values were estimated by fitting each model to all the training data 

simultaneously to obtain the global best fit. This was done using Matlab (Mathwoks) 

fit function as described previously. Fitted parameter values are listed in Table 5.2.  
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Table 5.2 Fitted parameter values for dark germination models 

Model 1 Model 2 Model 3 

Parameter Value Parameter Value Parameter Value 

  2.36 x 10
-2

   7.00 x 10
-3

   1.07 

  10.6   13.5   -18.0 

  0.972   0.610   6.10 x10
-2

 

  17.9   19.0   0.141 

  3.00x10
-2

   0.101    1.64 

  2.22x10
-14

   7.90 x10
-2

    94.3 

 

Overall, the three models reproduced the training data well, and were able to explain 

a large proportion of the total variance in dark germination (Figure 5.8). The 

performance of the three models was also similar, with R² values ranging from 0.83 

to 0.89. The best model overall was model 3, the dormancy model combined with a 

thermal time model of germination. Fits of each of the three models with the training 

data are shown in Figure 5.9. Only plots from maturation temperature of 15°C and 

above are shown, because below 15 °C dark germination was minimal and model 

predictions were close to zero in all cases. 

 

 

Figure 5.8 The relationship between observed and predicted dark germination frequencies 

The observed germination data was used to train the three dark germination models; (A) Model 1, (B) 

model 2 and (C) model 3. Predicted values were then generated by each model. A good fit with the 

training data is revealed if points are close to the 1:1 line (solid black line).   
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For model 1, the fitting algorithm was unable to find a solution which accurately 

reproduced the maximum germination ( ) at all stratification temperatures. This 

might suggest that the true model is not symmetrical at sub- and supra-optimal 

temperatures. Parameter   determined when the maximum germination was reached, 

which was fairly accurate in most cases. However the predicted increase was too 

slow, and tended to result in an over-estimation of dark germination at earlier time 

points.  

Model 2 tended to underestimate the maximum germination, which in this case was 

determined by the interaction of primary and secondary dormancy. This suggests that 

either the rate of primary dormancy loss was underestimated, or the rate of secondary 

dormancy induction was overestimated. However if    was increased, dark 

germination would be predicted to occur earlier than it was observed. A linear model 

of    was also substituted for the exponential model in an attempt to reduce 

estimates of   . However, this also resulted in a worse fit with the training data 

(R²=0.69; data not shown). 

Model 3 resulted in the smallest overall prediction errors, and was able to reproduce 

the abrupt change from almost zero germination to high germination in seeds 

matured at 18°C. This was because primary dormancy loss was predicted to occur 

rapidly due to the relatively warm maturation temperature, however germination was 

delayed due to the effect of the stratification temperature. 

 

5.2.4 Model validation 

Aside from fitting with the training data, each model was also evaluated using 

additional data that was not used for parameterization. This data was collected using 
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seeds matured at two further temperatures; 16°C and 20°C, and stratified at 5 

different temperatures as before. These maturation temperatures were chosen firstly 

because 20°C is higher than any maturation temperature used for parameterisation of 

the models. This additional data should therefore provide a good test of model 

predictions. Secondly, a decrease in the maturation temperature from 17°C to 15°C 

was sufficient to reduce the dark germination to zero (Figure 5.1). Consequently, the 

sensitivity to the maturation temperature was expected to be high at around 16°C, 

therefore also providing a good test of the model.  

Results of dark germination after maturation at 16°C, as well as predictions from 

each model are shown in Figure 5.10. Dark germination was limited to 8°C and 12°C 

stratification temperatures. This narrower range of permissive germination 

temperature is consistent with an increase in initial dormancy levels, compared with 

seeds matured at higher temperatures. However, all three models underestimated 

germination at these stratification temperatures. All three models did however 

correctly predict minimal germination at the 3 other stratification temperatures. 

Although, due to the low overall variance this was not reflected in R² scores which 

were 0.08, -0.05 and -0.13 for models 1, 2 and 3 respectively. Model 1 therefore 

performed marginally better than the other two, largely because predictions for the 

12°C stratification data were closest to observed values. 
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Figure 5.10 Model predictions and observed dark germination in seeds matured at 16°C 

Predictions made by model 1 (red), 2 (blue) and 3 (green) are shown by solid lines. Filled circles 

represent the mean and SE of 3 replicate seed batches. R² values for models 1,2 and 3 were 0.08, -

0.05 and -0.13 respectively.  

 

When seeds were matured at 20°C, high levels of dark germination were observed 

after stratification at 4°C, 8°C, 12°C, and 15°C (Figure 5.11). This occurred after 6 

weeks at 4°C, 3 weeks at 8°C and after only 1 week at 12°C and 15°C. The timing of 

germination was therefore related to the stratification temperature, with seeds 

stratified at low temperatures requiring longer to germinate. Fewer seeds germinated 

during dark stratification at 20°C, and a maximum of 24% was observed after 4 

weeks.  
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Each model predicted high levels of dark germination at all stratification 

temperatures. This led to inaccuracy for seeds stratified at 20°C, which were 

overestimated by all three models. Models 1 and 2 also incurred large errors by 

incorrectly predicting the timing of germination. Model 1 predicted a very gradual 

increase in the germination frequency, while model 2 predicted a very rapid increase 

which occurred soon after imbibition. In reality the increase in germination was 

rapid, however the timing of this increase was dependant on the stratification 

temperature. In this respect model 3 provided the best predictions, and this was 

reflected by the highest R² score (0.70). R² scores for model 1 and 2 were 0.34 and -

0.32 respectively. 

 

 

Figure 5.11 Model predictions and observed dark germination in seeds matured at 20°C 

Predictions made by model 1 (red), 2 (blue) and 3 (green) are shown by solid lines. Filled circles 

represent the mean and SE of 3 replicate seed batches. R² values for models 1,2 and 3 were 0.34, -

0.32 and 0.70 respectively.   
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In summary, none of the models were able to accurately predict the behaviour of 

seeds from both additional maturation temperatures. All of the models produced 

similar predictions for seeds matured at 16°C, and all underestimated the 

germination at 8°C and 12°C to a similar degree. There was therefore not much to 

distinguish the models based on this data. However, model 3 provided the best 

predictions for seeds matured at 20°C as a result of predicting the timing of 

germination with greater accuracy than either of the other two models. Consequently 

model 3 had the greatest overall performance, and was able to explain 72% of the 

total variance over the two maturation temperatures. Model 3 was therefore chosen 

as the preferred model. 

 

5.2.5 Simulations in variable environments 

In the previous chapter, some adjustments were required in order to run simulations 

in fluctuating temperature environments. Because the current model also uses the 

same basic mechanism to model dormancy, the same adjustments were also required. 

Briefly, these included setting a minimum value of    to ensure zero and negative 

rates were avoided, and converting the continuous model of secondary dormancy 

into a discrete model, in which the average daily temperature was used to calculate 

the change secondary dormancy in daily intervals. An extra step was also added to 

the secondary dormancy model, which involved the calculation of equivalent 

stratification times at different temperatures. This was necessary to maintain the 

estimate of the population’s dormancy after a change in temperature, since the 

change in dormancy occurring during each time step depends on the initial dormancy 
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at the start of the time step. This was described in section 4.2.5 with equations [21] 

and [22], and the same method was also used here.  

The thermal time model was also converted to a discrete model. The thermal time 

accumulated each day      was calculated using equation [33], until the cumulative 

total reached the threshold (  ). The number of days required was then used to 

calculate the timing of germination.  

[33]       
                   

          

  

 

5.2.6 Model predictions 

To investigate how dark germination might be affected by seed set timing, and by 

climates in different locations, simulations were performed using temperature data 

collected from a range of weather stations. Figure 5.12 and Figure 5.13 were 

generated by running simulations using temperatures in York UK, and are presented 

here to demonstrate the typical output and behaviour of the model.  

The rate of primary dormancy loss, was calculated using a linear function which 

increased with maturation temperature. This meant primary dormancy loss was 

negligible until the maturation temperature exceeded 16.9°C. The maturation 

temperature was estimated by calculating the mean temperature during the week 

prior to the simulated seed set date, and for the majority of the year maturation 

temperatures were below this threshold. The model therefore predicted that seeds set 

on most dates would have sufficient primary dormancy to prohibit germination in the 

dark (black areas in Figure 5.12A). However, maturation temperatures did exceed 
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16.9°C on an small number of dates, which resulted in loss of primary dormancy 

within a few days (white area in Figure 5.12A). 

 

 

Figure 5.12 Simulations of dark dormancy in seeds dispersed on different dates in York, UK 

Seed set was simulated on each sucessive day of the year. Percentages of primary (A) and secondary 

dormant (B) seeds on each day after the seed set date (for up to 60 days) are indicated by shading.  

 

 

  

 

Figure 5.13 Simulations of dark germination in seeds dispersed on different dates in York, UK 

Seed set was simulated on each sucessive day of the year. Dark germination percentages were 

calculated for each day after the seed set date (A), using the individual probabilities of primary and 

secondary dormancy in the dark (see Figure 5.12). Shading indicates the likelihood of dark 

germination. (B) Maximum dark germination percentages are plotted for each seed set date (black 

bars), along with the maturation temperature (solid red line). 
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The rate of secondary dormancy induction was calculated with an exponential 

function that increased with environmental temperature. Rates of secondary 

dormancy induction were therefore greatest in the summer when the temperature was 

highest (Figure 5.12B). This opposes the reduced primary dormancy of seeds set in 

the summer, and limits dark germination to a maximum of 32% (Figure 5.13). There 

was also a delay in the predicted timing of germination due to the effect of 

temperature on the germination rate, and although primary dormancy was lost within 

a few days of dispersal (Figure 5.12A), germination was predicted to occur 

approximately 7 days later (Figure 5.13A). 

A similar pattern of behaviour was also observed when the simulations were 

repeated using temperature data from other locations (Figure 5.14). Again, dark 

germination was only predicted when the maturation temperature (i.e. the mean 

weekly temperature) exceeded 16.9°C. This meant that in most locations, 

particularly in northern latitudes which tended to have cooler climates, dark 

germination was limited to seeds set on a small number of dates during the hottest 

part of the year. As an extreme example, no dark germination was predicted in 

Edinburgh during any part of the year because mean weekly temperatures never 

exceeded 16.9°C (max. mean daily temp. = 16. 1°C). At the opposite extreme, the 

mean weekly temperature in Cape Verde never dropped below this threshold. The 

model therefore predicted that high proportions of seeds would germinate in 

darkness irrespective of the seed set date.  
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Figure 5.14 Simulations of dark germination in seeds dispersed on different dates in a range of 
locations 

Seed set was simulated on each date in each location, and the maximum dark germination probability 

was plotted for each seed set date (black bars). The mean weekly temperature, used as an estimate of 

the maturation temperature, is also shown (solid red line). In general, the predicted dark germination 

exceeded 50% when mean daily temperatures were between 18°C and 31°C. 
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Figure 5.14 also illustrates the model’s high sensitivity to the maturation 

temperatures around the threshold of 16.9°C. The temperature data used in the 

simulations was averaged over 10 years, which had the effect of decreasing the 

amount of random temperature fluctuations, and resulted in a relatively smooth 

annual temperature cycle. However, smaller fluctuations were still present in the 

averaged temperature data and these were still capable of having a large effect on the 

predicted germination, causing the jagged appearance of the graphs in Figure 5.14. 

Because of this sensitivity, variation from year to year is expected to be large, 

particularly when mean daily temperatures are close to the 16.9°C threshold. The 

germination on any given date could be therefore very difficult to predict in advance 

without accurate temperature forecasts. 

In the previous chapter, it was predicted that in hot climates such as Cape Verde, 

germination in the light would be suppressed during the summer (Figure 4.13). This 

was because temperatures above 25°C caused increased secondary dormancy 

induction which was sufficient to counteract the reduced primary dormancy caused 

by warmer maturation temperatures, resulting in thermoinhibition. In contrast, the 

model of dark germination predicted that a much higher temperature would be 

required to suppress the VLFR in warm matured Col seeds. Additional simulations 

using a range of artificially generated climate data suggested that the probability of 

dark germination would be greater than 50% in temperatures ranging from 18°C to 

31°C, and the temperature would have to exceed 36°C to reduce dark germination to 

zero. In Cape Verde, the mean daily temperature ranged from 21°C to 27°C, which is 

well within the range predicted to result in high levels of dark germination. 
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5.3 Discussion 

5.3.1 Effects of temperature on germination in darkness.  

The results in this chapter have shown that temperature has a large effect on 

germination in darkness in Arabidopsis. Virtually no germination in darkness 

occurred if seeds were matured at 15°C or below, but this increased to almost 100% 

if the maturation temperature was increased to 18°C or above. Dark germination was 

also most common in seeds stratified at temperatures between 8°C and 15°C, and 

was reduced or suppressed completely at temperatures outside of this range. 

However, increasing the maturation temperature to 18°C or 20°C did increase this 

range, showing that both pre- and post-maturation temperatures play equally 

important roles in determining whether dark germination takes place, and these 

effects are likely to be linked to seed dormancy. 

These results are consistent with previous observations of dark germination in lettuce 

seeds (Blaauw-Jansen and Blaauw, 1975; Small et al., 1979), which originally led to 

the study of fluence response curves in Arabidopsis (Cone and Spruit, 1983; Cone et 

al., 1985a) and other species (Kendrick and Cone, 1985; Takaki et al., 1985; Rethy et 

al., 1987). Pre-treatment of seeds at low temperature was also found to reduce 

dormancy, and increase proportions of seeds germinating in darkness (VanDer 

Woude and Toole, 1980). This may also be because dark reversion of Pfr is 

temperature dependent (Taylorson and Hendricks, 1969; Schäfer and Schmidt, 

1974). Pre-existing Pfr would therefore remain present for longer periods during 

stratification at low temperatures, while seeds simultaneously gain sensitivity via the 

VLFR, as dormancy is lost. Conversely, Pfr would revert to Pr in darkness more 

quickly at elevated temperatures, counteracting any increase in sensitivity to Pfr 

occurring due to dormancy loss. Accelerated dark reversion of Pfr to Pr may explain 
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why dark germination was reduced at 20°C, compared to lower stratification 

temperatures (e.g. Figure 5.11). Batch effects have also been documented (Cone and 

Spruit, 1983), which are likely to be caused by different seed maturation conditions 

resulting differences in primary dormancy. The work described in this chapter is 

however the first attempt to quantify the effects of both seed maturation and post-

harvest stratification temperatures on and dark germination.  

 

5.3.2 Dark germination can be explained by the effects of temperature on 

dormancy and germination rates 

Three models were developed and parameterised using data collected under 

laboratory conditions, and each was able to reproduce the training data with similar 

accuracy (Figure 5.8). Modes were also validated with data from seeds matured at 

two additional temperatures; 16°C and 20°C. All three models generally 

underestimated dark germination of seeds matured at 16°C (Figure 5.10). This may 

be due high sensitivity to maturation temperature within the range 15°C to 17°C, 

which resulted in an abrupt change in behaviour (Figure 5.1). Predicting the correct 

behaviour at this maturation temperature would therefore benefit from more data in 

order to determine parameters more accurately. 

However, the behaviour of seeds matured at 20°C was predicted most accurately by 

model 3 (Figure 5.11). This model simulated the effects of temperature on primary 

dormancy loss and secondary dormancy induction in the same way as the model of 

germination in light, with an added thermal time component to explain the effect of 

stratification temperature on the germination rate. This model outperformed the other 

two particularly well at low temperatures, which led to a greater delay in the 
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germination. This suggests that temperature has the same effect on dormancy 

regardless of whether seeds are exposed to light, and also adds support to the idea 

that simultaneous processes of dormancy loss and induction are acting within 

imbibed seeds (Totterdell and Roberts, 1979; Batlla et al., 2009). 

 

5.3.3 Contrasting light and dark germination models 

The model used to predict germination in darkness discussed in this chapter, and the 

model discussed in the previous chapter used to predict germination after exposure to 

light, both use the same basic framework. Both models estimate frequencies of 

primary and secondary dormancy to calculate the probability of germination, and 

primary and secondary dormancy frequencies are estimated with functions based on 

logistic equations. Parameters  - , which govern the rates of primary dormancy loss 

and secondary dormancy induction in both models, are therefore performing the 

same function and can be directly compared. As may be expected, parameters values 

in both models are within the same order of magnitude, however differences between 

the two parameter sets are sufficient to alter the temperature sensitivities of the two 

models. 

The linear relationship between the rate of primary dormancy loss (  ) and the 

maturation temperature (  ) created a threshold, below which    became negligible 

(Figure 5.15A). This meant the level of primary dormancy would be too high to 

allow germination before induction of secondary dormancy. The slight differences in 

values of   and   meant that models predicted germination in light only when    > 

13.9°C, and when    > 16.9°C in the dark. This also demonstrates the model’s 
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flexibility, and by adjusting parameters   and   it should be possible to simulate 

ecotypes with different dormancy and temperature sensitivities.  

The relationship between the rate of secondary dormancy induction (  ) and the 

stratification temperature (  ) was exponential in both light and dark models (Figure 

5.15B). Differences in parameters   and   meant that predicted rates of secondary 

dormancy induction were lower in the dark model than in the light model. 

Furthermore, differences between the two models increased substantially at higher 

temperatures. Consequently, the light model predicted that secondary dormancy 

induction would be sufficient to counteract reduced primary dormancy, and 

completely suppress germination at temperatures above 29°C. However, in the dark 

model the temperature needed to reach 36°C to achieve the same effect. This implies 

that secondary dormancy induction is less effective at suppressing germination in 

seeds with lower initial dormancy, and which are likely to germinate in the dark. It’s 

possible for example, that the balance of hormone concentrations and sensitivities 

becomes so heavily weighted towards the promotion of germination, that a more 

substantial change in temperature is required to tip the balance back towards 

dormancy induction. Unfortunately however, the dark model was parameterised with 

relatively sparse data, which affects the accuracy and confidence in the estimated 

parameter values. It is also worth noting that germination of seeds matured at 20°C 

and incubated at 20°C was over estimated by the model (Figure 5.11). It is therefore 

possible that the prediction that temperatures of 36°C are required to suppress dark 

germination (in seeds also matured at 36°C) is an overestimate, and further 

experiments would be required to test this.  
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Figure 5.15 A comparison of dormancy rate parameters between light and dark models 

(A) The rate of primary dormancy loss (  ) with maturation temperature; (B) The rate of secondary 

dormancy induction (  ) with stratification temperature. Parameter values in light and dark models are 

shown in red and black respectively.  

 

5.3.4 Ecological implications of dark germination 

In the previous chapter, simulations predicted that dormancy induction would 

completely inhibit germination of light requiring seeds when average daily 

temperatures reached 29°C. This resulted in inhibition of germination for seeds 

produced in summer in hot climates such as Cape Verde. However, simulations in 

this chapter predicted a high probability of germination in darkness when average 

temperatures were above 17°C, and also that virtually all seeds would lack the light 

requirement if maturation temperatures exceeded 20°C (Figure 5.14). Furthermore, 

the reduced primary dormancy caused by elevated maturation temperatures would 

not be counteracted by increased secondary dormancy induction until mean daily 

temperatures reached 36°C. This substantially increased the upper temperature limit 

for germination, and suggests that in locations such as Cape Verde, dormancy in Col 

seeds could be almost totally abolished. However, as mentioned previously there was 

some uncertainty in these predictions, due to the lack of data for parameterization for 

the dark model. Lab experiments also suggested temperatures might begin to inhibit 

0 10 20 30 40
0

2

4

6

8

10

Maturation temperature (°C)

P
a

ra
m

e
te

r 
v
a

lu
e

 A

0 10 20 30 40
0

2

4

6

8

10

Stratification temperature (°C)

 B



Chapter 5: Modelling Germination in the Dark 

135 

 

dark germination at 20°C (Figure 5.11). However, Figure 4.9 also showed that seeds 

matured at 20°C are less able to remain dormant for long periods at high 

temperature. 

A lack of dormancy could have significant consequences, because plants would have 

very little control over the timing of their germination. In Cape Verde for example 

the model predicts that around 75% of seeds produced at any time of year would 

germinate within a short time of their dispersal. This would lead to continuous rapid 

cycling behaviour without any seasonal control. This may be disadvantageous, 

particularly since germination in summer can be lethal due to drought (Donohue et 

al., 2005c; Huang et al., 2010). A correlation has also been found between dry 

summers and increased seed dormancy (Kronholm et al., 2012; Wagmann et al., 

2012), suggesting that higher dormancy is required to avoid germination in summer. 

It therefore raises the question whether Col would be able to survive in hot climates 

such as Cape Verde without acquiring increased dormancy adaptations, and whether 

ecotypes with similar low dormancy would be adversely affected by climate change. 

This may be an even larger problem for slower growing species which may be less 

able to adapt quickly. 

  

5.3.5 Conclusions 

Three models were developed to explain the effects of temperature on germination in 

darkness. The best model used the effects of temperature on primary and secondary 

dormancy, with an added thermal time component to predict the germination timing. 

This adds further support to the mechanism of simultaneous dormancy loss and 

induction that was originally suggested by Totterdell and Roberts, 1979. Despite 
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some problems due to lack of data for parameterization, this model provided an 

insight into the probable effects of seed dispersal at different times of year, as well as 

responses to climates in different geographical locations. Increasingly warmer 

climates were associated with substantially reduced dormancy of seeds dispersed in 

summer, potentially leading to a lack of control over germination timing. 
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Chapter 6: Additional Effects of Temperature 

on Primary and Secondary Dormancy  

 

6.1 Introduction 

To a large extent, the seasonal timing of germination relies on the regulation of 

dormancy by temperature (Probert, 2000), with other seasonal factors such as 

photoperiod playing a lesser role (Munir et al., 2001). It is well known that the 

environment during seed development affects primary dormancy levels in mature 

seeds (Fenner, 1991), and low temperatures are generally associated with higher 

ABA content (Kendall et al., 2011), increased DOG1 expression (Chiang et al., 

2011), and increased dormancy at maturity (Schmuths et al., 2006; Donohue et al., 

2008; Kendall et al., 2011).  

It has also been shown that primary dormancy is initiated during the early maturation 

phase of seed development (Raz et al., 2001), and reaches a maximum in ripe seeds 

(Karssen et al., 1983). However, it is not known whether temperature continues to 

play a role during the whole process of seed maturation, or whether final dormancy 

levels are determined at some point prior to full maturity. In natural environments, 

fluctuations in diurnal and even day-to-day temperatures can be substantial. In order 

to make predictions about seed behaviour in the field it is therefore essential to 

determine how, and importantly when temperature during seed maturation 

contributes to final levels of primary dormancy. The dormancy model simulations 

described so far in this thesis have been carried out using the assumption that 

primary dormancy is set by temperatures during the week prior to seed maturity. The 
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first half of this chapter was therefore aimed at testing this assumption, with analysis 

of seeds grown in the field, and also laboratory experiments designed to test how 

temperature at different points during seed development affects the levels of primary 

dormancy in mature seeds.  

The second part of this chapter was aimed towards understanding secondary 

dormancy, which is generally less well studied and understood than primary 

dormancy. Secondary dormancy cycling is known to occur in buried seeds, and is 

thought to be regulated by seasonal temperature cycles (Baskin and Baskin, 1985). In 

agreement with this hypothesis, evidence for seasonal gene expression patterns in 

buried seeds, which correlates with seasonal temperature has recently been found 

(Footitt et al., 2011; Footitt et al., 2013). Results in previous chapters have also 

highlighted the potential importance of secondary dormancy. With the exception of 

seeds dispersed in summer, predicted levels of primary dormancy were sufficient to 

prevent germination until induction of secondary dormancy; thereby forcing seeds 

into the soil seed bank (e.g. Figure 4.11). Environmental regulation of secondary 

dormancy would therefore become the most important factor that determines the 

seasonal emergence timing of these seeds. However, the specific conditions that 

bring about alleviation of secondary dormancy are virtually unknown. Laboratory 

experiments aimed at discovering such conditions were therefore carried out, and the 

results were compared to seedling emergence experiments carried out in the field. 

Many seasonally regulated processes such as flowering are controlled by the 

circadian clock (de Montaigu et al., 2010), and there is also evidence that flowering 

and germination share some regulatory elements (Chiang et al., 2009). An additional 

aim was therefore to investigate links with flowering and circadian pathways by 
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examining the behaviour of flowering pathway and circadian clock mutant seeds in 

selected dormancy experiments. 

 

6.2 Results 

6.2.1 Effects of alternating diurnal temperatures on primary dormancy 

To test whether temperatures during daylight hours or at night have different effects 

on dormancy, wild type Col-0 and Ler ecotypes, and flowering pathway mutant ft-1 

seeds were matured in three different temperature regimes; warm days and cold 

nights (20°C/12°C), cold days and warm nights (12°C/20°C), or at constant 

temperature (15°C/15°C). Lengths of day and night phases were 12 hours in all 

cases. Upon harvesting, seeds were stratified in constant darkness at 4°C for varying 

lengths of time, and their dormancy was assayed at intervals by measuring their 

germination in light at 22°C (Figure 6.1).  

 

 

Figure 6.1 Effects of alternating diurnal temperatures during seed maturation 

Seeds were matured in 3 day/night temperature regimes; 12°C/20°C (filled circles), 20°C/12°C (open 

circles), and 15°C/15°C (crosses). Germination in the light was assayed after stratification at 4°C for 

the time indicated. (A) Col-0; (B) Ler; (C) ft-1 in Ler background. Data represents the mean and SE of 

5 replicate seed batches. 
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In both Col-0 and Ler ecotypes, the dormancy of seeds matured in alternating 

temperatures was similar to that of seeds matured at constant 15°C, rather than 

resembling seeds matured at constant 12°C or 20°C (e.g. Figure 4.1 and Figure 4.9). 

This shows that developing seeds respond to a combination of day and night time 

temperatures, rather than either day or night temperature alone. However, there were 

some differences depending on whether warm or cold phases occurred during the 

day or at night.  

If day and night temperatures contribute equally to the regulation of dormancy, there 

should have been no difference between seeds matured in the two alternating 

temperature treatments because warm and cold phases were given in equal lengths. 

However, Col-0 seeds were slightly more dormant if they were matured in cold 

nights than if they were matured in cold days. Cold maturation temperatures are 

associated with increased dormancy, which therefore suggests that the temperature at 

night has a dominant effect on the primary dormancy of Col-0. In contrast, the 

opposite behaviour was observed in Ler seeds, which were more dormant following 

maturation in cold days rather than cold nights. This suggests dormancy in the Ler 

ecotype may be more sensitive to temperatures during the day.  

Interestingly, the ft-1 mutant had similar dormancy to the Ler background when 

matured at constant temperature, however differences in dormancy caused by the 

two alternating maturation temperature treatments were greatly enhanced. As such, 

the dormancy of ft-1 seeds was even more reflective of the day time temperature 

during maturation, with night time temperature apparently having very little effect. 

This experiment therefore showed that in addition to its role in the photoperiodic 

control of flowering, FT must also have a role in regulating primary dormancy in 

relation to the temperature at particular times of day. Specifically, these results 
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suggest that FT in the Ler ecotype either inhibits the response to temperatures during 

the day, or promotes the response to temperatures at night. 

 

6.2.2 Analysis of maturation temperature and dormancy in field grown seed 

batches 

To investigate the effects of maturation temperature in seeds grown in a natural 

setting, seeds were collected from Col-0 plants grown at a field site within York 

University campus. Temperature records corresponding to the seed maturation 

period were also collected from the campus weather station. A time line showing 

growth and harvest dates for each seed batch, alongside mean daily temperatures is 

provided in Figure 6.2. 

 

Figure 6.2 Harvest dates and mean daily temperatures during the growth of field grown plants 

Mean daily temperatures (red) spanning September 2011 to September 2012 were gathered from 

weather station records. Timelines showing transplant date (filled circles), bolting date (filled squares), 

start of seed set (open circles), harvest date (arrow heads) and the end of seed set (open squares) are 

shown for each plant batch.  
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Figure 6.3 Germination responses of field grown seed batches to stratification at different 
temperatures 

Seeds were sown onto agar and wrapped in foil. After a stratification period at the temperature 

indicted, dormancy was measured by transferring seeds into the light and counting germination after 7 

days. Data represents the total % germination of seeds pooled from at least 6 individual plants in each 

batch. 

 

The germination of field batches was tested after stratification at different 

temperatures to enable a comparison with seeds matured under constant temperatures 

in the laboratory (Figure 6.3). Batches A, B and C had winter annual life histories 

and very similar dormancy patterns, which resembled previous observations of Col-0 

matured at 15°C (Figure 4.1). Seeds from these three batches were harvested on the 

same date in May 2012, although they had different histories having been 

transplanted to the field site on successive months from October to December 2011. 

Their similar responses to stratification however would suggest that temperatures 

closer to the harvest date, which were common to all three batches, were more 

important in determining their dormancy. Batch F was sown as a summer annual, 
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and also had the lowest dormancy of the five batches, resembling Col-0 matured at 

17°C or 18°C (Figure 4.1). Batch G was also sown as a summer annual, however this 

batch had surprisingly high dormancy and the response to stratification was more 

similar to the winter annual batches. 

By fitting the dormancy model to the germination data in Figure 6.3, it was possible 

to estimate maturation temperatures for each seed batch. The fitting procedure 

described previously was used with the model of germination in light, and values for 

   were varied to produce the closest fit between model predictions and the 

observed germination data. The resulting values provided an estimate of the 

maturation temperatures that would be required to elicit the same germination 

behaviour in seeds grown under constant laboratory conditions. It was hypothesised 

that a comparison between estimated    and actual temperatures during maturation 

in the field would reveal a period where they were equal, thereby revealing when 

temperature is most important for determining primary dormancy. In agreement with 

expectations, values for batches A-C were very similar (Table 6.1). Batch G, which 

was the most dormant, had the lowest estimated   , while the batch F was the least 

dormant and had the highest estimated   .  
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Table 6.1 Mean and estimated maturation temperatures for field grown seed batches  

Mean maturation temperatures were calculated as the average mean daily temperature between 

bolting and harvest for each seed batch. Estimated maturation temperatures (  ) were calculated for 

each seed batch by fitting the model of germination in light to the germination data from stratification 

experiments.  

 

Batch 
Mean maturation 
temperature (°C) 

Estimated    (°C) 

A 8.6 15.2 

B 9.1 15.2 

C 8.9 14.9 

F 15.2 17.4 

G 16.6 14.8 

 

 

 

 

Figure 6.4 Mean daily temperatures from bolting to harvest for field grown seed batches 

Mean daily temperature (solid black line) as measured by the nearby weather station. Also shown are 

estimated maturation temperatures predicted by the dormancy model (solid red line) and the mean 

daily temperature on the harvest date (dashed blue line).  
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Figure 6.4 shows a magnified view of the temperature during seed maturation (i.e. 

from bolting to harvest) for each seed batch, including estimated    values in red. 

Temperatures during maturation of batches A-C were generally much lower than the 

estimated   . However, there was a sustained temperature increase 9 days prior to 

the harvest date, which was much closer to the estimated   . This adds support to 

the hypothesis that temperatures closer to the harvest date are more important to the 

final dormancy than temperatures earlier in seed development. As further evidence 

of this, batches F and G both experienced a warm period where temperatures 

exceeded 20°C. For batch F, this occurred 9 days before harvesting, and therefore 

may have contributed to the reduced dormancy. However for batch G, this warm 

period occurred much earlier in development; only 8 days after bolting. Batch G was 

much more dormant than batch F, showing that the warm temperatures earlier in 

development had less of an effect on the final dormancy. 

In order to pinpoint a specific time during seed development where the mean 

temperature closely matched the estimated   , an analysis comparing different 

temporal ‘windows’ was performed . Mean temperatures for all possible windows 

spanning lengths of up to 30 days and positioned at different points during seed 

development were calculated for each batch. For each window, the mean 

temperature was compared to estimated    values for each batch, and the squared 

differences were used to calculate the root-mean-square error (RMSE). The equation 

for this is given in [34]; where    is the mean window temperature,    
 is the 

estimated maturation temperature for the batch  , and n = 5 seed batches. Windows 

were then ranked in order of their RMSE, with lower scores providing the closest 

match (lowest error) across all batches. 
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[34] 
      

 

 
        

  

 

   

 

 

In general, windows that were earlier in seed development had larger RMSE scores, 

and the lowest scoring 10 windows were all located within the last 11 days before 

harvest (Figure 6.5). Surprisingly, this analysis suggested that the best predictor of 

seed dormancy was the mean daily temperature on the day of harvest (RMSE = 

0.58). This is shown in Figure 6.4 as a dashed blue line, which closely matches the 

predicted maturation temperature, shown in red. The second and third best scoring 

windows spanned 4-10 and 0-10 days before harvest respectively (RMSE = 1.36 and 

1.4). 

 

 

Figure 6.5 Temporal window analysis comparing mean window temperatures with predicted 
maturation temperatures for 5 field grown seed batches. 

RMSE was calculated for 961 possible windows spanning up to 30 days, and at different times during 

seed development. Possible windows were ranked in order of smallest RMSE. Windows spanning 

anywhere between 0 and 10 days before harvest featured heavily in the lowest scoring ~50 windows. 

The top ten windows are represented here by arrows indicating their start and end position (in days 

before harvest), versus their RMSE. The best window was on day 0 (the harvest date). 
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Batch G proved anomalous in this analysis because the relatively high dormancy 

could not easily be explained by temperatures prior to harvest. This may have been 

due to uncontrolled factors such as the presence of unripe seeds, shortening 

photoperiod, or other environmental stress causing higher than expected dormancy. 

Consequently, RMSE scores for all windows were affected by larger errors for batch 

G in comparison to other batches. The same analysis was therefore repeated with 

batch G omitted. This confirmed that the top 10 ranked windows were still within the 

last 11 days before harvest. However the temperature on the day of harvest was 

ranked third (RMSE = 0.42), while first and second were windows spanning 3-10 

and 2-10 days before harvest (RMSE = 0.24 and 0.40). This also demonstrates a 

larger sample size with more seed batches would be required to pinpoint a temporal 

window with greater confidence. However, it has clearly pointed towards 

temperatures the end of seed development, particularly in the final 11 days before 

harvest, as being most important for seed dormancy. The following experiments 

were therefore intended to test this prediction.  

 

6.2.3 Effects of a change in maturation temperature prior to harvest  

To test the prediction that the dormancy is determined in the final days of seed 

development, an experiment was set up in which plants were grown at constant 12°C 

from bolting onwards. Seeds matured at this temperature should have high dormancy 

and a weak response to stratification (e.g. Figure 4.1). Once seed shedding had 

begun all mature seeds were harvested. The plants were then moved to a constant 

20°C environment, and further harvests from the same plants were performed at 

regular intervals. For comparison, plants were also grown at constant 20°C to 

produce seeds with very low dormancy.  
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The dormancy of harvested seeds was tested by imbibition in light at 22°C 

immediately after harvest, and also after a 3 day stratification treatment in darkness 

at 12°C. This treatment was intended to reveal any differences in dormancy that 

might not otherwise be visible in freshly harvested seeds. The overall aim was to test 

the prediction that dormancy is determined in the 10 or so days prior to harvest, and 

also to see what length of time at 20°C was required for the dormancy of seeds 

initially grown at 12°C to resemble that of seeds grown exclusively at 20°C.  

As expected, seeds produced at constant 12°C were very dormant (Figure 6.6). 

Freshly harvested seeds did not germinate in light, and only 5% germinated after the 

stratification treatment. Moving plants to 20°C for 3 days did not have any effect, 

although after 5 days at 20°C there was a small increase in the germination of fresh 

and stratified seeds. No additional reduction in dormancy was observed after 7 days 

at 20°C, although after 10 days at 20°C germination of stratified seeds had increased 

to 42%. Overall, these results show a gradual reduction in seed dormancy with 

increasing time spent at 20°C prior to harvest. However, 10 days at 20°C was not 

sufficient to reduce the dormancy to the level of seeds matured at constant 20°C, 

which germinated to 87% when fresh and almost 100% after stratification. 
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Figure 6.6 Germination of seeds grown at 12°C and moved to 20°C before harvest 

Col-0 seeds were harvested at 12°C, and at intervals after transferring to 20°C. Seeds matured at 

constant 20°C are also shown for comparison. The germination in light was assayed in freshly 

harvested seeds (dark grey), and after stratification for 3 days at 12°C (light grey). Data represents the 

mean and SE of 5 replicate seed batches. 

 

Notably, differences in dormancy were only visible after the stratification treatment, 

whereas the germination of freshly harvested seeds was relatively constant. This 

suggested that dormancy in freshly harvested seeds was generally too high to permit 

germination, even after 10 days at the warmer maturation temperature. The 

stratification treatment was therefore necessary to partially alleviate dormancy 

before any differences caused by changing the maturation temperature could be 

observed. Consequently this experiment was repeated, however a more detailed view 

of the dormancy was gathered by subjecting seeds to stratification at 3 different 

temperatures for up to 3 weeks. Plants were again grown at 12°C and seeds were 

harvested at intervals after transferring plants to 20°C. The reverse experiment was 

also performed, in which plants were first grown at constant 20°C before transferring 

to 12°C.  
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Figure 6.7 Germination of seeds matured at 12°C and moved to 20°C prior to harvest 

(A) Seeds matured at constant 12°C until harvest; (B) Seeds matured at 12°C, and 20°C for 3 days; 

(C) Seeds matured at 12°C, and 20°C for 7 days; (D) Seeds matured at 12°C, and 20°C for 21 days. 

Germination in light was tested in freshly harvested seeds, and after stratification at 8°C (filled circles), 

12°C (open circles) and 16°C (filled squares) for the time indicated. Data represents the total % 

germination of seeds pooled from 5 parent plants. 

 

Figure 6.7 shows the germination of seeds from four successive harvests. The first 

harvest (Figure 6.7A) consisted of seeds grown only at 12°C. As expected, these 

were highly dormant and did not respond to stratification at any temperature. 

However, after spending 3 days at 20°C before harvest (Figure 6.7B), seeds were 

less dormant and their germination peaked at 38% following stratification for 7 days 

at 8°C. This shows that only a small amount of time was required for an increase in 

the maturation temperature to cause a reduction in the final dormancy. After 7 days 

maturation at 20°C (Figure 6.7C), the dormancy had been reduced further and the 

germination of seeds stratified at 8°C peaked slighlty higher at 66%. However, 

dormancy was not reduced any further by an additional 2 weeks maturation at 20°C 

(Figure 6.7D). This was surprising since seeds harvested 21 days after the transfer 

would have experienced the warmer temperature for most of their development. 
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Nevertheless, their dormancy did not resemble seeds matured only at 20°C (i.e. 

Figure 6.8A).  

 

 

Figure 6.8 Germination of seeds matured at 20°C and moved to 12°C prior to harvest 

(A) Seeds matured at constant 20°C until harvest; (B) Seeds matured at 20°C, and 12°C for 7 days; 

(C) Seeds matured at 20°C, and 20°C for 21 days. Germination in light was tested in freshly harvested 

seeds, and after stratification at 8°C (filled circles), 12°C (open circles) and 16°C (filled squares) for the 

time indicated. Data represents the total % germination of seeds pooled from 5 parent plants. 

 

Figure 6.8 shows the reverse experiment, in which seeds were matured at 20°C and 

then moved to 12°C. Seeds matured only at 20°C germinated to around 90% after 

harvest, and were not affected by stratification (Figure 6.8A). After moving plants to 

the cooler maturation temperature of 12°C, rates of seed development were slowed 

down and an additional harvest after 3 days was not possible. However, after 7 days 

at 12°C the dormancy had increased, and germination without stratification was 

reduced to 36% (Figure 6.8B). After 21 days at 12°C, dormancy was increased 

further and germination was less than 5% in freshly harvested seeds. However the 

maximum germination in response to stratification at 8°C reached 76%, which was 

similar to seeds from the previous harvest (Figure 6.8C). 
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These results complement each other to show that dormancy can be altered by a 

change in temperature as little as 3 days before harvest. However, they also show 

that the response to temperature is complex and differences in dormancy are 

occasionally only visible after stratification. Compared to the prediction based on 

analysis of field matured seed batches, these experiments also showed that 

temperatures early in seed development do have a lasting effect on dormancy.  

 

6.2.4 Alleviation of secondary dormancy 

Most of the experiments described so far have focused on the dormancy of seeds as 

they are imbibed at constant temperatures. However, the temperature in natural 

environments constantly changes, and it has been suggested that alternating 

temperatures could play a role in dormancy alleviation (Ali-Rachedi et al., 2004). To 

investigate this further, seeds were stratified at a range of constant temperatures in 

darkness for 126 days in order to induce secondary dormancy. The long initial 

stratification period was required because secondary dormancy is induced more 

slowly at cold temperatures. Seeds incubating at 4°C or 8°C were then moved to a 

warmer (20°C) environment, and seeds incubating at 12°C, 15°C or 20°C were 

moved to a colder (4°C) environment. As a control, some seeds from each initial 

stratification temperature were also left at the same constant temperature. The 

dormancy was sampled by testing germination frequencies in light at intervals 

throughout the experiment. 
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Figure 6.9 Germination of Col-0 seeds after a change in stratification temperature 

Col-0 seeds were initially stratified in darkness at the indicated temperature to induce secondary 

dormancy. After 126 days (dotted line) half the seeds were moved to a different temperature (red), 

while the other half were left at the same constant temperature (black). Dormancy was sampled at 

intervals by measuring the germination in light. Data represents the mean and SE of 5 replicate seed 

batches. 

 

In Col-0, stratification at 4°C resulted in an initial increase in the germination, 

followed by an overall decrease which was incomplete after 126 days (Figure 6.9). 

This is consistent with an initial loss of primary dormancy followed by very gradual 

induction of secondary dormancy. At all other temperatures the germination 

decreased after the first month of stratification, showing that secondary dormancy 

was induced more quickly. In Ler, seeds were generally more dormant and very few 

seeds germinated after stratification at constant temperature; except at 20°C, where 

the germination transiently increased after 2 months (Figure 6.10). 
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Figure 6.10 Germination of Ler seeds after a change in stratification temperature 

Ler seeds were initially stratified in darkness at the indicated temperature to induce secondary 

dormancy. After 126 days (dotted line) half the seeds were moved to a different temperature (red), 

while the other half were left at the same constant temperature (black). Dormancy was sampled at 

intervals by measuring the germination in light. Mean Data represents the mean and SE of 5 replicate 

seed batches. 

 

In both ecotypes, switching from a cold to a warm temperature reinforced dormancy 

and reduced germination. However, switching from a warm to a cold temperature 

caused a reduction in secondary dormancy and increased germination. This effect 

was greatest when seeds were moved from 20°C to 4°C, however it was unclear 

from this experiment whether the seeds were responding to these specific 

temperatures, or whether the size of the temperature differential was responsible for 

the larger response. 

Interestingly there was also evidence of oscillations in the dormancy of seeds 

incubating at constant temperatures, shown by the germination increasing and 
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2 months which was not seen at any other temperature. Similar effects were also 

visible in Col-0, although the oscillations were not as large. Since time of sampling 

was not controlled, this could potentially be caused by circadian oscillations, which 

is investigated further in section 6.2.6.  

 

6.2.5 Seedling emergence in the field  

A experiment was performed to investigate field conditions which prompt 

germination of two seeds batches; one from plants grown in the lab at 18°C which 

were expected to have relatively low primary dormancy, and one from plants that 

were grown at the field site in York. Pots were filled with sterile soil and covered 

with a fine nylon mesh to prevent seeds from becoming buried too deeply. 

Approximately 500 seeds were sown onto the mesh and then covered with an inch of 

sterile soil. Pots were then buried to soil level at the field site. Periodically, the soil 

inside the pots was disturbed in order to expose seeds to light, and seedling 

emergence was monitored weekly. A data logger was also used to monitor the soil 

level temperature. At the end of the experiment, the percentage emergence was 

calculated as the number of seedlings that had emerged during each time period, 

expressed as a percentage of the cumulative total (Figure 6.11).  

The results revealed two main germination flushes; one in autumn, which peaked in 

September and October and was followed by a period of low germination over 

winter; and another the following spring which began in April and continued through 

to July. As expected, seeds which had been grown in the lab at 18°C were less 

dormant initially, and a higher percentage of these germinated during the first flush 

in autumn. Consequently, fewer remained to germinate during the subsequent spring 
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germination flush. In comparison, more of the field grown seeds delayed their 

germination until October during the first year. This batch also germinated more 

synchronously compared to lab grown seeds, whose emergence was more spread out 

during the first 4 months. In addition, the germination of field grown seeds was 

spread more evenly between autumn and spring flushes. 

  

 

Figure 6.11 Seedling emergence in York, UK 

Laboratory grown Col-0 seeds matured at 18°C (open circles), and field grown Col-0 seeds harvested 

on 30
th
 May 2012 (closed circles) were covered in sterile soil in pots buried up to soil level at the field 

site. The surface soil was periodically disturbed to expose buried seeds to light, and seedling 

emergence was checked at weekly intervals. Data points represent the number of emerged seedlings 

between each soil disturbance event, expressed as a percentage of the cumulative total. Days where 

the maximum temperature exceeded 20°C and the minimum fell below 4°C are marked with an 

asterisk. 

 

Daily temperature ranges were greatest during the summer of 2013, when seedling 

emergence had begun to decrease (Figure 6.12). This suggests that the magnitude of 

the temperature range does not in itself promote dormancy loss. Instead it is likely 

that the elevated temperatures caused secondary dormancy induction. However, high 

levels of seedling emergence were found to be closely correlated with dates on 

which the maximum temperature was 20°C or more, and the minimum temperature 

was 4°C or less (asterisks in Figure 6.11). This supports the notion that a change in 
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temperature from 20°C to 4°C, which caused a loss of secondary dormancy in lab 

experiments (Figure 6.9), could also be promoting germination under field 

conditions. However, effects of additional environmental factors such as water 

availability or day length cannot be ruled out.  

 

 

Figure 6.12 Ground level temperatures recorded at the field site during 2012 and 2013 

A temperature logger was set to take readings every 10 minutes at ground level. Daily maximum (red) 

and minimum (blue) temperatures are shown.  

 

6.2.6 Investigation into the circadian control of dormancy  

To investigate a possible link between dormancy and the circadian clock, an 

experiment was set up with the aim of comparing dormancy in wild type Col-0 and a 

circadian clock mutant. CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) is a key 

component of the central circadian clock oscillator (Locke et al., 2005), and 

constitutive over expression of this gene abolishes the rhythmic expression of many 

other genes in continuous conditions (Wang and Tobin, 1998). Col-0 and CCA1-
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overexpressing seeds (CCA1-ox) were matured at 16°C, and imbibed darkness at 

constant 8°C, 12°C or 16°C. The maturation temperature of 16°C was intended to 

confer a moderate level of primary dormancy in freshly harvested seeds, which 

would be lost within the timeframe of the experiment. The stratification temperatures 

were also chosen to provide a range of secondary dormancy induction rates, with the 

expectation that complete dormancy induction would require 4-6 weeks at 8°C, and 

2-5 days at 16°C. During stratification in constant conditions, dormancy was 

sampled every 3 hours to determine if any circadian rhythm could be detected, and if 

so whether it would be abolished by overexpression of CCA1.  

There was no difference between seeds stratified at 8°C and 12°C. Figure 6.13 

therefore only shows a comparison between seeds stratified at 8°C and 16°C. At 8°C 

there was a gradual loss of primary dormancy and increase in the germination. As 

expected, there was minimal induction of secondary dormancy at this temperature, 

and the germination eventually reached 97% in Col-0 and 90% in CCA1-ox after 5 

days. There was also no evidence of any circadian rhythm at this temperature. 

However, seeds incubating at 16°C displayed a clear rhythmic germination response, 

with daily oscillations. The height of the peaks increased for the first 3 days, and 

then began to decrease. This was interpreted as an initial loss of underlying primary 

dormancy, with a simultaneous rhythmic, and progressively increasing induction of 

secondary dormancy. Overexpression of CCA1 resulted in slightly higher dormancy 

overall, however did not affect the oscillations at 16°C which occurred with the same 

period as wild type.  
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Figure 6.13 Germination of Col-0 and CCA1-ox stratified at constant temperatures 

Seeds were matured at 16°C, imbibed on water agar, and stratified in darkness for the time indicated. 

Germination percentages of Col-0 (blue) and CCA1-ox (red) were calculated by counting the total 

number of germinated seeds after moving plates into 22°C, 16h light per day for 7 days. Data 

represents the mean and SE of 5 replicate seed batches. 

 

Secondary dormancy induction was only expected during stratification at 16°C, and 

oscillations were only observed at this temperature. This therefore suggests a link 

between secondary dormancy and the circadian clock, which occurs independently 

of constitutive CCA1 expression. The fact that primary dormancy loss at 8°C and 

12°C was not rhythmic also suggests that primary dormancy is not controlled by the 

same mechanism.  

 

6.3 Discussion 

6.3.1 Primary dormancy is determined by a combination of long and short term 

temperature signals 

A comparison between the dormancy of seeds matured in naturally fluctuating 

temperature environments and seeds matured at constant temperatures suggested that 

temperatures during the last 10 days of seed maturation are the most important for 

primary dormancy establishment in Arabidopsis (Figure 6.4). This is consistent with 

 0 12 24 36 48 60 72 84 96
  0

 20

 40

 60

 80

100

8°C incubation

 

G
e
rm

in
a
ti
o
n
 (

%
)

 0 12 24 36 48 60 72 84 96
  0

 20

 40

 60

 80

100

16°C incubation

Stratification time (h)



Chapter 6: Additional Effects of Temperature on Primary and Secondary Dormancy  

160 

 

results in barley, where susceptibility to pre-harvest sprouting was shown to be 

correlated to the temperature during the final stages of seed development (Rodríguez 

et al., 2001; Gualano and Benech-Arnold, 2009). Furthermore, a temporal window 

analysis suggested that the mean temperature on the day of harvest was the best 

predictor of dormancy in five field grown seed batches (Figure 6.5).  

An ability to adjust seed dormancy according to environmental temperatures allows 

germination responses to be highly plastic, and responses to temperature on such a 

short term basis would allow plants to have the greatest flexibility in responding to 

their current environment. However, this could also leave them vulnerable to short 

term temperature fluctuations caused by unseasonal weather. Since climate change is 

anticipated to increase the frequency of unusual weather patterns (Karl and 

Trenberth, 2003; Hansen et al., 2012), this could increasingly affect the seasonal 

regulation of dormancy and germination in seeds.  

However, laboratory experiments showed that primary dormancy was not solely 

explained by temperatures immediately before harvest. A change in temperature was 

capable of causing a change in dormancy in as little as 3 days, and a larger change 

after 7 days (Figure 6.7 and Figure 6.8). However, the change in maturation 

temperature was never sufficient to completely overcome the effects of temperatures 

experienced earlier in development. Even providing constant temperatures for 3 

weeks prior to harvest had no additional effect beyond the initial 7 days at the altered 

temperature. Similar results have also been reported in Arabidopsis, where the 

temperature experienced by mother plants even before flowering has a lasting effect 

on seed dormancy (Kendall and Penfield, 2012). This strategy seems to provide the 

best of both worlds by allowing immediate response to temperatures at the time of 
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dispersal, whilst also preventing vulnerability to changes in weather by retaining a 

longer term memory of past temperature. 

 

6.3.2 Evidence for a link between seed dormancy and the circadian clock 

Throughout this chapter, several experiments have hinted at some involvement of the 

circadian clock in regulating seed dormancy. Figure 6.1 shows subtle differences 

depending on whether warm or cold temperature treatments were given during the 

day or at night. These differences were amplified in Ler which lacked the FT gene, a 

transcription factor well known for its role in floral induction (Mathieu et al., 2007), 

and whose expression is known to be linked to several circadian clock regulated 

pathways (Suarez-Lopez et al., 2001; Helliwell et al., 2006; Salathia et al., 2006). 

Further evidence of a shared pathway between flowering and germination has also 

been found, which involves FLC, FT, SOC1 and AP1 (Chiang et al., 2009). 

Together, these findings suggest that FT is pleiotropic, and in addition to its central 

role in flowering is also required to establish normal dormancy levels in response to 

temperatures during seed development. A role for FT in dormancy establishment 

may also help to explain why it is highly expressed in developing siliques 

(Kobayashi et al., 1999).  

A clear oscillation in the germination response to light was also found in seeds 

incubating in constant darkness at 16°C (Figure 6.13). Similar results have 

previously been reported by Oliverio et al., 2007, who demonstrated that a rhythmic 

germination response to a FR pulse in seeds incubating at 22°C is mediated by 

PHYA, and is gated by the circadian clock. Their study also showed that the 

rhythmicity of the response was maintained in gi mutants. Both CCA1 and GI are 
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considered to be core clock components (Locke et al., 2005; Locke et al., 2006; 

Pokhilko et al., 2010; Pokhilko et al., 2012). Constitutive expression of CCA1 

abolishes rhythmicity in many clock associated genes in constant conditions (Wang 

and Tobin, 1998), and mutations at the GI locus also disrupt normal clock function 

(Fowler et al., 1999a; Mizoguchi et al., 2005; Locke et al., 2006). The finding of 

rhythmicity in germination responses of CCA1-ox seeds during stratification in 

constant darkness is therefore surprising. This result, and those published by Oliverio 

et al., 2007 seem to suggest that seeds may possess an oscillatory mechanism which 

is independent from the central shoot oscillator. Further support for this possibility 

comes from the finding that clock architecture can indeed be tissue specific, as 

expression of only a subset of shoot circadian clock genes were found to oscillate in 

root tissue (James et al., 2008). 

Interestingly, results in Figure 6.13 also support the notion that primary and 

secondary dormancy operate through distinct mechanisms. Seeds stratified at 8°C 

and 12°C gradually lost primary dormancy and did not enter secondary dormancy 

within the timeframe of the experiment. Additionally, there was no evidence of any 

rhythmic response to light. These results therefore suggest that warm temperature 

induced secondary dormancy is under circadian control, while loss of primary 

dormancy is not. Secondary dormancy is often said to control seasonal dormancy 

cycling (Hilhorst, 1998; Baskin and Baskin, 2004). Therefore the existence of a 

circadian controlled pathway regulating secondary dormancy in relation to seasonal 

cues, would not be surprising. 
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6.3.3 Secondary dormancy in Col-0 and Ler ecotypes is broken by a switch from 

warm to cold temperatures 

For seeds within the soil seed bank, the timing of germination is largely governed by 

the level of secondary dormancy. To predict seasonal emergence, it is therefore 

necessary to understand what conditions result in secondary dormancy alleviation. 

Responses to changes in stratification temperatures were investigated, and in 

agreement with warm temperature induction of secondary dormancy, a switch from a 

cold to warm environment reinforced dormancy and reduced germination in both 

Col-0 and Ler seeds (Figure 6.9 and Figure 6.10). However, a shift from a warm to a 

cold environment caused a reduction in dormancy, and an increase in germination. 

Furthermore a switch from 20°C to 4°C caused the greatest increase in germination, 

whereas a smaller temperature difference caused little or no response. 

This observation suggested that germination would occur in autumn after a transition 

to cooler temperatures at the end of summer, a suggestion which has also been made 

by previous authors (Donohue et al., 2007). This was confirmed by observations of 

seedling emergence in the field (Figure 6.11), however large numbers also emerged 

in spring which could not be explained in the same way. However, analysis of 

ground level temperature measurements showed that emergence patterns were 

correlated with days on which the maximum temperature was ≥20°C, and the 

minimum temperature was ≤4°C. This correlation supports a hypothesis that diurnal 

oscillations of this magnitude or greater may be sufficient to break secondary 

dormancy and trigger seasonal germination flushes. Emergence experiments also 

suggested that the specific temperature range was important, since an increased 

diurnal amplitude at warmer temperatures, which occurred during summer, was not 
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correlated with high levels of seedling emergence; although effects of other 

germination inhibiting factors such as water availability could not be ruled out. 

The effect of alternating temperatures on dormant Cvi seeds has been examined 

previously, and the highest germination was reported when seeds were at constant 

13°C (Ali-Rachedi et al., 2004). However, it was unclear whether these seeds were 

in a state of primary or secondary dormancy. In primary dormant seeds for example, 

high germination would be expected in cool temperatures that inhibit induction of 

secondary dormancy. High levels of germination were also maintained if 

temperatures during the day were increased, provided that temperatures at night 

remained low (13°C), whereas germination levels were reduced if the day and night 

temperatures were reversed (Ali-Rachedi et al., 2004). 

In light of results presented in this chapter, it is possible that the sensitivity to 

alternating temperatures are linked to a circadian clock in seeds, and perceptions of 

‘warm’ or ‘cold’ are modified according to the time of day. A moderately warm 

temperature during the day for example would not necessarily be a good indicator of 

the season, and could just as easily occur on a sunny day in winter or on an overcast 

day in summer. The same temperature at night however would be a more reliable 

indicator of summer, and is likely to have a stronger dormancy inducing effect in 

winter annuals such as Cvi.  

Near constant low temperatures in winter however are likely to have a gradual 

secondary dormancy inducing effect, whereas relatively warm days combined with 

cold nights are indicative of spring and autumn. This combination of diurnal 

temperatures is therefore a reliable indicator of a favourable season for germination, 

and provides a cue which alleviates secondary dormancy. It has also recently been 
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shown that FT binds to diurnally oscillating phospholipids to accelerate flowering 

(Nakamura et al., 2014). FT was also found to modulate primary dormancy in 

response to temperatures at particular times of day (Figure 6.1). Adaptations in the 

sensitivity and specificity of genes such as FT may therefore provide a way of 

adapting both flowering and germination timing to particular climates and annual 

habits. 

 

6.3.4 Conclusions 

Results in this chapter have demonstrated links between seed dormancy and the 

circadian clock. FT was found to be involved in the establishment of primary 

dormancy in response to temperature at night, and oscillations of dormancy were 

observed in seeds stratified in constant darkness at 16°C. A lack of oscillations at 

8°C or 12°C suggested this interaction with the clock was specific to warm 

temperature induced secondary dormancy, and did not apply to primary dormancy 

loss at lower temperatures. Oscillations were also present in CCA1-ox seeds, despite 

previously published findings that CCA1-ox plants are arrhythmic in all aspects of 

circadian control so far examined (Wang and Tobin, 1998; Green et al., 2002). This 

suggests the existence of an alternative circadian mechanism which is specific to 

seeds, and oscillates independently of normal rhythmic CCA1 expression. Lab 

experiments also revealed that secondary dormancy in Col-0 and Ler ecotypes is 

broken by a transition from 20°C to 4°C. Daily minimum and maximum 

temperatures of ≤4°C and ≥20°C were also correlated with high levels of seedling 

emergence in the field, indicating that temperature fluctuations within this range 

could serve as a cue to break secondary dormancy.  
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Chapter 7: Simulating Life History Phenology 

and Seed Dormancy 

 

7.1 Introduction 

Flowering and germination are the two major developmental transitions which 

combine to determine generation time, and overall life history in many plant species, 

including A. thaliana (Evans and Ratcliffe, 1972; Nordborg and Bergelson, 1999; 

Griffith et al., 2004). There is also significant interaction between these two traits. 

The seasonal timing of germination determines the conditions experienced during 

vegetative growth, thereby affecting flowering time. Reproductive timing also 

influences germination through a combination of maternal effects on seed dormancy, 

and more directly by determining the conditions experienced immediately after seed 

dispersal.  

Interactions between these two transitions can also be significant and long lasting, 

with potentially dramatic effects between generations. For example, manipulation of 

flowering time in Campanulastrum americanum affected the frequencies of annual 

and biennial life histories in the offspring generation (Galloway and Burgess, 2009). 

However studies such as this are relatively rare, and the adaptive significance of this 

phenotypic plasticity is not well understood. This chapter therefore aimed to bring 

together predictive models of flowering and seed dispersal timing with models of 

seed dormancy in order to examine interactions between life history transitions and 

seed dormancy and germination behaviour in Arabidopsis. 
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7.2 Results 

7.2.1 Simulations in a range of locations 

A model of flowering time (Wilczek et al., 2009) was combined with models of seed 

dispersal timing and seed dormancy described in Chapters 3, 4 and 5. The aim of 

combining these models was to create an integrated life cycle model capable of 

simulating a complete generation, from seed to seed. This integrated model was then 

used to investigate how the seasonal timing of developmental transitions can affect 

growth dynamics and influence later life stages, and to investigate the role and 

significance of reproductive timing and seed dormancy in spring and winter annuals. 

Simulations of the combined flowering and seed set models were initiated on 

different germination dates as described previously in Chapter 3. Predicted bolting 

and seed dispersal dates were plotted for each germination date, and the resulting 

graphs were then overlaid onto colour maps representing germination probabilities, 

calculated using the dormancy models (Figure 7.1).  
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Figure 7.1 Simulations of bolting, seed set, and seed dormancy in a range of locations 

Predictions for bolting (black) and seed set dates (red) were generated for all possible germination 

dates in each location. Dormancy model simulations used the mean temperature during the week prior 

to seed set as the estimated maturation temperature. The maximum probability of germination for 

seeds set on each date along the vertical axes is indicated by horizontal shading.  
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The colour maps were produced by simulating seed dispersal on each possible date, 

and using mean temperatures during the week prior to seed dispersal to predict 

primary dormancy. Results in Chapter 6 suggested that this was a reasonable 

assumption, as the dormancy model could predict the behaviour of field grown seed 

batches if temperatures closer to the end of seed development were used. 

Germination probabilities were then calculated for each day after dispersal, 

according to the predicted frequencies of primary and secondary dormancy within 

the seed population. In general, germination probabilities reached a maximum within 

3 weeks of dispersal, beyond which secondary dormancy induction caused an overall 

reduction. Probabilities were therefore only calculated for the first 100 days after 

seed dispersal, since after this time secondary dormancy induction would be 

complete and there would be no further change in the predicted germination. The 

maximum germination probability reached within the first 100 days was then used to 

determine the shading of the colour map according to the colour scale shown. 

Furthermore, these simulations combined output of both light and dark germination 

models. The horizontal shading of the colour maps therefore represents the 

maximum probability of germination for seeds dispersed on a given date, assuming 

that seeds are exposed to light, and including seeds which lack a light requirement. 

In general, summer dispersal dates resulted in darker horizontal bands, since warmer 

maturation temperatures resulted in reduced primary dormancy. Given adequate light 

and moisture, seeds dispersed within the dark blue regions (red dots in Figure 7.1) 

are therefore likely to germinate to high levels shortly after dispersal. In contrast, 

seeds dispersed within pale blue regions would have a low probability of 

germination, and are likely to enter secondary dormancy within the soil seed bank. 
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In most cases, the transition from high to low germination probabilities on different 

dispersal dates was very sudden. As discussed previously in Chapters 4 and 5, this 

was caused by the linear relationship between the maturation temperature and the 

rate of primary dormancy loss. This linear relationship causes an abrupt transition 

from negligible, to positive rates of dormancy loss when temperatures begin to 

exceed 14°C. However, it is interesting to note that predictions of seed dispersal 

timing often closely coincided with this transition. Furthermore, this apparent 

behaviour was most prevalent in winter and spring annuals, and was consistent in 

many locations, particularly in Northern Europe. In these locations, autumn or spring 

germination resulted in fulfilment of photothermal requirements for flowering and 

seed maturation just before mean weekly temperatures reached 14°C. The full 

duration of the seed dispersal period would therefore most likely transition the 14°C 

temperature threshold, resulting in the production of offspring with a full range of 

dormancies. The consistency of this outcome suggests that developmental timing of 

flowering and seed maturation, combined with the specific temperature sensitivity of 

primary dormancy, may be configured deliberately in this way. 

Simulations using climate data from Edinburgh proved to be an exception to this rule 

due to its unusually small annual temperature range in comparison to locations with 

similar mean annual temperatures. Due to its maritime climate, winter temperatures 

in Edinburgh are relatively mild, and spring temperatures increase slowly. This 

caused photothermal requirements to be fulfilled before mean weekly temperatures 

reached 14°C. Winter temperatures, and the rate of temperature increase during the 

transition from winter to spring therefore seem to be important factors. This shows 

that adaptation to local climates may be required in some cases to produce offspring 

with the same dormancy characteristics. 
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Winter temperatures also affected the degree of synchronicity in flowering and seed 

set for winter and spring annuals. In locations where winter temperatures remained 

below 3°C for longer, plants germinating on a wider range of dates were predicted to 

flower and set seed at the same time. For example, the coldest climate used for 

simulations was Oulu in Finland, where the temperature remained below 3°C from 

October through to April. The minimum growth temperature for Col is 3°C (Granier 

et al., 2002), therefore photothermal unit accumulation within this date range was 

halted. Consequently, there were no differences in terms of photothermal unit 

accumulation between plants germinating on different dates within this period, 

leading to synchronous flowering. Germination after temperatures increased above 

3°C however resulted in later flowering, and caused seed set to begin after 

temperatures exceeded the 14ºC dormancy threshold. Similarly, in locations with 

milder winters spring synchronicity was reduced, and progressively earlier 

germination dates resulted in seed dispersal during the window of reduced primary 

dormancy. These models therefore predict an increase in rapid cycling behaviour in 

warmer climates, as increased proportions of seeds would germinate during the same 

season as dispersal. 

 

7.2.2 Simulations with climate change 

The previous simulations suggested that plastic responses to environmental cues 

would allow a single ecotype to adjust its phenology, and maintain specific 

conditions at seed dispersal in a wide range of locations and climates without 

requiring any specific adaptations. To test the robustness of this finding, various 

degrees of climate change were imposed on model simulations, with the aim of 

finding the limits which cause the system to break down. Temperature data from 
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Gorzow, Poland was altered in 1°C increments from -7°C to +7°C, while the 

photoperiod information was unchanged. Simulations were then performed in each 

modified climate using all parameters and procedures as previously described. 

Gorzow was chosen as the basis for this because the Col-0 ecotype is said to have 

originated there (Röbbelen, 1965).  

The results showed that cooling would lead to a delay in the onset, and also a 

reduction in the duration of the low primary dormancy window in summer (Figure 

7.2). A reduction of 7°C meant that summer temperatures never reached the 14°C 

threshold required for the low dormancy window, which was completely abolished 

by this level of cooling. Extended winters, with an increased duration of 

temperatures below 3°C also led to increased synchronicity in reproductive timing. 

Consequently, maturation temperatures were also more consistent across a greater 

range of parental germination dates (Figure 7.3). Flowering was also delayed relative 

to current climates, however the shift in flowering time served to maintain seed 

maturation temperatures at 14°C, provided the cooling was not greater than 3°C. A 

reduction of 4°C or more would therefore result in higher proportions of dormant 

offspring than predicted in current climates. 
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Figure 7.2 Effects of altered climates on bolting, seed set, and seed dormancy 

Simulations were performed using current average annual temperatures in Gorzow, Poland. Climate 

change was then imposed by adding or subtracting up to 7°C as indicated. Predictions for bolting dates 

(black), seed set dates (red) and seed dormancy (blue shading) were generated in each simulated 

climate, as described previously.  
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Figure 7.3 Effects of altered climates on temperatures at seed set 

Bolting and seed set dates were predicted for each germination date in various simulated climates as 

indicated (see Figure 7.2). Blue lines represent the mean weekly temperature at seed set, plotted 

against the parental germination date. The dotted black line indicates the 14°C dormancy threshold. 
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Conversely, increasing the temperature caused a reduction in flowering 

synchronicity, and a shift to earlier flowering and seed set dates. The window of 

reduced primary dormancy also occurred earlier in spring and persisted later into 

autumn. The earlier flowering of winter annuals resulted in seed dispersal 

temperatures of approximately 14°C, provided that warming was not more than 3°C 

from the current average. However, seed set in spring annuals was increasingly 

pushed into warmer conditions, resulting in reduced dormancy. The models therefore 

predict that spring germination would increasingly result in rapid cycling in warmer 

climates. However, the winter annual habit could potentially be maintained in 

climates much warmer than the current average, as emergence in autumn would 

combine with earlier flowering to produce seeds capable of remaining dormant until 

the following autumn. 

 

7.2.3 Effects of altered flowering time 

Mutations at many different loci have been shown to result in altered flowering time 

under laboratory conditions, in comparison to wild type plants. Loss of growth 

repressors such as the DELLA proteins for example, result in early flowering 

phenotypes (Cheng et al., 2004), whereas loss of flowering promoters such as FT 

result in late flowering phenotypes (Michaels et al., 2005). The presence of dominant 

FRI and FLC alleles also cause delayed flowering in many ecotypes (Koornneef et 

al., 1994), although functional FRI has also been associated with early flowering 

under winter conditions (Stinchcombe et al., 2004). Simulations of altered flowering 

time were therefore used to shed light on the roles of these genes in the wider context 

of whole life cycle phenology and seed dormancy. Combined flowering, seed set, 

and dormancy model simulations were run as described previously, using the 
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unmodified climate data from Gorzow. However, predictions from the flowering 

time model were adjusted before being used as input for the seed set model (Figure 

7.4). 

Early flowering in winter and spring annuals had very little effect on the timing of 

seed set, and maturation temperatures were maintained at approximately 14°C even 

with perturbations of up to 60 days from the normal flowering date. This was 

because if flowering occurred while average temperatures were still below the 

minimum required for photothermal unit accumulation, seed development was 

simply delayed and the final date of seed set was largely unaffected. The seed set 

model therefore acted as a buffer against earlier flowering.  

In contrast, late flowering resulted in later seed set dates, which were increasingly 

pushed into warmer spring temperatures. This was because late flowering meant 

there was not enough time to fulfil photothermal requirements for seed maturation 

before spring temperatures increased beyond the reduced dormancy threshold. Late 

flowering is therefore more likely to result in reduced dormancy and an increase in 

rapid cycling. Together these results suggest that early flowering may not have much 

of an effect on overall life history in comparison to late flowering. Early flowering 

phenotypes may therefore be favoured if maintaining specific conditions at seed 

dispersal is important for offspring survival. 
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Figure 7.4 Effects of altered flowering time on seed set timing, and seed dormancy 

Bolting dates were predicted for each germination date as previously described, using the current 

average temperatures in Gorzow, Poland. Bolting predictions (black) were then adjusted by the 

number of days indicated, and used as input for seed set models. Adjusted bolting dates are shown in 

black, and the resulting seed set dates are shown in red. Predicted seed dormancy (blue shading) was 

also generated as described previously.  
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7.3 Discussion 

7.3.1 Temperatures at seed dispersal are maintained for spring and winter annuals 

Models of flowering time, seed set and seed dormancy were combined to examine 

the effects of location, climate, and perturbations in flowering time on Arabidopsis 

phenology. A persistent outcome was that germination in spring and autumn resulted 

in seed dispersal when average daily temperatures were approximately 14°C. This 

was significant because dormancy model simulations predicted an abrupt change in 

the germination behaviour around this temperature. At temperatures below 14°C, 

primary dormancy was sufficient to prevent germination, most likely causing seeds 

to enter secondary dormancy and remain in the soil seed bank. However, at 

temperatures above 14°C, primary dormancy was reduced and high levels of 

germination were predicted. This abrupt transition in seed behaviour was also 

evident in laboratory experiments (Figure 4.1). 

The extent to which temperatures at seed dispersal were maintained at 14°C across a 

wide range of parental germination dates was surprising, however this behaviour was 

also consistent when simulations were repeated with climate data from different 

locations. A latitudinal cline was observed in which this behaviour was most 

pronounced in Northern European climates, however began to break down in 

equatorial climates (Figure 7.1). This behaviour also persisted if mean annual 

temperatures were reduced. Simulations in altered climates showed that predicted 

flowering and seed set dates were delayed to compensate for the later onset of 14°C 

conditions (Figure 7.2). However if the climate was artificially warmed, models 

predicted that only overwintering plants would be able to adjust their reproduction 

enough to compensate for the advancing warm temperatures. In contrast, plants 

germinating in spring would be forced to produce seeds under warmer conditions, 
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resulting in lower dormancy (Figure 7.3). Altered flowering time also had relatively 

little effect on seed set dates and maturation temperatures (Figure 7.4). Early 

flowering had virtually no effect on seed set in winter and spring annuals, however 

late flowering of 2 weeks or more forced seed dispersal to occur later, and in warmer 

temperatures.  

 

7.3.2 Evidence for a robust bet-hedging strategy 

These results suggested that the growth of the Col ecotype in typical Northern 

European climates is configured to maintain specific seed maturation and dispersal 

conditions, and is resistant to perturbations in flowering time and climate. The fact 

that these particular conditions correspond to a change in seed dormancy behaviour 

is a surprising coincidence, which suggests it could be a deliberate strategy. A seed 

dispersal period which transitions the predicted 14°C dormancy threshold would 

enable a single parent plant to producing offspring with a full range of dormancies. 

This would constitute a diversified bet-hedging strategy (Slatkin, 1974; Philippi and 

Seger, 1989), in which the risk of germinating at a particular time is spread out 

amongst individuals of the same genotype. This strategy is classically associated 

with seed dormancy in desert annuals, and can provide an evolutionary advantage in 

unpredictable environments (Cohen, 1966).  

 

7.3.3 Conclusions 

Simulations combining flowering, seed set and dormancy models suggested that 

growth of spring and winter annuals of the Col ecotype is configured so that seeds 

with a range of dormancies are produced from a single parent. This is evidence of a 
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diversified bet-hedging strategy that allows plants to spread the risk of germination 

timing amongst their offspring to maximise fitness in an unpredictable environment. 

The strategy was also found to be common across typical Northern European 

locations, and was resistant to simulated perturbations in climate and flowering time.  
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Chapter 8: General Discussion 

The broad aim of this research was to further an understanding of how plants 

regulate phenology in relation to seasonal cues. The genetic pathways that regulate 

flowering phenology in response to cues such as photoperiod and temperature, are 

now relatively well understood (Andres and Coupland, 2012; Khan et al., 2013). 

However, a growing number of studies are reporting changes in flowering times, that 

are correlated with rising global temperatures (Fitter and Fitter, 2002; Parmesan, 

2006). It is unclear whether this change is a result of phenotypic plasticity or genetic 

adaptation to the changing climate, however it has highlighted a need to improve our 

understanding of the potential effects on other aspects of plant growth. For example, 

early flowering can also lead to early fruit maturation (Sherry et al., 2007; Post et al., 

2008). This trend coupled with a warming climate could result in altered seed 

dormancy, which as well as having a genetic component, is determined by the 

temperature during seed maturation. The environment that seeds are dispersed into 

can also affect whether dormancy is broken or induced. Some species require long 

periods of chilling before they will germinate, and milder winters may delay their 

germination in spring. 

The importance of germination timing has already been highlighted in many 

previous studies (Donohue, 2002; Donohue et al., 2005c; Korves et al., 2007; Huang 

et al., 2010; Chiang et al., 2013). It is a trait that can define which particular life 

history is expressed by a particular genotype (Boyd et al., 2007; Galloway and 

Burgess, 2009; Wilczek et al., 2009) . In the case A. thaliana for example, 

germination timing can determine whether plants behave as summer annuals and 

flower in the same season as germination, or as winter annuals where flowering is 



Chapter 8: General Discussion 

182 

 

delayed until the following spring. This plasticity allows plants to alter their growth 

according to their environment, but could also potentially disrupt the normal life 

history strategies of plants. This was illustrated in a recent study which showed an 

increase in life history variation in Arabidopsis under artificially warmed climates 

(Li et al., 2013).  

Primary dormancy in Arabidopsis seeds is reduced if seeds are matured in warm 

temperatures. This can also cause them to lose their requirement for light, and such 

an extreme lack of dormancy would mean germination timing would become 

completely unregulated. Seedling survival could be affected, since germination in 

summer can lead to high rates of mortality (Donohue et al., 2005c). It has therefore 

been suggested that climate change could threaten the survival of many European 

plant species (Thuiller et al., 2005). A holistic understanding of plant responses to 

seasonal environments is therefore crucial to anticipate the potential effects of 

climate change on plant life cycles as a whole. This knowledge will also facilitate the 

breeding of improved crop varieties, for example by revealing phenological traits 

which confer optimal growth in particular locations and climates.  

To meet these aims, growth and seed germination responses in the model plant 

species A. thaliana were measured in a range of controlled environments, and used 

to inform predictive models of seed development, and seed dormancy. These models 

were combined with a previously described model of flowering time (Wilczek et al., 

2009), and simulations were used to investigate the effects of germination date, 

flowering date, location, and climate on the timing of seed dispersal, seed dormancy, 

and anticipated germination behaviour. 
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8.1.1 Dynamics of primary and secondary dormancy in relation to temperature 

can explain germination behaviour 

The results presented here have shed light on seed dormancy and its regulation by 

temperature. It was discovered that germination percentages could be predicted using 

a small number of simple assumptions: dormancy levels of individual seeds are 

normally distributed, such that any change in the mean dormancy of a population 

results in a cumulative increase or decrease in the frequency of dormant seeds; 

primary and secondary dormancy are distinct processes, and vary independently 

within a seed population; and rates of primary dormancy loss and secondary 

dormancy induction are governed by seed maturation temperature and imbibition 

temperature respectively. This basic framework was capable of accurately describing 

germination in light after varying periods of stratification (Figure 4.6), and also 

predicting germination during stratification in darkness (Figure 5.9). This suggests 

the same fundamental processes of primary and secondary dormancy regulate 

germination in relation to temperature in both light and dark environments. 

The level of primary dormancy is already known to be affected by the temperature 

during seed development (Schmuths et al., 2006; Kendall et al., 2011; Penfield and 

Springthorpe, 2012; Huang et al., 2014). Unexpectedly however, the effect of 

imbibition temperature on the rate of primary dormancy loss was found to be 

relatively minor (Figure 4.5), and warm temperatures were almost as effective at 

relieving primary dormancy as cold temperatures. This has been reported previously 

(Derkx and Karssen, 1993b; Toorop et al., 2005), however is contrary to the 

established view that primary dormancy in Arabidopsis is removed by chilling.  

Results presented within this thesis instead point towards two alternative 

explanations for the promotion of germination by low temperatures. Firstly, 
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secondary dormancy induction is inhibited by low temperatures. Seeds in a state of 

primary dormancy are therefore more likely to germinate after chilling because 

secondary dormancy induction is repressed, and primary dormancy loss occurs 

irrespective of the imbibition temperature.  

Secondly, if primary dormancy is lost relatively quickly upon imbibition at any 

temperature, and secondary dormancy is quickly induced by the warm conditions 

typically used to promote germination; seeds which would normally be classified as 

being in a state of primary dormancy, may in fact be in a state of secondary 

dormancy. Secondary dormancy can be broken by a switch from a warm to a cold 

temperature (Figure 6.9 and Figure 6.10). Therefore the transition from a warm to a 

cold environment during the chilling treatment may in fact be breaking secondary 

dormancy, not primary dormancy.  

The response of secondary dormancy to temperature also provides an explanation for 

thermoinhibition, which can be thought of as a rapid induction of secondary 

dormancy promoted by high germination temperatures. This altered perspective of 

thermoinhibition could also facilitate future research into secondary dormancy, 

which is still poorly understood although undoubtedly plays an important role in 

determining germination timing in the wild. 

The idea that dormancy loss and induction are acting independently and 

simultaneously to regulate seed germination was first proposed by Totterdell and 

Roberts (1979), and has been used previously to model germination in Polygonum 

aviculare (Batlla et al., 2009). The model presented here based on Arabidopsis can 

also be used to explain a variety of previously puzzling germination behaviours. For 

instance, a commonly cited phenomenon is that dormancy status determines the 
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range of environmental conditions which permit germination (e.g. Baskin and 

Baskin, 2004; Finch-Savage and Leubner-Metzger, 2006). In general, non-dormant 

seeds are capable of germinating in the widest range of environmental conditions, 

such as temperature and light, while increasing dormancy leads to a narrowing of 

this range. Seeds are said to be fully dormant when they are no longer capable of 

germinating in any conditions.  

Figure 8.1 illustrates this behaviour in terms of primary and secondary dormancy. In 

a population with low primary dormancy (Figure 8.1A-B), a high proportion of seeds 

would germinate at either 4°C or 16°C. However, high levels of germination would 

only be expected at 4°C in a population with higher dormancy (Figure 8.1C - D). A 

comparison between panels A and C also illustrates why the time required for a 

particular fraction of the population to germinate may be greater in populations with 

higher dormancy (e.g. Chantre et al., 2009). Figures such as these showing 

cumulative germination patterns after different dormancy breaking or inducing 

treatments are common in the literature, and are reported for a wide range of species. 

Some examples include germination in wild rice (Figure 8 in Probert and Longley, 

1989), wheat (Figure 1 in Walker-Simmons, 1988), sugar beet (Gummerson, 1986), 

onion (Figure 7 in Ellis and Butcher, 1988), Jatropha (Figure 1 in Windauer et al., 

2012), and poplar (Figure 1 in Wang et al., 2013). This suggests the basic 

mechanism may be common to many species, and models such as this may be useful 

in explaining their germination behaviour. 

It is also common to see final germination percentages plotted at different 

temperatures to illustrate how various treatments, such as pulses of light (Figure 1 in 

Saini et al., 1989) or after-ripening (Figure 11.1 in Probert, 2000) can alter 

dormancy. Figure 8.2 illustrates how the dormancy model predicts this type of 
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behaviour. Effects of two dormancy breaking treatments were simulated by altering 

the maturation temperature, thereby simulating different levels of primary dormancy. 

A similar method could also potentially be used to incorporate effects of additional 

factors such as light, water potential, nitrogen and hormone concentrations. 

 

 

Figure 8.1 Predicted germination of two seed populations at two different temperatures 

(A) and (B); A population with low primary dormancy (high maturation temperature) incubated at 4°C 

and 16°C respectively. (C) and (D); A population with high primary dormancy (low maturation 

temperature) also incubated at 4°C and 16°C respectively. The dormancy model was used to predict 

frequencies of primary dormancy (green), secondary dormancy (black) and germination (red) during 

stratification over 4 weeks. Black circles indicate the cumulative germination. 
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Figure 8.2 Predicted effects of dormancy levels on germination at different temperatures 

The maximum germination percentages at a range of temperatures were predicted for two seed 

populations. Filled circles indicate a population with high initial primary dormancy, and open circles 

indicate a population with low initial primary dormancy.  
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dormancy establishment could therefore be linked to the regulation of fatty acid 

synthesis by light and temperature, rather than being linked to the circadian clock. 

A more reliable indication that a process is under circadian control is rhythmic 

behaviour which persists in constant conditions. Accordingly, a rhythmic oscillation 

in response to light was observed in imbibed seeds incubating in constant darkness at 

16°C (Figure 6.13). Primary dormancy loss at lower temperatures did not exhibit any 

circadian oscillations, which were therefore presumed to be exclusive to warm 

temperature induced secondary dormancy. This can also be interpreted as further 

evidence that primary and secondary dormancy operate with distinct mechanisms 

(Bouwmeester and Karssen, 1993; Derkx and Karssen, 1993a; Barua et al., 2012).  

Oscillations were also found to be unaffected by constitutive CCA1 expression; a 

core component of the shoot clock (Locke et al., 2005; Locke et al., 2006; Pokhilko 

et al., 2010; Pokhilko et al., 2012). This was surprising since constitutive expression 

of CCA1 has been shown to abolish rhythmic expression of many other genes in 

constant conditions (Wang and Tobin, 1998). However, previous findings have also 

shown that oscillations in responses to germination in light were independent of GI; 

another clock component (Oliverio et al., 2007). These results hint at the existence of 

a seed specific clock, which oscillates independently of CCA1 or GI, and may 

therefore have a different architecture to the shoot clock. It is possible for example 

that a seed specific clock may share some similarities to the root clock which was 

previously reported to be a simplified version of the shoot clock (James et al., 2008). 

A role for flowering genes in the control of dormancy in Arabidopsis has already 

been described in the case of FLC (Chiang et al., 2009), and similarities between 

flowering pathways and control of bud dormancy in perennial plants have also been 
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described (Horvath, 2009). Pleiotropy in genes controlling seasonal events such as 

flowering and germination, could therefore be common. Further similarities, 

particularly those conferring links between the circadian clock and primary 

dormancy establishment during seed maturation, and also with regulation of 

secondary dormancy are therefore anticipated to be an important aspect of future 

dormancy research. 

 

8.1.3 The significance of flowering timing for germination strategies 

The development of a seed dormancy model incorporating both maternal, and post-

dispersal temperature effects allowed the link between reproductive timing and seed 

dormancy to be investigated. Simulating seed dispersal on different dates revealed a 

distinct transition in germination behaviour when mean daily temperature exceeded 

14°C (Figure 4.11 and Figure 4.12). The model predicted seeds dispersed at 

temperatures below this threshold would possess long term dormancy. This was 

because the level of primary dormancy would prevent germination until secondary 

dormancy was induced. Seeds would therefore remain in the soil seed bank until the 

return of conditions that alleviate secondary dormancy. However, if seeds were 

dispersed at temperatures above 14°C, the model predicted high levels of 

germination shortly after dispersal, since the rate of primary dormancy loss would 

surpass rates of secondary dormancy induction. The timing of dispersal in relation to 

the annual temperature cycle is therefore crucial in determining germination 

behaviour. 

To integrate these findings with reproductive phenology, a photothermal model of 

seed set timing was also developed. Three models were initially suggested, which 
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differed in the way photoperiod was used to modify rates of seed maturation (Figure 

3.3). However in practice, model choice made little difference owing to the relatively 

minor effect of photoperiod in comparison to temperature (Figure 3.6). Simulations 

showed that the time required to transition from flowering to seed dispersal was 

largely dependent on the flowering date, which ultimately determined the 

temperature experienced. However, when combined with a model of flowering time 

(Wilczek et al., 2009) it was apparent that not all flowering dates were equally likely. 

Autumn and early spring germination, which are the most common emergence times 

for Arabidopsis, often resulted in synchronous spring flowering (Figure 3.8A). This 

also meant seeds would be produced and dispersed in the same environment, despite 

parent plants having a potentially large range of germination dates (Figure 3.8B). 

This behaviour was also resistant to modest changes in flowering date. For example, 

if flowering of a typical winter annual was shifted earlier or later than originally 

predicted, the time required for seed development would simply increase or 

decrease, meaning that roughly the same dispersal date was maintained (Figure 3.11 

and Figure 7.4). These results illustrated that plasticity of growth rates in each 

growth phase (vegetative to flowering; and flowering to seed dispersal) served to 

buffer against perturbations in germination and flowering date, and ensured the 

environment at seed dispersal was maintained.  

Combining these results with the simulations of the dormancy model suggested this 

particular seed dispersal environment was highly relevant, since it was typically very 

close to the 14°C dormancy threshold (Figure 7.3). It was therefore suggested that 

seeds produced early during dispersal would be highly dormant owing to the 

relatively low seed maturation temperature. However, during the course of the 

dispersal period, newly matured seeds would be increasingly less dormant as 
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temperatures rise above 14°C. This would mean offspring germination would be 

spread across multiple seasons, therefore creating a bet-hedging strategy. 

Bet-hedging was first described in desert annuals, which stagger their emergence 

over multiple years (Cohen, 1966). This was seen as a risk spreading strategy which 

evolved to avoid catastrophic reproductive failure in an unpredictable environment. 

Results of field experiments presented in this thesis also demonstrated how the 

fitness associated with germination in any particular season is not always predictable 

(Table 3.2). Sowing in autumn in 2011 led to a high proportion of plants reaching 

reproductive age, whereas sowing in spring led to high mortality due to early 

drought. In contrast, sowing in autumn the following year led to high mortality due 

to late snowfall in spring when plants had already begun flowering, but sowing in 

spring led to good survival. A bet-hedging strategy would ensure a fraction of the 

seed population germinates in the best season, whilst preventing synchronous 

germination in a bad season, and may therefore be advantageous in this location. 

Diversifying bet-hedging is defined as a strategy in which individuals of a single 

genotype express multiple phenotypes (Philippi and Seger, 1989). Applied to seed 

dormancy, this means a single parent should produce offspring which emerge at 

different times without any heritable differences between them. Maternal effects are 

thought to play an important role in producing this variation (Fenner, 1991). Model 

simulations suggested that spring and winter annuals are likely to produce both 

dormant and non-dormant seeds owing to the continuously increasing mean daily 

temperature in spring. However, small differences in the microenvironment caused 

by the positioning of individual seeds on the parent plant can also create variation in 

seed dormancy (Philippi, 1993; Gutterman, 2000). A field emergence experiment 
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demonstrated that even a seed batch produced under constant 18°C can spread 

emergence timing over at least two seasons (Figure 6.11). 

 

8.1.4 Predicted effects of climate change on Arabidopsis phenology 

Spreading emergence timing has been documented in a diverse range of species, 

including some animals (Evans and Dennehy, 2005). In plants however, this strategy 

relies on the maintenance of a viable seed bank (Fenner and Thompson, 2005). 

Current climate models forecast potential mean surface temperature increases of up 

to 4.8°C by the end of the century (Stocker et al., 2013). The frequency and intensity 

of heat waves is very likely to increase, and in mid-latitude and subtropical regions 

drought and flooding events will become more frequent, causing greater disparity 

between wet and dry regions. Bet-hedging could therefore be an increasingly 

important strategy as the environment becomes more unpredictable. However, 

increases in mean global temperatures could lead to reduced seed dormancy and 

viability, and changes in precipitation could lead to increased seedling mortality. 

Climate change could therefore threaten seed bank persistence; an issue which few 

studies have so far addressed (Ooi, 2012). Model simulations also showed that for 

seeds dispersed at temperatures above 18°C, at least 50% would germinate without a 

requirement for light. Summer dispersal in many locations was therefore predicted to 

result in high levels of germination (Figure 5.14), which was not repressed until 

temperatures reached in excess of 31°C. Under these circumstances very few seeds 

would be capable of long term dormancy, and the soil seed bank would not be 

replenished.  
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However, results presented in this thesis also suggest that phenotypic plasticity 

would play a significant role in mediating the effects of changes in climate. When 

simulations were run using photoperiod and temperature data from different 

locations, plasticity in flowering time meant that spring and winter annuals 

maintained similar seed dispersal conditions (Figure 7.1), meaning a seed bank and 

bet-hedging strategy would most likely be maintained. This was generally consistent 

in climates similar to the Col ecotype’s native environment in Northern Europe, and 

suggests a single ecotype could be capable of a wide geographic distribution without 

requiring genetic adaptation, or significant alterations to annual habits.  

The same was also true if the climate in a particular location was modified. Mean 

annual temperatures in Gorzow, Poland were altered to simulate climate change and 

examine the effects on seeds at dispersal. With small increases in temperature, 

flowering time in winter annuals became earlier (Figure 7.2) and this did not have a 

large effect on the predicted seed maturation temperature (Figure 7.3). Early spring 

flowering has already been observed in many plant species as a result of 

anthropogenic climate change (Fitter and Fitter, 2002; Parmesan, 2006; Cleland et 

al., 2007), and was also recently demonstrated experimentally in Arabidopsis with 

artificial warming experiments (Li et al., 2013). However, simulations showed that 

raising the temperature by more than 3°C increasingly pushed seed set into a 

dormancy inhibiting environment, as increases in growth rates could not keep up 

with advancing warm temperatures in spring. This was partly due to the vernalisation 

requirement built into the flowering model (Wilczek et al., 2009), which caused a 

reduction in the rate of photothermal unit accumulation if the vernalisation 

requirement was not fully met. An increase in sensitivity to vernalising temperatures 
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may therefore be required to allow plants to flower earlier if winters become milder 

(Stinchcombe et al., 2005b). 

The effects of altered flowering time were also investigated, and while seed set 

timing was resistant to late flowering of up to two weeks, earlier flowering had 

virtually no effect (Figure 7.4). This suggests late flowering phenotypes may be 

selected against, due to the potential effect on seed dispersal. Genetic variation at the 

FRI locus has been interpreted as selection for early flowering (Le Corre et al., 

2002), and analysis of over 100 plant species also showed that early flowering was 

generally favoured due to environmental factors (Munguia-Rosas et al., 2011). 

However these types of studies generally measure fitness by seed yield, and 

offspring fitness is rarely considered. The direction of selection may also be 

dependent on germination timing, since flowering early in autumn rather than 

delaying flowering until spring can be detrimental (Donohue et al., 2005c). 

The results of these simulations suggest the winter annual habit would convey the 

greatest resilience to climate warming, by enabling a persistent seed bank and bet-

hedging strategy to be maintained. In current climates across Northern Europe, the 

models predict the same seed dispersal conditions are maintained for both spring and 

winter annuals. This is because flowering time is relatively insensitive to 

germination dates from autumn to early spring. However as the climate warms, the 

models predict that flowering time will become more sensitive to germination date, 

and the range of germination dates which result in these seed dispersal conditions 

will be reduced. The timing of germination would therefore become increasingly 

important. Seasonal emergence timing is still poorly understood, and is generally 

assumed to be a result of secondary dormancy cycling. It was demonstrated that 

secondary dormancy was broken in Col and Ler ecotypes by a shift from a 20°C to 
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4°C (Figure 6.9 and Figure 6.10), and diurnal temperature fluctuations in this range 

correlated with seedling emergence in the field (Figure 6.11). Given the importance 

of germination timing, more research is needed to understand these processes. In 

particular, the regulation of secondary dormancy which remains largely mysterious, 

should be the focus of future dormancy and germination phenology research. 

To summarise, the results in this thesis have shown that it is possible to reproduce 

the effects of pre- and post- dispersal temperature on seed dormancy by modelling 

simultaneous primary dormancy loss and secondary dormancy induction. Combining 

models of flowering and seed set timing revealed a conserved seed dispersal 

environment for spring and winter annuals. This environment coincided with a 

predicted shift in dormancy behaviour that occurred when mean daily temperatures 

exceeded 14°C. This would most likely result in the production of seeds with a range 

of dormancies, therefore spreading emergence timing across multiple seasons. It was 

suggested that this could be a deliberate bet-hedging strategy to reduce the chance of 

reproductive failure in unpredictable environments.  

Simulations also suggested that plasticity in flowering and seed dispersal timing 

would buffer against changes in germination and flowering date, and small changes 

in climate. This could allow a single ecotype to exist in a wide geographic range, and 

withstand small changes in mean annual temperature without the requirement for 

genetic adaptations. Models also predicted that winter annuals would be most 

resilient to climate change, however beyond temperature increases of 3°C 

adaptations such as increased vernalisation sensitivity may be required. This study 

also highlighted the importance of seasonal germination timing, and pointed towards 

links between dormancy and the circadian clock. 
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Abbreviations 

 

ABA Abscisic Acid 

Col Columbia ecotype of A. thaliana 

Cvi Cape Verdi Islands ecotype of A. thaliana 

FR Far-red light 

GA Giberrelic acid 

Ler Landsberg erecta ecotype of A. thaliana 

LFR Low Fluence Response 

PD Physiological dormancy 

Pfr Inactive, far-red light absorbing phytochrome 

Pr Activated, red light absorbing phytochrome 

R² Coefficient of determination; defined in equation [7] 

RMSE Root Mean Squared Error; defined in equation [34] 

SE Standard Error 

VLFR Very Low Fluence Response 
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Glossary 

 

After-ripening A period of dry storage to alleviate dormancy 

Bolting First visible sign of flowering, appearance of the flowering stem, or 

inflorescence 

Circadian rhythm An endogenous oscillation which persists in constant conditions, and 

has a period of approximately 24 hours 

Dehiscence The splitting of seed containing siliques at maturity 

Dormancy Failure of a viable seed to germinate in favourable conditions 

Homoscedasticity In statistics, the property of having equal variance 

Imbibibition The process by which the seed absorbs water  

Life history The history of an organism’s life cycle 

Maternal effect The phenotype of an individual is affected not only by its genotype 

and the environment, but also by the maternal genotype or phenotype 

Maturation The phase of seed development after embryogenesis, in which 

primary dormancy is established 

Phenology The study of periodic natural events 

Phenotype An organism’s observable characteristics or traits 

Phenotypic plasticity Ability of an organism to change its phenotype in response to 

changes in its environment 

Phytochromes A family of light sensitive photoreceptors in plants 

Primary dormancy Dormancy which is established during seed development 

Quiescence A non-dormant seed which does not germinate due to a lack of 

suitable environmental conditions (e.g. light, moisture,O2) 

Scarification Scratching or cracking the seed coat to encourage germination 

Secondary dormancy Dormancy which develops after seed dispersal 

Seed set Gone to seed (i.e. seed shedding or dispersal) 
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Stratification A pre-germination treatment given to seeds to break dormancy, 

usually consisting of a period of moist incubation at low 

temperatures (between 1 and 5°C); however warmer temperatures 

may be used instead 

Thermal time Cumulative temperature or heat-sum, usually has units of degree-

days (°C days) 

Thermoinhibition Inhibition of germination at high temperatures 

Vernalisation The acquisition of flowering competence in spring by exposure to 

winter chilling 

Vivipary Giving birth to live young in animals, or germination while still 

attached to the parent (pre-harvest sprouting) 
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