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Abstract
The sense of touch permits humans to directly touch, feel and perceive the state of

their surrounding environment. For an exploration task, humans normally reduce

uncertainty by actively moving their hands and fingers towards more interesting

locations. This active exploration is a sophisticated procedure that involves sensing

and perception processes.

In robotics, the sense of touch also plays an important role for the development

of intelligent systems capable to safely explore and interact with their environment.

However, robust and accurate sensing and perception methods, crucial to exploit

the benefits offered by the sense of touch, still represents a major research challenge

in the field of robotics.

A novel method for sensing and perception in robotics using the sense of touch

is developed in this research work. This novel active Bayesian perception method,

biologically inspired by humans, demonstrates its superiority over passive perception

modality, achieving accurate tactile perception with a biomimetic fingertip sensor.

The accurate results are accomplished by the accumulation of evidence through the

interaction with the environment, and by actively moving the biomimetic fingertip

sensor towards better locations to improve perception as humans do. A contour

following exploration, commonly used by humans to extract object shape, was used

to validate the proposed method using simulated and real objects. The exploration

procedure demonstrated the ability of the tactile sensor to autonomously interact,

performing active movements to improve the perception from the contour of the

objects being explored, in a natural way as humans do.

An investigation of the effects on the perception and decisions taken by the

combination of the experience acquired along an exploration task with the active

Bayesian perception process is also presented. This investigation, based on two

novel sensorimotor control strategies (SMC1 and SMC2), was able to improve the

performance in speed and accuracy of the exploration task. To exploit the benefits

of the control strategies in a realistic exploration, the learning of a forward model

and confidence factor was needed. For that reason, a novel method based on the

combination of Predicted Information Gain (PIG) and Dynamic Bayesian Networks

(DBN) permitted to achieve an online and adaptive learning of the forward model

and confidence factor, allowing to improve the performance of the exploration task

for both sensorimotor control strategies.

Overall, the novel methods presented in this thesis, validated in simulated and

real environments, demonstrated to be robust, accurate and suitable for robots to

perform autonomous active perception and exploration using the sense touch.
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Chapter 1

Introduction

The research presented in this thesis is undertaken as part of the European

Project ‘Experimental Functional Android Assistant’ (EFAA) whose aim is to

develop brain-inspired methods to incorporate perceptual, behavioural, emo-

tional and cognitive capabilities in humanoid robots. Integrated by five insti-

tutions across Europe which are The University of Sheffield (USFD), Imperial

College London (ICL), Universitat Pompeu Fabra (UPF), Institut National

de la Santé et de la Recherche Médicale (INSERM) and Istituto Italiano di

Tecnologia (IIT), the EFAA project brings together a set of biologically in-

spired methods to develop intelligent robots capable to interact with humans.

Figure 1.1 shows the corresponding investigations for each partner of the con-

sortium of the EFAA project to be implemented on the iCub humanoid robot.

The investigation developed in this thesis, as part of the contributions

by the USFD, addresses the problem of perception with the sense of touch

in the field of robotics by the development of biologically inspired methods.

This research takes inspiration from the way that humans interact using their

sense of touch to perceive and act according to the state of their surrounding

environment. The work developed in this thesis contributes to the investigation

in active tactile sensing for the iCub humanoid robot observed in Figure 1.1.

The methods developed in this work follow a Bayesian approach based on

results from psychophysical studies with humans to perceive and make deci-

sions by touching and exploring the environment with their hands and fingers.

The study and experiments presented in this thesis have been developed with

1



Chapter 1. Introduction

Figure 1.1: The EU EFAA project is composed of five institutions responsible
for investigating in biologically inspired methods for the integration of per-
ceptual, behavioural, emotional and cognitive capabilities in humanoid robots.
This project uses the iCub humanoid robot for the investigations. The research
performed in this thesis is focused on tactile perception and exploration as part
of the contributions in active tactile sensing by the University of Sheffield.

biomimetic fingertip sensors that resemble the size and shape of human finger-

tips. These sensors, that have been provided by the consortium of the EFAA

project, are part of the sensory system of the iCub humanoid robot.

The proposed Bayesian methods in this research work have demonstrated

to be suitable to achieve high perception accuracy, improving the decisions

and actions made according to the state of the environment perceived by the

biomimetic iCub fingertip sensors. The proposed methods have been validated

with a tactile exploration task chosen from the set of predefined exploratory

procedures performed by humans using their hands and fingers.

The achievements in this thesis have served as contributions to the EFAA

project working with the tactile sensory system of the iCub humanoid robot.
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Chapter 1. Introduction 1.1. Motivation

Moreover, the methods and results described through the chapters of this

thesis, have also led to the publication of works on tactile perception and

exploration in the field of haptics and robotics.

The rest of this chapter is organised as follows: the motivation that sup-

ports the investigations, designs and implementations of this thesis is presented

in Section 1.1. The definition of the problem to be addressed through this re-

search work is described in Section 1.2. The principal aim and objectives to

be accomplished in this work are presented in Section 1.3. The resulting con-

tributions from the investigations performed in this thesis are described in

Section 1.4. In Section 1.5 the list of publications achieved through the re-

alisation of this research work is presented. Finally, Section 1.6 presents the

organisation of the chapters that compose the rest of this thesis.

1.1 Motivation

Biology has served as inspiration to scientists and engineers for the develop-

ment of complex robotic systems which are observed in the diversity of animal-

like and humanoid robots present in industry and academia (Paulson, 2004;

Lepora et al., 2013). Robots in industry are normally able to achieve very

high performance for specific tasks under very well controlled environments.

However, these robots normally perform a set of actions or instructions already

pre-programmed, restricting them to work in protected areas, where the in-

teraction with humans is not permitted for safety reasons and to not interfere

with the production.

On the other hand, the necessity to develop robots capable to safely interact

with humans is growing in areas such as socially assistive robotics, rehabilita-

tion, search and rescue, and for the study of human behaviour (Brooks et al.,

1999; Fong et al., 2003; Goodrich and Schultz, 2007; Tapus et al., 2007; Scassel-

lati et al., 2012). To accomplish this necessity, robots have to make use of their

sensing modalities – for instance touch, vision, hearing, taste and olfaction, as

humans do in order to perceive and understand the state of their surrounding

3



1.1. Motivation Chapter 1. Introduction

environment that continuously changes.

Amongst the sensing modalities available in robotics, the study of touch

has started to receive more attention during the last decades which is relatively

recent compared to the study of vision. One of the reasons for the increasing

interest in the study of touch is due to the advances in sensing technology that

permit the fabrication of biomimetic skin and tactile sensors, small enough

to be integrated in robots and that are biologically inspired by humans. The

study of touch in robotics is also important given that it is the means to

accomplish the physical interaction with the environment rather than only

seeing it (Lederman et al., 1988).

The sensory systems of several biologically inspired robots have already

been equipped with artificial skin and tactile sensors (Nakamoto et al., 2009;

Schmitz et al., 2010a; Schmitz, 2010; Chorley et al., 2010). This feature allows

robots to touch, feel and understand what is happening in their surrounding

environment. This capability requires two main processes: sensation to receive

the physical stimuli; and perception to interpret the data and convert them to

meaningful information (Schiffman, 1990). The resulting information from the

perception process is then useful for making decisions and actions according

to the perceived state of the environment. Hence, the use of both sensation

and perception provides the possibility to develop intelligent robots capable to

behave accordingly to certain situations.

Although sensation has been improved by the advances in sensor technol-

ogy, this is not the same case for perception where biologically inspired methods

are still under development. Most of the works on tactile perception follow the

approach based on image processing techniques and fixed set of rules to per-

form actions (Muthukrishnan et al., 1987; Chen et al., 1995a; Okamura et al.,

1997; Nakamoto et al., 2008; Li et al., 2013). Normally, these methods are

suitable for planar sensor arrays which provide a tactile image. Tactile images

have the advantage to be analysed by well known and widely studied methods

such as geometric moments, smooth and edge filters that permit to extract

object properties and achieve accurate perception results. Another advantage

4



Chapter 1. Introduction 1.1. Motivation

is that tactile images provide a complete view of the shape in contact with

sensor. On the contrary, these methods require large sensor arrays with large

physical dimensions. These sensors and methods are not suitable for the small

sensors needed in humanoid robots, and also, the processing of large amounts

of data from tactile images exponentially increase the computational cost. For

these reasons, these methods are inappropriate for biomimetic fingertip sen-

sors which are designed with small size and rounded shape inspired by human

fingertips. This opens the opportunity to investigate on biologically inspired

methods for tactile perception in robotics with biomimetic fingertip sensors.

Regarding this motivation, psychophysical studies on perception and decision-

making have demonstrated that humans deliberately move their hands and

fingers to accumulate evidence and reduce the uncertainty present in the mea-

surements (Lederman and Klatzky, 1987, 2009). This is also observed when

humans perform predefined exploratory procedures over objects in the envi-

ronment with their hands and fingertips to extract useful information from

them (Klatzky and Lederman, 1990; Lederman and Klatzky, 1993). This pro-

cess of re-locating or moving the hands and fingers to improve perception is

known as active sensing and is observed not only in touch but in all of the

sensing modalities (Bajcsy, 1988; Prescott et al., 2011).

Thus, the study and development of biologically inspired methods to per-

form active sensing and accumulation of evidence offer the possibility to de-

velop robots capable of exploring their environment with a more natural be-

haviour. Having robots able to perceive, make decisions and perform actions

according to the state of the changing environment, would reduce the neces-

sity to build very fixed and constrained operating environments. Moreover,

the reliability and safety, which are important aspects in the design of robots

for interaction with humans, could also greatly benefit from the biologically

inspired perception approach.

5



1.2. Problem definition Chapter 1. Introduction

1.2 Problem definition

The problem of interaction and exploration using the sense of touch in robots

require of the sensation and perception processes. The advances in the tech-

nology for the fabrication of tactile sensors have permitted the development

of sensors that resemble the shape, size and capabilities of human fingertips.

Despite these technological advances for the sensation process, there is still

the problem of perception using biomimetic tactile sensors to allow robots to

interact, explore and understand their surrounding environment.

Tactile perception requires investigation on the organisation and interpreta-

tion of the tactile measurements to build an accurate tactile perception system

suitable for robots. This problem also involves investigations on how to reduce

uncertainty from the measurements in order to improve perception. A natural

way to address these problems is taking inspiration by the sophisticated way

that humans actively move their hands and fingers to improve perception dur-

ing an exploration task. Then, addressing the problem of tactile perception

in robotics also permits to investigate on the process of making decisions and

actions to allow robots to perform accurate exploration movements.

Undertaking this research to address the described problem, would allow

the integration in robots of an accurate biologically inspired framework to

safety interact with their environment using the sense of touch.

1.3 Aims and objectives

The aim of this thesis is the investigation, design and implementation of bio-

logically inspired methods for tactile perception and decision-making in robots

equipped with artificial skin, in order to provide them with the capability to

explore and make decisions and actions over their environment according to

the tactile sensory observations. This aim is inspired from the sophisticated

way that humans and animals behave in specific situations by perceiving their

surrounding environment through the interaction using the sense of touch.

6



Chapter 1. Introduction 1.3. Aims and objectives

The accomplishment of the proposed aim involves the following objectives:

• Conducting the literature review of the following topics: 1) the sense

of touch in humans and animals used for the exploration of their envi-

ronment; 2) perception and decision-making models from psychophysical

studies with humans and animals; 3) fabrication technology for artificial

tactile sensors; 4) perception in robotics using the sense of touch and its

application to tactile exploration.

• Development of a novel tactile robotic platform controlled by active

Bayesian perception. This platform permits the performance of active

movements with the iCub fingertip sensor in order to improve perception

from tactile measurements.

• Construction of novel and robust tactile datasets systematically collected

from the biomimetic iCub fingertip sensor for the research on tactile

perception. Unlike vision, robust datasets for investigation of tactile

perception models are almost non-existent. These datasets are necessary

for the investigation of active Bayesian perception using the sense of

touch in robotics.

• Design and development of a novel accurate and robust biologically in-

spired method for tactile perception in robotics using biomimetic fin-

gertip sensors. This process requires methods for organisation, analysis

and interpretation of tactile measurements, which allows robots to make

decisions and actions through the interaction with their surrounding en-

vironment.

• A novel method for tactile exploration actively controlled by the Bayesian

perception approach. The test of the proposed tactile perception method

is based on the contour following exploration procedure commonly used

by humans to extract object shape. This exploration task allows to ob-

serve the movements of the fingertip sensor actively controlled by the

7
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proposed Bayesian approach, and also permits to analyse the perfor-

mance on speed and perception accuracy of the proposed method.

• The objectives previously described are required to validate the accuracy

and robustness of the proposed method. Then, experiments in both

simulated and real environments need to be designed. For the simulated

environment, the contour following exploration is performed on objects

created with real tactile data to obtain more realistic results. On the

other hand, the robotic platform for active Bayesian perception is used

with the iCub fingertip sensor to extract the shape of various objects in

a real environment.

1.4 Contributions

The principal aim of this thesis for addressing the problem of tactile perception

in robotics produced the following contributions:

• A comprehensive review of the sense of touch in biology and robotics.

This literature review covers investigations and advances in tactile sensor

technology, perception models and tactile perception robotics, providing

a better understanding about the state of the art and the gaps for the

sense of touch in robotics (Chapter 2).

• The development of a robotic platform controlled by tactile feedback for

the investigation of tactile perception using the active Bayesian percep-

tion approach. The robotic platform and the control framework devel-

oped permit the investigation of tactile perception with a diversity of

biomimetic fingertip sensors (Chapter 3).

• Systematic and controlled collection of tactile datasets using the biomimetic

iCub fingertip sensor from various stimuli. These robust tactile datasets

permit the investigation of the accuracy for the development of percep-

tion methods with biomimetic fingertip sensors (Chapter 3).
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• The development of a novel biologically inspired method for tactile per-

ception with biomimetic fingertip sensors based on the active Bayesian

approach. The method is based on the accumulation of evidence using

an active Bayesian approach and a sequential analysis method. This

approach is inspired by the results from psychophysical studies with hu-

mans for perception and decision-making (Chapter 3).

• Design and implementation of a novel sensorimotor architecture for test-

ing the proposed biologically inspired method for tactile perception with

an autonomous tactile exploration task. The tactile exploration actively

controlled by the active Bayesian perception approach, is based on the

contour following procedure inspired by the way that humans commonly

extract object shape (Chapter 4).

• The development of two novel sensorimotor control strategies to combine

experience and active Bayesian perception along the tactile exploration

task. This combination permits to analyse how the amount of experience

used in the active perception process affects the performance on the speed

and perception accuracy (Chapter 5).

• A novel algorithm for an adaptive implementation of the proposed sen-

sorimotor control strategies for the combination of experience and active

Bayesian perception during an autonomous exploration task (Chapter 6).

This method permits to observe how the amount of experience adapts

according to the perception along the exploration task.

• Integration of the perception methods using iCub humanoid robot to

perform object shape and size classification in collaboration with partners

of the EU EFAA project for annual reviews.
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1.6 Outline

The rest of the thesis is organised in the six chapters as follows:

• Chapter 2 provides a comprehensive review of the sense of touch from

the point of view of biology and robotics. First, a general description of

the sense of touch in humans and animals is covered. This is followed

by the description of passive and active perception modalities used in

the tactile sensing process. The models for the decision-making process

from psychophysical studies are also presented. Then, the state-of-the-

art on tactile sensing in the field of robotics is presented, which includes

tactile sensor technologies, tactile perception and exploration methods

using robotic hands and fingertips.

• Chapter 3 presents the proposed Bayesian perception approach for tac-

tile perception using the sense of touch in robotics. This method is

inspired by the way that humans accumulate evidence to reduce uncer-

tainty from the tactile measurements. The modules that compose the

proposed perception method are also described. The passive and active

characteristics of sensation and perception are also integrated with the

proposed Bayesian perception method and tested in a simulated envi-

ronment. The superiority and benefits of active over passive perception

with the Bayesian approach are analysed in terms of the performance in

speed and perception accuracy.

• Chapter 4 presents a tactile exploration task inspired by how humans ex-

tract object shape based on the contour following exploratory procedure.

This task is implemented using the proposed method to actively interact

with the environment, perceive, make decisions and actions to success-

fully accomplish the exploration task. The development of the sensori-

motor architecture used for the control of the biomimetic fingertip is also

presented. The analysis of the performance in speed and accuracy of the

proposed method is presented as well as the contour extracted by both
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passive and active perception modalities. The experiments performed in

this chapter are tested in both simulated and real environments.

• Chapter 5 presents the analysis of the effects on speed and accuracy when

the experience acquired along an exploration task is combined with active

Bayesian perception. This investigation is inspired by psychophysical

studies where experience, used as a weighted prior, is provided to humans

in order to observe how the speed and accuracy in their decisions are

affected. Two proposed sensorimotor control strategies are presented to

investigate how the amount of experience affects the speed and accuracy

of the Bayesian perception approach along an exploration task. The

proposed strategies are based on the inclusion of a weighted prior and a

weighted posterior controlled by a confidence factor and a forward model.

For this analysis, the forward model used for prediction of the sensory

observations during the tactile exploration task is assumed to be known.

• Chapter 6 presents an online adaptive approach to improve the perfor-

mance in speed and accuracy with both sensorimotor control strategies

described in Chapter 5. This approach, through the used of a forward

model, predicts the tactile observations which are combined with the ac-

tive Bayesian perception method. The combination is weighted based

on a confidence factor that is adapted according to the reliability of the

perception process and the forward model. This method permits to im-

prove the speed and perception accuracy for the decision-making process

over the results obtained in previous chapters for the contour following

exploration task of an object.

• Chapter 7 summarises the work and experiments performed in this the-

sis. The general conclusions for the proposed active Bayesian perception

method and its combinations with the proposed sensorimotor control

strategies are provided. The benefits of using the proposed method for

tactile perception and exploration with the sense of touch in the field of

robotics are described.
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Chapter 2

The Sense of Touch

Humans and animals have adapted and evolved their sensing modalities or sen-

sory systems to be aware of the state of their environment which continually

changes with time. In humans, and in most animals, there exist five specialised

senses –touch, sight, taste, hearing and smell– that are used together for a com-

plete understanding of the environment. The information available from the

environment is received and interpreted in a specific manner according to the

senses triggered (Delius, 1987). For many decades, vision or sight has been

the most widely studied sense even though touch is the most primordial sense

that allows humans and animals to construct a physical representation of the

world by investigating directly with their bodies (O’Shaughnessy, 1989). Psy-

chophysical experiments have demonstrated that the sense of touch permits to

feel directly the environment based on the temperature, texture, shape, force,

pain and other physical properties (Dargahi and Najarian, 2004; Lederman

and Klatzky, 2009). Moreover, the impact of the sense of touch is not only

limited to physical contact but also presents important psychological effects to

humans and their relations (Fisher et al., 1976; Najarian et al., 2009).

Motivated by this, researchers from the field of robotics have put signifi-

cant effort into building intelligent systems capable of interacting with their

surrounding environment using the artificial sense of touch. This has also en-

couraged the development of sophisticated artificial tactile sensor technologies

to be integrated in a wide variety of robots (Nicholls and Lee, 1989; Lee, 2000),

which has opened a large possibility of research in tactile robotics. Most of the
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investigations have been focused on tactile exploration using robotic hands and

fingers inspired by how humans explore and interact with the world (Stans-

field, 1986; Lederman and Klatzky, 1987). This would allow robots to know the

state of the environment by directly interacting with it. Despite the progress

and achievements in tactile robotics, there is still a long road ahead to have

autonomous robots making use of the sense of touch as humans do.

The aim of this chapter is to provide a description of the sense of touch

in biology and its implementation in robotics. First, in Section 2.1 an in-

troduction to the importance of the sense of touch in biology is presented.

Descriptions of the sense of touch in humans and the animal kingdom are pre-

sented in Section 2.1.1 and Section 2.1.2 respectively. Second, the definition

and components of tactile sensing are presented in Section 2.2. Section 2.2.1

and Section 2.2.2 introduce passive and active touch modalities. The decision-

making process in humans is describe in Section 2.3. Then, the impact and

importance of the sense of touch in robots are presented in Section 2.4. Next,

the different tactile sensor technologies developed for robotics are mentioned

in Section 2.4.1. Section 2.4.2 presents a review of the implementation of the

artificial tactile sensing for exploration and recognition in robotics. Finally,

Section 2.5 presents the conclusions of the sense of touch and its impact for

the design and development in the field of robotics.

2.1 The sense of touch in biology

This section describes the importance of the sense of touch, the characteristics

of the different parts involved in the process of sensing and their functionality

from the initial tactile contact through to the signals arriving to the brain.

Then, an introduction to the different modalities of the sense of touch used by

some species of the animal kingdom under different environments is presented.
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2.1.1 Sense of touch in humans

Touch is located in our skin which is the largest sensory organ, covering the

whole body. It is a versatile sensory organ that protects us against foreign

agents and physical injury. It also regulates the body temperature, helps to

regulate the blood pressure, holds vital body fluids, permits feeling of the ex-

ternal environment and provides a way of physical communication with people.

However, touch is commonly underrated even though it is probably the most

primordial sense given that it allows humans to feel and construct a physical

representation of the world (O’Shaughnessy, 1989).

The sense of touch is really important and its loss would be reflected in the

loss of the ability for dexterous hand manipulation, tactile perception, control

of movements, knowledge of limbs position and in general the absence of any

physical stimuli from the world (Robles-De-La-Torre, 2006). Two cases of loss

of the sense of touch demonstrate the catastrophic results, removing the ability

to control the limb movements, speaking, chewing and feeling physical contact

from the exterior (Cole and Paillard, 1995).

The sensations from the environment start by contacting the skin which is

embedded with a variety of nerve endings responsible for the registration of

different stimuli from external changes. These nerve endings or receptors are

classified as mechanoreceptors (pressure and vibration), nocireceptors (pain)

and thermoreceptors (temperature) (Dargahi and Najarian, 2004). There are

approximately fifty receptors for every 100mm2 of skin forming about five mil-

lion sensory receptors over the whole body (Johansson and Westling, 1984).

The mechanoreceptors provide a larger contribution to register mechanical dis-

turbances in our skin and four types –Pacinian corpuscles, Meissner’s corpus-

cles, Merkel’s discs and Ruffini cylinders– are embedded all over the skin where

each responds to a specific stimuli (Dargahi and Najarian, 2004). Figure 2.1a

shows a cross section of the skin with the different types of mechanoreceptors.

The sensitivity to stimuli from mechanical deformation on the skin is re-

lated to the number of touch receptors and their receptive field size, with the

sensitivity inversely proportional to the size of the receptive field. Touch re-
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(a) (b)

Figure 2.1: (a) Types of mechanoreceptors embedded in the skin used to reg-
ister specific stimuli (Source: Life: The science of biology). (b) Measure of the
sensitivity of different areas of the body based on the two-point discrimination
experiment.

ceptors are not evenly distributed in our skin and the fingertips, lips and palms

are the most dense areas occupied by mechanoreceptors with small receptive

fields. For these reasons, fingertips, composed of a large number of receptors

with small receptive field, are the most sensitive areas of the body (Vallbo

et al., 1984; Johansson and Flanagan, 2009). The measurement of the sensi-

tivity of the different areas of the body has been undertaken with the two-point

discrimination experiment, that detects the smallest separation of two points

of stimulation that humans are able to distinguish (Figure 2.1b).

Human sense of touch depends on mechanoreceptors to detect and react

to deformations of the skin from contact with external objects. However,

humans also depend on the feedback of the internal state of the body provided

by the proprioceptive sensory system. Proprioception is located in muscles,

tendons and joints and allows us to know the relative angle and position of our

limbs. This sensory system has demonstrated to be important for instance,

during reaching or grasping tasks with the hands and fingers (Bossom, 1974;

Gentilucci et al., 1997).
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Figure 2.2: Human brain with somatosensory (blue) and primary motor
(brown) cortex highlighted. The somatosensory cortex receives and processes
the stimuli from touch receptors in the skin. The primary motor cortex sends
back the appropriate signals to the different areas of the body. The homuncu-
lus (top) shows the sensitivity differences for each part of the body, being the
fingers, lips and palms the most sensitive.

The sensory information generated by touch receptors in the skin is sent to

the brain passing first through the spinal cord. The somatosensory cortex is

the area of the brain that receives the stimulations from the skin (blue region

in Figure 2.2). Each area of the skin is projected in specific regions of the

somatosensory cortex. Moreover, some areas such as fingertips, lips and palms

are represented by larger areas in the sensorimotor cortex since they are more

densely embedded with touch receptors. Once the stimuli that arrive to the

somatosensory cortex are processed, the corresponding signals are sent back

from the primary-motor cortex in the brain to control the different areas of

19



2.1. The sense of touch in biology Chapter 2. The Sense of Touch

the body (brown region in Figure 2.2).

Taking into account all the characteristics aforementioned, it is clear that

human hands and fingertips in conjunction with proprioception, provide an

important, sophisticated and ideal biological tactile sensor for exploration,

manipulation, interaction and learning of the state of the world.

2.1.2 Sense of touch in animals

The sense of touch is not only essential for humans but also in the animal

kingdom it is of vital importance. Animals need to assess and explore their

environment to search for food, communicate or simply to survive from preda-

tors. They feel the environment using their sense of touch according to their

morphology. For instance whiskers, antennae and spider webs are some exam-

ples of different modalities of touch used by animals.

Rats are better at exploring and detecting objects using their sense of

touch based on whiskers or vibrissae than vision. This is a sophisticated sense

of touch that allows rats to perform successful exploration in darkness. Ex-

ploration of their environment by repetitively moving their whiskers back and

forth is known as ‘whisking’ (Diamond et al., 2008a,b; Mitchinson et al., 2011).

Also they can control the speed of the whisking behaviour and direct the head

to the most interesting location for exploration.

Seals are another example of a sophisticated vibrissal system for accurate

underwater exploration. They are able to register sensations even under cold

temperatures, contrary to humans that for low temperatures lose their tactile

sensitivity. Seals possess an adaptation system, allowing them to explore under

extreme thermal conditions (Dehnhardt et al., 1998).

Star-nosed moles that live in tunnels completely rely on their sense of touch

by moving the tactile ‘star’ when searching for food or exploring the environ-

ment (Catania, 1999). They usually touch an object of interest several times

and eat it if this is recognised as prey. Similar behaviour has been observed

with moles without tactile ‘star’, where instead they perform a tapping proce-
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dure with their nose against the object.

Spiders have a specialised sense of touch based on vibrations generated

in their webs. It has been observed that their behaviour can be guided and

controlled by vibrations from their webs (Barth, 1998). The different properties

of the vibrations can inform the spiders about what is happening around them,

for instance distinguishing between a prey trapped in the web or simply a

vibration generated by the wind. Generation of specific vibrations are also

used by spiders to communicate with each other across their webs.

The animal kingdom shows that not only human hands and fingers are an

ideal tactile sensor but also, there exist a wide variety of specialised tactile

sensors that animals use under different environments and weather conditions

where human sense of touch simply does not work properly. The next section

describes the tactile sensing process performed by humans in passive and active

modalities to measure tactile sensitivity and tactile exploration respectively.

2.2 Tactile sensing

The process of receiving stimuli from mechanical deformations on the skin

originating from the external environment is known as tactile sensing. Tactile

sensing gives humans and animals the capability of recognising physical prop-

erties from objects (Najarian et al., 2009). As aforementioned, humans not

only use touch receptors but also proprioception for dynamic exploration and

interaction with the world. This brings out, similar to other sensing modali-

ties, a separation of the sensing process into passive and active sensing (Gibson,

1962). These sensing modalities are described in the following sections.

2.2.1 Passive sensing

The recognition task of an object using the hand and fingers, where either the

person or the object are not able to move, is known as passive sensing (Gibson,

1962). This means that the exploration of the object by moving hands and
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fingers to extract more information is not allowed. This makes the recogni-

tion of an object a slow and difficult process with low accuracy. For instance,

very low perception accuracy was observed in an experiment for shape recog-

nition where human index fingertip, based on passive sensing, was not allowed

to move (Smith et al., 2009). The low accuracy obtained is related to the

impossibility to collect more information for reducing uncertainty about the

shape of interest. Recognition of three different shapes (bump, hole and flat)

was affected by disabling fingertip movements based on an apparatus to keep

fixed the arm, wrist and finger (Robles-De-La-Torre and Hayward, 2001). The

low accuracy achieved with passive sensing is also related to the small num-

ber of mechanoreceptors activated due to the static stimuli (Chapman, 1994).

However, there is still controversy about the robustness and evidence provided

from the experiments that initially presented passive perception as a low per-

formance and atypical sensing process (Lederman, 1981).

Researchers instead, have focused on the used of passive sensing for measur-

ing thresholds of a static skin contact and determine how the sensitivity differs

in each part of the body (Weinstein, 1968; Loomis and Collins, 1978). These

measurements have been widely studied with two experiments: a) absolute

threshold that detects when something has touched the skin; and b) two-point

discrimination threshold that measures the minimum distance for detecting

two simultaneous contact stimulations on the skin. Figure 2.1b shows the

sensitivity of different parts of the body obtained from the two-point discrim-

ination threshold experiment.

For these reasons, passive sensing is not suitable for exploration and recog-

nition using the sense of touch. However, the controversy of the experiments

that suggested the low performance of passive sensing, motivated this work to

undertake an investigation of its performance in two scenarios: 1) maximum

perception accuracy achieved with a large tactile dataset; and 2) implementa-

tion of a tactile exploratory procedure using a biomimetic tactile sensor, and

supporting the idea initially provided in (Gibson, 1962).
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2.2.2 Active sensing

Active sensing, in contrast to the passive sensing modality, refers to the ability

to make voluntary movements, e.g. moving the hands and fingers, during the

exploration of an object (Gibson, 1962). Humans and animals tend to move

or direct their senses purposely to obtain more information about an object

or event in the world. For instance, normally we move our eyes, hands and

direct our ears to accumulate and gain more knowledge from the interaction

with the world. Therefore, sensing is considered to be an active process rather

than passive one (Prescott et al., 2011), and this has been experimented under

various scenarios probing the superiority of active over passive sensing for

object exploration and recognition (Lederman et al., 1988; Chapman, 1994;

Robles-De-La-Torre and Hayward, 2001).

For an object recognition process, it has been identified that humans make

use of a set of exploratory procedures based on predefined hand and finger-

tip movements related to the information of interest from the object (Leder-

man and Klatzky, 1987, 1993). Figure 2.3 shows these exploratory procedures

performed by humans. For instance, lateral motion, squeezing and contour

following are used to extract information about texture, hardness and shape.

These exploratory movement patterns are an application of active sensing

where humans normally perform a certain number of deliberate contacts and

movements to extract the information of interest. Another characteristic of

these exploratory movements is their invariability with respect to the object

to be explored. Psychophysical experiments have demonstrated that active

sensing allows humans to achieve high accuracy for the recognition of object

properties such as shape, texture and hardness through the exploration with

the hand and fingers (Lederman and Klatzky, 1987; Robles-De-La-Torre and

Hayward, 2001; Smith et al., 2009).

In the animal kingdom, the active sensing modality is also clearly observed

on rats and star-nose moles. Rats tend to direct their whisker towards an object

of interest, varying also the speed of the whisking to extract more information

during an exploration behaviour (Grant et al., 2009; Mitchinson et al., 2011).
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Figure 2.3: Human exploratory procedures used for extraction and recognition
of object properties. These movement patterns are related to the information
required for recognising the object being explored (Source: Sensation & Per-
ception).

Similarly, star-nose moles move their ‘stars’ towards an object and control the

whisking in order to recognise the object being explored (Catania, 2011). These

works show that active sensing allows to acquired interesting information to

increase accuracy during an exploration and recognition process.

The exploratory procedures performed by humans during an exploration

task in conjunction with active sensing provide an efficient and natural method

for object recognition based on the extraction of properties. This has motivated

the study and comparison of a tactile exploratory procedure using active and

passive sensing modalities implemented in a robot equipped with a biomimetic

fingertip sensor (see Section 3.5).

The decisions made by humans are based on the evidence that they have

collected through the interaction with an object or observation of a certain

event. Two models developed for describing how these decisions are made are

presented in the next section.
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2.3 Biological decision-making process

Decision-making is another component that humans use during an exploration

procedure. Decision-making, based on the sensing and perception processes,

is responsible for making the correspondent decisions between a set of alter-

natives. Studies from neuroscience and psychology have shown that decisions

are based on the accumulation of evidence from certain events (Smith and

Ratcliff, 2004; Shadlen and Roskies, 2012). In Psychology, two models have

been used to explain the functioning of the accumulation of the evidence for a

decision-making process. The first model, known as ‘competing accumulators’,

determines that a decision should be made once an alternative has exceeded

a decision threshold through the evidence accumulated for a certain time. On

the other hand, the ‘diffusion’ model says that a decision should be made

once the difference between the winning alternative and the losing alterna-

tive has exceeded a decision threshold (Bogacz, 2007). A description of both

decision-making models are shown in Figure 2.4.

Normally, speed and accuracy are the criteria used to determine the thresh-

old for a decision-making process. Typically, during an exploration task, the

requirement of highly accurate decisions will increase the time required to make

a decision, whilst faster decisions will compromise their accuracy (Shadlen and

Roskies, 2012). The speed and accuracy trade-off needs to be tuned to obtain

an optimal performance from the decision-making process. However, how to

define this criteria is not currently known and some works have proposed the

adjustment of speed and accuracy based on 1) rewards and punishments asso-

ciated with success and failure of certain task (Sugrue et al., 2005); and 2) the

use of prior knowledge about the most likely alternative when new evidence is

not available (Hanks et al., 2011).

These reasons have motivated the investigation of the effects of the speed

and accuracy trade-off during an exploration task with a tactile robot (see

Chapter 5). Two methods for analysing the speed and accuracy criteria based

on 1) weighted prior; and 2) weighted posterior are introduced and imple-
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Figure 2.4: Decision-making models based on the accumulation of evidence.
A) ‘Diffusion’ model accumulates evidence from the difference between the
winning and losing alternatives. Once this difference exceeds the threshold a
decision is made. B) ‘Competing accumulators’ model makes a decision as soon
as the accumulated evidence from one of the alternatives exceeds a threshold.

mented with a tactile exploration procedure.

At this stage, a description of the sense of touch, the tactile sensing modal-

ities and the decision-making process have been introduced. An exploration

procedure using the sense of touch can be summarised as follows: the ex-

ploration starts with sensations based on stimuli produced by mechanical de-

formation of the skin. These sensations, registered by mechanoreceptors, are

sent to the spinal cord which is responsible for forwarding the signals to the so-

matosensory cortex. In this region of the brain, signals from tactile sensing are

processed and sent to the primary-motor cortex region which is responsible for

generating the corresponding action commands for the body. The generation

of these commands is based on the output from the decision-making process

that governs the actions performed by humans.

The sense of touch in humans and animals has motivated researchers in the

design, fabrication and integration of artificial sense of touch in robots. This

has opened up a wide range of opportunities for investigations on decision-
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making, exploration and interaction with robots by means of tactile sensing.

In the following sections, a review of the artificial sense of touch and their

different technologies are presented. Moreover, a description of the integration

of artificial sense of touch in robotics is provided, covering applications for

tactile exploration, recognition and interaction.

2.4 The sense of touch in robotics

Robotics research and design paradigms have changed and evolved over time to

solve the necessities of society. Initially, robots were designed to perform spe-

cific and repetitive tasks in industry without the intervention of humans (Gar-

cia et al., 2007). These robots did not require knowledge about the current

state of their surrounding environment. However, in the 1980s robotics was

defined as the science for studying perception, action and their intelligent con-

nection between them (Siciliano and Khatib, 2008). This paradigm shifted

robotics research by boosting the development of methods for building safe,

flexible and adaptable biologically inspired robots capable to explore and in-

teract with humans and their surrounding environment.

Since biologically inspired robots are expected to explore and interact with

their environment, simulating the way that humans and animals do it, they

need to be equipped with artificial senses. This would permit robots to observe

and understand the state of the world from different modalities (Dahiya et al.,

2010). The inspiration from biology for the integration of artificial senses in

robots has provided different robust modalities for data collection, exploration

and interaction with the world. Most of these advances have been provided

by the integration of artificial vision. However, tactile perception based on the

integration of the artificial sense of touch is the sensing modality that currently

fails to match the capabilities that it provides to humans and animals for feeling

and interacting with their environment (Prescott et al., 2009).

For that reason, the study, integration and understanding of the sense

of touch is of vital importance in robotics, for enabling them to understand
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their surrounding environment by feeling, exploring and interacting. Motivated

by this and the vast capabilities that the sense of touch is able to provide,

the integration of the artificial sense of touch in a wide variety of robots is

growing rapidly. This has also opened the possibility for investigations related

to perception, decision-making, exploration, interaction and learning under a

large variety of applications.

The integration and understanding of the artificial sense of touch in robotics

which is undoubtedly required, will contribute to the achievement of the design

and development of autonomous robots able to safely co-habit with humans.

In the following sections, first a description of various artificial tactile sen-

sor technologies and their integration in different robots is presented (Sec-

tion 2.4.1). Then, Section 2.4.2 provides a description of the different algo-

rithms developed for analysing tactile data under a wide variety of applications.

2.4.1 Artificial tactile sensor technologies

Integration of the sense of touch in robots provides, similar to humans, a

natural way for knowing the state of the changing environment. Specifically,

robotic hands and fingertips covered with artificial skin offer a sophisticated

tool for feeling, grasping and manipulating objects, bodies and tools (Jayawant,

1989). The study and development of artificial tactile sensor technologies have

received attention since the 1980s, growing rapidly and making available a wide

variety of sensors and tactile data processing methods. However, developments

in hardware and software for tactile sensing appear to be very much in their

infancy, compared with the advances achieved in artificial vision (Lee, 2000).

Some reasons for this are the complexity of the sense of touch, the need of

physical interaction, the diversity of touch receptors embedded in the skin, and

the characteristics that it needs to incorporate such as robustness, reliability,

correct friction, very low forces detection, stable, durable and resistant to

repeated impacts against objects (Nicholls and Lee, 1989).

In general, the tactile sensor technologies developed since the 1980s can
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be divided into piezoelectric, capacitive, inductive, resistive, optical and mag-

netic sensors. Each of these technologies that implements specific transduction

methods are used for detection of specific stimuli.

Capactive sensors

Capacitive sensor technology is one of the oldest and most popular transduc-

tion methods used in robotics. These capacitive sensors, generally composed

of two conductors separated by a dielectric material, can be constructed with

very small dimensions (Schmitz et al., 2010b), providing the possibility to

build relatively large tactile sensor arrays. Normally this technology is used

to detect and measure pressure contact with the exterior. Some drawbacks of

this technology are the hysteresis and low time stability, however, usually they

offer high accuracy and flexibility for implementation (Tegin and Wikander,

2005). Capacitive sensors can be found in various robots, for example, the

iCub humanoid robot (see Figure 2.5) was initially equipped with artificial

skin in its fingertips and palms and currently it also has been covered with

artificial skin in torso, arms and forearms (Schmitz et al., 2010a, 2011). This

converts the iCub humanoid robot into a flexible and reliable open platform

for the study of tactile perception and interaction with its surrounding envi-

ronment (Maiolino et al., 2012). Various robotic arms and hands integrated

with artificial tactile sensor based on capacitive technology can be found for

the investigation of exploration and recognition (Son et al., 1996; Schneider

et al., 2009). These works demonstrate that this sensor technology permits

the detection of a variety of properties such as hardness and shape based on

physical interaction with the object.

Force sensors

Commonly, robotic arms, hands and fingertips are also integrated with force

sensors located in their joints. Force sensors normally are built with strain

gauges mounted on a robust metal flexure (Salisbury Jr, 1984). This sensor
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(a) (b) (c)

Figure 2.5: (a) Capacitive sensor fabricated for a biomimetic fingertip sensor.
(b) iCub hand integrated with biomimetic fingertip sensor. (c) iCub humanoid
covered with artificial skin in torso, arms, forearms, palms and fingertips.

technology is observed in a three-fingered robotic hand with force sensor lo-

cated in its fingers, which permits a more reliable control during a contact

detection procedure (Dang et al., 2011). The robotic arm in (Chen et al.,

1995b) is equipped with force sensors capable of maintaining a soft and con-

tinuous contact with object surfaces. A force sensor integrated in a robotic

platform, for the development of a tactile servoing framework, permitted the

control of contact position (Zhang and Chen, 2000). The gradually design and

integration of pressure and force sensors in prosthetic hands have permitted to

mimic the natural motion and contact detection observed in humans (Carrozza

et al., 2003; Zollo et al., 2007). In general, the combination of pressure and

force sensor technologies permits a more natural contact detection which also

are important for a robust control and avoidance of possible damages.

Piezoelectric sensors

Transduction from applied stress or force into an electric voltage can be achieved

by piezoelectric sensor technology. Piezoelectric sensors are very sensitive to

vibrations producing also high output voltages which makes it a good tech-

nology for applications of slip detection (Howe and Cutkosky, 1993). How-

ever, this sensor has shown to provide better response to dynamic stress or

forces given that the output voltage tends to decrease over time (Puangmali

et al., 2008). In (Hosoda et al., 2006) a biomimetic fingertip sensor inspired
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by human fingertips was built with piezoelectric technology showing robust

detection for lateral motions and pushing against various materials. However,

the random location of touch receptors inside the fingertip made it difficult to

know the contact location which is required for tactile exploration. This sensor

technology was tested with a five-fingered robotic hand in (Takamuku et al.,

2007). In this work, hardness and texture properties were obtained based on

stereotyped exploratory procedures such as squeezing and tapping, showing

reasonable accuracy for a small number of objects.

Optical sensors

Optical sensor technology is based on light emitters and receivers normally

used for contact detection and obstacle avoidance. This technology also pro-

vides a solution for the wiring complexity problem presented in other sensor

technologies (Yousef et al., 2011). The three-fingered robotic hand in (Hsiao

et al., 2009) is equipped with optical sensors for measuring the proximity dur-

ing contacting an object. A transparent fingertip built with plastic optical

fibres presents a complete optical touch system (Yamada et al., 2005). This

fingertip detects tactile contact when the light transmitted by the optical fibres

is reflected, modifying the amount and angle of light received. Sub-millimetre

resolution is another property of this sensor technology that was demonstrated

in this optical fingertip sensor. Two planar sensor arrays composed by opti-

cal fibres and designed for dexterous manipulation are described in (Begej,

1988). The first sensor was composed of a 32×32 planar sensor array, whilst

the second sensor composed by 169 taxels was designed inspired by the shape

of human fingertips. These sensors connected to a display were able to show

the shape of various objects, under the constraint that the object needs to

be smaller than the dimensions of the tactile sensor. This sensor technology

cannot be built in very small dimensions due to the need of light emitters and

receivers. However, the information from objects based on variations in the

reflectance of the light permits applications for detection of presence, position,
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texture recognition and colour (Najarian et al., 2009).

Binary sensors

Contact detection based on discrete values (On/Off ) is normally implemented

with binary sensor technology built with contact switches (Webster, 1988).

The integration of this technology observed in a five-fingered robotic hand

(Figure 2.6) designed for prosthetic applications emulates the behaviour of

the mechanoreceptors (Edin et al., 2006). The binary sensors located in the

fingertips permit to detect if there is (On) or there is not (Off ) a contact

and then, react to external stimuli. The study presented in (Tajima et al.,

2002) proposed a method to overcome the limitation of the binary sensor tech-

nology, to work with only two discrete values, by implementing a multi-level

binary sensor array. This approach, fabricated with a flexible circuit board

and implemented on the torso of a humanoid robot, was able to detect dif-

ferent contact pressure values according to the sensor array levels activated.

Binary sensor technology is a simple approach and has been implemented in

some robots, however, it has not been as popular as other sensor technologies

given its limitation in resolution and accurate magnitude of contact forces.

Hall-effect sensors

Artificial sense of touch, biologically inspired by animals, also has demon-

strated advances in tactile sensor technology for different robots. Robotic

whiskers based on Hall effect sensor technology were developed in (Pearson

et al., 2007; Sullivan et al., 2012). The integration of this sensor in a rat-

like robot with a controlled whisking movement was able to perceive different

stimuli (Figures 2.7a and 2.7c) . An artificial whisker based on an electrostatic

sound sensor was built to actively explore a variety of sandpapers (Lungarella

et al., 2002). In this work, the active sensing modality was provided by a

rotating cylinder holding different sandpapers, whilst the whisker was contact-
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(a) (b)

Figure 2.6: (a) Prosthetic hand designed with binary touch sensor technology
that emulates the mechanoreceptors located in human hands. (b) Similarity
of shape and size between prosthetic and human hand.

ing the different materials passively. However, this sensor was able to extract

some properties from textures. A mouse-like robot integrated with artificial

whiskers is presented in (Fend et al., 2005), performing wall following and ob-

stacle avoidance behaviour with passive tactile modality. Touch sensing from

insects has also motivated the development of artificial antennae for detection

and exploration. A work of gradual development of active antennae composed

of torque sensors, joint position sensors and actuators is observed in (Kaneko,

1994; Ueno and Kaneko, 1994). Figure 2.7b shows this artificial sensor, which

demonstrated to be an accurate contact location tool (position and angle)

against an object on the 2D plane. The detection was inspired by the active

exploration behaviour performed by insects (Kaneko et al., 1998).

More recently, research in the field of underwater robotics has been inspired

by the whiskers from seals given that they have demonstrated to be a robust

and sophisticated tactile sensor under extreme thermal conditions. In (Beem

et al., 2013) an artificial seal’s whisker was fabricated with bend sensors gen-

erating output voltages related to the force of bending. This whisker sensor

was calibrated in a tank and tested in the sea proving to be a good tactile

sensor for angle flow detection with passive sensing modality. Fluid motion,

angle and wake detection were achieved by an artificial whisker inspired by ma-

rine animals (Eberhardt et al., 2011). This sensor was built with a capacitive
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(a) (b)

(c) (d)

Figure 2.7: (a) Mobile rat-like robot with whiskers using the Hall effect sensor
technology. (b) Robotic antenna based on torque and joint position sensors.
(c) Robotic arms equipped with robotic whiskers. (d) Artificial harbour’s seal
whisker using bend sensors to measure fluid motion.

technology, and despite the corrosion observed in the plates of the capacitor

and the limit range of frequencies detected, it was shown to be reliable for

monitoring fluid motion fluctuations in four possible directions (Figure 2.7d).

The description of the advances in different tactile sensor technologies, mo-

tivated by humans and animals, demonstrate that researchers are paying more

attention to the study, development and improvement of the artificial sense of

touch. Despite these technological advances, touch sensing is still in its early

stage compared to the advances achieved in vision. Therefore, the study for a

better understanding of the sense of touch and robust data processing models

for tactile exploration and interaction are still needed. However, some robots,

specifically the iCub humanoid robot that is equipped with artificial skin in fin-
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gertips, palms, torso, arms and forearms make it an ideal platform for the study

of human tactile sense of touch. Moreover, this humanoid robot is integrated

with biomimetic sensors that for example, its robotic fingertips resemble the

shape and size of humans fingertips. For those reasons, this humanoid robot

has also opened up a large possibility for investigations on human behaviour

and interaction models. Thus, the production of robust models biologically

inspired by humans and animals will permit to achieve reliable, safe design

and development of robots, capable to co-habit with humans.

Although artificial sense of touch has been integrated in different robots for

exploration and recognition, the development of robust methods for tactile data

processing are still a major research challenge. These methods are required to

give meaning to the tactile stimuli from the environment which commonly are

used for discrimination and exploration tasks to know the changing state of the

surrounding environment. A review of different artificial intelligence methods

used to provide meaning to the tactile data obtained from the artificial skin is

presented in the following section.

2.4.2 Tactile exploration

Integration of artificial tactile sensors in robots has opened the possibility

to undertake a wide variety of investigations on tactile exploration, recogni-

tion and decision-making models. For this reason, different methods for tactile

data processing have been developed in both simulation and real environments,

giving meaning to the external stimuli detected with artificial skin. The in-

vestigations based on these tactile data processing methods have been focused

mainly on the study of exploratory procedures –sliding, tapping, contour fol-

lowing, squeezing– with robotic hand and fingertip sensors inspired by the

way that humans perform object exploration. Similarly, inspiration from the

whisking performed by rodents has led to the development of robotic platforms

for the study of exploration procedures with artificial whiskers.
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Tactile primitives

An initial study on tactile primitives and exploratory procedures for robotics

was presented in (Stansfield, 1986). In this work, a set of algorithms for

detection of tactile contact, edge, corner and texture were proposed for the

implementation of exploratory procedures such as contour following with a

robotic planar tactile sensor array. However, these algorithms for feature de-

tection were based on simple activation of specific taxel patterns without any

other processing method, making this approach not completely suitable for

autonomous robots where noise and other external factors affect the tactile

data. These tactile primitives were taken as the foundation for a recognition

task by means of properties extracted using robotic fingertips (Bajcsy et al.,

1987). Unfortunately, there is not a detailed description of the implementation,

control and results of the tactile primitives.

Edge detection and tracking

Edge detection and tracking is an essential task required to develop robotic

tactile sensor systems capable to explore and extract object shapes whilst

following their contours. This procedure, known as contour following, is one

of the most common exploratory procedures used by humans. One of the

first works on edge detection using planar tactile sensors and image processing

techniques was implemented in (Muthukrishnan et al., 1987). The method

proposed was based on the segmentation of grey scale images by the application

of Sobel and Roberts filters to tactile images acquired from the planar sensor

array. Results showed the possibility to extract the edge of various objects.

However, this method presents some drawbacks: 1) it is completely inspired by

vision sensing modality without exploiting the tactile properties of the sensor;

b) it is computationally expensive given the convolution operation required by

application of filters; and c) the recognition process is constrained to the use

of small enough objects that fit in the sensor array.

Edge detection, orientation and contact force using a PUMA robot with a
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16×16 tactile sensor array and a three-dimensional force sensor are presented

in (Chen et al., 1995a). The contact force sensor is used only to detect when the

sensor has contacted an object. Similar image processing techniques were used

for edge detection but in this case, also the first three geometrical moments

of the tactile image were used for computing edge orientation. This work

was extended to allow the fingertip sensor to follow the contour of the object

being touched (Chen et al., 1995b). The contact force between the object and

the robotic sensor was continuously observed, ensuring a constant movement

without losing the contour of the object. However, again these methods are

completely based on image processing and certain assumptions such as the

edge of the object always need to contact two sides of the sensor array making

the system not very flexible and robust for real-time tasks.

An approach based on adaptive thresholds for edge detection using a 9×15

planar tactile array is proposed in (Berger and Khoslar, 1989). This algorithm

reads the pressure obtained from each taxel which is then set to one or zero if

the threshold was exceeded or not. Even though the edges are extracted, they

are fixed to predefined values (one or zero) which does not really show the

pressure used for detecting the edge. The authors argue that edge tracking

is possible using their method, however, they did not present a method for

detection and recognition for edge orientation, testing their method only with

straight lines.

Recently, an edge detection and tracking method using a low resolution

tactile sensor composed by a 2×2 matrix was proposed in (Phung et al., 2010a).

This method is based on recognition of specific patterns with a state machine

to determine if the sensor is over the edge or out of the object. Here, a binary

sensor technology (On/Off ) was used which seemed to be faster since there

are only 16 different activation patterns. However, it would not be feasible for

the large number of patterns that normally can be read from interaction with

an object. Also, this method was tested only in simulation without taking into

account the presence of noise that certainly would compromise the performance

on a real-time task.
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(a) (b) (c)

Figure 2.8: (a) Planar sensor array mounted on a Kuka arm for edge recogni-
tion and tracking based on image processing techniques. (b) Optical rounded
shape fingertip sensor based on the detection of light changes received. (c)
Optical three-axis gripper for edge tracking that uses external light receiver
and emitter.

An optical three-axis tactile gripper was used for edge detection (Abdullah

et al., 2011). One of the gripper works as light emitter, whilst the other works

as receiver (Figure 2.8a). The obstructions encountered by the light emitted

are observed in the receiver forming a tactile image. This method is easily

affected by external light conditions and requires very precise calibration to

have aligned every transmitter and receiver. Figure 2.8b shows a more robust

implementation of edge detection with a tactile sensor using light emitter and

receiver that is presented in (Chorley et al., 2010). To avoid issues with ex-

ternal light conditions, the light emitter and receiver were placed inside the

tactile sensor. Thus, any deformation on the fingertip surface is observed in-

side the sensor and processed using a geometrical approach for edge detection.

A drawback with this approach is the limitation on the size of the sensor given

the requirement of an emitter and receiver.

A framework to control the contact force and object tracking with a planar

sensor array mounted on a robotic arm is proposed in (Li et al., 2013). This

work implemented image processing techniques for edge detection, recognition

of orientation and tracking (Figure 2.8c). Despite the inspiration from vision

sensing methods, this approach demonstrates fast and accurate performance

during a real-time contour following task.

Three force resistors mounted on a robotic arm permitted to follow the con-
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tour of different objects (Suwanratchatamanee et al., 2007). The orientation

of the robotic arm during a contour following task is controlled by the force

detected on each force resistor. For this reason, this method requires to use

large objects for contacting all the resistors. However, this could be overcome

using smaller force resistors which would also increase the tactile accuracy.

The review of methods presented for edge detection and tracking com-

monly use image processing techniques demonstrating large influence from

vision sensing. Treating the tactile data as an image matrix is suitable for

planar sensor arrays which normally are implemented in industrial processes.

However, for biologically inspired robots these methods would not be suitable

given the rounded shape and small size of robotic fingertips. In this case,

more sophisticated methods inspired by how humans feel, perceived and make

decision are still needed.

Enclosing the objects

Enclosing an object with hands for shape recognition is also commonly used

by humans. Related to this, several works using a variety of robotic hands and

tactile data processing have achieved object shape extraction. A two-fingered

robot using a bag-of-features technique was able to recognise a wide variety

of objects (Schneider et al., 2009). The construction of the codebook is based

on image templates built from several tactile contacts with the objects being

touched. For an exploration and recognition process, each tactile contact or tap

performed is compared with the templates on the codebook choosing the most

similar. Interestingly, an improvement in shape extraction and recognition was

observed when taps at specific positions were performed over random taps.

This can be seen as an active sensing process.

Object shape was recognised by a three-fingered robotic hand using a Self-

Organising Map (SOM) approach (Johnsson and Balkenius, 2007). Pressure

and proprioceptive information were used as input data for the SOM approach.

The tactile information was obtained from different objects with a predefined
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(a) (b) (c)

Figure 2.9: (a) Shape extraction by enclosing an object with the fingertips
of a robotic hands. (b) Object shape extraction enclosing objects with palms
and fingers of a three-fingeres robotic hand. (c) Enclosing objects with a
biomimetic robotic hand for object shape extraction.

and fixed set of exploratory movements about each object.

A study of tactile exploration using a five-fingered hand and a potential

field approach is presented in (Bierbaum et al., 2008). This method is based

on prior knowledge of the objects to be explore. Therefore, the model of

different testing objects –sphere, cylinder and a telephone– were computed.

The exploration is guided by potential fields enclosing the hand to specific

parts of the objects that seem to contain useful data. However, this approach

presents two main constraints: 1) the contact detection method requires the

use of convex objects; and 2) the exploration time could require nearly 2500

tactile contacts.

A five-fingered robotic hand was used for object shape recognition through

an enclosing and rolling procedure (Nakamoto et al., 2008, 2009). This method

is based on rolling different objects between two fingers of the robotic hand for

measuring the tactile pressure and then computing the kurtosis property for

each object (Figure 2.9a). Basically, the kurtosis is used to determinate the

number of sides corresponding to each object. Then, a pentagon will provide

five large kurtosis values, whilst a circle will provide very small kurtosis values.

This is the main feature used by this approach for shape recognition. This work

takes a more natural method for tactile sensing instead of being influenced by

vision sensing. However, the force and time required for rolling an object need
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a very precise control that could be also related to the object size.

A Self Organising Map (SOM), touch sensors and joint angles (proprio-

ception) were used for object shape recognition with a three-fingered robotic

hand (Ratnasingam and McGinnity, 2011). The pressure read from tactile

sensor was used for contact detection and enclosing an object with the hand

(Figure 2.9b). Then, measurements from joint angles were used as input for

a SOM in order to categorise the objects by shape and size. This method

was tested in a real environment keeping the hand in the same position, and

reaching an accuracy of 89% from a set of 25 objects. However, changing the

position of the hand induces noise and affects the classification performance.

For that, active touch could improve the classification regarding to hand move-

ments and also this would show a more realistic biologically inspired approach.

Proprioceptive information from joint angles and tactile data collected from a

sequence of palpations by enclosing the object with a robotic hand were pro-

posed for object recognition in (Gorges et al., 2010). Here, a Bayesian classifier

method was used for object classification providing good accuracy for a large

number of tactile contacts. These results also support the Bayesian paradigm

as a natural method for improving robot perception. However, active touch

was not tested which is also a key feature for tactile sensing. In (Soh et al.,

2012), a spatio-temporal Gaussian process approach for object recognition was

implemented in the iCub humanoid robot (Figure 2.9c). The classification was

based on signatures composed of tactile data and proprioceptive information

learnt in off-line mode and allowing the recognition of a wide variety of objects

in a real-time exploration task. The proposed method achieved good accuracy,

however, active sensing was not included which would provide three main fea-

tures to this method: 1) robustness against noise in tactile measurements; 2)

improvement on speed and accuracy perception; and 3) biologically inspired

tactile exploration.
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Sliding motions

Sliding is another exploratory procedure that has been widely studied with

different tactile sensors and robot technologies for texture recognition. A se-

quence of methods for texture classification based on majority voting and a

Näıve Bayes classifier using a biomimetic robotic fingertip sensor (see Fig-

ure 2.10a) were proposed in (Jamali and Sammut, 2011) and (Jamali and

Sammut, 2010) respectively. Both methods presented good classification accu-

racy, however the Näıve Bayes classifier approach was superior to the majority

voting approach. A drawback of this method is the lack of active sensing for

controlling the fingertip movements. Moreover, the accuracy of the decision-

making could be improved by accumulating evidence through different move-

ments rather than using a single sliding per texture. High accuracy classifica-

tion was achieved using active exploration approach with a robotic fingertip

sensor (Drimus et al., 2012). Here, the tactile data collected was classified and

compared by the following classifiers: K-Nearest Neighbours (kNN), Artificial

Neural Networks (ANN) and Support Vector Machine (SVM). Similar high

accuracy classification was obtained with all the classifiers, given the large

amounts of data employed. However, these methods were tested on a very well

controlled platform and without tactile feedback control which is not suitable

for an robust real-time application. Also, the discrimination process was based

on a single tactile dataset without actively exploring the textures.

Inspiration from the animal kingdom, in particular by rodents, also has

motivated research on texture classification through whisking and tapping ex-

ploratory procedures against different surfaces. Related to this, an initial work

on perception using whiskers is in (Lepora et al., 2010a). In this work, a mobile

Roomba robot was equipped with a Hall effect robotic whisker for recognition

of various textures through a lateral whisking pattern (Figure 2.10b). Discrim-

ination of tactile data from different textures was performed by Näıve Bayes

classifier providing good accuracy. However, tactile exploration was based on

passive sensing given that the robotic whisker was not purposely controlled in

order to optimise its exploration performance as humans and animals do.
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(a) (b)

(c) (d)

Figure 2.10: (a) Biomimetic fingertip sensor for texture recognition based on
sliding movements. (b) Roomba robot equipped with one whisker for texture
recognition based on passive taps. (c) Rat-like robot with left and right side
whiskers for surface detection based on sliding movements. (d) Tap movements
performed by a rat-like robot using a whisker sensor for surface detection.

Application of a Bayesian approach for texture recognition and novelty de-

tection with a rat-like robot is proposed in (Lepora et al., 2010b). In this work,

the biologically inspired robot was equipped with a set of robotic whiskers on

both sides of its face (Figure 2.10c). Passive sensing based on whisking was

used to collect tactile data from the whole whisker system. This method

achieved good accuracy classification and included an attention method based

on novelty detection. However, active control for whisking according to the

level of novelty was not developed. Another method inspired by how rodents

explore their environment proposed the use of a combination of features with

a Gaussian classifier for improvement of texture recognition (Fox et al., 2009).

Figure 2.10d shows the rat-like robot equipped with one whisker passively con-

trolled used for tactile data collection. Different properties from the robotic
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whisker –offset, centroid, energy– were combined with a Gaussian classifier

during contacting a surface. Despite the passive behaviour of the method,

it demonstrated superior accuracy results than the commonly used Artificial

Neural Networks (ANN). A mobile robot integrated with a whisker was able to

recognise a set of 10 indoor and outdoor textures (Giguere and Dudek, 2011).

The tactile data collected from a passively controlled whisker was classified

using an Artificial Neural Network, obtaining low accuracy. The classification

accuracy was improved by increasing the exploration time by a factor of four.

Although this work was implemented in a mobile robot and tested online in

different environments, the classification method did not achieve high accurate

and robust results.

Investigation, development and integration of tactile sensor technologies is

playing an important role in robotics given the necessity of autonomous robots

to be capable to co-habit with humans. Undoubtedly, the artificial sense of

touch is providing a reliable sensing modality to perceive the state of the

continuously changing environment. This is observed in the aforementioned

applications of tactile sensing with different robots and tactile data processing

approaches. Also, it is clearly observed the large influence that vision sensing

has had in most of the tactile data processing approaches, which is understand-

able for planar sensor arrays since they provide an image matrix. However,

robots inspired by humans have started to be integrated with similar rounded

shape and small size fingertips where inspiration from vision sensing is not

really suitable for tactile data analysis. As has been described, some meth-

ods have addressed the tactile data processing using different approaches, e.g.

Näıve Bayes classifiers and Artificial Neural Networks, however this is still in

an early stage with large possibilities on research of the capabilities that the

integration of the artificial sense of touch offers to robotics.

In this sense, the iCub humanoid robot is the most appropriate open plat-

form for investigation of tactile sensing. It is equipped with artificial skin in

palms, fingertips, torso, arms and forearms that resemble the human skin. For

that reason, it is worth the study and implementation of biologically inspired
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perception, decision-making and control methods with the artificial skin of the

iCub humanoid robot, which would provide a framework for exploration and

interaction with its surrounding environment.

2.5 Concluding remarks

The sense of touch is an important and essential component for humans and

animals which allows them to explore, interact and be aware of what is hap-

pening around them. Despite the important role that the sense of touch plays

in the daily life, the advances achieved in robotic applications appear to be in

their infancy compared to the investigations and developments in vision sens-

ing modality. This is also related to the large number of components present

in touch sensing, which makes its investigation a very complex process.

However, some investigations have provided the foundations for the de-

velopment and integration of artificial skin in a variety of robots. Artificial

skin has been developed using different sensor technologies such as capacitive,

optical and hall effect technologies which have been implemented mainly in

planar sensor arrays. Vision sensing modality has hardly influenced most of

the works where planar sensor array were used since they provide a tactile ma-

trix that can be treated as an image matrix. Although this has provided some

results to the field of tactile sensing, these methods are not the most suitable

for biomimetic tactile sensor inspired by humans and animals. In this sense,

some tactile data processing methods have been developed for biomimetic palm

and fingertip sensors. These methods have been applied and studied with ex-

ploratory procedures with hands and fingers as humans do. However, they

are still in an early stage and do not include features such as tactile feedback

for robust control, robustness to noise and reliability in unstructured environ-

ments. For that reason, more investigations need to be undertaken to include

these aspects in order to have reliable and robust biologically inspired tactile

methods.

The iCub humanoid robot designed for the study of cognition is currently
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equipped with artificial skin in fingertips, palms, torso, arms and forearms

which make it the most appropriate open robotic platform for research on

the sense of touch. For that reason, here the fingertip sensors of the iCub

humanoid robot are used to investigate and develop robust biologically inspired

tactile methods for perception and object exploration based on the predefined

exploratory procedures employed by humans.

The next chapter presents a detailed description of perception and the

biologically inspired method developed for tactile data processing. First, a

description of passive and active perception for touch sensing is presented.

Next, the proposed tactile perception approach based on a Bayesian classifier

is introduced. Then, the proposed active Bayesian perception method for

tactile perception in robotics is described. Finally, the proposed method is

validated with a passive and active perception simulation using real tactile

data from the biomimetic iCub fingertip sensor.
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Active Bayesian Perception

Stimuli from the world are detected through different types of receptors ac-

cording to the sensing modalities. For the sense of touch, different types of

mechanoreceptors are responsible for detecting the stimuli, and sending them

to the somatosensory cortex region in the brain. However, this process does not

have any knowledge about the meaning of the received stimuli to act accord-

ingly. A process known as perception plays an important role in the analysis

of the stimuli for converting them to useful information to make accurate de-

cisions and act correctly according to the stimuli received.

Investigations from psychology and neuroscience have proposed that per-

ception by humans is based on the accumulation of evidence from interactions

with the environment across time. Moreover, perception from the received

stimuli can be performed in passive and active modalities. Normally, active

perception permits humans to extract and recognise object properties faster

and more accurately compared to using passive perception. In that sense,

active perception methods can be investigated with probabilistic approaches,

which normally are more robust against sensor limitations, sensor noise and

changing environments permitting the implementation of applications for per-

ception and action in the real world (Thrun et al., 2005). However, probabilis-

tic approaches with perception methods based on accumulation of evidence

have not been widely investigated in tactile sensing for robotics, reducing tac-

tile exploration to a single interaction with objects and without accumulation

of evidence to improve perception and decision-making.

47



3.1. Perception Chapter 3. Active Bayesian Perception

For that reason, this chapter proposes a Bayesian method for tactile per-

ception which provides improvements in the decision-making process by ac-

cumulation of evidence through interaction with an object (Bulthoff, 1996;

Wolpert and Flanagan, 2001; Lepora et al., 2010c,b). The proposed proba-

bilistic method also permits to perform active perception by repositioning the

tactile sensor towards the places with more interesting information (Martinez-

Conde et al., 2004; Najemnik and Geisler, 2005; Prescott et al., 2011). The

active modality together with the accumulation of evidence for improvement

of perception and decision-making (Smith and Ratcliff, 2004; Bogacz, 2007),

offer a robust approach for development of active tactile exploration tasks in

robotics (Sullivan et al., 2012).

This chapter provides a description of perception, their passive and ac-

tive modalities and implementations in robotics for tactile exploration in Sec-

tion 3.1. Next, the tactile robotic platform used for the experiments in this

work is described in Section 3.2. A detailed description of the tactile data

collected with the fingertip sensor is presented in Section 3.3. In Section 3.4

the probabilistic method proposed for perception is described. A comparison

between passive and active perception is presented in Section 3.5. Finally,

section 3.6 presents the concluding remarks.

3.1 Perception

Humans are capable of observing and understanding the state of a continu-

ously changing environment through the sensation and perception processes.

Sensation, which refers to physical stimuli detected and registered by a sys-

tem was presented in Chapter 2. Perception is the process of interpreting

sensory data and converting it to meaningful information. Interpretation of

sensory data by the perception process generally involves organisation, judge-

ment, past experience and memory, to provide information that makes sense

for humans (Schiffman, 1990; Mather, 2006).

Perception for the sense of touch uses the stimuli generated in touch cells,
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especially in mechanoreceptors that detect tactile contact and pressure. Ac-

cording to the previous definition of perception, tactile data somehow needs

to be organised and judged to convert it into meaningful information for the

robot, providing useful information to understand what is happening in its

surrounding environment.

There exists a division between perception in passive and active modalities

related to the way that the stimuli are received by the sensory system. The

description of the perception modalities in the sense of touch is presented in

Section 2.2. The use of perception in robotics is introduced in next section.

3.1.1 Perception in robotics

The integration of the artificial sense of touch in robots has opened up a large

possibility for investigations and tests of different human perception methods.

Robots integrated with touch capabilities are normally equipped with artificial

skin in the hands and fingertips since they are the most sensitive areas of the

human body and an ideal tool for exploration, manipulation and interaction.

For that reason, most of the investigations have been focused on exploratory

procedures for extraction of object properties using tactile data from artificial

skin in hands, fingertips and proprioceptive information from joint angles.

A perception method based on geometric moments and force detection

from a planar tactile sensor mounted on a PUMA robot was used for edge

detection and tracking (Chen et al., 1995b,a). The robotic system first detects

a tactile contact with the edge of an object where image processing techniques

such as Roberts and Sobel filters are used for edge extraction and recognition.

Then, movements of the robotic fingertip sensor are controlled by matching the

orientation between the fingertip sensor and the edge being tracked based on

geometric moments extracted from the tactile image. This method, which is

one of the first perception approaches for tactile exploration, was able to trace

object shape based on a contour following exploratory procedure. However,

this method, that is inspired by vision sensing, depends only on data from the
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current state. Characteristics such as uncertainty and prior knowledge from

previous states are not utilised in the perception.

An extension of the previous work is presented in (Zhang and Chen, 2000),

where the first tactile servoing framework is proposed. In this work, a contact

model of the tactile sensor is presented which is used for expressing robot task

and regulation of contact force. This method also relies on tactile images and

their geometrical moments for movement and orientation control. Similarly,

this approach does not take into account uncertainty from measurements and

decision movements are based on the current state without including prior

knowledge from previous states.

Recently, a new tactile servoing framework for edge tracking and explo-

ration using a planar sensor array mounted on a robotic arm is proposed in (Li

et al., 2013). Here, a set of primitives is also defined, enabling the robotic sys-

tem to perform different tactile exploration tasks. This approach uses pressure

data from a 16×16 tactile sensor array and contact force for controlling tactile

contact and recognition of edge orientation. This method does not include un-

certainty from measurements, and movement decisions are based on data from

a single tactile contact. However, it is demonstrated to be able to accurately

trace object shapes with smooth and fast movements.

Shape extraction is not only achieved by a contour following exploratory

procedure (edge tracking) but also by enclosing the object with robotic hands.

A biologically inspired method based on neural networks was proposed in (Johns-

son and Balkenius, 2007) for shape perception. In this work, tactile pressure

and proprioceptive information from a three-fingered robotic hand were used

as features for object shape perception. This perception approach, based on

a Self-Organising Map (SOM), used a combination of tactile data and pro-

prioceptive information. A modification in the neural activation of the SOM

provided an alternative approach for discrimination between different object

shapes. Despite the biological inspiration of this method, it does not include

two characteristics that are present during a tactile exploration: 1) multiple

tactile contacts for reduction of uncertainty; and 2) active movements to ac-
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quire more interesting information and achieve better object perception.

Active perception of object dynamics with tactile sensors was investgated

by (Saal et al., 2010). A three-fingered robotic hand mounted on a robotic arm

permitted the exploration of object properties by grasping and manipulation.

The perception method was based on active learning using sequential analysis

and sparse Gaussian Processes.

A similar study for shape extraction and recognition with a SOM is pre-

sented in (Ratnasingam and McGinnity, 2011). This work was able to cat-

egorise objects by their shape and size using tactile and proprioceptive in-

formation from a three-fingered robotic hand. For testing the robustness of

this method, Gaussian noise was added to the measurements from joint an-

gles. Results from the shape recognition process, demonstrated this to be a

robust and accurate method for a small number of objects and small Gaussian

noise. However, even though the robotic system was composed of an arm and

a three-fingered hand, the complete capabilities of this robotic platform, e.g.

dexterity and autonomous exploration, were not exploited since each object to

be explored was placed manually by a person in the robotic hand.

Hand and fingertips of the iCub humanoid robot have also been used for

shape extraction using an enclosure exploratory procedure (Soh et al., 2012).

The method proposed is based on the generation of a signature for each object

during a training phase. First, tactile contact with the object is detected by

the fingertip sensors and then proprioceptive information is used to build the

corresponding signature with a Gaussian process. This method was demon-

strated to be robust to the noise present in joint angles and it was tested

with various real object shapes. Despite its robustness and perception accu-

racy, this method could benefit from multiple and actively controlled tactile

contacts with the object to improve perception by accumulation of evidence

inspired by how humans perform object exploration.

Object shape extraction has been studied either by performing contour

following or enclosure exploratory procedures with robotic hand and fingertip

sensors. From the works presented in this Section and previous Section 2.4.2
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we observe that most of the methods for recognition with tactile sensors are

based on implementation of image processing techniques for the analysis of

tactile images which are provided by planar sensor arrays. However, these

methods are not the most suitable for perception using biomimetic fingertip

sensors given their small size and rounded shape inspired by human fingertips.

Another common characteristic present in the current perception methods is

the use of a single tactile contact between robotic hands and objects for per-

ception and decision-making (Johnsson and Balkenius, 2007; Takamuku et al.,

2007; Ratnasingam and McGinnity, 2011; Soh et al., 2012; Li et al., 2013).

In contrast, humans perform repetitive and actively controlled tactile contacts

with the objects until they reach certain degree of confidence for making a de-

cision (Smith and Ratcliff, 2004; Shadlen and Roskies, 2012). This exploratory

behaviour is used by humans to reduce uncertainty from tactile measurements

by accumulation of evidence across time (see Section 2.3).

This research work proposes an alternative perception method based on

a Bayesian approach for tactile exploration with biomimetic fingertip sensors

inspired by human fingertips. This method includes the following biologically

inspired aspects: 1) active movements towards interesting locations for im-

provement of tactile perception; 2) accumulation of evidence from repetitive

tactile contacts with the objects being explored; and 3) decision-making pro-

cess based on threshold crossing by accumulation of evidence. Unlike the meth-

ods for tactile perception described in this Section and previous Section 2.4.2,

the proposed approach is able to perform object exploration by repetitive in-

teraction and accumulation of evidence over time. The proposed Bayesian

method also permits the fingertip sensors to be actively moved or repositioned

towards more interesting locations over the object being explored in order to

improve tactile perception and accuracy of the decision-making process.

The description of the robotic platform and the biomimetic fingertip sensor

used for data collection is provided in the next section. This is followed by

the description of the proposed probabilistic method, which is validated using

passive and active perception modalities with a tactile discrimination task.
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3.2 Tactile robotic platform

A tactile robotic platform used for data collection and online testing of the

investigations was built with a Cartesian robot for precise movements in x- and

y-axes, a NXT robot for movements along the z-axis and a biomimetic fingertip

sensor from the iCub humanoid robot. This tactile robotic platform permitted

to perform movements in x-, y- and z-axes whilst simultaneously collecting

tactile data. A detailed description of each component of this platform is

presented in the following sections.

3.2.1 Robotic platform

The robotic platform is composed of two robots: 1) a Cartesian robot arm

(YAMAHA XY-x series) with 2-DoF (degrees of freedom) for precise position-

ing movements in x- and y-axes; and 2) a MINDSTORMS NXT robot with

1-DoF for movements along the z axis. Both robots were integrated to achieve

controlled exploratory movements in x-, y- and z-axes by mounting and inter-

connecting the MINDSTORMS NXT robot on the Cartesian robot. Figure 3.1

shows the robots that compose the complete robotic platform.

The Cartesian robot arm allowed to perform very precise movements with

an accuracy of ∼ 20µm. In contrast, the low performance of the NXT robot

did not allow precise movements to be achieved. However, this drawback can

be treated positively for: 1) replicating the uncertainty in finger positioning

movements performed by humans; and 2) testing the robustness of the method

proposed with a more realistic system.

The complete robotic platform shown in Figure 3.1c permitted to perform

the data collection process and all the experiments in a real environment pre-

sented through this work.

3.2.2 Biomimetic iCub fingertip sensor

The iCub humanoid robot is equipped with one of the most advanced sensor

technologies offering a robust and reliable open robotic platform for research.
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(a) (b)

(c)

Figure 3.1: (a) Cartesian robot with 2-DoF for movements in x- and y-axes.
(b) NXT robot with 1-DoF for movements along z-axis. (c) Integration of
both robots for tactile data collection with movements in x-, y- and z-axes.

For that reason, tactile data were collected using a biomimetic fingertip sensor

from the iCub humanoid robot. In addition to the advanced technology used

for the construction of this fingertip sensor, its small size (14.5 mm long by

13 mm wide) and rounded shaped resembles the human fingertip (Schmitz

et al., 2010a,b). Tactile data analysis using this biologically inspired tactile

sensor is a more challenging task compared to planar sensor arrays where tactile

data can be treated as an image matrix. Also, this fingertip sensor permits to

demonstrate the robustness of the method proposed in this work. Figure 3.2

shows the dimensions and shape of the iCub fingertip sensor.

The biomimetic fingertip sensor is built with a capacitive sensing technol-

ogy containing an array of twelve taxels (tactile elements) or contact pads of

∼4 mm diameter each that emulate the mechanoreceptors in human finger-

tips. The taxels cover the inner core of the fingertip with a flexible printed
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(a) (b)

Figure 3.2: (a) Dimensions of the iCub fingertip sensor similar to human fin-
gertip. (b) Rounded shape fingertip resembling human fingertip shape.

circuit board (PCB) (see Figure 3.3a). The separation between the centre of

the taxels is ∼5 mm and they are also arranged in an asymmetric order (see

Figure 3.3b) showing once more that image processing techniques do not fit

for this type of biologically inspired fingertip sensors. The PCB is covered

by a ∼2 mm dielectric layer of silicone foam. Finally, an outer flexible and

conductive layer composed of a carbon black-silicone material covers the en-

tire fingertip to create a capacitor (Figure 3.3c). This flexible material also

allows deformations of the surface of the fingertip during tactile contact with

an object, analogous to the deformations that occur in human fingertips.

(a) (b) (c)

Figure 3.3: (a) Flexible PCB covering the inner core. (b) Taxel arrangement
in the iCub fingertip sensor. (c) Dielectric outer layer that allows soft tactile
contact with the exterior.

Tactile measurements from the twelve taxels are read with a sample rate of

50 Hz which are digitised with 8 bit resolution, thus obtaining measurements

in the range [0, 255]. The technology used for the fabrication of this fingertip

sensor resembles the mechanical and sensory structure of the human fingertip

that allows perception of pressure, curvature and edge orientation (Dargahi
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(a) (b)

Figure 3.4: Tactile robotic platform composed by two robots and the
biomimetic fingertip sensor. (a) The tactile sensor is mounted on the tip of
the NXT robot. (b) This architecture permits to perform tactile exploration
based on palpations or taps in x-, y- and z-axes. The movements perform by
the robotic platform are controlled by tactile feedback.

and Najarian, 2004). In particular, the taxels used in the fingertip sensor

respond analogously to the mechanoreceptors in human fingertips to brief and

sustained response from tactile stimuli.

The biomimetic fingertip sensor was mounted on the robotic platform in

order to have a complete system capable of performing real-time tactile sens-

ing procedures controlled by tactile feedback (see Figure 3.4). An exploratory

procedure based on taps or palpations was implemented for data collection and

interaction between the tactile sensor and the objects. Exploration based on

palpations is a procedure commonly used by humans, e.g. object recognition

and medical diagnostics, and it has been previously implemented for an auto-

mated diagnostic task (Dario and Bergamasco, 1988). This exploratory proce-

dure also reduces the damage to the soft material (outer layer) that covers the

fingertip sensor, which could be deteriorated after repeating the experiments

several times with the commonly used sliding procedure.

3.2.3 Control of the tactile robotic platform

A set of modules were developed and implemented for synchronisation and

control of the tactile robotic platform during tactile data collection. Figure 3.5
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shows a diagram with the modules that compose the tactile robotic platform

for data collection which are described as follows:

• Tactile sensor : This module is responsible for tactile contact detection

from the exploration of an object. A tactile contact (Tcontact) is deter-

mined when the pressure from the fingertip sensor (Tpressure) crosses a

tactile contact threshold (Tthreshold).

Tcontact =

 True if Tpressure > Tthreshold

False otherwise

Once a tactile contact is detected a reflex signal is sent to the action

generation module to protect the fingertip sensor against dangerous con-

tact pressures. Simultaneourly, the tactile data is sent to the Controller

module for its processing.

• Tactile robotic platform: This module is responsible for executing tactile

movements in the x-, y- and z-axes during the data collection procedure.

Displacement movements are in the x- and y-axes whilst the palpations

or taps are perform along the z-axis.

• Controller : Control and synchronisation of movements based on the tac-

tile contact detection are performed by this module. It controls the di-

rection of displacements and palpation movements during a tactile data

collection procedure ensuring robust and reliable data.

• Action generation: This module generates the corresponding actions ac-

cording to the signal received from the controller module. These actions

are sent in an understandable format composed of the next (x, y, z)

positioning movement to be executed by the robotic platform.

YARP (Yet Another Robot Platform) was used to ensure a robust commu-

nication and synchronisation between the different modules, robots (Cartesian

and NXT) and the iCub fingertip sensor. YARP is an open-source software
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Tactile robotic platform
Tactile
sensor

Controller

Environment
Action

generation

control and synchronisation
of movements

reflex signal

signal

tactile data

stimuliaction

Figure 3.5: Diagram highlighting the modules used for control and synchroni-
sation of data collection using the tactile robotic platform. The system reflexes
against dangerous tactile contact pressures. These data are also used for pre-
cise control of tactile fingertip movements.

with a set of libraries for interconnection of modules running in one or mul-

tiple computers and operating systems (Metta et al., 2006). YARP is also a

powerful software for development and control of real-time systems that have

been tested with different robotic platforms. The following section presents a

detailed description of the procedure performed for the tactile data collection

used for training and testing the proposed method.

3.3 Tactile data collection

In order to be able to demonstrate the proposed Bayesian perception method

with a discrimination task, a set of tactile data is required for training and

testing. This requirement can be achieved through the use of the tactile robotic

platform previously described. The tactile discrimination task proposed is

based on angle and position perception at the current location of the fingertip

sensor palpating or tapping over the edge of an object. This task is inspired by

the capability of humans to detect tactile contact and perceive edge orientation

using their fingertips.

Thus, tactile data were collected in a systematic and well-controlled proce-

dure as follows. First, a circular object was place on a table for being touched

by the iCub fingertip sensor. Then, the fingertip sensor started the data col-

lection process with a full tactile contact over the plane surface of the object.
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(a) (b) (c)

Figure 3.6: Biomimetic fingertip sensor at different stages of the tactile data
collection from the plastic object. (a) Full contact over plane surface of the
object. (b) Partial contact over the edge of the object. (c) No tactile contact
or palpating outside the object.

The tactile sensor was moving perpendicularly to the edge whilst tactile data

were collected based on palpations. After moving some time, the fingertip

reached the edge of the object, receiving tactile data only from the region of

the fingertip sensor in contact with the object. The data collection finished

when the fingertip sensor was not in contact with the object, palpating in the

air. Figure 3.6 shows the fingertip sensor moving across different regions, e.g.

flat, edge and air regions, over the object used as stimuli for data collection.

Each tap of the palpation procedure had a duration of 2 seconds, generat-

ing a dataset of 12×100 (taxels×measurements) pressure measurements from

the tactile fingertip sensor. The number of measurements are related to the

sampling frequency of 50 Hz. A distance of 18 mm was covered by the fingertip

sensor from full contact to no contact with the object, performing palpations

at every 0.2 mm and generating a total of 90 palpations with 12×100 measure-

ments each. This procedure was repeated along the edge of the circular object

by displacing the fingertip sensor at 5 degrees steps, generating a total of 72

discrete angle steps and covering the range of 360 degrees (see Figure 3.7).

The tactile data obtained from the collection procedure is observed in Fig-

ure 3.8. For visualisation purposes a representative 18 out of 72 angle steps

are presented. The complete tactile data collected is presented in Appendix

A. Each angle step at every 5 degrees represents an angle class forming a total
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Figure 3.7: Data collection procedure from an edge stimulus of a plastic object.
(a) The biomimetic fingertip sensor collects data from 72 angles at 5 degrees
steps perpendicular to the edge of the object. (b) The data is collected based
on taps along the z-axis and displacement movements along x- and y-axes.
For visualisation, only some examples of fingertip sensor moving at different
angles for data collection are shown.

of 72 angle classes. As can be observed in Figure 3.8, for some angles the

tactile data do not present a smooth shape which is related to variations in

the sensitivity of different regions of the fingertip sensor. This can be seen

as a positive feature for testing the robustness and reliability of the method

proposed against the noise present in measurements (see Section 3.4) and for

working with a more realistic tactile system for an exploration task.

Figure 3.9 shows sample data collected from the circular object used as

stimuli. Here, we observed how the taxels are activated along the different

regions of the circular object. For visualisation purposes, 6 plots at 20 degrees

each are presented.

For each angle class there are 90 taps organised in position classes of 5

taps each, forming a total of 18 position classes as shown in Figure 3.10.
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Figure 3.8: (a) Samples of tactile data collected using the tactile robotic plat-
form previously described. The data collection was done at 5 degrees steps
from a plastic object with displacement steps of 0.2 mm perpendicular to the
edge of the object. This was repeated 72 times covering the 360 degrees of the
circle. For each angle step, we formed an angle and 18 position perceptual
classes, obtaining a total of 1296 perceptual classes. The differently coloured
plots for different angles correspond to the regions and orientation of the finger-
tip sensor in contact with the object. For visualisation purposes, here we show
only 18 out of 72 plots with data collected at every 20 degrees. (b) Coloured
arrangement of taxels that permits to observe which taxels are contacting an
object from the different coloured plots.
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Figure 3.9: Samples of tactile data collected around the circular object used as
stimuli. The tactile data shown here correspond to the samples presented in
Figure 3.8a. We observed the activation of the taxels for the different regions
of the circular object. For visualisation purposes, only 6 plots are showed.

The final tactile dataset from palpating over the complete object is composed

of 1296 perceptual classes (72 angles×18 positions per angle). The process

was repeated two times, collecting one tactile dataset for testing and one for

training with a similarity of 56.15%.

The next section describes the probabilistic method proposed for analysis

of the tactile data collected. The method will be tested with a tactile discrim-

ination task based on angle and position perception from the 72 angle and 18

position classes. Also, a comparison of the results obtained from the implemen-

tation of a passive and active perception task will be provided, demonstrating

the superiority and benefits of active over passive perception.

3.4 Bayesian approach for tactile perception

Humans and animals normally perform repetitive tactile contacts, e.g. pal-

pating and whisking, for an object exploration and recognition task. This is

a natural behaviour used for reduction of uncertainty in perception given the
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Position perceptual classes
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(18 position classes)

1 3 5 7 9 11 13 15 17

2 4 6 8 10 12 14 16 18

13mm 14mm

5 taps per class
0.2mm

1

(a) (b)

Figure 3.10: (a) The tactile data are collected along 18 mm at 0.2 mm steps
perpendicular to the edge of the object. The data are grouped in 5 taps per
position class and forming a total of 18 position classes per angle. (b) The
fingertip sensor collects data based on taps along the z-axis and displacement
movements along x- and y-axes.

noise present in sensors and the environment. The uncertainty reduction is

achieved based on the accumulation of evidence extracted from every interac-

tion with the object being explored for recognition (Smith and Ratcliff, 2004).

Moreover, every tactile contact during the exploration process is actively con-

trolled by deliberated hand and fingertip movements towards locations where

interesting data can be acquired.

For those reasons, the design and control of biologically inspired robots

for robust performance of exploration tasks require the integration of these

characteristics. In that sense, probabilistic methods are a natural way for

dealing with uncertainty and accumulation of evidence, which typically pro-

vide robust methods against sensor limitations, sensor noise and environment

dynamics (Thrun et al., 2005).

This motivated the investigation presented in this work to develop and
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implement a Bayesian approach to incorporate and deal with the characteris-

tics required for tactile exploration with biologically inspired robots. Bayesian

theory permits to estimate the state of the world, control the motor system

and perform decision-making in a systematic way within a statistical frame-

work (MacKay, 2003). The Bayesian theory approach also provides a natural

way for the combination of prior information gathered from experience with

new information collected at the current state, and for making optimal deci-

sions to achieve the established goals (Bulthoff, 1996). Despite the advantages

offered by Bayesian theory to build robust tactile perception methods, it has

not been widely exploited in tactile sensing applications compared to the large

number of works and advances that have been achieved in vision.

The next sections describe the components of the proposed Bayesian frame-

work for robust tactile perception. The method is validated with a tactile dis-

crimination task. Also, this approach is extended for investigation of passive

and active perception. Finally, a comparison of both perception modalities is

presented, where the benefits of active over passive perception is observed.

3.4.1 Bayes’ rule

The method proposed in this work uses Bayes’ rule

P (S|Z) =
P (Z|S)P (S)

P (Z)
(3.1)

where P (S|Z) is the probability of a hypothesis S = s conditioned by the

measurements Z = z, known as the posterior, P (Z|S) is the likelihood of the

hypothesis s given the measurements z, P (S) is the prior probability and the

normaliser P (Z) permits to ensure that the conditional probabilities of all

hypotheses sum to 1.

As mentioned in Section 3.4, Bayes’ rule inherently provides a natural

way for updating our belief about the hypothesis P (S) from previous time by

combining it with the likelihood P (Z|S) obtained at the current time. This

formula provides a powerful tool for interpretation of sensory data, e.g. during
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a tactile exploration procedure. Here, Z = {z1, z2, z3, ..., zn} is the set of

measurements from the tactile sensor and S = {s1, s2, s3, ..., sn} is the set of

hypotheses about the object being touch.

The posterior probability from Equation (3.1) is obtained by the combi-

nation of the likelihood and the prior but here, Bayes’ rule is extended to

perform this combination along time until the posterior obtained exceeds a

belief threshold. This is inspired by the sequential analysis theory used for

statistical inference where a decision is made once the belief of a hypothesis

exceeds a decision threshold, making unnecessary prior knowledge about the

number of observations required for an experiment (Wald, 1973). Using Bayes’

rule with sequential analysis it is possible to build a framework for inference,

accumulating evidence for the decision-making process, inspired by studies

from neuroscience and psychology (see Section 2.3). Also, a sequential anal-

ysis approach with a Monte Carlo sampling method for tactile discrimination

was also investigated by (Saal et al., 2010).

This method for making inference can be seen as an active process since

several tactile contacts are required for making a final decision, rather than

relying on a single tactile contact. This provides an improvement in percep-

tion accuracy since the reduction in uncertainty based on the accumulation of

evidence provided by the combination of likelihood and prior over time.

The tactile data previously collected is used for an angle and position dis-

crimination task from the current location of the fingertip sensor. The location

of the fingertip sensor based on its current position and angle are represented

by xl and wi with Nl and Ni perceptual classes respectively. This gives a total

of N = Nl×Ni perceptual classes cn = (xl, wi). The tactile measurements are

represented by z, where the tth contact is denoted by zt and z1:t−1 denotes the

tactile contact history along the time. Thus, using this terminology, Bayes’

formula for the initial tactile perception at time t = 0 can be rewritten as

P (cn|zt) =
P (zt|cn)P (cn)

P (z)
(3.2)

The posterior for an angle and position class cn given a tactile measurement
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zt at time t is denoted by P (cn|zt). The likelihood is denoted by P (zt|cn) which

is obtained at time t. The uniform prior P (cn) = 1/N is used for the initial

perception at time t = 0. This combination is normalised by P (z) which is the

history of the tactile measurements. Each component of Equation (3.2) will

be detailed in the following sections.

3.4.2 Prior

The prior is assumed to be uniformly distributed for all perceptual classes for

the first palpation or tap performed of each state during the tactile discrimi-

nation task. The initial prior is obtained from

P (cn) = P (cn|z0) =
1

N
(3.3)

This defines the posterior P (cn) at time t = 0 with all perceptual classes

equally probable with N the total number of perceptual classes. This prior

will be recursively updated with the likelihoods obtained from each palpation

performed during the discrimination task by the tactile fingertip sensor.

3.4.3 Measurement model and likelihood estimation

Each palpation or tap performed by the tactile fingertip sensor provides a time

series of digitised pressure values from the Ntaxels = 12 taxels. These tactile

measurements are used for the construction of a measurement model with a

nonparametric estimation method based on histograms using the tactile sensor

values from the training dataset collected. The histogram for each perceptual

class was uniformly constructed by binning the sensor values into Nbins = 100

intervals. The measurement model is obtained from the probabilities as

P (b|cn, k) =
h(b, k)∑Nbins

b=1 h(b, k)
(3.4)

The number of observed tactile values sk for taxel k in the histogram is

66



Chapter 3. Active Bayesian Perception 3.4. Bayesian perception approach

denoted by h(b, k). Then, for a given tactile contact z, the log likelihood is

obtained from the measurement model in Equation (3.4) over all samples as

logP (z|cn) =

Ntaxels∑
k=1

Nsamples∑
j=1

logP (bk(j)|cn, k)

NsamplesNtaxels

(3.5)

The bin occupied by the tactile measurement sk(j) is denoted by bk(j),

where j is the number of the sample. In this case, the number of taxelsNtaxels =

12 and the number of samples Nsamples = 100 according to the characteristics

of the implementation of the data collection procedure (see Section 3.3).

3.4.4 Bayesian update

The posterior probabilities are updated by the recursive implementation of

Bayes’ rule over all N perceptual classes cn and the likelihoods P (zt|cn) from

the measurements zt of a palpation at time t.

P (cn|z1:t) =
P (zt|cn)P (cn|z1:t−1)

P (zt|z1:t−1)
(3.6)

P (zt|z1:t−1) =
N∑

n=1

P (zt|cn)P (cn|z1:t−1) (3.7)

The updated posterior from the first palpation to current time t is repre-

sented by P (cn|z1:t). The prior from time t−1 is denoted by P (cn|z1:t−1). The

normaliser denoted by P (zt|z1:t−1) is conditioned on the sum of previous tactile

measurements as shown in Equation (3.7), which ensures that the probabilities

of all hypotheses will sum to 1.

3.4.5 Marginal angle and position posteriors

As mentioned in Section 3.4.1, a class cn corresponds to the pair (xl, wi) where

xl and wi are the position and angle for each perceptual class respectively. The

indices l and i denote the number of position and angle classes respectively.
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The posterior is the joint distribution over these joint classes and then, the

beliefs over an individual position and angle perceptual class are given by the

marginal posteriors

P (xl|z1:t) =

Ni∑
i=1

P (xl, wi|z1:t) (3.8)

P (wi|z1:t) =

Nl∑
l=1

P (xl, wi|z1:t) (3.9)

The position posterior is obtained from the angle beliefs summed over

all position perceptual classes and similarly, the angle posterior is obtained

from the position beliefs summed over all angle perceptual classes. Thus, the

marginal posteriors P (xl|z1:t) and P (wi|z1:t) provide the probability of the po-

sition xl and angle wi classes given the measurements zt from a palpation at

time t with the tactile fingertip sensor.

3.4.6 Stop decision for angle posterior

The process of accumulation of evidence by combination of the likelihood

and the prior as shown in Equation (3.6) reduces the uncertainty from mea-

surements collected with the fingertip sensor and also permits improving tac-

tile perception for an exploration task. According to the sequential analysis

method, instead of using a fixed number of iterations for accumulation of ev-

idence and decision-making, here the continuous accumulation of evidence is

stopped once one of the hypotheses exceeds a decision threshold.

For that reason, a threshold crossing rule is added to the Bayesian frame-

work to stop the accumulation of evidence and then make a better final decision

about the angle and position classes. In order to make a decision about the an-

gle and position perceptual classes when a hypothesis has exceeded a decision

threshold, the maximum a posteriori (MAP) estimate is used
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if any P (wi|z1:t) > θdecision then



wdecision = arg maxwi
P (wi|z1:t)

xl = arg maxxl
P (xl|z1:t)

(3.10)

The angle and position classes estimated are denoted by wdecision and xl

respectively for the tactile measurement at time t. The decision threshold

for making a final decision is represented by θdecision ∈ [0, 1] which trades-off

between the decision speed and perception accuracy. This trade-off is an im-

portant characteristic for a perception system, e.g tactile exploration with a

robotic platform, where normally low decision threshold provides a fast deci-

sion making system with a low perception accuracy. On the contrary, a high

decision threshold provides a highly accurate perception system but that re-

quires too much time for making a decision. This trade-off is analysed using

the Bayesian method with a set of experiments in the following section.

3.5 Active and passive Bayesian perception

In this section the results of a tactile discrimination task using passive and

active perception are presented to demonstrate the benefits and superiority

of active over passive perception. Both approaches are implemented with a

Monte Carlo method of drawing random angle and position data from a test

dataset with real tactile data from the fingertip sensor.

3.5.1 Passive Bayesian perception

The first tactile experiment is the investigation in off-line mode of how accu-

mulation of evidence across successive taps by random drawing of angle and

position data can lead to successful perception, with no feedback from per-

ception into the control of sensor movements. For that reason, a palpating
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Figure 3.11: Passive Bayesian perception flowchart with the different steps for
a tactile discrimination task. The steps are grouped in three layers: Sensory,
Perception and Decision, according to the implemented operations.

or tapping process was repeatedly collecting and accumulating evidence from

tactile data until one of the angle classes exceeded a decision threshold. This

then triggers a decision about the current angle and position where the finger-

tip sensor is located. The accumulation of evidence for each tactile contact is

based on the updating information process as shown in Equation (3.6). The

decision made for the current location of the sensor based on its angle and po-

sition is represented by Equation (3.10). This is a passive Bayesian perception

procedure, meaning that the fingertip sensor is not allowed to move to another

location to improve perception.

The flowchart in Figure 3.11 shows the required steps to develop passive

Bayesian perception. This process is divided into the Sensory, Perception and

Decision layers to perform the discrimination task with the passive perception

approach. First, in the Sensory layer, tactile measurements are obtained from

a tactile contact which are arranged in a 12×100 (taxels×samples) matrix. In

the Perception layer this matrix is used for estimation of the likelihood using
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Figure 3.12: Angle acuity based on a passive Bayesian perception (top plot).
The accuracy classification is over 72 angle and 18 position perceptual classes.
Large and small errors are shown as red and white colours respectively, corre-
sponding to values in the colour bar. The perception position dependency is
shown in the bottom plot, which shows that the best perception is obtained
at the centre of the fingertip sensor.

the measurement model shown in Equation (3.5). The posterior is updated

by performing the accumulation of evidence based on the combination of the

likelihood at time t and the prior from time t − 1. Then, the marginal angle

and position posteriors are evaluated. If the current angle posterior exceeds a

decision threshold then in the Decision layer a decision about the location of

the fingertip sensor is made based on Equations (3.8) and (3.9), otherwise, the
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complete process is repeated until the decision threshold is exceeded.

The experiment was implemented with a Monte Carlo method using the

tactile data collected presented in Section 3.3. Random angle and position

data were drawn repeating the experiment 10,000 times. Figure 3.12 shows the

results for the passive Bayesian perception experiment with angle perception in

top panel and position perception in bottom panel. Here, the perception was

performed over 72 angles classes and 18 positions classes per angle (a total of

1296 perceptual classes). To analyse how the discrimination task is affected by

decision thresholds, the passive perception experiment was repeated assigning

the values in the range {0.0, 0.05, ..., 0.99} to the decision threshold parameter

in each repetition of the experiment.

The smallest angle classification error achieved with passive perception is

3.7 degrees for the position class at 9 mm which approximately corresponds to

the centre of the tactile sensor. This means that the centre of the fingertip

sensor is the best position for perception. These classification results were

obtained for a decision threshold of 0.45 and a reaction time of 5 palpations

or taps per decision.

Normally, passive perception is used for determination of sensitivity of

different parts of our body. Therefore, this tactile experiment first, shows that

the fingertip sensor is good enough for tactile discrimination and second, that

the centre of the fingertip is the best position to improve perception.

3.5.2 Active Bayesian perception

Active perception, in contrast to passive, permits movements of the finger-

tip sensor to other locations in order to improve perception. These finger-

tip movements are performed by a sensorimotor control loop based on tactile

feedback. For active perception modality, a fixation point is required as the

target position for moving the fingertip sensor to improve perception during

the discrimination task. This is similar to the fixation point in vision sens-

ing modality where eyes move to find the locations with the more interesting
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Figure 3.13: Active Bayesian perception flowchart with the required steps for
implementation of an active tactile discrimination task. The steps are grouped
in four layers: Sensory, Perception, Decision and Active. The active behaviour
of this approach is perform in the Active layer by allowing movements of the
fingertip sensor to different locations.

information during a visual exploration (Martinez-Conde et al., 2004; Najem-

nik and Geisler, 2005). Therefore, the 9 mm position class that achieved the

smallest error from the passive perception analysis, is chosen as the fixation

point for active control of the fingertip sensor.

The flowchart in Figure 3.13 shows the steps grouped in Sensory, Percep-

tion, Decision and Active layers, that are required for implementation of active

perception with the tactile fingertip sensor. First, the measurements for each

palpation with the fingertip are collected in the Sensory layer. Then, in the

Perception layer the likelihood for the measurement at time t is estimated and

combined with the prior from time t − 1 for updating the posterior based on

accumulation of evidence. The next step estimates the marginal angle and

position posteriors. Then, if the angle posterior exceeds a decision threshold,
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a decision about the current location of the tactile sensor is made in the Deci-

sion layer. Otherwise, the Active layer is responsible for moving the fingertip

sensor to another location, also known as repositioning movement, for improv-

ing perception. This process is repeated from the beginning until the decision

threshold is exceed by one of the hypotheses.

Active control strategy for tactile perception

Actively moving the fingertip sensor for improving perception is the key to the

active Bayesian perception approach. From passive perception results, it is

observed that the best position for perception with the iCub fingertip sensor

is at its centre which corresponds to the 9 mm position class. Then, the target

position denoted by xtarget = 9 mm class determines the target for repositioning

the fingertip tactile sensor when the decision threshold has not been exceeded

by the current marginal angle posterior. Thus, the repositioning parameter

θrepositioning is used to enable the movement of the tactile sensor to perform an

active behaviour. The Bayesian framework is able to perform in passive and

active perception modalities by setting the repositioning parameter as follows,

θrepositioning =

 0 Passive

1 Active

where the repositioning parameter is then set to 1 to perform an active per-

ception behaviour. Then, the distance of the repositioning movement is rep-

resented by π which is determined from the target position xtarget and the

position decision xl of the current location of the fingertip sensor.

xl = arg max
xl

P (xl|z1:t) (3.11)

π(xl) = xtarget − xl (3.12)
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x← x+ π(xl) (3.13)

The position decision xl of the current fingertip sensor location is obtained

as shown in Equation (3.11). Thus, when an angle posterior does not exceed

a decision threshold, the fingertip sensor is repositioned with the value π(xl)

which is obtained as shown in Equation (3.12). Once the repositioning move-

ment is calculated, then it is applied to the fingertip sensor. The position of

the sensor is then updated using Equation (3.13), and the process is repeated

until the decision threshold is exceeded. This process performs a gradual repo-

sitioning of the tactile sensor to a good location for perception, xtarget, thereby

gradually improving the tactile perception accuracy.

In the second robot experiment, active Bayesian perception with a senso-

rimotor control loop for moving the fingertip to improve perception based on

tactile feedback was examined. Random angle and position perceptual classes

were drawn from the dataset previously collected with 10,000 iterations. Simi-

lar to the passive perception, the set of decision thresholds {0.0, 0.05, ..., 0.99}

was used for each iteration to analyse their effect on the decision accuracy and

reaction time.

Angle, position and reaction time accuracy results against belief thresh-

old are shown in Figure 3.14. Active Bayesian perception results are shown

by green curves whilst passive Bayesian perception results are shown by red

curves. For passive Bayesian perception, the angle and position results in Fig-

ures 3.14a and 3.14b show that the minimum classification errors obtained are

∼12.2 degrees and ∼0.8 mm respectively. For active Bayesian perception, the

angle and position classification errors clearly contrast with passive modality

results, achieving ∼3.3 degrees and ∼0.2 mm respectively. In Figure 3.14c, it is

observed how active Bayesian perception provides faster reaction time which

means that a lower number of palpations or taps is required for making a de-

cision about the location of the fingertip sensor. From these results we can

observe two main features: 1) active Bayesian perception provides a better clas-

sification accuracy over passive Bayesian perception because of the capability
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Figure 3.14: (a) Angle and (b) position acuity against belief threshold with ac-
tive (green solid curves) and passive (red dashed curves) perception approach.
(c) Reaction time against belief threshold for making a decision.

to move to locations for improving perception; and 2) the accuracy gradually

improves for large values of decision threshold, allowing the acquisition of more

evidence and making better decisions.

Results for analysis of angle and position accuracy against reaction time

are shown in Figure 3.15. Both passive and active Bayesian perception ap-

proaches required a reaction time of ∼5 palpations or taps to approximately

reach their respective minimum classification errors. Also, the perception ac-
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Figure 3.15: (a) Angle and (b) position acuity against reaction time with active
(green solid curves) and passive (red dashed curves) perception approach.

curacy with active perception is gradually improved for increments in reaction

time whilst with passive perception the classification errors are large despite

the improvement for increasing reaction time values.

The comparison performed with passive and active Bayesian perception

methods for a tactile discrimination task has demonstrated the benefits and

superiority of active perception over passive one. Also, these results show

a trade-off between speed and accuracy, where increasing decision thresholds

provides a gradual improvement in perception accuracy but also an increment

in the reaction time for making a decision.

3.6 Concluding remarks

Despite the advances in tactile sensor technology, methods for analysis of tac-

tile data to provide robots with the capability to perceive, understand and

give meaning to the data received through interaction with the environment

are still in their infancy. Motivated by this and taking inspiration by how

humans and animals perceive and make decisions, in this chapter a method

for tactile perception based on a Bayesian framework was introduced.
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A Bayesian approach is used given its natural way for accumulation of

evidence in order to reduce uncertainty from measurements and thus make

better decisions. This decision-making method is inspired by models developed

from psychology and neuroscience. In other words, humans interact with an

object for accumulating interesting information and make a good judgement

during a tactile task, e.g. object recognition. Also, the Bayesian method for

accumulation of evidence was extended with a sequential analysis method.

This method permits to make a decision once a decision threshold has been

exceeded rather than defining a fixed number of tactile interactions with an

object. Sequential analysis allows to have flexible systems with the capability

to make reliable decisions once the belief about a certain hypothesis is strong

enough for crossing the decision threshold.

Here, the Bayesian method proposed was implemented to perform a passive

and active perception procedure with a tactile discrimination task for percep-

tion of the location of the fingertip sensor based on its angle and position over

an object. For passive perception the fingertip sensor was not able to move to

another location for improving its perception. In contrast, with active percep-

tion the fingertip was actively moved or repositioned to collect more interesting

data and reduce uncertainty about the location of the sensor. Results from

both, passive and active perception, demonstrated the ability to perceive the

location of the tactile fingertip sensor after a certain number of palpations or

taps. However, active perception demonstrated to be superior by achieving

higher perception accuracy with small reaction times. Also, the results show

the trade-off between speed and accuracy for a decision-making process, where

low decision thresholds allowed a faster decision-making with low perception

accuracy, which contrast with the slow decision-making and high perception

accuracy achieved for large decision thresholds. This trade-off is an important

characteristic for autonomous robots given that they are required to make good

decisions but also responding in a reasonable time.

These results and the Bayesian framework proposed can be used for the

implementation of a tactile exploratory procedure. In this work, an implemen-
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tation of a contour following exploratory procedure was chosen given that this

is one of the most common tactile exploration procedures employed by humans

to extract object shape. Chapter 4 presents the implementation of this tactile

exploration task using the passive and active perception modalities described

in this chapter with a simulated and real-time environments.
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Chapter 4

Active Tactile Exploration

The active Bayesian perception method is implemented and tested in this

chapter with an autonomous tactile exploration task in simulated and real

environments using the robotic platform from Chapter 3. The exploration task

is based on a contour following procedure which is the most common strategy

used by humans for extraction of object shape (Okamura et al., 1997).

The results from both experiments in simulated and real environments

show the successful accomplishment of the tactile exploration task based on

active Bayesian perception. The benefits of active over passive perception also

demonstrate that active behaviour is necessary to achieve robust and accu-

rate perception. The trade-off in speed and accuracy from active and passive

perception, which is an important characteristic in robotics, is analysed.

The object shapes extracted as a result of the proposed active Bayesian

perception method, offer an alternative robust and accurate approach for tac-

tile perception in robotics. This approach demonstrates to be suitable for

biomimetic fingertip sensors, where image processing techniques are not the

best option given the size and rounded shape inspired by human fingertips.

A description of edge detection and tracking for contour following are pre-

sented in Sections 4.1.1 and 4.1.2. The implementation of contour following

in a simulated environment is presented in Section 4.1.3. The description and

implementation of the sensorimotor architecture for active control with the

contour following task in a real environment are presented in Sections 4.2.1

and 4.2.2. Section 4.3 presents the concluding remarks.
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4.1 Edge detection and edge tracking

Normally, edge detection using planar tactile sensor arrays is based on process-

ing of tactile images by the application of filters and calculation of geometri-

cal moments for detection of orientation (Muthukrishnan et al., 1987; Berger

and Khoslar, 1989; Chen et al., 1995a; Phung et al., 2010b). Some works

have implemented edge detection based on tactile images for object manipula-

tion (Suwanratchatamanee et al., 2007; Abdullah et al., 2011). A recent work

has investigated the use of Principal Component Analysis (PCA) with tac-

tile images for the development of a control framework for tactile servoing (Li

et al., 2013). Despite the progress and applications achieved by these methods

with planar sensor arrays, they are not the most suitable for applications using

biomimetic fingertip sensors given their rounded shape and small size inspired

by humans fingertips.

The Bayesian perception approach, validated with a tactile discrimination

task in Chapter 3, provides an alternative method for robust tactile edge de-

tection. First, from passive perception it is clearly observed that the best

position for improving perception with the biomimetic fingertip sensor is in its

central region which is composed for the 8 mm to 11 mm position classes (see

Figure 3.12). The tactile data for this region of the fingertip sensor correspond

to the edge of the object used as stimuli during the data collection process.

Figure 4.1 shows the central region of the biomimetic fingertip sensor located

at two different orientations and interacting with the edge of an object.

This information can be used by the biomimetic fingertip sensor to detect

when it has reached the edge of an object by perception of the position class at

each time step during an exploration task. The edge detection task can be seen

as a process mainly composed of two operations: 1) perception of the current

position where the fingertip sensor is palpating; and 2) active repositioning or

movement of the biomimetic fingertip sensor towards the edge of the object

based on its central region.

For the first process, the position of the biomimetic fingertip sensor at each
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(a) (b)

Figure 4.1: Position region for edge detection composed for the 8 mm to 11 mm
position perceptual classes. An example of the biomimetic fingertip sensor
performing edge detection for two different orientations in (a) and (b).

time step is perceived using Equation (3.8). This tactile Bayesian percep-

tion method is based on the accumulation of evidence from interaction with

the object being explored. For the second process, active control of tactile

movements for reaching the edge of the object being explored is achievable by

active Bayesian perception for the repositioning of the fingertip sensor using

Equations (3.11), (3.12) and (3.13).

4.1.1 Active and passive edge detection

The procedure for edge detection based on active Bayesian perception is de-

scribed in Algorithm 1. The input data are the tactile dataset of measurements

collected which are denoted by Z = {z1, z2, ..., zN} with N the number of per-

ceptual classes. The first tactile measurement z composed of Ntaxel ×Nsamples

is read randomly from the tactile dataset. An estimate of the likelihood for

the current tactile measurement ztap is obtained from the function estimate-

Likelihood implementing Equations (3.4) and (3.5) repeated here,

P (b|cn, k) =
h(b, k)∑Nbins

b=1 h(b, k)
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Algorithm 1: Tactile edge detection based on active Bayesian perception

Data: Z = {z1, z2, ..., zN}: tactile measurements of size Ntaxel ×Nsamples

Result: xedge: edge detected
initialisation
θdecision ∈ [0, 1] // belief threshold

Thrdecision = false
xinit = random(N)
ztap = Z{xinit} // initial random position

while not Thrdecision do
Loclikelihood = estimateLikelihood(ztap) /* obtain position

likelihood */

Locbelief = updateBayesian(Loclikelihood,Locprior) // update belief

if Locbelief > θdecision then
Thrdecision = true
xedge = getPosition(Locbelief) // obtain perceived position

else
xperceived = getPosition(Locbelief) // obtain perceived position

xmovement = xtarget − xperceived // active sensor repositioning

Locprior = Locbelief // update prior for next iteration

ztap = Z{xperceived − xinit} // update sensor measurement

logP (z|cn) =

Ntaxels∑
k=1

Nsamples∑
j=1

logP (bk(j)|cn, k)

NsamplesNtaxels

whose output is assigned to the location likelihood variable Loclikelihood.

A belief about the current location of the biomimetic fingertip is then ob-

tained from the functions updateBayesian which implements the combinations

of the current likelihood Loclikelihood and the prior location Locprior based on

the Bayesian formulation from Equations (3.6) and (3.7) repeated here from

Chapter 3.

P (cn|z1:t) =
P (zt|cn)P (cn|z1:t−1)

P (zt|z1:t−1)

P (zt|z1:t−1) =
N∑

n=1

P (zt|cn)P (cn|z1:t−1)

The output from the Bayesian updating Locbelief is compared against the

decision threshold θdecision. If Locbelief does not exceed the decision threshold
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defined, then the difference between the current position perceived xperceived

and the target position (central region of the fingertip sensor) xtarget provides

a relative displacement for the fingertip sensor to collect a new tactile mea-

surement and repeat the complete process. Otherwise, if Locbelief exceeds the

decision threshold, then the position class is obtained from the current loca-

tion perceived by the fingertip sensor and defined as the edge of the object.

The position perceived xedge is obtained from the function getPosition which

implements Equation (3.10) repeated here,

xl = arg max
xl

P (xl|z1:t)

where xedge = xl is the assignation of the position with the maximum proba-

bility to the position perceived variable. This method permits the biomimetic

fingertip sensor gradually reaching the edge of the object by actively reposi-

tioning or moving the tactile sensor for each interaction with the object.

An experiment to test the tactile edge detection method based on a Bayesian

approach in a simulated environment was designed. The tactile data used for

this experiment was collected with the biomimetic fingertip sensor and robotic

platform described in Section 3.3, which formed a dataset of 72 angle and 18

position perceptual classes. The use of real tactile data for the experiment

in the simulated environment provides more reliable results rather than using

synthetic data. For the edge detection experiment, first, it was required to

randomly draw an initial tactile measurement from the tactile dataset. This

process permitted to test the edge detection method for a large number of ini-

tial orientations and positions of the biomimetic fingertip sensor with respect

to the edge of the object. After the initialisation, the proposed Bayesian per-

ception approach presented in Chapter 3, allowed the fingertip sensor to reduce

uncertainty from the tactile measurements by accumulation of evidence. Then,

the tactile sensor was able to gradually move towards the edge of the object by

the active repositioning procedure provided by the proposed Bayesian percep-

tion method. The edge detection experiment for the simulated environment

was prepared with a Monte Carlo simulation with 10,000 iterations. Results
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Figure 4.2: Passive and active edge detection with low decision threshold.
Initial tactile measurement is randomly drawn from a tactile dataset composed
of 72 angle and 18 position perceptual classes. (a) The fingertip sensor was
not able to reach the edge of the object given its passive perception modality
and the low decision threshold. (b) For active perception the fingertip sensor
was gradually repositioning, however the low decision threshold was rapidly
exceeded before reaching the edge of the object.

from the experiment using the proposed Bayesian perception approach with

passive and active perception modalities are shown in Figures 4.2 and 4.3.

First, the implementation of passive and active Bayesian perception using

low decision threshold θdecision = 0 for the edge detection experiment is pre-

sented in Figures 4.2a and 4.2b respectively. The plots are divided in flat,

edge and air regions built with real tactile data. The biomimetic fingertip

sensor starts the experiment with a random orientation and position between

the regions defined. Then, the fingertip sensor, based on Bayesian perception,

performs repositioning movements to gradually reach the edge region. For pas-

sive Bayesian perception and low decision threshold (θdecision = 0), the fingertip

sensor was not able to reach the edge due to: 1) it was hard to perform reposi-

tioning movements to a better location to collect more data given the passive

perception modality; and 2) the low decision threshold was exceeded faster,

reducing the time for accumulation of evidence and producing inaccurate de-

cisions. From these results we observe that in one hand, the fingertip sensor

was able to respond faster, requiring ∼1 palpations to make a decision about
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Figure 4.3: Passive and active edge detection with high decision threshold.
Initial tactile measurement is randomly draw from a tactile dataset composed
of 72 angle and 18 position perceptual classes. (a) The fingertip sensor was
allowed to accumulate evidence with a high decision threshold but given its
passive perception modality, it was unable to perform repositioning movements
to successfully reach the edge. (b) In contrast, active perception permitted
both accumulation of evidence and repositioning movements until a decision
threshold was exceeded to successfully reach the edge of the object.

the current position of the sensor. On the other hand, the edge detection was

not successfully accomplished based on the low perception accuracy achieved.

This result is observed on the small number of palpations performed by the

fingertip sensor and the inability to move to the edge region (see Figure 4.2a).

For active Bayesian perception and low decision threshold θdecision, the fin-

gertip sensor was able to perform repositioning movements actively controlled

towards the edge region. However, the low decision threshold was exceeded

faster (∼2 palpations per decision) which reduced the time to achieve accurate

perceptions to reach the edge region. Figure 4.2b shows how even though the

fingertip sensor was able to move towards the edge, the sensor did not have

enough time to reach it given the decision threshold.

The second edge detection experiment for passive and active Bayesian per-

ception using high decision threshold θdecision = 1 is shown in Figures 4.3a

and 4.3b respectively. For the experiment based on passive Bayesian percep-

tion with high decision threshold, the fingertip sensor was able to accumulate

evidence over a longer time. However, the edge region was not successfully
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reached for most of the trials. This is due to the low perception accuracy

achieved by the passive perception modality which makes hard the reposition-

ing of the tactile sensor towards better locations to reduce uncertainty and

improve tactile perception. The results of passive Bayesian perception with

high decision threshold are shown in Figure 4.3a, where it is observed that even

though the fingertip sensor was able to accumulate evidence over a longer time

(palpations), the edge region was not reached for most of the trials.

In contrast, the edge detection experiment using active Bayesian perception

with high decision threshold presented significant improvements. First, the

fingertip sensor was able to accumulate evidence from interaction with the

object over a longer time. Second, the active perception modality permitted

the fingertip sensor to move towards better locations for perception, reducing

uncertainty from measurements and gradually reaching the edge region of the

simulated object. Even though the speed of the edge detection experiment

was increased to a reaction time of ∼4 palpations, the fingertip sensor was

able to successfully reach the edge region for most of the trials. It is observed

from Figure 4.3b that the fingertip sensor was gradually moving towards the

edge region, which required about 4 palpations. These results demonstrate the

benefits of the proposed Bayesian perception method with active modality and

high decision threshold.

The results from these experiments demonstrate how the biomimetic fin-

gertip sensor is able to successfully accomplish edge detection using active

Bayesian perception, which also offers an alternative approach to image pro-

cessing techniques which normally use planar sensor arrays. Moreover, the

proposed active Bayesian perception method is inspired by results from psy-

chophysical studies with humans performing decision-making based on the

accumulation of evidence through the interaction with the environment.

The experiments for edge detection presented in this section were performed

using the tactile dataset composed of 1296 perceptual classes (72 angle×18 po-

sition classes) obtained with the biomimetic fingertip presented in Section 3.3.

For each trial of the experiment, a random orientation and position were drawn
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for the initial location of the fingertip sensor. The configuration of the exper-

iment based on active Bayesian perception and high decision threshold per-

mitted to successfully reach the edge region with a mean reaction time of 4

palpations performed by the biomimetic fingertip sensor. These results based

on a large dataset of tactile orientations and positions, demonstrate the ro-

bustness and accuracy of the proposed method to perform edge detection with

the biomimetic fingertip sensor.

In this section, an edge detection method was developed given that this is

a required process for the implementation of the contour following exploratory

procedure presented in the next section. Therefore, the successful edge detec-

tion results achieved in this section by the proposed perception method can be

used together with angle perception to perform a continuous edge detection

and tracking (see Section 4.1.2), to replicate a robotic platform undertaking

the contour following exploratory procedure commonly employed by humans

to extract object shape (Lederman and Klatzky, 1987; Okamura et al., 1997).

4.1.2 Active and passive contour following

Humans perform contour following based on sliding or palpating with one or

all of their fingertips (Lederman and Klatzky, 1987, 2009). This exploratory

procedure mainly requires two processes: 1) edge detection; and 2) edge track-

ing. The first process has been described in Section 4.1.1. The second process

requires to perceive the angle where the fingertip sensor is located over the

contour of the object being explored to decide where to move next.

For obtaining better results in angle perception, the biomimetic fingertip

sensor needs to be actively moved or repositioned towards the edge of the

object, which corresponds to the central region of the tactile sensor (see Sec-

tion 3.5). The process of angle perception during reaching the edge of the

object is presented in Figure 4.4. It can be observed in Figure 4.4a how the

fingertip is actively moved to reach the edge of the object and simultaneously

collecting more information to perform a better angle perception. Once the
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Figure 4.4: Contour following exploration procedure using an active Bayesian
approach. (a) The fingertip sensor is repositioning for improving perception.
(a) Simultaneously, accumulation of evidence is performed for making an angle
perception. Once an angle decision has been made, the fingertip sensor is
moved to continue with the exploration task.

belief about the angle perceptual class at the current location of the fingertip

sensor exceeds a decision threshold, the tactile sensor needs to know where to

move next to continue with the contour following exploration. This is accom-

plished first by making a decision about the angle class for the current edge

orientation where the tactile sensor is located. The resulting angle decision is

shifted by 90 degrees which is required according to the data collection method

implemented in Section 3.3. Thus, the new angle is used to move the fingertip

sensor to the new location as shown in Figure 4.4b.

Algorithm 2 presents the steps for implementation of the contour following

exploratory procedure. The input data is the testing tactile dataset collected

in Section 3.3, whilst the output is the location (position and angle) of the fin-

gertip sensor composed of the pair (x,w). Initially, the method takes a random

tactile measurement for starting the perception process. Then, the likelihood

about the location is obtained by the function estimateLikelihood which im-

plements Equations (3.4) and (3.5). This likelihood is combined with the prior
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Algorithm 2: Tactile contour following based on active Bayesian per-
ception

Data: Z = {z1, z2, ..., zN}: tactile measurements of size Ntaxel ×Nsamples

Result: (w, x): location (angle and position) of the fingertip sensor
initialisation
θdecision ∈ [0, 1] // belief threshold

Thrdecision = false
xinit = random(N) // random position

winit = random(N) // random angle

ztap = Z{w, init, xinit} // initial random location

while not Thrdecision do
Loclikelihood = estimateLikelihood(ztap) /* obtain location

likelihood */

Locbelief = updateBayesian(Loclikelihood,Locprior) // update belief

if Locbelief > θdecision then
Thrdecision = true
(wangle, xedge) = getLocation(Locbelief) /* obtained perceive

location */

wangle = wangle + ∆ // angle updating

else
xperceived = getPosition(Locbelief) // obtain perceive position

xmovement = xtarget − xperceived // active sensor repositioning

Locprior = Locbelief // update prior for next iteration

ztap = Z{winit, xperceived − xinit} // update sensor measurement

of the location to update the belief about the current location of the tactile

sensor using Equations (3.6) and (3.7) which are implemented in the function

updateBayesian. If this belief has not exceeded a decision threshold, similar to

the edge detection algorithm, the fingertip sensor is repositioned to a better

location for perception but without affecting the angle class by application of

Equations (3.11), (3.12) and (3.13) repeated here from Section 3.5.2,

xl = arg max
xl

P (xl|z1:t)

π(xl) = xtarget − xl

x← x+ π(xl)
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where the repositioning displacement is calculated by π(xl) and the new posi-

tion for the fingertip sensor is defined by x. From this new location, a tactile

measurement is draw and combined again with the prior until a decision is

ready to be made.

On the other hand, if a belief about the location of the fingertip sensor has

exceeded a decision threshold, the maximum angle and position are obtained

from the function getLocation which implements Equation (3.10) as shown

below (repeated from Section 3.4.6),

if any P (wi|z1:t) > θdecision then



wdecision = arg maxwi
P (wi|z1:t)

xl = arg maxxl
P (xl|z1:t)

where wangle = wdecision and xedge = xl are the angle and position perceived

from the current location of the biomimetic fingertip sensor.

The edge detected is achieved at the central region of the tactile sensor

which is the area that provides better perception (see Section 3.12). The

movement decision along the edge of the object is obtained by shifting the angle

perceptual class obtained from active perception by ∆ = 90 degrees according

to the method used for data collection (see Section 3.3).

This algorithm is implemented in next sections with a tactile contour fol-

lowing exploration task in simulated and real environments. The aim is to

demonstrate the robustness, speed and accuracy of tactile object shape ex-

traction using the active Bayesian perception approach.

4.1.3 Simulated tactile contour following exploration

In this section a simulated environment is developed to implement the edge

detection and tracking procedure shown in Section 4.1.2, to test the speed

and accuracy of the proposed active Bayesian perception method. Also, the

92



Chapter 4. Active Tactile Exploration 4.1. Edge detection and tracking

Control
layer

CONTROL based on 
active perception

MEASUREMENTS
tactile contact

ESTIMATION
likelihoods

of perceptual classes

Bayesian UPDATE
of posteriors

MARGINAL
Angular and Position posteriors

STOP rule:
Angular posterior

>
threshold?

DECISION making:
maximum angular posterior

Sensory
layer

Decision
layer

angle and position 
probability

angle and position
posteriors

control m
ovem

ent
signal

joint probability
distribution

Perception
layer

NO

likelihood

tactile data

angle decision

YES

Figure 4.5: Passive Bayesian perception for contour following exploration. The
process is divided in different layers: Sensory, Perception, Decision and Con-
trol. The passive modality do not allow the movement of the fingertip sensor
in order to reduce uncertainty from the measurements. The performance is
shown with the contour following procedure commonly employed by humans
to extract object shape using the sense of touch.

aim of the test is the extraction of the shape of a simulated object by the

contour following exploratory procedure. A circular-shaped and linear-shaped

objects are constructed for the simulated environment using the real tactile

data collected in Section 3.3. The linear-shaped object is built keeping the

same orientation along the object, randomly draw from the 72 angle perceptual

classes in the tactile dataset. For the circular-shaped object, the 72 angle

perceptual classes are used for its construction. For both objects, each angle

perceptual class is composed of 18 position classes which are the boundaries

for repositioning of the biomimetic fingertip sensor during the perception of

its location. These simulated objects can be observed in Figures 4.7 and 4.8.

The process of contour following exploration described in previous Sec-

tion 4.1 using passive and active perception is shown in the flowcharts of Fig-

ures 4.5 and 4.6. Similar to the flowcharts presented in Chapter 3, they are
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Figure 4.6: Active Bayesian perception for contour following exploration. The
process is divided in different layers: Sensory, Perception, Decision and Con-
trol. Unlike passive perception, here the fingertip sensor is also allowed to move
towards betters locations in order to reduce uncertainty. As will be observe,
this perception modality permits to extract object shape using the contour
following procedure as humans do.

divided in Sensory, Perception and Decision layers with the addition to the

Control layer. The Sensory layer received the tactile measurements from each

tactile contact performed by the biomimetic fingertip sensor. The Perception

layer provides an estimation of the likelihoods. The posterior is updated by

the combination of the likelihood and prior information. The decision about

the location of the fingertip sensor over the object being explored in performed

by the Decision layer. Finally, the Control layer calculates the next location

to move the fingertip sensor, and also is responsible for the generation and

synchronisation of each movement along the exploration task. This process

is performed to follow the contour of an object by both passive and active

perception modalities. However, active perception also includes the active

repositioning and control of movements of the tactile sensor towards better

locations to reduce uncertainty.
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Linear-shaped object extraction

The linear-shaped object and the results of the contour following exploratory

procedure are presented in Figure 4.7. First, the orientation (angle class) of

the simulated object is randomly drawn and kept along the construction of

the complete object. The example presented in this section is for a simulated

object oriented at 45 degrees (see Appendix B). The edge of the object to be

tracked is represented by the dotted line. The limits for repositioning of the

biomimetic fingertip sensor at each exploration step are represented by the

solid lines. These limits are related to the amount of information contained in

the tactile dataset collected.

The contour following experiment for the simulated environment was per-

formed using passive and active Bayesian perception with the decision thresh-

old parameter θdecision ∈ [0, 1]. The results in Figure 4.7 show in the top

(red colour) and bottom (green colour) plots the implementation of contour

following task with passive and active Bayesian perception respectively.

The edge tracking simulations of the linear-shaped object using passive

Bayesian perception are shown in Figures 4.7a and 4.7b which are implemented

with low decision threshold θdecision = 0 and high decision threshold θdecision =

1 respectively. For the low decision threshold, the fingertip sensor performed

a fast exploration of the linear-shaped object, but achieving low perception

accuracy which is observed in the unsuccessful edge tracked (Figure 4.7a).

For the high decision threshold, even though the fingertip sensor was able to

accumulate evidence over a longer time, it could not accomplish the contour

following task (Figure 4.7b). This is due to the passive perception modality

implemented, which makes it hard to perform repositioning movements of the

tactile sensor to better locations for improvement of perception. These results

demonstrate that tactile exploration is not successfully accomplished due to

the low perception accuracy achieved by passive Bayesian perception.

The results of the edge tracking simulation using active Bayesian per-

ception with low decision threshold θdecision = 0 and high decision thresh-
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Figure 4.7: Implementation of a contour following exploratory procedure with
active and passive Bayesian perception. The linear-shaped object was built
using real tactile data. Plots (a) and (b) show the results for passive perception
with low and high decision thresholds respectively. Plots (c) and (d) show
active perception with low and high decision thresholds for edge tracking.
Active perception with high decision threshold successfully accomplished the
tactile exploration task.

old θdecision = 1 are shown in Figures 4.7c and 4.7d respectively. For active

Bayesian perception and low decision threshold, the tactile sensor was not able

to successfully track the edge of the linear-shaped object (Figure 4.7c). In this

case, low perception accuracy was achieved due to the small time required to

make a decision, which did not permit to accumulate enough evidence and
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perform repositioning movements of the tactile sensor to improve perception.

In contrast, for active Bayesian perception and high decision threshold, the

fingertip sensor was able to successfully track the edge of the linear-shaped

object (Figure 4.7d). In this case, the fingertip sensor was able to accumulate

evidence over a longer time whilst performing repositioning movements to bet-

ter locations in order to improve perception. The green circles in Figure 4.7d,

which represent the fingertip sensor, show the repositioning movements of the

tactile sensor for each exploration step. These results demonstrate that us-

ing active Bayesian perception with high decision threshold it is possible to

improve perception accuracy which permits to successfully perform tactile ex-

ploration with biomimetic fingertip sensors.

Circular-shaped object

For this experiment a circular-shaped object was constructed with real tactile

data in a simulated environment. The circular-shaped object was constructed

using the 72 angle and 18 position classes from the test dataset collected with

the biomimetic fingertip sensor (see Section 3.3). This simulated object is

presented in Figure 4.8. The edge to be tracked is represented by the dotted

line, whilst the limits for repositioning of the biomimetic fingertip sensor at

each exploration step are represented by the solid lines. These limits (solid

line) are set according to the amount of tactile data collected.

Similar to the linear-shaped object, for this experiment the contour follow-

ing procedure is performed using passive and active Bayesian perception with

decision thresholds θdecision ∈ [0, 1] to extract the shape of a circular object in a

simulated environment. The results of the experiment are shown in Figure 4.8

where the top (red colour) and bottom (green colour) plots present the contour

following task using passive and active Bayesian perception respectively.

The contour following task for passive Bayesian perception using low deci-

sion threshold θdecision = 0 and high decision threshold θdecision = 1 is shown in

Figures 4.8a and 4.8b respectively. For the case of low decision threshold, the
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Passive perception −
low decision threshold

(a)

Passive perception −
high decision threshold

(b)

Active perception −
low decision threshold

(c)

Active perception −
high decision threshold

(d)

Figure 4.8: Implementation the contour following exploratory procedure with
active and passive Bayesian perception on a simulated circular-shaped object
constructed using real tactile data. Plots (a) and (b) show the results for
passive perception with low and high decision thresholds respectively. Plots (c)
and (d) show active perception with low and high decision threshold for edge
tracking. The use of active Bayesian perception with high decision threshold
successfully accomplishes the tactile exploration task.

fingertip sensor was able to perform a fast exploration task. However, small

perception accuracy was achieved, which is clearly observed with the unsuc-

cessful accomplishment of the contour following task (Figure 4.8a). These

results are obtained given the small time provided to accumulate evidence

and perform repositioning movement to better locations for perception. For
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the high decision threshold simulation, the exploration time of the simulated

object was increased given that the fingertip sensor was able to accumulate

evidence for a longer time. However, the perception accuracy is not improved,

which is reflected in the unsuccessful edge tracking achieved (Figure 4.8b).

The results obtained from the implementation of passive Bayesian perception,

either using low or high decision threshold, show that this perception modality

makes it hard to perform repositioning movements of the fingertip sensor to

better locations to improve perception, resulting on the unsuccessful tactile

exploration task.

The shape extraction of a circular object using active Bayesian perception

with low decision threshold θdecision = 0 and high decision θdecision = 1 is shown

in Figures 4.8b and 4.8c respectively. The result of using low decision threshold

shows that the fingertip sensor is able to perform fast decisions but achieving

low perception accuracy, resulting in the unsuccessful accomplishment of the

contour following task (Figure 4.8c). Even though active perception modality

is used, low perception accuracy was achieved given the small time required to

accumulate evidence and make decisions which degrades the performance of

the exploration task. In contrast, for the use of active Bayesian perception with

high decision threshold, the fingertip sensor successfully accomplished the tac-

tile exploration task by following the contour of the simulated circular-shaped

object (Figure 4.8d). The exploration time required to trace the contour of

the object was increased using the high decision threshold. However, this also

permitted to accumulate evidence for a longer time and also to perform repo-

sitioning movements of the fingertip sensor allowing to reduce uncertainty and

reaching high perception accuracy. The active repositioning of the tactile sen-

sor is observed with the overlapped green circles moved to better locations to

improve perception at each exploration step. Similar to the results obtained

from the linear-shaped object, here it was found that using active Bayesian

perception together with high decision threshold the fingertip sensor was able

to successfully accomplish the tactile exploration task based on the contour

following of a circular-shaped object. The traced contours from the circular-
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Figure 4.9: Angle and position acuity with active and passive perception ap-
proach for a contour following exploration task. Angle errors for passive (red
curves) and active (green curves) perception are plotted against belief thresh-
old (a) and reaction time (c). Position errors for passive and active perception
are plotted against belief threshold (b) and reaction time (d). The benefits of
using active over passive perception are clearly observed for angle and position
perception accuracy.

shaped object with different decision thresholds are presented in Appendix C.

The performance in speed and accuracy for the contour following task im-

plemented with the biomimetic fingertip sensor in the simulated environment
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using real tactile data is presented in Figure 4.9. The red and green coloured

curves show the results from the use of passive and active Bayesian perception

respectively. The perception accuracy achieved by the fingertip sensor is shown

with the angle and position errors obtained against belief threshold presented

in Figures 4.9a and 4.9b. The minimum angle and position errors achieved

by passive perception are ∼20 degrees and ∼4 mm for a belief threshold ∼1.

These results are highly improved by the active perception which achieved the

minimum angle and position errors of ∼4 degrees and ∼0.2 mm. The best an-

gle accuracy achieved with active perception was for belief thresholds between

0.5 and 1. Even though for the position the best accuracy is achieved with a

belief threshold of ∼1, very small position errors (less than 1 mm) are obtained

for belief thresholds starting at 0.5. The proposed active Bayesian perception

method, through the perception accuracy results, demonstrate its superiority

over the passive Bayesian perception for the performance of tactile exploration.

The angle and position perception results against reaction time, showing

the number of palpations required for making a decision, are presented in

Figures 4.9c and 4.9d. The best for both angle and position accuracy us-

ing passive perception are obtained with a reaction time of 10 palpations per

decision-making. For active perception, the best angle accuracy is achieved

with 2 to 3 palpations per decision. The best position accuracy with ac-

tive perception is achieved by 8 palpation, however high accurate perception

(less than 1 mm) is obtained starting 2 palpations per decision. These results

demonstrate the benefits that the proposed active Bayesian perception offers,

allowing the biomimetic fingertip to achieve better perception accuracy with

small reaction time over the results obtained from passive perception modality.

The results obtained from these experiments in simulated environment have

demonstrated that active Bayesian perception is a robust and accurate method

for tactile exploration with biomimetic fingertip sensors. The implementation

of the contour following exploratory procedure inspired by the tactile strategy

employed by humans to extract object shape, demonstrated the benefits and

superiority of active over passive Bayesian perception method. The robustness
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of the proposed method is also observed with the accurate results achieved for

a large tactile dataset composed of 1296 perceptual classes (72 angles and 18

positions, see Section 3.3). Another important characteristic of the method

proposed is the possibility to adjust the accuracy and speed trade-off by se-

lecting a decision threshold for the decision-making process. This feature is

important in robotics, where usually robots are required to make fast but also

highly accurate decisions and actions.

An implementation of the passive and active Bayesian perception approach

with the contour following exploration task is also tested in a real environment

which is presented in the next section. This experiment is performed with a

circular-shaped object to test the full range of angle and position perceptual

classes in the tactile dataset collected. The experiment presented in the next

section uses the robotic platform and biomimetic fingertip sensor described in

Chapter 3 with a sensorimotor architecture developed for actively controlling

the sensor movements in order to accomplish the tactile exploration task.

4.2 Contour following with a tactile robotic

platform

In this section the contour following exploratory procedure is implemented in

a real environment using a robotic platform and a biomimetic fingertip sensor.

The implementation is based on the algorithms for edge detection and tracking

presented in Sections 4.1.1 and 4.1.2.

The aim is to demonstrate a tactile robotic platform capable of autonomously

following the contour of different object shapes using active Bayesian percep-

tion. The tactile robotic system will need to make decisions about what to do

next and where to move next. For the first decision, the robot will decide if it

is necessary to move to another location to improve perception or not, whilst

for the second decision the robot will decide where should it move next along

the object edge to continue with the tactile exploration task.
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Figure 4.10: Sensorimotor architecture for autonomous active exploration with
tactile sensing. The tactile feedback based on the interaction with an object
in the environment is used to generate reflex movements of the fingertip sensor
and decision by the active perception method. A robotic platform is used to
provide mobility to the biomimetic fingertip sensor in the x-, y- and z-axes for
exploration of an unknown object.

4.2.1 Sensorimotor architecture for active control

For the implementation and achievement of an autonomous tactile exploration

task with a robotic platform, a sensorimotor architecture was developed in

order to actively control the robot movements by tactile feedback and Bayesian

perception. The functioning of this control architecture is described below.

The modules that compose the sensorimotor architecture to perform tactile

exploration are presented in Figure 4.10. First, tactile stimulation is applied to

the biomimetic fingertip sensor as a result of the interaction with an object in

the environment. This process provides tactile feedback which is represented

by the arrow from the green to the blue area. Then, the fingertip sensor sends

two signals: 1) a reflex movement or contact reaction; and 2) a sensory feed-

back. The reflex signal produces a movement, through the motor command
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module, to protect the sensor against dangerous pressure contacts. This be-

haviour is similar to human reflexes enacted for protection when a pain is

detected (Najarian et al., 2009). At the same time, tactile data from the sen-

sory feedback are prepared and sent to the active perception module, which is

responsible for analysing and providing a belief about the localisation (angle

and position) of the fingertip sensor. This belief permits to decide what to do

next: either to continue the accumulation of evidence at the current location

or to do a repositioning movement to another location to improve perception.

Once the belief of the location of fingertip sensor exceeds a decision threshold,

the resulting location perceived is used by the action selection module to make

a decision about where the fingertip sensor has to be moved for the next explo-

ration step. All of the movements of the biomimetic fingertip sensor attached

to the robotic platform are performed by the motor command module, which

is responsible for generating the movements according to the actions taken.

This exploration procedure is repeated by the biomimetic fingertip sensor in

order to successfully extract the shape of an unknown object by performing

the autonomous active tactile exploration task.

The resulting extracted shapes from a circular-shaped object by actively

controlling the movements of the biomimetic fingertip sensor using the pro-

posed Bayesian perception approach with the sensorimotor architecture devel-

oped are presented in the next section. This demonstrates the robustness and

perception accuracy of the proposed method with a tactile exploration task in

a real environment.

4.2.2 Contour following in a real environment

The contour following exploration task is implemented in a real environment

using the robotic platform and biomimetic fingertip sensor presented in Chap-

ter 3. This exploration task demonstrate the robustness and accuracy of the

active Bayesian perception method with a real circular-shaped object.

The results from the implementation in a real environment are shown in
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Figure 4.11. This experiment was performed using passive and active Bayesian

perception with low and high decision thresholds in order to analyse their

accuracy for accomplishment of the tactile exploration task. Figures 4.11a

and 4.11b present the results of the contour following task for passive Bayesian

perception with low and high decision threshold respectively. Passive percep-

tion with low decision threshold (θdecision = 0) did not have sufficient time

to accumulate evidence to improve perception about the current location of

the tactile sensor. This combination of passive Bayesian perception with low

decision threshold provided a fast tactile exploration but with low percep-

tion accuracy. Although accumulation of evidence was possible, similar results

were obtained for passive Bayesian perception with high decision threshold

(θdecision = 0.9) given that the fingertip sensor was not allowed to be reposi-

tioned or moved to other positions to collect more interesting information and

then reducing uncertainty to improve perception.

Implementation of the contour following task with active Bayesian percep-

tion and low decision threshold (θdecision = 0) shown in Figure 4.11c presented

a similar behaviour as passive Bayesian perception and low decision threshold.

For this case, even though the biomimetic fingertip sensor was able to move to

improve perception, the tactile sensor did not have enough time to accumulate

evidence given the low decision threshold required for making a decision. For

this reason, the fingertip sensor was able to perform a fast exploration task

but achieving low perception accuracy.

In contrast, the application of active Bayesian perception and high decision

threshold (θdecision = 0.9) for the tactile exploration task successfully accom-

plished the object shape extraction as shown in Figure 4.11d. It is clearly

observed how the fingertip sensor movements, represented by the small green

circles, were able to follow the contour of the circular-shaped object. In some

parts of the contour being traced are observed the multiple palpations and

active repositioning of the tactile sensor to improve perception accuracy and

perform good decision-making about its location. Although the use of active

Bayesian perception and high decision threshold increased the reaction time
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Passive perception −
low decision threshold

(a)

Passive perception −
high decision threshold

(b)

Active perception −
low decision threshold

(c)

Active perception −
high decision threshold

(d)

Figure 4.11: Implementation of a contour following exploratory procedure with
an active and passive Bayesian perception in a real environment. The grey cir-
cle represents the object used to apply the contour following procedure. Plots
(a) and (b) show the results for passive perception with low and high decision
threshold respectively. Plots (c) and (d) show the active perception results
with low and high decision threshold for edge tracking. It is clearly observed
that active perception with high decision threshold permits to successfully
accomplish a tactile exploration task.

needed for making a decision, it was possible to successfully achieve an au-

tonomous tactile exploration behaviour with high perception accuracy in a

real environment.

Finally, the contour following task with active Bayesian perception and

high decision threshold was repeated with different object shapes. For this

experiment, two circular-shaped objects with diameters of 2 cm and 4 cm, and

an asymmetric object (sellotape holder) were used for shape extraction (Fig-
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Figure 4.12: (A) Different shaped and sized objects used for active Bayesian
perception applied to sensorimotor control. (B) Biomimetic fingertip sensor
in contact with the edge of an object at one angle and position. (C) Tactile
sensor mounted on a robotic platform allowing mobility in x-, y- and z- axes.

ure 4.12A). The fingertip palpating along the edge of one of the testing objects

(sellotape holder) is shown in Figure 4.12B. The traced contours shown in Fig-

ure 4.13 demonstrate the robustness and accuracy of active Bayesian percep-

tion for autonomous tactile exploration with robotic platforms and biomimetic

fingertip sensors.

Similar works for edge detection and tracking were able to extract different

object shapes using a robotic finger (Muthukrishnan et al., 1987; Chen et al.,

1995b). These works used the sliding procedure and force sensors to ensure a

constant contact with the object explored. The movements of the robotic finger

were based on detection of the edge orientation using smooth and edge filters.

More recently, a control framework permitted to detect edge orientation and

follow object shape with a planar sensor mounted in a robotic arm (Li et al.,

2013). This framework, based on geometric moments from tactile images,

permitted to detect edge orientation and tracking by sliding the sensor over
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Figure 4.13: Contour following task using active exploration and tactile sens-
ing. (A) Circles with 2 cm, 4 cm diameter and an asymmetric object (sellotape
holder) used for real-time contour following. (B) Contours traced as result of
active perception with high decision threshold.

the object. These works, unlike the investigation presented in this thesis, did

not take into account two important features for robotics: uncertainty present

in measurements, and active control and behaviour of the exploration task.

Through different experiments presented in this chapter it has been demon-

strated that an autonomous tactile exploration is achievable using active Bayesian

perception. The proposed method also demonstrated to be robust and accu-

rate in simulated and real environments. Overall, we observed that tactile

sensing in combination with active Bayesian perception offer an alternative

and robust method suitable for tactile perception in autonomous robotics.

4.3 Concluding remarks

The Bayesian perception method was implemented to perform a contour fol-

lowing task with a biomimetic fingertip in simulated and real environments.

The tactile exploration was performed using both active and passive percep-

tion modalities to demonstrate and compare their speed, perception accuracy
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and ability to accomplish object shape extraction.

A sensorimotor architecture controlled by tactile feedback was developed to

provide mobility to the biomimetic fingertip sensor and implement the contour

following exploration procedure. The sensormotor architecture was integrated

in the tactile robotic platform presented in Section 3.2, which is composed of

a Cartesian robot with 3-DoF (x-, y- and z-axes) and a biomimetic fingertip

sensor. Palpations were used for the exploration task for three reasons: 1) this

is the tactile method used in medicine for inspection of certain anomalies or

pains; 2) inspiration from humans in situations when they prefer to palpate

rather than slide over a surface given the possibility of hurting oneself (e.g.

on hot, sharp or rough surfaces); and 3) to reduce the damage of the tactile

sensor over multiple repetitions of the experiments.

The tactile sensor was able to successfully extract the shape using active

Bayesian perception as shown in Figures 4.7 and 4.8. The results demonstrated

the benefits of active over passive perception for the tactile exploration task.

To support these results, the experiment was repeated with different object

shapes in a real environment, where active perception also demonstrated its

superiority over passive perception (see Figure 4.11). The objects presented

in Figure 4.12 also were used to show the robustness of the proposed active

Bayesian perception method, which successfully accomplished object shape

extraction as is observed in Figure 4.13.

The results from simulated and real environments have demonstrated that

active Bayesian perception is a robust and accurate methods suitable for tac-

tile exploration with a biomimetic fingertip sensor. We observed that active

perception is needed but also high reliability of perception is required, which

is achieved by high decision thresholds. On the other hand, a high decision

threshold increases the reaction time, which slows down the exploration task.

This is reasonable, given that humans not only explore actively but also em-

ploy the appropriate time until a certain belief about the object being explored

is reached (Overvliet et al., 2008).

Interestingly, the results from the active Bayesian perception method pro-
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posed also demonstrated to be superior in accuracy perception for angle dis-

crimination to those found in both sighted and blind humans under psy-

chophysical studies using active touch (Voisin et al., 2002; Levy et al., 2007;

Alary et al., 2008).

An investigation of the impact in the performance of a tactile exploration

by addition of a forward model for prediction of the next state during the

exploration task is presented in the next chapter. Also, it will be presented the

analysis of the impact in speed and perception accuracy when the experience

acquired along the exploration task is included in the perception process.
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Chapter 5

Sensorimotor Control Strategies
for Active Perception

The perception process of the contour following exploration presented in Chap-

ter 4 was initialised with a uniform prior for the decision-making of each new

location of the tactile sensor. Also, the accumulation of evidence from in-

teraction with the object being explored was performed only for the current

exploration state, and no prior knowledge from previous states was included.

In other words, the autonomous active exploration performed an independent

active perception process for each new location along the exploration task.

However, the decisions made by humans not only depend on the current

evidence but also on the experience from previous interactions with the world.

This combination permits humans to make more reliable decisions and achieve

better perception accuracy (Shadmehr et al., 2010). For that reason, in this

chapter an investigation of active Bayesian perception combined with knowl-

edge from previous exploration steps using two novel sensorimotor control

strategies is presented. This approach permits to investigate the effects on the

speed and perception accuracy for the autonomous active exploration when

experience from previous states is included in the perception process.

The first proposed sensorimotor control strategy (SMC1) includes a weighted

prior at the beginning of the perception process. The second sensorimotor con-

trol strategy (SMC2) uses a weighted posterior at the end of the perception

process. The way in that each strategy is applied provides different effects on

the performance of the exploration task. Also, this study permits to observe
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how the weight assigned to each combined source of information affects the

speed and perception accuracy of the autonomous active exploration task.

To validate both sensorimotor control strategies they are implemented in

simulated and real environments. The implementation in the simulated en-

vironment uses real tactile data (see Chapter 4), whilst the robotic platform

presented in Chapter 3 is used for the implementation in a real environment.

In this chapter, the description of the combination of active Bayesian per-

ception and knowledge from predicted observations is presented in Section 5.1.

The ideal forward model used for prediction of sensory observations is de-

scribed in Section 5.2. The proposed sensorimotor control strategies for active

perception are presented in Section 5.3. The results from experiments in both

simulated and real environments are presented in Section 5.4 and Section 5.5

respectively. Finally, Section 5.6 presents the concluding remarks.

5.1 Active perception and predicted informa-

tion

During a decision making process humans combine current information with

experience acquired from interaction with the environment (Shadmehr et al.,

2010). Normally, when both the experience and the current information are

reliable, this combination provides better perception results than relying only

on current sensory measurements. The degree of reliability from each source

of information controls the improvement in the decisions made. This has been

studied with psychophysical experiments which demonstrated a bias in the

perceptual decisions made by humans when prior knowledge is included in the

perception process (Green et al., 1966). These experiments also demonstrated

that humans assign different weights to each information source according to its

reliability. However, the weighting process that occurs during the interaction

with the environment is unknown in many situations (Hanks et al., 2011).

The combination of current evidence and the experience from previous

interactions with the environment is depicted in Figure 5.1. For the case of
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Figure 5.1: (a) Combination of an initial flat prior with accumulation of ev-
idence from sensory measurements. The perception result is not affected or
biased by the experience. (b) The experience acquired along an exploration
task and used as a non uniform prior is initially combined with the evidence ac-
cumulated. This combination affects the time required to exceed a hypothesis,
hence improving the reaction time.

using a flat prior, in other words, when no experience from previous states is

taken into account, the perception and decision-making processes of the new

location of the fingertip sensor are not affected or biased. This is observed in

Figure 5.1a where the output from the active Bayesian perception process has

not been affected by the initial addition of a flat prior.

In contrast, the perception and decision-making processes are affected when

the experience from previous interactions with the environment is included as

the initial prior for the active Bayesian perception process. The effect of the

non uniform prior is observed in Figure 5.1b, where the belief threshold for

making a decision about a hypothesis is reached more quickly.

The illustrative process in Figure 5.1 shows the reaction time affected by

a non uniform prior in the perception process. The perception accuracy can

also be affected according to the weight assigned to each source of information

combined for the perception process.

A procedure to study the effects of the integration and weighting of prior

knowledge used by humans during a perceptual decision task was designed

in (Hansen et al., 2012). This study proposed the recognition of two objects

(A and B) which were presented with a weighted prior knowledge of 80/20
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and 50/50. The results demonstrated that for the prior defined as 80/20 the

reaction time for making a decision presented an improvement over the prior

set as 50/50. Also, it was observed that once a bias is learned it is difficult to

return to the unbiased state and make a change to the perception process.

This motivates the design of two sensorimotor strategies for the combi-

nation of active Bayesian perception and predicted information, in order to

analyse their effects on the performance of an autonomous tactile exploration

task. The first sensorimotor control strategy (SMC1) includes a weighted prior

at the beginning of the active Bayesian perception process. The prior is ob-

tained from previous states during the exploration task. On the other hand,

the second sensorimotor control strategy (SMC2) adds a weighted posterior

at the end of the active Bayesian perception method. Similarly, the weighted

posterior is obtained from perceptions of previous states of the exploration

task. A detailed description of the proposed sensorimotor control strategies is

presented in the next sections.

5.2 Sensory prediction based on forward model

For an autonomous exploration task, the prediction of the sensory conse-

quences from the decisions and actions taken is achieved by forward models

which also permit to have a better knowledge of the surrounding environ-

ment (Wolpert and Flanagan, 2001; Dearden and Demiris, 2006). Forward

models also permit to know the possible results for each action taken before

executing them. This characteristic, which is very important in the field of

robotics, permits to choose the best actions and improve the performance of

an autonomous active exploration task.

When forward models predict reliable sensory consequences, they provide

important information for the improvement of the perceptions and the deci-

sions made (Shadmehr et al., 2010). However, if the forward model cannot

accurately predict the sensory consequences from the actions taken, then the
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Forward model

current state

motor command predicted observations

Mt Ot+1

St

Figure 5.2: Diagram of an ideal forward model for which the inputs received are
the current state St and the motor command M t. The output is the predicted
observations Ot+1 which are used for the next time during perception task.

knowledge about the surrounding environment would be negatively biased.

Figure 5.2 shows an example of an ideal forward model where the state

(St) and the motor command (M t) at the current time t are the inputs used

for prediction of the sensory observations (Ot+1) for the next time t+ 1.

Both sensorimotor control strategies include a forward model for their op-

eration (see Section 5.3). For the purpose of the investigation of the effects

of the proposed sensorimotor control strategies during an autonomous active

exploration task, the forward model that correctly predicts the observations

for the next state of the exploration task is assumed to be known.

The autonomous active exploration used in this chapter is based on the

contour following exploratory procedure implemented in Chapter 4. Thus,

the forward model is responsible for providing a prediction of the angle ob-

servations for the next location of the biomimetic fingertip sensor during the

tactile exploration task. For that reason, the output from the known forward

model is the angle observations obtained at time t and shifted by a parameter

∆ = 5 degrees, which corresponds to the angle resolution used in the tactile

data collection procedure (see Section 3.3).

The application of the forward model to the output of the active Bayesian

perception procedure obtained at the current time t is as follows:

P (cn|z̃t)′ = P (xl, wi|z̃t)′ = P (xl, wi + ∆|z̃t) (5.1)

where the probability distribution P (cn|z̃t)′ is the resulting prediction from

the forward model applied to the posterior P (xl, wi + ∆|z̃t) from the previous
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exploration step. The angle and position classes are represented by wi and

xl, whilst z̃t denotes the observations from the previous exploration step. The

tilde (˜) is used to distinguish between the exploration steps from time t − 1

and t. Similarly, the prime (’) represents the predicted observations for the

next exploration step. The prediction performed by the forward model is

based on shifting the posterior obtained from the active Bayesian perception

process by the parameter ∆. As mentioned before, for the investigation of the

sensorimotor control strategies, it is assumed that the forward model correctly

predicts the sensory observations. For that reason the shift parameter is set

to ∆ = 5 degrees. This is equivalent to shifting the angle observations by one

angle class. The shift of the angle observations by the parameter ∆ is denoted

by wi + ∆ for each step along the exploration task.

In the next section, the application of the predicted observations obtained

from the forward model to the proposed sensorimotor control strategies is

described with the contour following exploration task previously considered.

5.3 Control strategies for active tactile explo-

ration

In this section the analysis of the effects on the performance of an autonomous

tactile exploration task by the combination of information sources is presented.

This investigation is based on two sensorimotor control strategies: SMC1 and

SMC2 which combine the active Bayesian perception process with a weighted

prior and a weighted posterior respectively. The results demonstrate the im-

pact on the speed and perception accuracy for an autonomous tactile explo-

ration by the combination of the active Bayesian perception with the experi-

ence from interactions with the environment.

Both sensorimotor control strategies are implemented and analysed first

in a simulated environment using real tactile data with a contour following

procedure. Then, the exploration task is repeated in a real environment using

the tactile robotic platform to extract object shape.
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5.3.1 Weighted prior strategy (SMC1)

The active Bayesian perception method for tactile exploration described in

Chapter 4 uses an initial flat prior to set all the angle and position percep-

tual classes to a uniform probability at the beginning of each exploration step.

However, it is interesting to analyse the performance of the tactile exploration

task when experience from previous exploration steps are combined with the

active Bayesian perception process. This motivates the proposed first sensori-

motor control strategy (SMC1) for including an initial weighted prior at the

beginning of the active Bayesian perception process. The prior is weighted by

a confidence factor, which permits to analyse how the amount of experience

combined with the active Bayesian perception process affects the performance

of the contour following exploration task.

The weighted prior for the SMC1 strategy is built by the combination

of a uniform probability distribution Pflat(cn) = 1/N with N the number of

perceptual classes and the predicted observations from the forward model,

which is represented by the probability distribution P (cn|z̃t)′ as shown in Equa-

tion (5.1). The combination of both sources of information is weighted by the

confidence factor α ∈ [0, 1]. Then, the weighted prior to be used at the begin-

ning of the active Bayesian perception at each exploration step is as follows,

P (cn|z̃0) = αP (cn|z̃t)′ + (1− α)Pflat(cn) (5.2)

where P (cn|z̃0) denotes the new initial weighted prior for the active perception

process at the beginning of each exploration step. Thus, the flat prior used in

the initialisation of the active Bayesian perception method in Equation (3.2)

is modified to include the weighted prior from the SMC1 strategy as follows:

P (cn|zt) =
P (zt|cn)P (cn|z̃0)

P (z)
(5.3)

Given that the SMC1 strategy is applied at the beginning of the active

Bayesian perception process, the marginal posteriors are obtained from the

perception process by Equations (3.8) and (3.9) which are repeated below,
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forward
model

decision
making

environment active Bayesian perception

robot
controlmovement

command

tactile
measurements

prior
updated

weighted
prior

process

predicted
observations

decision

observations

flat prior

Figure 5.3: Diagram of the SMC1 strategy based on the weighted prior applied
to the active Bayesian perception method at the beginning of each exploration
step. The weighted prior obtained from the weighted combination of a flat
prior and the predictions made by the forward model, affects the performance
in speed and perception accuracy during a tactile exploration task.

P (xl|z1:t) =

Ni∑
i=1

P (xl, wi|z1:t)

P (wi|z1:t) =

Nl∑
l=1

P (xl, wi|z1:t)

where the position and angle marginal posteriors are represented by P (xl|z1:t)

and P (wi|z1:t) respectively. The location perceived based on the angle and

position of the biomimetic fingertip sensor at each time of the exploration task

is obtained using Equation (3.10) (repeated here from Chapter 3.)

if any P (wi|z1:t) > θdecision then



wdecision = arg maxwi
P (wi|z1:t)

xl = arg maxxl
P (xl|z1:t)

The block diagram in Figure 5.3 shows the SMC1 strategy applied to the
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active Bayesian perception method. The tactile measurements obtained from

the biomimetic fingertip sensor and the weighted prior are the input of the

active Bayesian perception module. The tactile measurements are acquired

repeatedly by the palpations performed by the fingertip sensor. The weighted

prior obtained by Equation (5.2) is applied only at the beginning (t = 0) of

a new exploration step (see Equation (5.3)), and then to continue with the

accumulation of evidence using the perception method described in Chapter 3.

Once the active Bayesian perception process finishes by exceeding the de-

fined decision threshold, θdecision, the marginal posteriors (see Equations (3.8)

and (3.9)) from the output are used to make the decision about the location

of the fingertip sensor based on Equation (3.10). The output from the active

Bayesian perception is also used to predict the sensory observations by the

forward model. Then, the predictions made by the forward model are used to

obtain the weighted prior for the next exploration step. The decision made

from the output of the active Bayesian perception process, sent to the robotic

platform, defines the corresponding movement to be performed in order to

continue with the exploration task by the biomimetic fingertip sensor.

From Equations (5.2) and (5.3) it is observed that for confidence factor

values of α > 0 the weighted combination in the SMC1 strategy adds a bias

to the initial active perception process. In contrast, for α = 0, the active

Bayesian perception uses an initial flat prior without including the influence

from previous exploration steps as in the analysis presented in Chapter 4.

The application of the weighted prior which is obtained by the weighted

combination of a flat prior and the prediction made by the forward model,

affects the performance in speed and perception accuracy of an exploration

task. These effects generated by the SMC1 strategy depend on the weight

assigned to each source of information and the reliability of the active Bayesian

perception process. The results from the implementation of the SMC1 strategy

in a contour following exploration procedure are presented in Section 5.4.1.
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5.3.2 Weighted posterior strategy (SMC2)

In the previous sensorimotor control strategy (SMC1), the active perception

process is affected by the influence of the experience acquired along the ex-

ploration task. However, it is also interesting to analyse the effects that the

experience provides to the performance of the exploration task without biasing

the initialisation of the active perception process. For that reason, the second

sensorimotor control strategy (SMC2) is proposed to make a weighted com-

bination of the output from the active Bayesian perception process and the

predictions made by the forward model. Then, in order to not bias the initial-

isation of the perception process, the SMC2 strategy based on the weighted

posterior is applied after the active Bayesian perception process has finished.

The posterior is weighted by a confidence factor, α ∈ [0, 1], which permits to

analyse the effects in the performance of the exploration task, according to

the amount of experience combined with the output from the active Bayesian

perception process.

The proposed SMC2 strategy is based on the combination of the posterior

P (cn|zt) obtained from the active Bayesian perception process at time t and the

prediction P (cn|z̃t)′ provided by the forward model in Equation (5.1) from the

previous time step of the exploration task. The combination of both sources of

information involved in the SMC2 strategy is weighted by the confidence factor

α ∈ [0, 1]. Then, the new posterior obtained from the weighted combination

performed by the SMC2 strategy is as follows,

P (cn|z̃t) = αP (cn|z̃t)′ + (1− α)P (cn|zt) (5.4)

where P (cn|z̃t) is the new posterior at time t that provides the marginal posi-

tion P (xl|z̃t) and angle P (wi|z̃t) probabilities using the following equations,

P (xl|z̃t) =

Ni∑
i=1

P (xl, wi|z̃t), (5.5)
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Figure 5.4: Diagram of the SMC2 strategy showing the different modules used
to combine active Bayesian perception with a weighted posterior during a
contour following exploration task.

P (wi|z̃t) =

Nl∑
l=1

P (xl, wi|z̃t), (5.6)

These marginal probabilities result from the application of the SMC2 strat-

egy and Equations (5.5) and (5.6) are used to estimate the final location of

the biomimetic fingertip sensor for each exploration step as follows,

wdecision = arg max
wi

P (wi|z̃t) (5.7)

xl = arg max
xl

P (xl|z̃t) (5.8)

where xl and wdecision are the estimate position and angle that represent the

location of the biomimetic fingertip sensor for the current exploration step. The

resulting angle and position perceived by the application of the SMC2 strategy

are sent to the robotic platform to perform the corresponding movements of

the biomimetic fingertip sensor in order to continue with the exploration task.

The block diagram in Figure 5.4 shows the application of the SMC2 strategy

to the active Bayesian perception process. The inputs for the active Bayesian

perception method with the SMC2 strategy are the tactile measurements and

the flat prior. This shows that the perception process is not initially affected

by the experience acquired from previous exploration steps. In contrast, the
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experience is applied to the output of the active Bayesian perception process,

which is obtained once the decision threshold has been exceeded. Then, the re-

sulting posterior from the active Bayesian perception process is combined with

the predictions made by the forward model. This combination is weighted by

the confidence factor α ∈ [0, 1]. In one hand, the new posterior obtained from

the weighted combination is used to make a decision about the next movement

to be performed by the robotic platform and the biomimetic fingertip in order

to continue with the exploration task. On the other hand, the new posterior

is also used by the forward model to make the sensory predictions for the next

exploration step.

The effects of the proposed SMC2 strategy over the output of the active

Bayesian perception process are observed for confidence factor values of α > 0

as is shown in Equation (5.4). In contrast, for the case of α = 0, the output

of the active Bayesian perception process is not affected by the experience ac-

quired from previous exploration steps, obtaining the active perception system

described in Chapter 4.

The implementation and analysis of the both proposed sensorimotor con-

trol strategies are presented in the next sections. They are implemented using

the contour following exploratory procedure tested in Chapter 4. The experi-

ments are performed in both simulated and real environments using the robotic

platform and biomimetic fingertip sensor described in Chapter 3.

5.4 Sensorimotor control strategies in simu-

lated environment

To validate the proposed sensorimotor control strategies, a contour following

exploration was implemented in a simulated environment as described in Chap-

ter 4. The results permit to observe and compare the benefits of the proposed

sensorimotor control strategies over the unaffected active Bayesian perception

process by the experience acquired along the exploration task presented in

Chapter 3.
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5.4.1 Weighted prior and active Bayesian perception

The implementation of the SMC1 strategy is based on the diagram shown

in Figure 5.3 which implements Equations (5.1) and (5.2) for shifting and

weighting respectively the prior knowledge obtained from the active Bayesian

perception method.

To observe how the amount of prior knowledge used affects the performance

of the autonomous active exploration, the confidence factor α ∈ [0, 1] was used

to assign a weight to each source of information. The weighting process shown

in Equation (5.2) was applied to the prior knowledge obtained from previous

steps of the exploration task and the initial flat prior from the active Bayesian

perception process. The results from the SMC1 strategy applied to the contour

following in a simulated environment are shown in Figure 5.5.

The weighted combination of the priors is represented by the confidence

factor α shown with the coloured scale curves, where the lightest curve corre-

sponds to α = 0 and the darkest corresponds to α = 1. Figures 5.5a and 5.5b

present the angle and position accuracy results for the use of a weighted prior

for different belief thresholds used to make a decision about the location of the

biomimetic fingertip sensor. For the results of angle accuracy against belief

threshold shown in Figure 5.5a, it was found that for the confidence factor

α = 0 the performance of the proposed control strategy corresponds to the

perception accuracy results obtained from the contour following task by the

application of active Bayesian perception with initial flat prior considered in

Chapter 4. The angle perception presented an improvement in the accuracy

for belief thresholds greater than 0.3. The maximum angle perception accu-

racy achieved by the SMC1 strategy was for a belief threshold of ∼0.5 and

confidence factor α > 0.

For the results for the position accuracy against belief threshold shown in

Figure 5.5b, it was found that for the confidence factor α = 0 the percep-

tion accuracy is similar to the results obtained by the use of active Bayesian

perception with initial flat prior presented in Chapter 4. In contrast, for val-

ues of the confidence factor α > 0 there was not observed an improvement
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in the perception accuracy, except for the case of belief thresholds ∼1. This

behaviour in the performance of the exploration task is observed given that

for increasing values of the prior knowledge, less accumulation of evidence is

required to exceed a threshold for making a decision. This produces a reduc-

tion in the reaction time that affects the active repositioning of the fingertip

sensor performed by the active Bayesian perception process.

The results for angle and position perception against reaction time are

shown in Figures 5.5c and 5.5d. It is observed a gradual reduction of the

reaction time required to make a decision for values of the confidence factor

α > 0 (see Figures 5.5c). This is related to the amount of experience applied

to the initial prior of the active Bayesian perception which is controlled by

the confidence factor. Thus, larger amounts of prior included in the active

Bayesian perception process are reflected in the faster decisions made. There

is also observed a definite minimum in the speed and accuracy curves for angle

perception, rather than a monotonically decreasing as in the case where an

initial flat prior and active Bayesian perception were used. This behaviour

is due to the assumption of having a known forward model which provides

perfect predictions of the sensory observations. For the position perception

against reaction time in Figure 5.5d, even though there is no change in the

position error, there is a reduction in the reaction time required for making a

decision. This is related to the weight assigned to the initial prior used in the

active Bayesian perception process for values of the confidence factor α > 0.

On one hand, the perception accuracy results from the SMC1 strategy show

that the active Bayesian perception process is improved on values of the confi-

dence factor α > 0. On the other hand, it is also shown that the reaction time

presents an improvement which is related to the weight assigned to the prior for

values of the confidence factor α > 0. Also, for both speed and perception accu-

racy it is observed an improvement over the used of active Bayesian perception

with the initial flat prior (α = 0) presented in Section 4.1.3. The autonomous

active exploration was able to achieve the smallest angle and position errors of

2.6 degrees and 0.15 mm with a reaction time close to 1 palpation per decision-
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making and confidence factor between 0.1− 1. These results contrast with the

angle and position errors of 4 degrees and 0.2 mm achieved by active Bayesian

perception and initial flat prior presented in Section 4.1.3. The SMC1 strategy

applied to the active Bayesian perception process demonstrated its benefits on

the performance in speed and accuracy for an autonomous exploration task.

5.4.2 Weighted posterior and active Bayesian percep-
tion

The SMC2 strategy is implemented following the diagram shown in Figure 5.4

and Equations (5.1) and (5.4) for predicting the sensory observations and

weighting the posterior obtained from the active Bayesian perception process.

The combination of the predicted observations and the posterior from the

active Bayesian perception process performed by the SMC2 strategy is shown

in Equation (5.4). This combination is weighted by the confidence factor

α ∈ [0, 1] in order to analyse the effects on the speed and accuracy by the

amount of experience used for perception during the exploration task. The

SMC2 strategy, in contrast to the SMC1 strategy, does not affect the initial

prior of the perception process, but it is applied to the output of the active

Bayesian perception. Thus, the perception process requires a longer time for

making a decision as in the experiments presented in Chapter 4. The SMC2

strategy, based on the weighted combination of the experience and the output

from active Bayesian perception, provides the new marginal posteriors from

the current location (angle and position) of fingertip sensor as shown in Equa-

tions (5.5) and (5.6). The resulting marginal posteriors are used to estimate

the final location of the biomimetic fingertip sensor for the current exploration

step based on Equations (5.7) and (5.8). The results of the SMC2 strategy are

presented in Figure 5.6.

The weighted combination of posteriors controlled by the confidence factor

α ∈ [0, 1] is represented by the coloured scale curves, where the lightest and

darkest curves correspond to α = 0 and α = 1 respectively. From the results of
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Figure 5.5: Results from the contour following task based on the SMC1 strat-
egy and active Bayesian perception applied to a circular-shaped object. (a)
Mean angle and (b) position errors against belief threshold. (c) Mean an-
gle and (b) position errors against reaction time. The prior weighted by the
confidence factor α is shown with the coloured scale curves in the range [0, 1].

angle and position perception against belief threshold in Figures 5.6a and 5.6b,

it is observed that for α = 0 (lightest curve) the performance achieved corre-

sponds to use of the unaffected posterior from the active Bayesian perception

process considered earlier in Section 4.1.3. In contrast, it is clearly observed

the improvement in angle perception accuracy for values of the confidence
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Figure 5.6: Results from the contour following task based on the SMC2 strat-
egy and active Bayesian perception applied to a circular-shaped object. (a)
Mean angle and (b) position errors against belief threshold. (c) Mean angle
and (b) position errors against reaction time. The combination of posteriors
weighted by the confidence factor α is shown with the coloured scale curves in
the range [0, 1].

factor α > 0. These results also present a steady angle perception accuracy

for belief thresholds greater than 0.1. The maximum angle accuracy achieved

by the implementation of the SMC2 strategy in the contour following explo-

ration task is 1.4 degrees for a belief threshold ∼0.45 and a confidence factor

α > 0. These results present a superior performance in angle accuracy over
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the 4 degrees achieved by the active Bayesian perception process described in

Section 4.1.3 where the posterior was not affected by the experience acquired

along the exploration task.

Similar to the SMC1 strategy, the position accuracy achieved with the

SMC2 strategy for the confidence factor α = 0 corresponds to the results of

the active Bayesian perception analysis presented in Figure 4.9b. In contrast,

for values of the confidence factor α > 0, it is observed an improvement in

the position perception accuracy for belief thresholds greater than 0.4, which

permit to achieve a maximum position perception of ∼0.04 mm. The high

position accuracy achieved by the SMC2 strategy contrasts with the position

accuracy of 0.2 mm obtained with the active Bayesian perception with unmod-

ified posterior presented in Section 4.1.3.

Figures 5.6c and 5.6d show the angle and position perception results against

reaction time. These plots present an improvement in both angle and position

perception as the values of the confidence factor increase (α > 0). The best

perception accuracy by the SMC2 strategy is achieved for a reaction time

between 2-3 palpations. The autonomous active exploration was able to reach

a maximum angle and position perception of 1.4 degrees and ∼0.04 mm with a

reaction time between 2-3 palpations for values of the confidence factor α > 0.

In general, both speed and accuracy not only showed a clear dependency on

the confidence factor α, but also presented an improvement over the active

Bayesian perception process without including the experience acquired along

the exploration task described in Chapter 4.

5.5 Sensorimotor control strategies in real en-

vironment

To validate both sensorimotor control strategies in a real environment, the

contour following exploration task was repeated using a circular-shaped object

with a robotic platform and biomimetic fingertip sensor. Similar to the explo-

ration task implemented in the simulated environment, the forward model to
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predict the sensory observations for the next exploration step was assumed to

be known. The same circular-shaped object used in Section 4.2.2 was prepared

for this experiment in a real environment. The results from the implementation

of both sensorimotor control strategies are shown in Figure 5.7.

For both proposed SMC1 and SMC2 strategies, the confidence factor was

set to the values 0.0, 0.7 and 1.0, selected based on the results in speed and per-

ception accuracy obtained from the experiments in the simulated environment.

Also, these values the confidence factor where chosen to observe their different

effects on the performance in the speed and perception accuracy according to

the amount of experience applied to the autonomous active exploration task.

The results obtained from the real environment experiment for both SMC1 and

SMC2 strategies are presented in Figure 5.7. First, the results for the confi-

dence factor α = 0 show the large angle errors achieved by both sensorimotor

control strategies (see Figure 5.7a). These relative large errors were expected

given that for the confidence factor α = 0 the active Bayesian perception does

not include experience along the exploration task. This behaviour also corre-

sponds to the experiments performed in Chapter 4 where the initial prior and

posterior were not modified during the contour following procedure.

For the confidence factor α = 0.7 the angle perception presented an im-

provement by both strategies which corresponds to the results from the exper-

iments in the simulated environment. However, the angle error was increased

by the SMC1 strategy and decreased by the SMC2 strategy for the confidence

factor α = 1, which permitted to reach a minimum angle error of 1.98 degrees.

For the position perception shown in Figure 5.7b, both sensorimotor con-

trol strategies presented similar perception accuracy for the confidence factor

α = 0. This also corresponds to the unmodified prior and posterior of the

active Bayesian perception process presented in Chapter 4. For the confidence

factor α = 0.7, the SMC2 strategy presented a better improvement in percep-

tion accuracy than the SMC1 strategy. For α = 1.0, there is a clear contrast

in the results, where the position error increased for the SMC1 strategy, whilst

it decreased for the SMC2 strategy. This improvement in the position percep-
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Figure 5.7: Results from the implementation of the SMC1 and SMC2 strategies
in a real environment with a contour following exploration task. (a) Mean
angle errors against confidence factor. It is shown that both strategies offer an
improvement in angle perception. (b) Mean position errors against confidence
factor. The SMC2 strategy achieves more accurate position perception. (c)
Reaction time against confidence factor. The SMC1 demonstrated to be faster
than the SMC2 strategy for increasing values of the confidence factor. Overall,
both strategies provide improvements in speed and accuracy over the use of
active perception with unmodified prior and posterior.

tion achieved by the SMC2 strategy corresponds also with the improvements

obtained from the results in the simulated environment.

The implementation of both sensorimotor control strategies in an autonomous
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active exploration task presented an improvement over the use of the active

Bayesian perception method with unmodified prior and posterior analysed ear-

lier (see Section 4.1.3). Also, the SMC2 strategy demonstrated to be able to

achieve better perception accuracy over the SMC1 strategy in both simulated

and real environments. On the other hand, the SMC1 strategy demonstrated

to be faster in the decision-making process for certain decision threshold values.

Overall, it has been observed that the autonomous active exploration based

on the contour following procedure in a simulated and real environment ben-

efits from the proposed sensorimotor control strategies by improving the per-

formance in both speed and accuracy achieved by the active Bayesian percep-

tion process. Moreover, the results obtained from both sensorimotor control

strategies demonstrated to be more accurate and faster over the case when

no weighted prior or weighted posterior were included in the active Bayesian

perception process.

5.6 Concluding remarks

In this chapter the combination of evidence from sensory observations and

the experience from previous steps during an autonomous active exploration

task was proposed with two sensorimotor control strategies. The first senso-

rimotor control strategy (SMC1) is responsible for including a weighted prior

at the beginning of the active Bayesian perception process, whilst the second

sensorimotor control strategy (SMC2) is responsible for including a weighted

posterior at the end of the active Bayesian perception process.

On the one hand, the SMC1 strategy demonstrated to be faster than the

SMC2 strategy, which makes sense given that the initial weighted prior in-

cluded in the active Bayesian perception process permits to reach quickly the

belief threshold for making a decision. On the other hand, the SMC2 strategy

which is applied at the end of the perception process, allows the active Bayesian

perception to accumulate enough evidence and take the required time to make

more accurate decisions. For that reason, the perception accuracy achieved
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with the SMC2 strategy was superior to the SMC1 strategy.

Overall, it has been observed that the active Bayesian perception process

presented in Chapters 3 and 4 benefits by the use of the proposed sensorimotor

control strategies. The application of these strategies for an autonomous ex-

ploration task permitted to obtain improvements in both speed and accuracy

which are important characteristics in the field or robotics. In this chapter the

forward model was assumed to be known and the confidence factor was set to

a fix values. In the next chapter a method to learn the forward model based

on tactile feedback is presented. Also, a method for an adaptive confidence

factor along the exploration task is presented in next chapter. These methods

permit to obtain an exploratory procedure with an adaptive behaviour during

an autonomous active exploration.
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Chapter 6

Adaptive Control Strategies for
Active Perception

Humans normally use evidence from different sources of information in order to

make more reliable decisions and actions. This process was investigated with

two novel sensorimotor control strategies in Chapter 5 to integrate the expe-

rience obtained along an exploration task into the active Bayesian perception

method. The first strategy was responsible for including a weighted prior at

the beginning of the perception process, whilst the second strategy performed

a weighting of posteriors at the end of the perception process. Both proposed

strategies provided different benefits in the speed and perception accuracy of

the decision-making process with a tactile exploration procedure.

For the purpose of the investigations undertaken in Chapter 5 the confi-

dence factor parameter and forward model required by both sensorimotor con-

trol strategies were assumed to be known and manually controlled. These as-

sumptions are unrealistic in a real environment, for which adaptive approaches

are required to automate the learning of the forward model and confidence fac-

tor along the exploration procedure.

For that reason, in this chapter an investigation of an adaptive integration

of the experience obtained along an exploration task into the active Bayesian

perception process is presented. The learning of the forward model and con-

fidence factor is adaptive according to the sensory observations obtained and

decisions made along the exploration task. The forward model is learned using

the combination of the Predicted Information Gain (PIG) (Little and Som-
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mer, 2011) and the Dynamic Bayesian Network (DBN) (Cho et al., 2008) ap-

proaches. These methods permit, based on the sensory observations obtained

by the active Bayesian perception process, to estimate the observations for the

next exploration time. The accuracy of the forward model is then assessed

by the confidence factor which is adapted along the exploration task. This

allows to increase the confidence on the forward model for correct predictions

and decrease it otherwise. These methods have been tested using the contour

following exploration task previously validated, to be able to compare their

performance with the results obtained in previous experiments.

Section 6.1 presents the approach used to learn the forward model along an

exploration task. The accuracy assessment of the forward model based on a

confidence factor is described in Section 6.2. In Section 6.3 the implementation

and validation of the proposed adaptive control strategies with the contour

following exploration task are presented. Finally, Section 6.4 provides the

concluding remarks of the results obtained from the proposed methods.

6.1 Adaptive forward model

Learning the forward model during an exploration task rather than manually

defining it with a set of fixed values not only permits to estimate the future

states of a system, but also allows the adaptation of the exploration task,

according to the observed changes through the interaction with the environ-

ment. The adaptive behaviour of the exploration task is based on the causal

relationship between the actions and the observed consequences (Wolpert and

Flanagan, 2001). Forward models can be learned and maintained calibrated

by motor adaptation and interaction with the environment, which is known as

learning driven by sensory adaptation errors (Shadmehr et al., 2010).

The combination of information sources has been studied with the Kalman

Filter approach (Gao and Harris, 2002). This method is mainly applied to

localisation and navigation problems, where the prior belief and the current

observations are combined to estimate the posterior for a certain hypothe-
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sis (Siciliano and Khatib, 2008). However, this method is not applicable to

discrete states and also requires Gaussian distributions (Thrun et al., 2005).

In this chapter, the proposed algorithms are applied to the estimation of

discrete states, without the requirement to work with Gaussian distributions.

Also, the proposed methods fit in the Bayesian framework for tactile perception

presented in Chapter 3, which permits to exploit the benefits offered by the

active Bayesian perception process.

The proposed methods for the learning and assessment of the forward model

during an exploration task are based on the combination of the Predicted

Information Gain (PIG) (Little and Sommer, 2011) and Dynamic Bayesian

Network (DBN) (Cho et al., 2008) approaches. On the one hand, the PIG

approach permits to observe the possible consequences of choosing a certain

action for the next exploration state. The observed state that provides the

largest amount of information, determines the action to be chosen by the

system. This method has been tested with the learning of an exploration task

using an action-perception loop to allow an agent to estimate the amount of

information gained by taking an action. This work assumes an agent with a

complete knowledge of the environment before starting the experiment.

The output from the PIG approach is used by a DBN to generate the

cost of observing an event during the exploration task. The DBN provides

the most probable value for the parameter ∆, which is needed to learn the

forward model according to Equation (5.1). The work in (Cho et al., 2008)

presented a method for the online estimation of the parameters of a DBN.

This method estimates the transition probability of an observed event from

time t to t + 1 based on the observations from previous and current times.

This online DBN method assigns a fixed reward, i.e. 0 or 1 according to the

observed events. In (Dearden and Demiris, 2006) a robot performing motor

babbling with visual feedback was able to learn the forward model using a

Bayesian network approach. In this work, the robot needs to associate the

performed motor commands, states and observations. Once the robot learned

the forward model, it was used to predict the effect of its motor commands.
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6.1.1 Predicted Information Gain (PIG)

The PIG approach is used to learn the forward model along an exploration task

through the interaction with the environment. Given that the tactile sensor has

no knowledge about the observations and states at the next exploration step,

the PIG approach is used to observe at time t ‘what would have happened’ if a

certain action had been chosen at time t−1. The set of estimated observations

denoted by Θ̂ are provided by the active Bayesian perception process at each

exploration time. The set of possible actions and states are denoted by a =

{a1, a2, . . . , aN} and s = {s1, s2, . . . , sN}, where N is the number of angle

classes. The PIG approach is defined as follows:

PIG(a, s) = γ
∑
s∗

Θ̂a,s,s∗DKL(Θ̂a,s,s∗

a,s ||Θ̂a,s) (6.1)

where the current estimation provided by the perception process for the state

s by choosing the action a are denoted by Θ̂a,s. The hypothetical outcomes s∗

for each possible previous action a chosen in previous state s, using the current

estimation Θa,s, are denoted by Θ̂a,s,s∗
a,s . The hypothetical outcomes s∗, that

the perception process would have been currently provided, by choosing the

action a under the state s is denoted by Θ̂a,s,s∗ . The normalisation parameter

is denoted by γ.

The PIG approach also uses the Kullback-Leibler Divergence (DKL) which

is an information-theoretic measure of the difference between two distributions.

This measure permits to have an expectation of the information loss between

the action a chosen to produce s (Θ̂a,s) and the action a undertaken to produce

s∗ (Θ̂a,s,s∗
a,s ). The DKL is obtained as follows:

DKL(Θ̂a,s,s∗

a,s ||Θ̂a,s) =
N∑

s∗=1

Θ̂a,s,s∗

a,s log

(
Θ̂a,s,s∗

a,s

Θ̂a,s

)
(6.2)

The output of the PIG approach, provides the amount of information that

would have been lost for each action undertaken from the previous exploration

time t − 1 to the current time t. Then, the action that minimizes the loss of
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information can be obtained as follows,

aPIG = arg min
a

PIG(a, s) (6.3)

where aPIG is the action that would have provided the minimum loss of in-

formation. The output from the PIG in Equation (6.1) is used in a Dynamic

Bayesian Network (DBN) to learn the value for the ∆ parameter of the forward

model shown in Equation (5.1), repeated here,

P (cn|z̃t)′ = P (xl, wi|z̃t)′ = P (xl, wi + ∆|z̃t)

The ∆ parameter is needed by the forward model to predict the sensory

observations for the next exploration state. This parameter is applied to the

angle classes wi to obtain the prediction P (cn|z̃t)′, which is used by the senso-

rimotor control strategies proposed in Chapter 5.

6.1.2 Dynamic Bayesian Network and PIG

An online DBN approach is used to learn the forward model using the output

from the PIG method. This method permits to determine the ∆ parameter for

the forward model based on the online estimation of the transition probability

matrix. Figure 6.1 depicts the Predicted Information Gain (PIG) and the

Dynamic Bayesian Network (DBN) approach used to learn the forward model.

The variable Xt at time t shown in Figure 6.1 takes N values which deter-

mine the possible values for the ∆ parameter. The estimation of this variable

at time t depends on the states at time t− 1. Initially, the probability P (Xt)

at time t = 0 starts with a uniform distribution which evolves and adapts

along the time, according to the observations and changes occurring in the

environment. Then, the probability of P (Xt) at time t is estimated as follows:

P (Xt) = BtP (Xt−1) (6.4)

where the probability from the previous time t−1 is denoted by P (Xt−1). The
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controller robot platform
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predicted
sensory observations

target
position

target
value

forward model

PIG

DBN

t− 1 t

x = 1 x = 1

x = Nx = N
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Figure 6.1: The learning of the forward model provides useful information
about the sensory observations for future states. Information from past and
current perceptions allows to build a forward model capable to adapt along
an exploration task. Here, the forward model is learned using the proposed
approach composed of the Predicted Information Gain (PIG) and Dynamic
Bayesian Network (DBN), whilst an exploration task is performed.

transition probability matrix is represented byBt = bi,j(t) for i, j = 1, 2, . . . , N ,

which is obtained from the conditional probability as follows,

bi,j(t) = P (Xt = i|Xt−1 = j) (6.5)

where P (Xt = i|Xt−1 = j) is the probability of observing the event i at time t

given that the event j was observed at time t− 1. The transition probability

matrix presented in Equation (6.5) is time-dependant and its estimation is

recursively updated based on the observations obtained along the time.

The method to estimate the transition probability bi,j(t) at time t is based

on the approach presented in (Cho et al., 2008), and then, Equation (6.5) is

rewritten as

bi,j(t) = ηmi,j(t) (6.6)
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where mi,j(t) is the likelihood of the transition from the state j at time t− 1

to the state i at time t. The likelihood is normalised by the parameter η to

have probabilities in [0, 1]. The likelihood mi,j(t) is defined as

mi,j(t) =

(
t− 1

t

)
mi,j(t− 1) +

(
1

t

)
PIG (6.7)

where mi,j(t − 1) is the likelihood from the previous time t − 1. The PIG

measurement is used as the reward value. Normally, the reward value is pre-

defined or set to a fixed value, i.e. 0 for the non observed case and 1 otherwise.

However, in the proposed approach the likelihood mi,j(t) uses the PIG mea-

surement, which takes values in [0, 1] that vary along the exploration process

according to the accuracy obtained from the output of the active Bayesian

perception process.

The normaliser parameter η is obtained by adding the information acquired

along the exploration task from time t = 1 to the current time t = T as follows:

η =
T∑
t=1

mi,j(t) (6.8)

Once the transition matrix Bt has been obtained, it is used to estimate

the probability P (Xt) as shown in Equation (6.4). Finally, the variable x with

the largest probability is assigned to the paramater ∆ and used in the forward

model (repeated from Chapter 5) as follows:

∆ = max
x

P (Xt) (6.9)

P (cn|z̃t)′ = P (xl, wi|z̃t)′ = P (xl, wi + ∆|z̃t) (6.10)

Then, the predicted sensory observations obtained from this forward model

are used with the active Bayesian perception approach and the sensorimotor

control strategies described in Chapter 5. The accuracy of the predictions

obtained from the forward model need to be assessed along the exploration

task. For that reason, in the next section a method to assess the sensory
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predictions and control the amount of experience used with the active Bayesian

perception along the exploration task is presented.

6.2 Forward model assessment

The method to predict the sensory observations based on the forward model

along an exploration task was described in Section 6.1. The accuracy of the

learned forward model needs to be assessed to control the amount of informa-

tion used from the experience acquired along the exploration task.

First the sensory observations obtained from active Bayesian perception

at time t and the predicted sensory observations obtained from the forward

model at time t− 1 are assessed using a DBN approach as in Section 6.1.2,

Ot = ηnt (6.11)

where Ot contains the observations updated from time t − 1 to t. The as-

sessment process between the active Bayesian perception and the predictions

provided by the forward model is performed by nt. The normalising factor is

represented by η. The assessment of the predictions by the parameter nt is as

follows:

nt =

(
t− 1

t

)
P (cn|z̃t)′ +

(
1

t

)
P (cn|zt) (6.12)

where the predictions obtained by the forward model are defined by P (cn|z̃t)′.

The output from the active Bayesian perception method at time t is represented

by P (cn|zt). Then, the result from nt is used in Equation (6.11) and normalised

by the parameter η which is obtained by adding the information observed from

time t = 1 to the current time t = T as follows:

η =
T∑
t=1

n(t) (6.13)

The confidence factor αt is then calculated using the previous assessment
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of the forward model αt−1 at time t−1 and the result from Ot at time t shown

in Equation (6.11) as follows:

αt =

(
t− 1

t

)
αt−1 +

(
1

t

)
Ot(wdecision) (6.14)

wdecision = max(P (cn|z̃t)′) (6.15)

where Ot(wdecision) is the probability of the angle class predicted, wdecision,

provided by the forward model in Equation (5.1). The confidence factor αt

which takes values in [0, 1] is used to weight the combination of the experience

acquired along the exploration task and the active Bayesian perception process.

Finally, the weighted combinations performed by Equations (5.2) and (5.4) for

both SMC1 and SMC2 sensorimotor control strategies include the parameter

αt, showing explicitly time dependency along the exploration task as follows,

P (cn|z̃0) = αtP (cn|z̃t)′ + (1− αt)Pflat(cn) for SMC1 strategy (6.16)

P (cn|z̃t) = αtP (cn|z̃t)′ + (1− αt)P (cn|zt) for SMC2 strategy (6.17)

Both sensorimotor control strategies were presented in Chapter 5 to analyse

their effects on the performance in terms of the speed and accuracy achieved

by the active Bayesian perception process during an exploration task. The

analysis presented in Chapter 5 was made under the assumption of knowing

the forward model that provides the correct prediction of the sensory measure-

ments. Also, the confidence factor α was set to fixed values in [0, 1] along the

exploration task.

In this section, the methods to obtain and adapt the forward model and

confidence factor during the exploration task were presented. In the next

section, these methods are included in both SMC1 and SMC2 strategies to
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observe how their performance in terms of the speed and perception accuracy

are affected during the contour following exploration procedure.

6.3 Adaptive active tactile exploration

In this section, the methods for learning the forward model and confidence

factor are implemented and tested using the SMC1 and SMC2 strategies in-

vestigated in Chapter 5. These experiments permit to analyse the effects on

the speed and perception accuracy during the performance of the contour fol-

lowing exploration procedure previously validated.

6.3.1 Exploration using a weighted prior

The first experiment is the implementation of the forward model and confidence

factor with the SMC1 strategy. This strategy is based on including a weighted

prior at the beginning of the active Bayesian perception approach as is shown

in the flowchart of Figure 5.3.

The updated prior in the perception process is obtained by the combina-

tion of the flat prior Pflat(cn) and the prediction of the sensory observations

P (cn|z̃t)′ provided by the forward model. This combination is weighted by

the confidence factor αt, which controls the weighting of the prediction used

according to the assessed accuracy of the forward model. The implementation

of the SMC1 strategy, based on Equation (5.2), adds the time dependency of

the αt parameter obtained by Equation (6.14). This modification is observed

in Equation (6.16) and repeated here,

P (cn|z̃0) = αtP (cn|z̃t)′ + (1− αt)Pflat(cn)

The forward model P (cn|z̃t)′ is learned during the performance of the explo-

ration task using the past observations and the current output from the active

Bayesian perception process (PIG and DBN) as described in Section 6.1. The
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confidence factor αt used to weight the contribution provided by the forward

model is obtained based on the assessment of the output from the active per-

ception process and the predicted observations described in Section 6.2.

The experiment was performed with the contour following exploratory pro-

cedure using a circular-shaped object previously validated (Section 5.4). The

circular-shaped object was constructed with real tactile data to achieve more

realistic results. The effects on the performance in the speed and accuracy ob-

tained by the SMC1 strategy with the proposed adaptive methods are shown

in Figure 6.2. The results from the adaptive exploration are compared with the

results from the non-adaptive exploration presented in Chapter 4 and the ideal

adaptive SMC1 strategy presented in Chapter 5, where the forward model was

assumed to be known and the confidence factor was manually controlled.

The angle and position accuracy achieved against belief threshold by the

adative exploration (green curves) are presented in Figures 6.2a and 6.2b re-

spectively. The smallest angle and position errors obtained with the SMC1

strategy (green curves) are 2.8 degrees and 1.8 mm for the belief threshold of

0.5 and 0.99 respectively. These results in speed and perception accuracy

are improved over the ones obtained by the experiments performed in Chap-

ter 4, were no experience, acquired along the exploration task, was included

in the perception process (blue curves). The proposed forward model learning

and confidence factor methods (PIG and DBN) permitted the improvement of

the performance of the exploration task when experience from previous steps

was included in the perception process. These improvements achieved for the

SMC1 strategy are similar to the results observed in Figures 5.5a and 5.5b

from the investigation presented in Chapter 5. However, here the ∆ and α pa-

rameters do not need to be set manually, and in contrast, they are estimated

and adapted along the exploration task through the interaction between the

biomimetic fingertip sensor and the environment.

The results for the angle and position perception against the reaction time

(green curves), and their comparison with the non adaptive exploration (blue

curves) and the ideal adaptive SMC1 strategy (purple curves) are shown in
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Figure 6.2: Results from the contour following task based on the SMC1 strat-
egy and active Bayesian perception applied to a circular-shaped object. The
online adaptive SMC1 strategy (green curve) is compared to the results from
the ideal adaptive SMC1 strategy (purple curve) and the exploration with no
weighted prior included into the perception process (blue curve). The adaptive
SMC1 strategy achieved the smallest (a) mean angle and (b) position errors
against belief threshold of 2.8 degrees and 0.18 mm respectively. Plots (c) and
(d) present the mean angle and position errors against reaction time.

Figures 6.2c and 6.2d. The smallest reaction time or number of palpations re-

quired to obtain the optimal angle and position perceptions are approximately

1 and 6 palpations respectively. These results, similar to the ones observed for

the SMC1 strategy in Figures 5.5c and 5.5d, were achieved with the predic-

tion of observations and adaptation of the exploration task based on the PIG

and DBN methods. The adaptive behaviour permitted, based on the forward
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Figure 6.3: Results from the contour following task based on the SMC1 strat-
egy and active Bayesian perception applied to a circular-shaped object. (a)
Mean error in the adaptive learning forward model along the exploration task.
(b) Adaptability of the confidence factor used to weight the predictions ob-
tained by the forward model. The experiment is performed for the belief
thresholds set of {0.0, 0.05, . . . , 0.99} represented by the coloured scaled curves

model assessment and with no need to set the confidence factor manually, to

control the weight of the experienced assigned to the SMC1 strategy along the

exploration task.

The behaviour of the forward model and the confidence factor observed

along the exploration task are presented in Figures 6.3a and 6.3b respectively.

The different coloured scaled curves in Figure 6.3a show the adaptability of

the forward model during the tactile exploration task for the belief thresholds

set to {0.0, 0.05, . . . , 0.99}. It is observed that at the beginning (around 10

palpations) of the exploration task, the forward model presents the largest

variation, becoming smaller across time. Figure 6.3b shows the adaptability

of the confidence factor, which is controlled by the accuracy of the forward

model. The coloured scaled curves represent the set of belief thresholds as in

Figure 6.3a. It is observed that the confidence about the predictions provided

from the forward model increase along the time for all the curves. Then,

the more accurate the forward model the larger the confidence factor, which

increases the weight assigned to the predictions used in the SMC1 strategy.

Overall, the proposed learning forward model and confidence factor meth-
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ods for the SMC1 were able to achieve an improvement in the speed and

perception accuracy along the exploration task. These results have been im-

proved over the case where no experience was used to update the initial prior

of the active Bayesian perception process for the exploration task.

6.3.2 Exploration using a weighted posterior

For the second experiment, the proposed forward model and confidence factor

methods are implemented with the SMC2 strategy. This strategy performs a

weighted posterior process at the end of the active Bayesian perception proce-

dure as is described in the flowchart of Figure 5.4.

The weighted posterior is based on the combination of the output from the

active Bayesian perception process P (cn|zt) with the predictions obtained by

the forward model P (cn|z̃t)′ along the exploration task. The combination of

information is weighted by the confidence factor αt that adapts according to

the accuracy of the forward model. The confidence factor also controls the

weight assigned to the forward model for each exploration step. The weighted

posterior process performed by the SMC2 strategy based on Equation (5.4)

converts in Equation (6.17), showing the time dependency of the parameter αt

and which is repeated here,

P (cn|z̃t) = αtP (cn|z̃t)′ + (1− αt)P (cn|zt)

where the forward model P (cn|z̃t)′ and confidence factor αt are learned along

the exploration task using the proposed methods described in Sections 6.1

and 6.2. The forward model is learned based on the past and current observa-

tions for each step along the exploration time, allowing to predict the sensory

observations for the next exploration step. On the other hand, the confidence

factor increases according to the accuracy of the predictions provided by the

forward model.

The weighted posterior obtained at the end of the active Bayesian per-

ception process is then used to make the angle and position decisions for the
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current exploration time as is described by Equations (5.7) and (5.8) (repeated

here)

wdecision = arg max
wi

P (wi|z̃t)

xl = arg max
xl

P (xl|z̃t)

The SMC2 strategy was implemented with the contour following explo-

ration procedure using the proposed methods for learning the forward model

and confidence factor. The implementation and test of the exploration task

was performed using a circular-shaped object constructed with real tactile data

collected with the fingertip sensor (see Section 3.3). The results for the con-

tour following exploration procedure using the SMC2 strategy (green curves)

are presented in Figure 6.4. The results from the non-adaptive exploration

(blue curves) presented in Chapter 4 and the ideal adaptive SMC2 strategy

(purple curves) shown in Chapter 5, where the forward model was assumed to

be known and the confidence factor was manually controlled are also shown

for comparison.

The angle and position perception accuracy results against belief threshold

are shown in Figures 6.4a and 6.4b, with the smallest errors of 4.1 degrees and

0.16 mm respectively (green curves). Unlike the SMC1 strategy, the smallest

errors achieved by the SMC2 strategy based on the proposed forward model

and confidence factor methods, are larger than the results obtained in Chap-

ter 5 where the SMC2 strategy was investigated with an ideal forward model

(purple curves). However, it is observed that the angle perception accuracy is

able to achieve small errors for low belief thresholds, similar to the behaviour

obtained in Chapter 5.

The angle and position perception results against the reaction time are

presented in Figures 6.4c and 6.4d. In this case, the speed of the exploration

task did not present a large effect by the SMC2 strategy, which is similar to

the performance observed in Chapter 5. These results in speed were expected

147



6.3. Adaptive exploration Chapter 6. Adaptive Active Perception

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

50

belief threshold

m
ea

n 
ab

so
lu

te
 e

rr
or

 in
 a

ng
le

 (
de

g)

Angle error vs belief threshold

 

 

non adaptive
ideal adaptive SMC2
online adaptive SMC2

(a)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10

belief threshold

m
ea

n 
ab

so
lu

te
 e

rr
or

 in
 p

os
iti

on
 (

m
m

)

Position error vs belief threshold

 

 

non adaptive
ideal adaptive SMC2
online adaptive SMC2

(b)

0 1 2 3 4 5 6 7 8 9 10
0

3

6

9

12

15

18

21

24

27

30

33

36

39

42

45

reaction time (# taps)

m
ea

n 
ab

so
lu

te
 e

rr
or

 in
 a

ng
le

 (
de

g)

Angle error vs reaction time

 

 

non adaptive
ideal adaptive SMC2
online adaptive SMC2

(c)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

reaction time (# taps)

m
ea

n 
ab

so
lu

te
 e

rr
or

 in
 p

os
iti

on
 (

m
m

)
Position error vs reaction time

 

 

non adaptive
ideal adaptive SMC2
online adaptive SMC2

(d)

Figure 6.4: Results from the contour following task based on the SMC2 strat-
egy and active Bayesian perception applied to a circular-shaped object. The
online adaptive SMC2 (green curve) is compared to the results from the ideal
adaptive SMC2 strategy (purple curve) and the exploration with no weighted
posterior included into the perception process (blue curve). The adaptive
SMC2 strategy achieved the smallest (a) mean angle and (b) position errors
against belief threshold of 4.2 degrees and 0.17 mm respectively. Plots (c) and
(d) present the mean angle and position errors against reaction time.

given that the weighted posterior process is performed at the end of the ac-

tive Bayesian perception process, without affecting the initialisation of the

perception process.

The behaviour of the forward model and confidence factor along the explo-

ration task of the circular-shaped object are shown in Figures 6.5a and 6.5b

respectively. On the one hand, the forward model was able to achieve a small
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Figure 6.5: Results from the contour following task based on the SMC2 strat-
egy and active Bayesian perception applied to a circular-shaped object. (a)
Mean error in the adaptive learning forward model along the exploration task.
(b) Adaptability of the confidence factor used to weight the predictions ob-
tained by the forward model. The experiment is performed for the belief
thresholds set of {0.0, 0.05, . . . , 0.99} represented by the coloured scaled curves.

error for the ∆ parameter after about 14 palpations. However, the assessment

of the predictions were not very accurate, decreasing the confidence of the for-

ward model as is shown by the coloured scaled curves in Figure 6.5b. These

curves represent the set of belief threshold {0.0, 0.05, . . . , 0.99} used for this

experiment. Also, they show how the confidence on the predictions decreases

for each belief threshold along the exploration task, assigning more weight to

the output from the active Bayesian perception process.

Even though the SMC2 strategy was not able to improve the speed and per-

ception accuracy compared to Chapter 5, the results permitted to approximate

the accuracy to a smaller error using low belief thresholds which also reduces

the required time to complete the exploration task. Also, the results showed

an improvement over the experiments where no experience was included into

the active Bayesian perception process. Moreover, the effects observed by the

adaptive approach (PIG and DBN) along the exploration task, did not require

to set the forward model and confidence factor parameter manually as in the

experiments presented in Chapter 5.
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6.4 Concluding remarks

The method presented in this chapter to learn the forward model and confi-

dence factor was composed of a Predicted Information Gain (PIG) approach

to observe ‘what would have happened’ if a certain action had been chosen to

move from the previous to the current exploration time. The PIG approach

was used as the cost of observing an occurred event into a Dynamic Bayesian

Network (DBN). The combination of both approaches permitted to estimate

the ∆ parameter required for the learning of the forward model during the

tactile exploration procedure. The proposed confidence factor αt was respon-

sible for the assessment of the forward model accuracy at each exploration

time. The results from the confidence factor permitted to control the amount

of experience combined with the active Bayesian perception process according

to the SMC1 and SMC2 strategies.

For the SMC1 strategy, the forward model used to predict the sensory

observations permitted to improve both the speed and perception accuracy.

These results are similar to the ones obtained in the experiments performed

with the SMC1 strategy in Chapter 5. The accuracy of the forward model also

is observed with the increment of the confidence factor along the exploration

task. Thus, the exploration task based on the SMC1 strategy included into

the active Bayesian process was benefited by the proposed adaptive methods.

On the other hand, the results from the SMC2 strategy did not present

large improvement on the perception accuracy compared to the ones observed

in Chapter 5. However, small errors were achieved for low belief thresholds,

permitting to reduce the number of palpations required by the fingertip sensor

to make a decision. The position accuracy also provided a small improvement

with respect to the results obtained with the SMC1 strategy. The values

obtained from the confidence factor along the exploration task, also show that

the method to learn the forward model was not able to achieve large accuracy

for the SMC2 strategy.

Overall, the proposed methods permitted to learn and assess the accuracy
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of the forward model along the exploration task. These methods allowed an

online adaptability of the forward model and confidence factor during the

tactile exploration. The predicted sensory observations were able to benefit

the performance of both the speed and perception accuracy achieved by the

active Bayesian perception process. The results also demonstrated that the

active Bayesian perception can benefit from the SMC1 and SMC2 strategies

proposed in Chapter 5 for the combination of information sources.
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Chapter 7

Conclusions and Future Work

Biology plays an important role in the field of robotics, motivating sophisti-

cated methods for the design and development of intelligent systems to solve

a large variety of problems. In this work, investigation of tactile perception in

robotics took inspiration from the way that humans perceive and explore their

environment using their hands and fingers.

First, a new robotic platform was developed to allow mobility and assess

the performance of active controlled movements of a biomimetic fingertip sen-

sor. This platform also permitted the systematic collection of tactile datasets

composed by angle and position classes, which also contributed to the limited

tactile datasets currently available for research.

A novel tactile Bayesian perception method, inspired by the way that hu-

mans perceive using their sense of touch, demonstrated to be robust and accu-

rate. This approach offers a natural way for the accumulation of evidence to

reduce uncertainty from the tactile measurements as human does. Passive and

active perception modalities were also designed and implemented to analyse

and compare their performance in speed and accuracy for tactile perception.

Investigation of the sensitivity of the biomimetic fingertip sensor was un-

dertaken using a passive Bayesian approach, similar to tactile experiments

from psychophysics. This study permitted to identify of the optimal location

for perception of the tactile sensor. The results provided the central region of

the iCub fingertip sensor as the optimal location to achieve the smallest per-

ception error. A tactile discrimination task was performed using passive and
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active Bayesian perception to analyse their performance in speed and accuracy

for discrimination angle and position classes. Active Bayesian perception was

able to achieve high accuracy, clearly contrasting with the results from passive

Bayesian perception. This improvement showed the benefits of using active

Bayesian perception with biomimetic fingertip sensors.

Overall, the proposed perception method demonstrated the following: 1)

active Bayesian perception allows to achieve high accuracy with biomimetic

sensors; 2) accumulation of evidence permits to reduce uncertainty from tactile

measurements; 3) actively controlled movements of the tactile sensors also

permit to improve perception; and 4) biologically inspired methods allow to

address tactile perception in robotics in a natural way.

A novel sensorimotor architecture for tactile perception was developed to

implement active Bayesian perception. This sensorimotor architecture offers

a novel method to actively move the fingertip sensor to locations with better

perception in order to reduce uncertainty. The validation of active Bayesian

perception was based on the contour following exploratory procedure to extract

object shape. First, the exploration task was implemented in a simulated

environment using objects constructed with real tactile data. Second, the

experiment was repeated in a real environment with various real objects. In

both simulated and real environments the exploration task was performed in

passive and active perception modalities. The biomimetic fingertip sensor was

able to successfully extract the contours of the explored objects by the use

of active Bayesian perception. In contrast, passive perception did not permit

the tactile sensor to extract the complete shape of the objects due to the low

perception accuracy achieved.

The results from the contour following task also showed that not only active

Bayesian perception is required, but also a high decision threshold is needed

for achieving high perception accuracy. Increasing the decision threshold not

only improved the accuracy, but also increases the time required to make a

decision, which slows down the speed of the object exploration. This trade-off

between speed and accuracy is an important characteristic in robotics, where
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not only accurate but also fast decisions are required.

Regarding to the psychophysical studies, the biomimetic fingertip sensor,

based on the novel active Bayesian perception approach and the sensorimo-

tor architecture, demonstrated to be able to achieve higher angle perception

accuracy than sighted and blind people. This is an important and interest-

ing result which shows that the proposed perception method is accurate and

robust, making this approach suitable for tactile perception in robotics.

Two novel sensorimotor control strategies were proposed to investigate the

effects of combining active perception with predicted information. The first

sensorimotor control strategy (SMC1) included a weighted prior at the begin-

ning of the perception process, whilst the second sensorimotor control strategy

(SMC2) applied a weighted posterior at the end of the perception process.

On the one hand, the SMC1 strategy improved the speed, reducing the time

required for the contour following task. This effect on the speed is based on the

small amount of evidence required to make a decision given the initial weighted

prior. However, the perception accuracy presented a small improvement for

the angle perception, whilst for the position perception no improvement was

observed. On the other hand, the SMC2 strategy permitted to improve the

accuracy for both angle and position perception. Moreover, the improvement

was observed even for small decision thresholds. In contrast, the reaction time

was not affected, given that the initialisation of the active Bayesian process

was not biased by a weighted prior.

Motivated by the improvements achieved by the SMC1 and SMC2 strate-

gies, a method composed by the Predicted Information Gain (PIG) and Dy-

namic Bayesian Network (DBN) approaches was developed to learn the forward

model and assess its accuracy along the exploration task. The learning pro-

cess during the exploration task benefits the active Bayesian perception with

an adaptive exploration behaviour, according to the experience and the obser-

vations obtained through the interaction with the environment. The method

was implemented and validated with both sensorimotor control strategies.

The learning method allowed the SMC1 strategy to improve the perfor-
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mance of both, speed and perception accuracy along the exploration task.

This shows that the forward model was able to achieve good accuracy on the

predictions of the sensory observations. The accuracy assessment performed

by the confidence factor, also shows the increment on the weight assigned to

the forward model for its combination with the active Bayesian perception

process. For the SMC2 strategy, the forward model did not present a large

improvement in the accuracy of the exploration task. However, small errors

were achieved for low belief thresholds which permit to reduce the reaction

time for making a decision. The low accuracy of the predictions provided by

the forward model is also observed by the decreasing values of the confidence

factor. The results from the confidence factor show that the SMC2 strategy

assigned a larger weight to the active Bayesian perception than the forward

model. In general, the proposed method for learning and assessing the forward

model and the confidence factor, permitted to improve the speed and accuracy

over the results where no weighted prior or posterior were included into the

active Bayesian perception process.

The investigation of perception using the sense of touch in robotics is im-

portant for the design and development of robots capable to safely interact

with and understand their environment. This motivated the work presented

in this thesis about the study of perception in robotics based on the artificial

sense of touch with biomimetic fingertip sensors. Overall, the novel methods

and the experiments undertaken in this research work showed that percep-

tion biologically inspired by the sense of touch in humans offers a natural and

accurate approach to address tactile perception in robotics.
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Future work

This thesis has presented an investigation on tactile perception using methods

biologically inspired by humans. The proposed methods were validated with

the implementation of the contour following exploration task under simulated

and real environments, achieving accurate perception results. The achieve-

ments presented in this work also can be used to extend the research on tactile

perception in robotics with the following list of possible future work.

• Implementation and testing of the proposed Bayesian perception method

in a robot with more degrees of freedom (DoF), such as robotic arms or

humanoid robots. The achievements from this validation task could be

used to support and test the robustness of the results obtained in this

research work based on a robotic platform with 3 DoF.

• Extend the proposed perception method to process the tactile measure-

ments from multiple fingertip sensors, for instance, two fingers for a grip-

per and five fingers for a robotic hand. This extension to the proposed

method could provide the requirements for the development of a more

flexible perception approach.

• Perception from different sensory modalities is important to have a bet-

ter understanding of the environment, which can be accomplished by

the fusion of the proposed method for tactile perception with biologi-

cally inspired methods for visual perception. This process could provide

robots with a more robust perception system for interaction in complex

environments.

• Validation of the accuracy, adaptability and flexibility of the proposed

Bayesian perception approach implemented with different tactile sensor

technology and robotic platforms. This would contribute to the develop-

ment of an scalable tactile perception framework to be used in a variety

of tactile robotic platforms.
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Appendix A

Tactile data collection

The robotic platform and biomimetic fingertip described in Chapter 3 were

used to collect the tactile dataset composed of 72 angle and 18 position per-

ceptual classes with a resolution of 5 degrees and 1 mm respectively. The data

collection process was repeated two time in order to have one tactile data for

training and one for testing. Both tactile dataset are shown below.

Training tactile dataset

Figure A.1: Training tactile dataset. Angle classes from 0 to 85 degrees.
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Figure A.2: Training tactile dataset. Angle classes from 90 to 235 degrees.
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Figure A.3: Training tactile dataset. Angle classes from 240 to 355 degrees.
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Testing tactile dataset

Figure A.4: Testing tactile dataset. Angle classes from 0 to 85 degrees.
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Figure A.5: Testing tactile dataset. Angle classes from 90 to 235 degrees.
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Figure A.6: Testing tactile dataset. Angle classes from 240 to 355 degrees.
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Linear-shaped object

trh=0.0 trh=0.05 trh=0.1 trh=0.15 trh=0.20

trh=0.25 trh=0.30 trh=0.35 trh=0.40 trh=0.45

trh=0.5 trh=0.55 trh=0.60 trh=0.65 trh=0.70

trh=0.75 trh=0.8 trh=0.85 trh=0.90 trh=0.95

Figure B.1: Passive contour following procedure of a linear-shaped object using
real tactile data from the iCub fingertip sensor. The experiment with passive
perception is presented for different values of belief threshold. The number of
palpations required by the fingertip sensor to make a decision increases with
the increment of the belief thresholds.
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trh=0.0 trh=0.05 trh=0.1 trh=0.15 trh=0.20

trh=0.25 trh=0.30 trh=0.35 trh=0.40 trh=0.45

trh=0.5 trh=0.55 trh=0.60 trh=0.65 trh=0.70

trh=0.75 trh=0.8 trh=0.85 trh=0.90 trh=0.95

Figure B.2: Active contour following procedure of a linear-shaped object using
real tactile data from the iCub fingertip sensor. The experiment with active
perception is presented for different values of belief threshold. The number
of palpations required to make a decision increases with the increment of the
belief thresholds.
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Circular-shaped object

trh=0.0 trh=0.05 trh=0.1 trh=0.15 trh=0.20

trh=0.25 trh=0.30 trh=0.35 trh=0.40 trh=0.45

trh=0.5 trh=0.55 trh=0.60 trh=0.65 trh=0.70

trh=0.75 trh=0.8 trh=0.85 trh=0.90 trh=0.95

Figure C.1: Passive contour following procedure of a circular-shaped object
using real tactile data from the iCub fingertip sensor. The experiment with
passive perception is presented for different values of belief threshold. The
number of palpations required by the fingertip sensor to make a decision in-
creases with the increment of the belief thresholds.
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trh=0.0 trh=0.05 trh=0.1 trh=0.15 trh=0.20

trh=0.25 trh=0.30 trh=0.35 trh=0.40 trh=0.45

trh=0.5 trh=0.55 trh=0.60 trh=0.65 trh=0.70

trh=0.75 trh=0.8 trh=0.85 trh=0.90 trh=0.95

Figure C.2: Active contour following procedure of a circular-shaped object
using real tactile data from the iCub fingertip sensor. The experiment with
active perception is presented for different values of belief threshold. The
number of palpations required to make a decision increases with the increment
of the belief thresholds, which also permit to achieve large accuracy.
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