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Abstract 

Short PLUNC 2, recently renamed BPIFA2, is predominantly expressed in the serous 

acinar cells and interlobular ducts of the major salivary glands and secreted 

abundantly into saliva. The original hypothesis that the structure of BPIFA2 is 

similar to that of the N-terminal of BPI and LBP led to the suggestion that it would 

also play a role in the innate immune defence of the oral cavity and upper airway. 

The function of BPIFA2 has not, however, been fully elucidated and thus the aim of 

this thesis was to develop a protocol for the purification of BPIFA2 from whole 

saliva, in its native form, to fully determine if it does have similar functions to BPI 

and LBP.  Based on the current literature, a number of purification methods were 

assessed including precipitation, column chromatography and electrophoresis. 

Native polyacrylamide gel electrophoresis and electro-elution gave the highest 

yields of pure protein, which was then used in a variety of functional assays 

including binding, growth inhibition, bacterial killing, agglutination and biofilm 

disruption. A novelty of this study was that a range of bacteria were used including 

gram-positive and gram-negative bacteria and commensal and non-commensal oral 

bacteria. In addition, Der p 7, a dust mite allergen also shown to have structural 

similarities to the N-terminal domain of BPI and LBP, was used to develop an assay 

to examine the effect of BPIFA2 on the TLR-4 pathway in the presence of LPS. 

Although the allergen was initially used as a positive control for the assay system 

we were able to show for the first time that Der p 7 can mimic the action of LBP in 

the CD14-MD2-TLR4 pathway in response to gram-negative bacterial LPS. 

The most significant and novel finding of this thesis was the effect of BPIFA2 on 

gram-positive bacteria, particularly S. mutans, a known causative agent of dental 

caries. Reduced bacterial viability, increased agglutination and altered biofilm 

quality were all observed in the presence of BPIFA2. These results suggest a role for 

BPIFA2 in innate immunity, not against gram-negative bacteria as originally 

hypothesised, but against gram-positive bacteria.  
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Chapter 1.  Introduction 

1.1 Oral Cavity, Salivary Glands and Saliva 

1.1.1 Oral Cavity 

The principle structure of the oral cavity is defined by the jaw bone which holds a 

collection of teeth and contains the tongue, a very strong and sensitive muscle. The 

oral cavity extends back towards the throat to the pharynx where the oral cavity 

separates into the respiratory and digestive tracts (Atkinson and White, 1992). 

Each region of the oral cavity contains different epithelium dependent upon the 

function of that region. For example the hard palate and gingiva are composed of 

keratinised epithelium which protects them from the regular stress of mastication. 

Other areas, lined with non-keratinised epithelium, are loosely connected to 

underlying tissues allowing a range of movement including chewing and speech. 

These regions include the floor of the mouth and buccal regions. The third 

functional area of the oral cavity is the specialist tissue. This is primarily the tongue 

which is lined with a collection of both keratinised and non-keratinised epithelium 

tightly connected to the lingual muscles (Ten Cate, 1998). 

1.1.2 Salivary Glands 

In and around the oral cavity there are collections of glands categorised into two 

types, minor and major, functioning to supply the oral cavity with a constant supply 

of saliva. There are approximately 600-1000 minor salivary glands located just 

beneath the epithelial layer, throughout the whole of the oral cavity (Ten Cate, 

1998).  
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There are three major salivary glands which are grouped into pairs. The parotid 

glands, found below and forward of the ears with ducts that expel saliva into the 

back of the oral cavity, have a tree-like structure (Tucker, 2007). It is the largest of 

the three major glands weighing approximately 14-28g (Ten Cate, 1998). The 

submandibular glands are the second largest of the glands and are located at the 

back of the jaw on the floor of the oral cavity, their ducts run along the floor of the 

mouth exiting under the tongue (Ten Cate, 1998). The smallest of the major glands, 

the sublingual glands, can be found between the tongue and teeth on the floor of 

the mouth, secreting saliva onto the floor of the mouth. Both the submandibular 

and sublingual glands, which weigh approximately 10-15g and 2g respectively, are 

compact and are described as having a 'bunch of grape' like appearance (Figure 1-1) 

(Tucker, 2007). 

 

Figure 1-1: Location of the Major Salivary Glands 

 

The major salivary glands are made up of three types of cell; acinar, duct and 

myoepithelial cells. The acinar cells make up the largest part of the salivary glands 

and are surrounded by blood vessels, nerves and connective tissue (Ten Cate, 

1998). The acinar cells are classified into 2 types: serous cells, which are large 

Sublingual Gland

Parotid Gland

Submandibular Gland
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granular pyramidal cells with spherical nuclei that produce a watery saliva of high 

volume containing secretory products such as enzymes and immune components 

(Stevens and Lowe, 1997) or mucous cells, which have a clear cytoplasm and 

flattened nucleus and produce a lower volume of saliva, high in carbohydrates and 

proteins (Ten Cate, 1998). The parotid gland is made up of only serous acini and so 

secretes serous saliva. The sublingual gland and minor glands are mostly made up 

of mucous acini and so secrete mucous saliva and the submandibular gland is made 

up of a mixture of serous and mucous acini and so secretes seromucous saliva (Ten 

Cate, 1998). Each lobe of acinar cells drains into a branch-like duct system. The duct 

cells are separated into 3 cell types: the first are the intercalated cells, whose 

function is to link the acinar cells to the duct system; the second are the striated 

cells, which work to regulate the loss of electrolytes through the saliva and re-

absorb sodium back into the body; the gland ends with the excretory cells, which 

secrete potassium into the saliva whilst re-absorbing sodium, here the saliva is 

released into the oral cavity (Humphrey and Williamson, 2001). The whole gland 

structure is surrounded by long processes called myoepithelial cells which contract 

and squeeze the acinar cells when a stimulus is present to expel the saliva from the 

lobes into the ducts for secretion into the oral cavity (Humphrey and Williamson, 

2001). The production of saliva is a continuous, automatic process. Approximately 

0.5 ml min-1 of saliva is released without stimulation, controlled via the salivary 

center in the brain stem, which is reduced to approxiomately 0.1 ml min-1 when 

sleeping and during high stress situations. The key stimuli of saliva production are 

chewing, taste and smell, producing saliva with a very similar protein profile due to 

the processing of the senses in the brain prior to sending the message to the 
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salivary center to increase saliva production. Interestingly, unlike the major salivary 

glands, the minor salivary glands have shown little variation in flow rate in response 

to these stimuli (Carpenter, 2013). The salivary glands are surrounded by both 

sympathetic and parasympathetic nerves, which act synergistically to control the 

flow of saliva by increasing the contraction of the myoepithelial cells (Rhoades and 

Bell, 2012). The parasympathetic nervous system controls high volume saliva with a 

low concentration of proteins, whilst the sympthetic nervous system produces 

protein rich saliva of low volume (Carpenter, 2013). 

1.1.3 Saliva 

Approximately 1000-1500mL of saliva is secreted per day (Zalewska et al., 2000) 

and is necessary to provide the oral cavity with a moist environment to aid 

mastication, swallowing, communication, digestion, local immune defence and the 

maintenance of pH through buffering.  

Due to the composition of cells within each gland, different responses can be 

achieved, dependent upon the presence or absence of stimulation. Unstimulated 

whole saliva consists of 20% parotid saliva, 65% submandibular saliva, 7-8% 

sublingual saliva and the rest from minor glands. When saliva is stimulated whole 

saliva then consists of over 50% parotid gland saliva. During sleep saliva output is 

reduced to almost zero (Humphrey and Williamson, 2001). However it is not only 

the salivary glands that contribute to whole saliva. Contributions are made from 

alternative regions of the oral cavity such as the oral mucosal epithelial cells, 

gingival epithelial cells, keratinocytes, neutrophils, macrophages and the gingival 

crevicular fluid (Gorr, 2009). For example, over 199 proteins have been identified in 
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gingival crevicular fluid in healthy patients, 57% of which have also been identified 

in plasma. The remaining 47% were recognised as unique to GCF (Carneiro et al 

2012). Some of these contributions represent significant levels of protein in whole 

saliva, for example a significant proportion of lactoferrin originates from the 

gingival crevicular fluid. Although some oral proteins are unique to the salivary 

glands, such as histatin and mucin, many of the proteins secreted in glandular saliva 

are also expressed in other regions of the oral cavity, including statherin, also found 

in gingival crevicular fluid; salivary agglutinin, also expressed by macrophages and 

SLPI expressed by the salivary glands, mucosal epithelium and keratinocytes (Gorr, 

2009). In addition to these anti-microbial proteins the oral epithelium also 

contributes a number of cytokines and chemokines to whole saliva (Ghosh et al, 

2012). 

1.1.4 Saliva Function 

Saliva has a number of functions to ensure the oral cavity remains healthy. It 

contains high concentrations of free calcium and phosphate which promote the 

remineralisation of the tooth enamel. Urea, the carbonic acid-bicarbonate system 

and the phosphate buffer system present in saliva act to buffer the pH of saliva 

maintaining pH levels between 6 and 7. Saliva also contributes to the initial stages 

of digestion as 40-50% of salivary protein is α-amylase, produced by the parotid 

glands (80%) and the submandibular glands (20%), which begins the breakdown of 

starch into simple sugars and limit dextrins (de Almeida et al., 2008). Mucins are a 

family of complex glycoproteins present in the mucous saliva of the submandibular 

and sublingual glands, which aid in the lubrication of the oral cavity. This lubrication 
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protects the oral cavity from physical stresses of mastication and dehydration. As 

saliva is produced constantly, it also provides a washing action within the oral cavity 

and, along with the act of swallowing, washes away food debris and dilutes sugars 

(de Almeida et al., 2008). 

In addition to all of these functions saliva also plays a very important role in oral 

health. The oral cavity is exposed to a great number of bacteria which, if given the 

chance, would negatively affect the health of the oral cavity and the rest of the 

body. Functions mentioned previously also aid in the anti-microbial nature of saliva. 

For example, by increasing the pH of the oral environment the conditions are no 

longer optimal for growth of some bacteria  (e.g. mutans streptococci) so they 

compete less effectively, the constant production of saliva and swallowing washes 

away planktonic bacteria within the oral cavity reducing their opportunity  to 

adhere to surfaces and invade the oral tissues (Staines et al., 1993). In addition to 

the mechanical effects of flow, saliva also contains over 45 antimicrobial proteins 

and peptides (Gorr and Abdolhosseini, 2011) including mucins, salivary agglutinin, 

β-defensins, histatins, cystatins, secretory leukocyte proteinase inhibitor (SLPI), 

lactoferrin, lysozyme, peroxidases and secretory immunoglobulin A (IgA) (Llena-Puy, 

2006, Gorr and Abdolhosseini, 2011)  

The initial line of defence against oral bacteria takes the form of salivary mucins and 

salivary agglutinin, which bind bacteria via lectin-like-carbohydrate interactions 

causing their aggregation and so preventing the bacteria from adhering to, 

colonising or invading the oral structures (Staines et al., 1993). The mucins are high 

molecular weight glycoproteins and can be found in two distinct forms, MG1, 
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derived from the MUC5B gene and MG2 from the MUC7 gene (Amerongen and 

Veerman, 2002). MG1, expressed by the mucous acini of the submandibular and 

sublingual salivary glands, exists in 3 different subtypes and lubricates the oral 

epithelium by forming a gel like substance. It is this gel like coating covering the oral 

epithelium which provides the barrier against bacteria. MG1 has been shown to 

bind Haemophilus parainfluenzae and Helicobacter pylori, whereas MG2, a smaller 

molecule, expressed by the serous acini binds to many more bacteria including 

many oral commensal species (e.g. Streptococcus gordonii, Streptococcus sanguis, 

Streptococcus mitis, Actinobacillus actinomycetemcomitans) and the non-oral 

species Pseudomonas aeruginosa and Escherichia coli (Amerongen and Veerman, 

2002). 

Salivary agglutinin, like MG2, is expressed in the serous acini as a heavily 

glycosylated protein and is often associated with other salivary proteins (de 

Almeida et al., 2008). Like MG2, agglutinin binds to many commensal species 

(Amerongen and Veerman, 2002). It has also been demonstrated that salivary 

agglutinin increases phagocytosis by neutrophils and macrophages via the lectin 

pathway (Leito et al., 2011). 

β-defensins, Histatins and Statherin are cationic peptides which have been shown, 

amongst other functions, to lyse bacterial cell envelopes and increase their 

phagocytosis. These peptides work alongside other salivary anti-microbials, 

including lactoferrin and lysozyme (Hancock and Diamond, 2000).  

Defensins are small peptides, which act against both gram-positive and gram-

negative bacteria. Based on their size and the spacing of the disulphide bonds, 
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defensins are categorised into alpha and beta. Alpha-defensins are mainly 

expressed in neutrophils and saliva and β-defensins are expressed in epithelial cells 

of mucous membranes including the uterus, pancreas, kidney, oral cavity, lung and 

nasal passages (Gorr, 2009). Three α-defensins, human neutrophil proteins (hNP 1-

3) and three β-defensins, human beta-defensins (hBD 1-3) are found in whole 

saliva. Other hBDs (-4, -5 and -6) have not been detected in saliva (Abiko et al., 

2003). β-defensins have a number of innate immune functions including: lysis of 

bacteria; inhibition of the binding of viruses to the host cells and the increased 

chemotaxis of neutrophils and monocytes. β-defensins also enhance adaptive 

immunity by binding to chemokine receptor 6 on memory T-cells and immature 

dendritic cells leading to maturation and induction of co-stimulatory molecule 

expression. β-defensins have also been shown to act in an anti-inflammatory 

manner by binding to hemagglutinin B of Porphyromonas gingivalis thus reducing 

the interaction between the bacteria, keratinocytes and dendritic cells, leading to 

an inhibition of inflammatory cytokine stimulation (Diamond and Ryan, 2011). 

Histatins are a group of small cationic proteins of 3-5kDa found mostly in parotid 

saliva, as histatin 1 and histatin 3. Histatin 5 (3kDa), a product of proteolytic 

cleavage of histatin 3, has been shown to have a number of indirect antimicrobial 

functions including metal ion chelation, neutralisation of bacterial 

lipopolysaccharide (LPS) and inhibition of proteinases (Amerongen and Veerman, 

2002). Histatins are also able to act directly on microorganisms such as 

Streptococcus mutans and Candida albicans, by integrating into their cytoplasmic 
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membrane, increasing permeability and causing inhibition of the growth and/or 

death (Amerongen and Veerman, 2002). 

Cystatins are a family of cysteine protease inhibitors mainly affecting peptidases 

belonging to the papain and legumain families. They therefore protect the host 

from the effects of bacterial proteases, such as Porphyromonas gingivalis gingipains 

and host proteases, such as lysosomal cathepsins (Amerongen and Veerman, 2002, 

Baron et al., 1999). Fourteen functional and two pseudogenes for human cystatin 

have been identified, the products of seven of these (A, B, C, D, S, SA and SN) being 

constitutively expressed in saliva (Gorr and Abdolhosseini, 2011). 

SLPI is a small protein (11.7kDa), first discovered in airway lining fluid, expressed in 

all of the major and minor salivary glands (Amerongen and Veerman, 2002, 

Williams et al., 2006). The most defined function of SLPI is its anti-protease activity, 

protecting the host from excess proteases, released by neutrophils such as elastase 

and cathepsin G. Although, it is slowly emerging that SLPI could also play an active 

role in the innate immune system with anti-microbial functions against both gram-

positive and -negative bacteria, viruses and fungi (Moreau et al., 2008, Williams et 

al., 2006). 

Lactoferrin is an 80kDa protein produced by all of the salivary glands (Amerongen et 

al., 2004) and neutrophils (Edgerton and Koshlukova, 2000). It is a member of the 

transferrin family of iron-binding proteins and acts in an antimicrobial fashion by 

binding ferric iron (Komine et al., 2007). Nearly all bacteria require iron for growth 

and so the sequestration of iron prevents the growth of many bacteria. The N-

terminal region of lactoferrin, lactoferricin, has shown antibacterial activity distinct 



Introduction 

- 23 - 
 

from the iron chelating nature of the parent protein, and protects against fungi, 

viruses, gram-negative and gram-positive bacteria (Komine et al., 2007). The 

mechanism by which it does this is unknown, however it has been suggested that 

the interaction of lactoferricin with the bacterial membrane causes the formation 

of pores, thus leading to cell death (Chen et al., 2009). Lactoferrin also has LPS 

neutralising activity by binding to the lipid A portion and competing with LBP and 

preventing the formation of the LBP-CD14-TLR4 complex resulting in a reduced 

inflammatory response (Komine et al., 2007, Elass-Rochard et al., 1998). 

Lysozyme, a 14kDa protein, is produced by the major salivary glands (Amerongen et 

al., 2004). It is also known as muramidase as it kills bacteria by breaking down the 

peptidoglycan component of the cell wall making it susceptible to osmotic lysis 

(Amerongen et al., 2004). The presence of the highly protective lipopolysaccharide 

layer in gram-negative bacteria reduces access of lysozyme resulting in them being 

less susceptible to lysozyme than gram-positive bacteria. Lysozyme also causes 

aggregation of bacteria resulting in reduced adhesion to oral structures (Cole et al., 

2002). 

Peroxidase and myeloperoxidase are salivary enzymes produced by the salivary 

gland and immune cells such as neutrophils and other leukocytes which enter the 

oral cavity tissues in response to inflammatory stimuli. The main function of 

peroxidases is to catalyse the oxidation of thiocyanate and chloride ions by 

hydrogen peroxide producing the antibacterial agents, hypothiocyanate and 

hypochlorite (Amerongen and Veerman, 2002). Peroxidases protect against 

bacteria and fungi by targeting transport proteins and sulfhydryl groups, leading to 
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an inhibition of growth and metabolism (Edgerton and Koshlukova, 2000). They also 

have some anti-viral activity. 

Secretory IgA is an immunoglobulin produced by a subset of plasma cells (IgA+). 

Since it is in a dimeric form in saliva, it is able to aggregate bacteria and so remove 

them by reducing their adherence to oral structures (Humphrey and Williamson, 

2001). IgA+ plasma cells collect around the acini of the major salivary glands, mainly 

the sublingual glands. Two classes of IgA are secreted into saliva, IgA1 and IgA2, via 

the intercalated sections of the ducts and directly through the serous acini. This 

requires complexion with the polymeric immunoglobulin receptor to facilitate 

transport across the acinar epithelium and a breakdown product of the receptor, 

secretory component, remains bound to the IgA released into the lumen. IgA2 is 

more resistant to bacterial proteases making it a much more stable molecule than 

IgA1 (Brandtzaeg, 2007). IgG and IgM are also present in saliva however these are 

thought to come from gingival secretions and not saliva. The IgG and IgM levels in 

whole saliva are very small in comparison to the level of IgA (de Almeida et al., 

2008). 

These proteins and peptides do not act in isolation, but work together to protect 

the oral cavity. Many of these antimicrobial proteins and peptides can be found in 

association with each other to elicit a range of defence functions against microbes 

in the oral cavity.  
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1.2 PLUNC Proteins 

The Palate Lung and Nasal Epithelium Clone (PLUNC) gene was initially identified in 

the developing palate of the mouse embryo in 1999 (Weston et al., 1999). An 

increase in the expression of PLUNC RNA was noted between days 13 and 14 of 

gestation, around the time that the palatal shelf elevates and fuses. As with the 

developing mouse, PLUNC expression in the adult mouse was seen in the nasal 

collumella, turbinates and nasal passage. In addition, strong expression was 

identified in the outer epithelial layers of the respiratory passages; continuing 

through the trachea and the left and right bronchioles reducing significantly and 

becoming sporadic at the next bronchiole branch, with expression becoming absent 

in the distal regions of the lung (the terminal bronchioles, respiratory bronchioles 

and alveoli) (Weston et al., 1999). 

The murine PLUNC (mPLUNC) gene is part of an 834 base pair (bp) open reading 

frame, consisting of a 55bp 5’-untranslated region (UTR), a 207bp 3’-UTR and a 

translated region of 255 base pairs which was predicted to encode a protein of 

28,618Da (Weston et al., 1999). Analysis of the amino acid sequence showed 

homologies to two murine salivary proteins: von Ebner minor salivary gland protein 

and parotid secretory protein (PSP) precursor. Significant homology between 

mPLUNC and PSP precursor was seen and out of the first 15 amino acids of 

mPLUNC, murine PSP shared 14 identical or conserved amino acids. Similar 

homology was seen between other species with bovine PSP sharing 12 identical or 

conserved amino acids with mPLUNC (Weston et al., 1999). Further analysis using 

PROSITE, a database containing protein domains, families and functional sites, 



Introduction 

- 26 - 
 

identified many common functional motifs including, phosphorylation sites for 

protein kinase C and casein kinase II N-glycosylation sites, a leucine zipper and a 

novel motif consisting of a repeating sequence, Gly-(Leu/Pro/Gln)-(Pro/leu)-Leu-

Pro-Leu x4 (Weston et al., 1999). 

1.3 Human PLUNC and the PLUNC family 

Human PLUNC (hPLUNC) cDNA consists of a sequence of 1020bp within a single 

open reading frame, which encodes a 256 amino acid protein rich in leucine (Bingle 

and Bingle, 2000). Further sequence analysis of hPLUNC identified 9 exons spanning 

7.3kb, the first and last exons non-coding, with the TATAA box located 40bp 5’ of 

the end of exon 1. The key difference between hPLUNC and mPLUNC is the absence 

of the repeat sequence (Gly-(Leu/Pro/Gln)-(Pro/leu)-Leu-Pro-Leu x4) from hPLUNC 

(Bingle and Bingle, 2000). This suggests that it is not necessary for the structural or 

functional activity of the protein. 

Since its initial identification in 1999, PLUNC has collected a number of names and 

was renamed Short PLUNC 1 (SPLUNC1) following the identification and 

characterisation of further PLUNCs. SPLUNC1 is also known as SPURT (Secretory 

Protein of the upper respiratory tract) (Di et al., 2003) and Lung specific X protein 

(LUNX) (Iwao et al., 2001). Initial investigations identified seven further proteins 

encoded by a 300kb region on chromosome 20q11 (Bingle and Craven, 2002). This 

novel family of proteins were characterised into 2 groups dependent on their amino 

acid content, the original PLUNC (256 amino acids), SPLUNC1, was grouped with 

SPLUNC2 (249 amino acids; also known as Parotid Secretory Protein, PSP) and 

SPLUNC3 (253 amino acids), whose genes contain 9 exons with the first and final 
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exons being redundant. The long PLUNC group consisted of Long PLUNC 1 

(LPLUNC1) (484 amino acids), LPLUNC2 (458 amino acids), LPLUNC3 (463 amino 

acids) and LPLUNC4 (>469 amino acids), whose genes contain 16 exons (Bingle and 

Craven, 2002). Over subsequent years the PLUNC family grew to include the 

completed form of the hLPLUNC4 sequence and the discovery of a human 

pseudogene LPLUNC5 (Bingle et al., 2004). Two 'novel' genes, BPI-Like (BPIL)1 and 

BPIL3 were identified, with BPIL1 coinciding with the LPLUNC2 gene and BPIL3 

identifying a new gene within the PLUNC cluster, LPLUNC6 (Mulero et al., 2002). An 

additional SPLUNC was later identified in humans and labelled BASE (Breast Cancer 

and Salivary gland Expression) or SPLUNC4 (Egland et al., 2003). However, this gene 

is now described as a, "dying gene" (Bingle et al., 2011b) based on a frame shift 

caused by the loss of 1 nucleotide in exon 6, which leads to a premature stop 

codon, different to those seen in chimpanzees, gorillas and rhesus monkeys (Bingle 

et al., 2011b). Although this shortened protein has been shown to be expressed in 

breast cancer and salivary glands (Egland et al., 2003), it is believed that the 

premature stop codon leads to the absence of approximately 50 amino acids and 

the crucial cysteine residue required for the structurally significant disulphide bond 

present in every other member of the family.  

Currently, the human PLUNC family has been shown to consist of eight transcribed 

genes and three pseudogenes, the third pseudogene being Vomeromodulin, a 591 

amino acid protein expressed in rodents but not humans (Figure 1-2) (Bingle et al., 

2011b). 
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Figure 1-2: Organisation of the human PLUNC/BPI Fold containing family (BPIF) gene loci 

The human PLUNC/BPIF gene locus, located on chromosome 20, spans a region of approximately 
300kb and contains three pseudogenes, identified by shaded boxes, three SPLUNC/BPIFA genes, 
represented by grey boxes and five LPLUNC/BPIFB genes indicated by white boxes. The PLUNC/BPIF 
region is flanked by two unrelated genes, shown in green. A full explanation of the nomenclature is 
given in section 1.6. 

  

1.4 Expression of PLUNC Proteins 

The best-defined PLUNC expression profiles are for SPLUNC1, SPLUNC2 and 

LPLUNC1. Expression of hSPLUNC1 has been shown to be similar to that of 

mSPLUNC1, with expression identified in the trachea and nasopharyngeal 

epithelium (Bingle and Bingle, 2000). 

SPLUNC1 has been shown to be exclusively expressed in the mucous acinar cells of 

the submandibular and sublingual salivary glands, no expression has been found in 

the parotid gland possibly due to presence of only serous acinar cells (Bingle et al., 

2009). In contract, SPLUNC2 expression was only seen in the serous acinar cells and 

interlobular ducts of the major salivary glands, and no expression was found in the 

mucous acinar cells (Figure 1-3). The minor salivary glands were seen to express 

both SPLUNC1 and SPLUNC2, which is consistent with the presence of both serous 

and mucous acinar cells in these glands (Bingle et al., 2009). 
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LPLUNC1 expression has been localised to the oropharynx, nasopharynx and human 

respiratory tract. It is expressed by seromucous tubules in submucosal glands, the 

maxillary sinus and strongly by the surface goblet cells and minor mucosal glands of 

the respiratory tract. At higher magnifications it was established that LPLUNC1 is 

expressed by serous cells and not mucous cells of the submucosal glands (Bingle et 

al., 2010). 
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(Adapted from Bingle et al., 2009) 
Figure 1-3 Distribution of SPLUNC1/BPIFA1 and SPLUNC2/BPIFA2 in the major salivary glands. 

Immunohistochemistry of the parotid (A, D), submandibular (B, E) and sublingual glands (C, F) using 
a polyclonal SPLUNC1/BPIFA1 antibody (A, B, C) and a SPLUNC2/BPIFA2 antibody (D, E, F) shows the 
differences in expression of SPLUNC1/BPIFA1 and SPLUNC2/BPIFA2 in the major salivary glands. 
SPLUNC1/BPIFA1 expression is isolated to the mucous acini present in both the submandibular (B) 
and sublingual glands (C), negative staining was observed in the parotid gland (A), made up of 
primarily serous acinar cells. In contrast, SPLUNC2/BPIFA2 staining was positive in the serous acinar 
cells present in all three of the major salivary glands (D, E, F). In addition SPLUNC2/BPIFA2 
expression was observed in the striated and intercalated intralobular ducts (highlighted) of the 
parotid gland (D) and the submandibular glands (E). A full explanation of the nomenclature is given 
in section 1.6. 

 

 

No SPLUNC1 expression has been detected in human peripheral lung tissue (Geetha 

et al., 2005, Bingle and Bingle, 2000) indicating that SPLUNC1 expression is 

restricted to the upper airway and oral cavity and is unlikely to be involved in lung 

functions such as gaseous exchange. 
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1.5 BPI-LBP-CETP-PLTP protein family 

The BPI-LBP-CETP-PLTP family consists of lipid binding and transporting proteins 

including Bactericidal Permeability Increasing protein (BPI), found in granules of 

polymorphonuclear neutrophils; Lipopolysaccharide-binding protein (LBP), 

Cholesteryl Ester Transfer protein (CETP) and Phospholipid Transfer protein (PLTP) 

produced in the hepatocytes of the liver and released into the blood stream for 

circulation. With the exception of CETP the genes for these proteins can be found 

on chromosome 20q11. CETP, the most dissimilar, is found on chromosome 16.  

PLUNC proteins are strongly related to the BPI-LBP-CETP-PLTP protein family and 

are also found on chromosome 20. They are classed as a subfamily within this 

protein family and are described as being the largest branch of the BPI-LBP-CETP-

PLTP protein family (Bingle et al., 2010). In addition to the gene location, PLUNCs 

have been identified as a member of this family based on a combination of several 

characteristics such as sequence homology and predicted structure. Structural 

comparison of each of the family members, BPI, LBP, CETP, PLTP and PLUNC, 

identified key residues that are conserved between all of them and all show the 

same conservation of two cysteine residues which form a critical disulphide bond 

(Beamer et al., 1997). The predicted structure of the PLUNCs suggests that the 

SPLUNCs contain the N-terminal domain of BPI and the LPLUNCs contain both the 

N-terminal and the C-terminal domains of BPI (Bingle and Craven, 2002).  All 

members of this family appear to have the ability to bind to and transfer lipid 

molecules (Bingle and Craven, 2003). The structural similarity led to the hypothesis 

that PLUNCs function in a similar way to BPI and LBP and suggests that PLUNC 
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proteins are localised forms of the LBP/BPI proteins with a host defence function 

(Bingle and Craven, 2002).  This hypothesis has gathered a significant level of 

support but as yet compelling functional data remains elusive. 

1.5.1 Lipopolysaccharide Binding Protein (LBP) 

LBP is synthesised in the hepatocytes of the liver as a 50kDa polypeptide, which is 

glycosylated and released constitutively into the bloodstream as a 58-60kDa 

glycoprotein (Zweigner et al., 2006) at a concentration of less than 500ng ml-1 

(Schumann, 1992). During acute infection with LPS-containing bacteria, this 

concentration increases to around 50µg ml-1(Schumann, 1992).  Production of LBP 

is however not limited to the hepatocytes. Cells including lung, intestine and 

gingival epithelium and heart, renal and lung artery muscle cells also produce LBP 

(Zweigner et al., 2006). Human LBP contains five potential glycosylation sites and 

four cysteines, two of which form the critical disulphide bond previously mentioned 

(Schumann et al., 1990). It contains a 25 amino acid hydrophobic signal sequence 

followed by a 452 amino acid mature protein, with the functional domain located at 

the N terminal end (Zweigner et al., 2006). LBP has multiple functions, it is an acute 

phase protein, whereby its transcription is induced by LPS, interleukin (IL)-1 and IL-6 

combined which is further stimulated by tumour necrosis factor (TNF)-α. 

Transcription can be reduced by transforming growth factor (TGF)-β1, an anti-

inflammatory cytokine (Zweigner et al., 2006). In addition to these functions LBP 

performs a classical role in innate immunity.  

LPS from both rough and smooth forms of bacteria (lacking the O-glycan 

component or possessing it, respectively) found in the bloodstream have been 
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shown to bind to LBP and this complex has affinity for the cellular receptor CD14 

(Schumann et al., 1990). LBP binds to the Lipid A portion of LPS, which leads to the 

monomerisation of LPS. LBP then transports the monomerised LPS molecule to 

either membrane bound CD14 (mCD14), on monocytes/macrophages and 

neutrophils, or soluble CD14 (sCD14) (Zweigner et al., 2006). The ability to transport 

LPS to both mCD14 and sCD14 allows for both CD14+ cells (monocytes and 

macrophages) and CD14- cells, (endothelial and epithelial), to be activated in the 

presence of bacterial LPS. Tobias et al (1995) showed that the main difference 

between soluble and membrane bound CD14 is that the LBP molecule bound to 

sCD14 dissociates from the complex compared to mCD14 bound LBP which remains 

associated with the activating cell (Hailman et al., 1994). It has been shown that the 

ability of CD14 to interact with LPS is low in the absence of LBP (Hailman et al., 

1994) implying that this protein is necessary for an optimum immune reaction to 

gram-negative bacteria to occur. The LPS-(sCD14/mCD14-LBP) complex is then able 

to interact with the extra cellular domain of toll-like receptor (TLR)-4 and Myeloid 

Differential Protein (MD) 2 simultaneously, creating a CD14-TLR4-LBP-LPS complex 

(Akira et al., 2006). It has been shown that a deficiency of MD2 leads to a reduced 

responsiveness to LPS indicating that this molecule is important in the TLR-4 

pathway (Takeda et al., 2003). The association of each component of this complex 

leads to the interaction of the intracellular toll-interleukin receptor domain of TLR-4 

with an intracellular protein, MyD88 (Raetz and Whitfield, 2002), and following a 

cytoplasmic signalling cascade, NF-κB is activated which up-regulates the expression 

of various inflammatory genes including the IL-8 gene (Nakanaga et al., 2007). This 

interleukin leads to an increased endothelial adhesiveness of phagocytic cells, 
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including dendritic cells, monocytes and polymorphonuclear neutrophil leukocytes 

(Iwasaki and Medzhitov, 2004). Upon detecting these inflammatory signals, these 

cells roll along the endothelium of the blood vessels, adhere and migrate into the 

inflamed tissue. The activated phagocytes begin engulfing the pathogens and the 

resulting phagolysosomes (small intracellular compartments, containing enzymes 

and anti-microbial peptides), fuse together leading to the killing and breaking down 

of the pathogen. This in turn causes the pH of the phagolysosome to fall providing 

an optimum pH for enzymatic activity and the killing potential of the cell (Davies et 

al., 1998). During the process of phagocytosis a variety of cytokines are released 

including IL-1β, IL-6 and TNF-α. These act to increase vascular permeability and 

increase the expression of adhesion molecules to assist in the recruitment of more 

inflammatory cells (Davies et al., 1998). 

1.5.2 Bactericidal permeability-increasing protein (BPI) 

BPI is approximately 55kDa in size and is expressed in human monocytes, 

fibroblasts, eosinophils (Canny and Levy, 2008) and all mucosal epithelia (Srivastava 

et al., 2007). The primary structure of BPI is approximately 45% identical to that of 

LBP and is transcribed from a gene adjacent to the LBP gene on chromosome 20 

(Schultz et al., 2007). Expression of this cationic antimicrobial polypeptide has been 

identified in a number of species including humans (Uniprot accession number 

P1723), mice (accession number Q67E05), rats (accession number Q6AXU0), rabbits 

(accession number Q28739), cows (accession number P17453), ducks (accession 

number R0JLF2) and frogs (accession number B0BMR6).   
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BPI is described as having pseudo 2-fold symmetry in an elongated boomerang 

form, with two functional domains at the C-terminus and the N-terminus connected 

by a β sheet of approximately 21 amino acids (Beamer et al., 1997). As mentioned 

previously, in this protein and other family members, there is a critical disulphide 

bond between residues 135 and 175 (in BPI), which links the edge of the central β 

sheet to one of the terminal α helices. Deletion or mutation of either of the critical 

cysteine residues leads to the inactivity of BPI highlighting the importance of this 

conservation within the family (Beamer, 2003). Although the two BPI domains are 

similar and both are able to bind a phospholipid (Canny and Levy, 2008), there are 

significant differences, for example the N-terminal cleft has a slightly larger opening 

than that in the C-terminal domain. Also the C-terminus is a neutral domain 

compared to the N-terminus, which is cationic (Beamer et al., 1997) and rich in 

lysine (Canny and Levy, 2008). These differences may explain the differences in 

function seen between the two domains.  

BPI is able to transfer lipid molecules through aqueous environments by orientating 

the lipid molecule in the clefts so that the acyl carbon chains (the hydrophobic 

region) of the lipid are deep inside the cleft with the phospholipid head (the 

hydrophilic region) near to the surface of the opening (Beamer, 2003). Through 

electrospray mass spectrometry it was seen that a lipid consisting of a 

phosphatidylcholine head group and 18 carbon acyl tail groups was bound to the 

BPI clefts. Although the phosphatidylcholine is predominantly found in eukaryotic 

cells, the structure is similar to that of LPS found in gram-negative bacteria  

(Beamer, 2003) and a number of bacteria that interact closely with man, including 
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Streptococcus pneumoniae and Haemophilus influenzae require 

phosphatidylcholine on their surface to penetrate through epithelia (Sohlenkamp et 

al., 2003).  

Like LBP, BPI is an innate immune molecule which shows high affinity for the gram-

negative bacterial LPS component, Lipid A (Schultz et al., 2007). BPI has been shown 

to have three actions against LPS, it opsonises the LPS, neutralises LPS and acts as a 

direct antimicrobial. The C-terminal region of BPI can highlight the presence of the 

bacteria by opsonising and so, trigger the phagocytosis of the bacteria/components 

by neutrophils. The N-terminal domain binds to the LPS and leads to the 

neutralisation of the endotoxic activity (Canny and Levy, 2008) or elicits direct 

antimicrobial activity via CD14+ blood monocytes, without any inflammatory 

response (Schultz et al., 2007). Direct bactericidal activity has been demonstrated 

through the increased permeability of the gram-negative bacterial envelope. 

Permeability was seen immediately after adding BPI to bacterial suspensions (Weiss 

et al., 1978, Srivastava et al., 2007) and this caused a reduction in the ability of the 

bacteria to multiply (Weiss et al., 1975). Initially, BPI was thought to act only on 

gram-negative bacteria after Weiss et al (1978) saw activity against E. coli and 

Salmonella typhimurium but not apparently against various gram-positive species 

or two species of fungus. However, in 2007 Srivastava et al demonstrated that BPI 

can recognise pneumolysin, a pore forming protein produced by the gram-positive 

species, S. pneumoniae. Indeed, BPI appears to protect against invasive 

pneumococcal disease by initiating an innate immune response causing the 
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apoptosis of nasopharyngeal cells in the presence of S. pneumoniae and 

pneumolysin (Srivastava et al., 2007).  

1.5.3 Cholesteryl ester transfer protein (CETP) and Phospholipid transfer protein 
(PLTP) 

CETP and PLTP act to transport a number of lipid molecules around the body. CETP 

removes cholesteryl esters from high density lipoproteins (HDL), which leads to a 

reduced concentration of HDL in the body. In contrast PLTP acts to remove 

phospholipids from triglyceride-rich lipoproteins, thus increasing the HDL level in 

the body (Masson et al., 2009). As the functions of these proteins are not related to 

interactions between bacterial components and the immune system they will not 

be discussed further.  

1.6 Nomenclature 

The growth of the PLUNC protein family and their characterisation by a number of 

groups has led to a range of aliases for the members of the family, for example, as 

previously mentioned SPLUNC1, initially known as PLUNC, is also known as LUNX 

and SPURT; SPLUNC2 is also known as PSP and LPLUNC1 as Von Ebner minor 

salivary gland protein. The range of names for each member of the family has led to 

some difficulty in linking research, therefore, it was recently decided that a more 

systematic name was required to eliminate this confusion surrounding the 

relationship of family members (Bingle et al., 2011a). The new naming system has 

been applied to the superfamily containing BPI, LBP, CETP, PLTP and PLUNC, which 

is now referred to as the BPI-fold containing superfamily. This new naming system 

is based upon a BPIF root (BPI fold containing family). The short PLUNC proteins are 
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now described as BPIFAn, for example, SPLUNC1, LUNX and SPURT became BPIFA1 

and SPLUNC2 and PSP became BPIFA2. The long PLUNC proteins are described as 

BPIFBn, for example, LPLUNC1 became BPIFB1 and LPLUNC2 became BPIFB2. In 

order to incorporate all of the BPI-fold family, including paralogues the gene names 

maybe appended with ‘A’, ‘B’, ‘C’ etc, to differentiate between the two lineages. 

For example bovine BSP30, previously known as BSP30A, BSP30B, BSP30c and 

BSP30d, have now been renamed BPIFA2A, BPIFA2B, BPIFA2C and BPIFA2D 

respectively and mouse and rat PSP are now known as BPIFA2E, ensuring that they 

are identified as expanded members of the BPIFA2 sub-family (Bingle et al., 2011a). 

The human BPIF proteins can be seen, along with their previous PLUNC root names 

and any alternative nomenclature in (Table 1.1) 

Table 1.1: The human BPIF/PLUNC family and their alternative nomenclature. 

BPIF root PLUNC root Alternative nomenclature 

BPIFA1 SPLUNC1 PLUNC, SPURT, LUNX 

BPIFA2 SPLUNC2 PSP 

BPIFA3 SPLUNC3  

BPIFA4 SPLUNC4 BASE 

BPIFB1 LPLUNC1 C20orf114 

BPIFB2 LPLUNC2 BPIL1 

BPIFB3 LPLUNC3  

BPIFB4 LPLUNC4  

BPIFB5 LPLUNC5  

BPIFB6 LPLUNC6 BPIL3 

BPIFB7 Vomeromodulin  
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1.7 BPIF Proteins 

During the development of the systematic nomenclature, it was possible to identify 

BPIF proteins in a number of species rat, mouse, cow, hamster, pig, horse, dog, 

marmoset, chicken, zebra finch, platypus, opossum, panda, rhesus monkey, 

xenopus, orang-utan, chimp, cat and chinchilla (Bingle et al., 2011a). In addition 

expanded members of each subfamily in certain species could be identified and 

described in relation to the respective protein in other species (Figure 1-4) (Bingle 

et al 2011a). This analysis has likely identified all distinct mammalian BPIF-

containing proteins and confirmed the previous suggestion that BPIF/PLUNC 

proteins are restricted to the vertebrate lineage. Furthermore, it confirmed that 

BPIFA proteins are restricted to the therian lineage. The analysis also confirmed 

that BPIF proteins are also extremely divergent both in terms of paralagous and 

orthologous relatives. Overall they are amongst the most divergent mammalian 

protein families with individual paralogues having sequence identities typically 

below 30% (Bingle et al 2004). 
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(Bingle et al., 2011a) 

Figure 1-4: Phylogenetic tree of the BPI Like-fold (BPIF) genes 

This tree demonstrates the size and diversity of the BPIF family. Constructed using ClustalW and 
displayed using ITOL by Bingle, Seal and Craven (2011a). This tree demonstrates the usage of the 
new naming system to identify each distinct member of the BPI fold-like family. 

 

 

1.8 Short PLUNC 2 (BPIFA2) 

BPIFA2 is the major salivary PLUNC protein and is secreted into the saliva at much 

higher levels than BPIFA1 (SPLUNC1). The mouth provides an accessible model and 
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saliva provides an abundant source of this native protein for use in functional 

studies and it is for these reasons that this protein was chosen for the focus of this 

study.  Despite the similarity of BPIF proteins to the host defence proteins, BPI and 

LBP, and the reported expression of BPIFA2 in gingival keratinocytes in response to 

the addition of heat killed bacteria along with inflammatory cytokines, such as TNF-

α (Shiba et al., 2005), function of the BPIF proteins remain unresolved. Functional 

studies with human BPIFA2 are very limited. 

BPIFA2 has been identified as the human orthologue of the rodent parotid 

secretory protein (BPIFA2E) even though the protein sequence identity between 

the two is less than 35% (Bingle et al., 2009). The BPIFA2 gene is found on 

chromosome 20orf70, which is synteneic to chromosome 2 in the mouse, where 

mouse BPIFA2E can be found (Geetha et al., 2003). As previously mentioned the 

BPIF2A2 gene contains 9 exons, transcription of the gene begins with exon 2 and 

the stop codon is located in exon 8, leaving the first and last exons as non-coding 

(Bingle et al., 2009). Translation of this gene produces a protein of 249 amino acids 

with a molecular weight of 27,011Da (Uniprot accession number Q96DR5).  

The BPIFA2/SPLUNC2 proteins are the most divergent group of paralogous proteins 

within the family (Bingle et al 2011). It is clear that this group of genes has 

undergone a significant degree of divergence during mammalian evolution. This has 

manifested itself in the development of four distinct homologues within the bovine 

lineage. This divergence is clearly illustrated in the phylogenetic analysis presented 

in Figure 1.4. 
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Human BPIFA2 protein consists of an N-terminal signal sequence (residues 1-16); 

indicating that BPIFA2 is a secretory protein.  The protein is hydrophobic in nature 

and contains a significant number of leucine/isoleucine residues (26%), The pI of 

the protein is predicted to be 5.35. As is the case with all BPIF proteins (Bingle et al 

2024), it contains two cysteine residues that are predicted to make a single 

disulphide bond.  Although there is no published structure for the protein, 

threading analysis confirms that the protein will be expected to take on the general 

β-barrel structure found in other family members (Figure 1-5). 

 

Figure 1-5: The predicted structure of BPIFA2 generated by threading. 

Human BPIFA2 was threaded using the Phyre server and the resultant model was rendered using 
Chimera (http://www.cgl.ucsf.edu/chimera).  The model shows the position of the two cysteine 
residues (red) as well as the position of the hydrophobic residues, Leu (Green) and Ile (Blue). The 
hydrophobic residues are mostly found within the inner portion of the barrel structure (model 
generated by Colin Bingle). 

The mature BPIFA2 protein (residues 17-249) also contains two N-glycosylation 

sites on residues 124 and 132 (Gorr et al 2011). Western blotting of saliva for 

SPLUNC2 identified multiple positive bands, indicating that BPIFA2 is differentially 

glycosylated to give a variety of sizes (Bingle et al., 2009). Immunohistochemical 

analysis of the human major salivary glands identified BPIFA2 expression in the 
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serous acinar cells of the parotid gland, striated and intercalated cells of the 

intralobular ducts (Bingle et al., 2009). More specifically, positive staining was seen 

in groups of single, double and triple cells in the collecting ducts of the parotid 

gland. In addition the protein was seen in the submandibular gland, however 

antibodies raised to two different epitopes of BPIFA2 produced different staining  

patterns; Antibody-A (raised to an internal epitope of BPIFA2) showed positivity for 

the serous acinar cells and the intralobular ducts, as with the parotid gland, 

however antibody-B (raised to an extreme C-terminal epitope) showed little 

reactivity in the serous acinar cells of the submandibular glands and none at all in 

the intralobular ducts. No reactivity was seen in the mucous acini of any gland with 

either antibody. The sublingual glands followed the pattern of expression seen in 

the submandibular glands for antibody-A but no staining was seen with the 

antibody-B (Bingle et al., 2009). The reasons for these different staining patterns is 

not known but could be caused by alternative splicing of the gene giving a different 

isoform without the epitope (although there is no experimental support for this, 

Bingle et al 2009), or some form of post-translational modification may occur that 

hides the C-terminal epitope. The lumens of collecting ducts also stained positively 

(Bingle et al., 2009) indicating that BPIFA2 is expressed by the serous acini within 

the major glands and then secreted via the ducts into saliva.  

BPIFA2 protein was also shown to be expressed in some minor salivary glands, with 

the glands of the vallecular region of the tongue showing the same staining pattern 

as seen with the parotid gland. Other minor glands, including those in the posterior 

tongue, followed the pattern seen in the sublingual and submandibular glands. 
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Minor glands further down the respiratory tract, the respiratory mucosa and tissues 

outside the oral cavity showed no expression of BPIFA2 (Bingle et al., 2009). 

Expression has also been identified in a number of different species including: 

hamster (BPIFA2E); rat and mouse (BPIFA2E and BPIFA2F); Cows (BPIFA2A-D) and 

pig and horse (BPIFA2) (Gorr et al., 2011). Indeed, expression of the protein in 

rodent salivary glands has been studied extensively (Poulson et al., 1986; Laursen et 

al., 1998; Weston et al., 1999; LeClair et al., 2001). 

1.9 Hypothesis and Aims  

BPIFA2 is a heavily glycosylated protein secreted from both major and minor 

salivary glands into saliva; however saliva also contains a great number of other 

proteins and peptides. The function of the BPIF family of protein has yet to be 

elucidated, but due to their predicted structure and their similarity in gene location 

to known LPS binding proteins, BPI and LBP, it is proposed that they function in an 

antimicrobial manner.  

BPI and LBP control the growth and activity of pathogenic bacteria, either by direct 

binding; opsonisation to facilitate phagocytosis, by minimising the immune 

response to control levels of inflammation or directly preventing their growth and 

adhesion. BPIF proteins may share some of these functions.  

Hypothesis 

Due to the predicted structural similarity between BPIFA2 and the innate immune 

proteins BPI and LBP, it is hypothesised that BPIFA2 may function in the innate 

immune system, against gram negative bacterial LPS, either by acting directly 
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against bacteria in a bactericidal manner, initiating an immune response or as an 

anti-toxin, by reducing the inflammatory response. 

Aims 

1. To develop a suitable protocol for the purification of native BPIFA2 protein 

from stimulated whole saliva and to use this protein for functional 

assessment.  

2. To perform a variety of functional assays designed to determine bacterial 

binding, killing and growth inhibition.  

3. To examine the potential role of the BPIF proteins in controlling the 

inflammatory response to bacterial LPS. 
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Chapter 2.  Purification of BPIFA2 

2.1 Introduction 

The purification of BPIF proteins is essential to their functional characterisation. A 

number of different methodologies have been attempted in order to achieve 

successful purification of BPIF proteins. A variety of biological fluids, such as human 

saliva (Geetha et al., 2003, Abdolhosseini et al., 2012 (BPIFA2)) human 

tracheobronchial fluids (Campos et al., 2004 (BPIFA1)), horse sweat (Beeley et al., 

1986 (Latherin/BPIFA4)) and bovine saliva (Haigh et al., 2008 (BPIFA2 proteins)) 

have been used as a source of BPIF proteins. The culture of chinchilla 

nasopharyngeal epithelial cells has also been used as a source of secreted native 

protein (McGillivary and Bakaletz, 2010 (BPIFA1)). Recombinant protein has also 

been produced in bacteria (Geetha et al., 2003, Haigh et al., 2008, Khovidhunkit et 

al., 2005, Gakhar et al., 2010, Bartlett et al., 2008, McDonald et al., 2009, Chu et al., 

2007, Abdolhosseini et al., 2012 (BPIFA1, BPIFA2 and BPIFA4)) and mammalian cells 

(Geetha et al., 2003 (BPIFA2)). In addition BPIF peptides have been designed to 

combat the issues behind purification of the protein (Geetha et al., 2003, Gorr et 

al., 2008); however these short peptides (7-13 amino acids) have been selected 

specifically from the BPIFA2 sequence to coincide with active portions of the BPI 

protein. Any results seen with these peptides therefore must be viewed with 

caution, as they may not represent the function of the BPIFA2 protein as a whole. 

BPIFA2 is a leucine rich hydropobic protein with a pI of 5.35. It is expected to take 

on the general β-barrel structure found in other family members. Most of the 
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hydrophobic residues in the molecule cluster within the inner clef of the molecule 

(Figure 1-5) and the surface charge is evenly distributed across the molecule.  

Ethanol precipitation was adopted by Abdolhosseini et al (2012) and Campos et al 

(2004) in the purification of BPIFA2 and BPIFA1 from human saliva and 

tracheobronchial secretions respectively, as BPIF proteins remained soluble in a 70-

75% ethanol solution whilst many other proteins did not. Campos et al (2004) 

further purified the BPIF by subjecting it to HPLC. They clearly demonstrated 

purification of the BPIF proteins from saliva and tracheobronchial secretions with 

ethanol. Closer examination of the results published by Abdolhosseini et al (2012), 

however, shows that the 'purified' sample contains a number of lower molecular 

weight proteins, which could include a number of anti-bacterial proteins such as 

histatins, statherin and lysozyme all of which may interfere with further functional 

analysis.    

A similar method, adopted by Haigh et al (2007), involved the purification of BPIF 

orthologues, BPIFA2A and BPIFA2B found in bovine saliva. They precipitated a 

number of contaminant proteins at 50% isopropanol before adjusting the 

isopropanol concentration to 63% (for the purification of both BPIFA2A and B) or 

65% (for the purification of BPIFA2A only) to precipitate any remaining 

contaminants. Following purification the proteins were concentrated by 

lyophilisation before being exposed to ion exchange chromatography. However this 

method resulted in only 82% and 77% purity of BPIFA2A and B respectively with 

clear contaminant protein bands present in the BPIFA2B sample at 97kDa, 45kDa 

and approximately 38kDa on a Coomassie stained SDS-PAGE gel. In addition to this 
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incomplete purification, the use of lyophilisation to concentrate the protein would 

increase the probability of recovering a denatured protein. 

A final method for the purification of native BPIF protein from biological samples 

includes the use of anti-PSP immunoaffinity chromatography (Geetha et al., 2003), 

however, very little work containing this method has been published as a 

preference to the use of artificial peptides was subsequently  adopted by this group 

(see later in this section). 

Bacterial expression of BPIF proteins still appears to be the more favoured method 

of expression and purification used to date, possibly due to the reduced cost and 

the ability to produce a large amount of protein at a much faster rate. Escherichia 

coli has been the bacteria of choice for the expression and purification of BPIF 

proteins with a number of different tags including 6xHIS (Khovidhunkit et al., 2005, 

McDonald et al., 2009, Haigh et al., 2008), V5 (Geetha et al., 2003), MBP (Gakhar et 

al., 2010, Bartlett et al., 2008) and GST (Chu et al., 2007). However, as BPIF proteins 

are believed to be bactericidal, the use of bacteria to express this protein does not 

seem a highly considered choice. It might be expected that either the expression of 

BPIF would lead to toxicity of the bacterial expression system, loss of the BPIF 

protein through bacterial binding or that expression by a bacterial system would 

interfere with future bactericidal assays. In addition to these considerations, it is 

known that BPIF proteins are glycosylated; E. coli expression systems are unable to 

naturally glycosylate proteins without co-transfection with glycosylation systems, 

such as the N-glycosylation system from Campylobacter jejuni (Chen, 2012). 
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Although, even this is not likely to yield fully glycosylated protein as would be seen 

in a mammalian expression system or in its native form. 

The use of mammalian cell lines have also been used to express and purify BPIF 

proteins, either by natural expression and the collection of secretions from human 

tracheobronchial cell cultures, with purification by ethanol precipitation, (Campos 

et al., 2004); transfected expression in PC12 and GH4C1 rat cells, with no 

purification step (Geetha et al., 2003, Abdolhosseini et al., 2012) or chinchilla 

nasopharynx primary cells with SDS-PAGE protein elution (McGillivary and Bakaletz, 

2010). The absence of a purification step (Geetha et al., 2003, Abdolhosseini et al., 

2012) may lead to complications with functional analysis due to the presence of a 

number of mammalian derived proteins. However, this method did show evidence 

of mammalian post-translational modifications when compared to bacterial 

expression systems.  

The method utilised by McGillivary and Bakaletz (2010) appears to be the least 

suitable for purification as this involves two lyophilisation steps to concentrate the 

sample, protein separation by SDS-PAGE, and protein refolding using urea. Of the 

methods adopted, this has the highest susceptibility to error, as protein folding is 

not guaranteed and functionality may be affected due to such denaturing steps. 

As an alternative to purification of BPIF protein, some groups have used BPIFA2 

peptides. These small sections (7-13 amino acids) of the BPIFA2 sequence have 

been selected and artificially manufactured (Geetha et al., 2003). Geetha et al 

(2003) and Gorr et al (2008) demonstrated the design of a number of BPIFA2-

derived peptides relating to cationic peptides found in BPI and LBP that are 
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responsible for LPS binding. Although this method reduces the issues surrounding 

expression and purification of the BPIF proteins, these peptides cannot be fully 

relied upon for functional analysis as their position within the folded BPIF protein 

may inhibit their interaction with bacteria leading to them being non-functional 

regions or the structural arrangement of BPIF may lead to a higher degree of 

selectivity than would be demonstrated by the presence of these peptides.  

A summary of the BPIF protein, source of BPIF protein and purification techniques 

currently in the literature can be seen in (Table 2.1). 

Table 2.1: Purification methods currently described in the literature 

 

In addition to the attempts to study isolated BPIF proteins, proteomic studies have 

shown that BPIFA2 is a component of the dental pellicle (Siqueira et al 2007). 

Dental pellicle is the surface film that forms on the teeth and consists mainly of 

salivary proteins. It functions to assist in the demineralisation and remineralisation 

of the teeth, regulate lubrication and controls the early colonisation of the tooth 
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surface by oral bacteria (Siqueira, Custodio and McDonald 2012). The observation 

that the protein is found in this film suggest that these surface films could also be 

used as a potential purification strategy.  

As the absolute structure of BPIFA2 is still unproven the most suitable method for 

purification is currently unknown. Our limited knowledge of BPIFA2 structure led us 

to investigate the potential use of a number of techniques previously reported in 

the literature for the purification of other BPIF family members. Standard protein 

purification techniques such as column chromatography and protein precipitation 

were thus considered alongside a novel technique in the BPIF protein field, electro 

elution, a simple yet potentially effective method for purification of native protein.  

2.2 Aim 

The aim of this part of the study was to use stimulated whole saliva, as a source of 

BPIFA2, and assess a number of different methods to identify the most suitable for 

purification. As previously mentioned, BPIFA2 is present in abundance in whole 

saliva, which is easily collected in a rapid and non-invasive way. Attempts were 

made to minimise any denaturation of the protein to ensure a purified sample 

containing BPIFA2 in its native condition for use in later functional analysis. 
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2.3 Materials and Methods 

2.3.1 Saliva Collection 

Stimulated whole saliva was collected from a healthy volunteer with a typical 

BPIFA2 expression based on previous work (Bingle et al., 2009; Ethics approval not 

required). The subject did not eat or drink for at least one hour prior to collection. 

Saliva was stimulated with uncoated, sugar free chewing gum and 20mLs collected 

over 5 minutes, in glass universal tubes. The sample was immediately centrifuged at 

3500rpm for 15 minutes at 4°C, held on ice and used within 30 minutes of 

collection. 

2.3.2 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

2.3.2.1 Gel Casting 

All components of the BIORAD gel casting system were washed thoroughly, the 

glass plates were cleaned with 70% IMS before assembly. 

A 12% (w/v) SDS-Polyacrylamide resolving gel (Appendix 6.1) solution was prepared 

and 10% ammonium persulfate (APS) and tetramethylethylenediamine (TEMED) 

were added just before pouring into the gel casting system and overlaying with 

isopropanol. After 5-10 minutes, when the gel was set, all traces of isopropanol 

were removed by washing with distilled water. A 4% stacking gel (Appendix 6.1) 

solution was prepared and 10% APS and TEMED were added immediately prior to 

pouring the stacking gel. A 10-well or 15-well comb was added to the stacking gel 

and this was allowed to polymerise for 5-10 minutes. 

The cast gels were then assembled into the BioRad gel running system. 
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2.3.2.2 Sample preparation 

Samples were combined with equal volumes of 2x SDS-sample buffer (Appendix 

6.1) and boiled for 5 minutes at 95°C to denature the proteins. Samples were either 

stored at -20°C or directly loaded onto a 12 % SDS-PAGE gel. 

2.3.2.3 Electrophoresis 

All samples were electrophoresed alongside a protein standard ladder using the 

BioRad mini gel system at 100v for 2 hours. 

2.3.2.4 Silver stain analysis of SDS-PAGE gels 

Protein gels were analysed by silverstain (Silverstain plus, Biorad).  The gel was fixed 

overnight in 40% ethanol, 10% acetic acid and 50% water. Staining was achieved 

with the silverstain plus kit (BioRad) following manufacturer’s instructions 

(Appendix 6.2). The gels were scanned into a computer with the Lab Scanner Image 

Master (Amersham) and stored as digital images. 

2.3.2.5 Instant Blue (Novexin Ltd, Cambridge, UK) Staining of SDS-PAGE Gels 

The instant blue solution was mixed well before use by inverting the bottle 3-4 

times. Following electrophoresis the gel was carefully removed from the plate and 

added to a flat plastic tray containing instant blue solution. The gel was placed onto 

a rocker for up to 15 minutes at room temperature. The gel was scanned into a 

computer with the Lab Scanner Image Master (Amersham) and stored as digital 

images. 
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2.3.3 Western Blotting 

2.3.3.1 Transfer of proteins from SDS-PAGE Gels  

Proteins separated by SDS-PAGE were transferred onto nitrocellulose membrane 

(Whatman, USA) in an XCell II™ Blot Machine (Invitrogen). All components (2x 3mm 

blotting paper, 5x sponge, 1x gel sized nitrocellulose membrane) were soaked in 

transfer buffer (Appendix 6.3) for 5 minutes prior to assembly. The blot stack was 

assembled with the membrane towards the positive electrode, with no air bubbles 

and electro-blotting was performed at 30v for 60-90minutes. 

2.3.3.2 Dot Blot analysis 

5µl of sample was dotted onto a nitrocellulose membrane (Whatman, USA) and 

allowed to air dry, before being subjected to western blot analysis. 

2.3.3.3 Western Blot 

Nitrocellulose membranes from SDS-PAGE and dot blots were blocked in 5% (w/v) 

dried non-fat milk in tris-buffered saline containing 0.05% Tween-20 (TBST) 

(overnight 4°C or room temperature 60 minutes), washed three times for 5 minutes 

in TBST and incubated with the appropriate primary antibody (BPIFA2B (1:500; In 

house antibody generated by Eurogentec) or α-amylase (1:500; Sigma, UK)) in 5% 

dried non-fat milk in TBST at 4°C, overnight or at room temperature for 60 minutes. 

The production and validation of the BPIFA2 antibodies has previously been 

described in detail (Bingle et al 2009). The membranes were washed three times for 

5 minutes in TBST and incubated with the corresponding secondary antibody (Anti-

rabbit HRP (1:2000; New England Biolabs) in 5% dried non-fat milk in TBST for 30 

minutes.  
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2.3.3.4 Enhanced Chemiluminescence (ECL) 

Western blots and dot blots probed with the HRP conjugated secondary antibody 

were washed twice for 5 minutes in TBST and once for 5 minutes in tris-buffered 

Saline (TBS). Supersignal West Pico Chemiluminescent Substrate (Thermo Scientific, 

UK) was used following manufacturer's instructions; solutions A and B were mixed 

in equal parts and allowed to equilibrate for 2 minutes at room temperature. The 

solution was pipetted onto the membrane ensuring even coverage and left for 5 

minutes at room temperature. Excess ECL reagent was removed and the membrane 

sandwiched between 2 plastic sheets before visualisation either with ECL Film or 

the G:box, gel documentation and analysis system (Syngene, Cambridge, UK).  

2.3.4 BPIFA2 Enrichment  

2.3.4.1 Formation of Saliva Film 

10ml aliquots of stimulated saliva were pipetted into small glass Petri dishes and 

left at room temperature for 30-150 minutes. At the air-liquid interface, a film 

formed. All of the saliva under the film was removed with a glass pipette and added 

to a second glass plate to allow a second film to form. Upon the removal of the 

saliva under the second film, each of the films were scraped into 1ml phosphate 

buffered Saline (PBS) and dialysed against water overnight. The sample was either 

concentrated by Polyethylene glycol (PEG) for 1 hour or it was added to a 10kDa cut 

off centrifugal concentrator ( ~1ml final volume) (10x concentrated). The combined 

films were analysed by western blot and protein staining.  
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2.3.5 Purification of BPIFA2 

2.3.5.1 Ammonium Sulphate Fractionation 

Ammonium Sulphate was added slowly, with stirring, to stimulated saliva to give a 

final saturation of 30%, pH7.2. The saturated saliva was incubated for 2 hours at 4°C 

then centrifuged for 20 minutes at 15,000 rpm at 4°C. The supernatant was 

collected and the pellet was resuspended into 300µl of TBS and stored at -20°C. The 

remaining saliva was re-saturated at 10% increments (40%, 50%, 60%, 70% and 

80%) using the same method. The resuspended pellets were dialysed overnight 

against 50mM TBS before being analysed by western blotting and Instant Blue 

protein staining.  

2.3.5.2 Ion Exchange Chromatography 

Stimulated saliva (1ml) was collected and passed through a Q-sepharose ion 

exchange column, in TBS pH7.5 (Appendix 6.3), at a flow rate of 1ml/minute. The 

concentration of NaCl was increased slowly from 0.0M to 0.20M, followed by a 

rapid increase to 0.45M then a second rapid increase to 1.0M NaCl. Fractions 

corresponding to peaks were collected and analysed by dot blot. Positive fractions 

were concentrated by lyophilisation then passed over a second Q-sepharose 

column, where NaCl concentration was gradually increased from 0 to 0.25M 

followed by a rapid increase to 1.00M NaCl. Fractions corresponding to peaks were 

collected and analysed by dot blot and western blotting. 
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2.3.5.3 Ethanol Precipitation (Campos et al, 2004) 

BPIFA2 protein was separated from the majority of the other proteins present in 

saliva using acetone and ethanol precipitation. 10mls of saliva was concentrated 

with 2.5 volumes of ice cold acetone (100%) per volume of saliva. After 10 minutes 

on ice the sample was centrifuged at 16,000rpm for 10 minutes at 4°C and the 

pellet resuspended in 1ml of PBS. Three volumes of Ethanol (100%) per volume of 

sample were added and the sample was held on ice for 10 minutes before 

centrifuging at 16,000rpm for 10 minutes at 4°C. 2.5 volumes of ice cold acetone 

(100%) per volume of sample was added to the supernatant and held on ice for 10 

minutes. The sample was centrifuged again, 16,000rpm for 10 minutes at 4°C, and 

the precipitated proteins were resuspended in 1ml PBS  (Campos et al., 2004). The 

ethanol precipitated BPIFA2 was analysed by western blot and silver stain analysis. 

2.3.5.4 Size Exclusion Chromatography 

Following ethanol precipitation, 2 mls of the sample was passed through a size 

exclusion column (S200-HR) at a flow rate of 0.16ml/minute with PBS. Fractions 

corresponding to peaks on the chromatogram were analysed by dot blot. 

2.3.6 Native Gel Electrophoresis Systems 

1-4mls of whole saliva was separated using the BIORAD Large gel system, according 

to the manufacturer’s instructions. All gels cast were 12% (w/v) native acrylamide 

gels (Appendix 6.5) and resolved at 190V overnight. 

2.3.6.1 Protein Elution 

Each component of the Bio-Rad protein eluter was soaked in native elution buffer 

(Appendix 6.5) for 5 minutes prior to assembly following manufacturer’s 
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instructions (Figure Figure 2-1). The elution chamber was filled with native elution 

buffer.  The elution was performed at 200mA over 25 minutes, then the polarity 

was reversed and the eluter was re-run at 200mA for 30 seconds. The fractions 

were collected into a glass tube by vacuum and the fractions were analysed by dot 

blot. Positive fractions were dialysed against water and concentrated by 

centrifugation with a 10kDa cut off concentrator column. 

 

 Image taken from Biorad Laboratories, Whole Gel Eluter Instruction Manuel  

Figure 2-1: Schematic demonstrating the BioRad electroelution equipment. 

Proteins were resolved on a native polyacrylamide gel using the BioRad Large Gel system, the gel 
was then transferred to the BioRad electroelution apparatus where the proteins were eluted from 
the gel into the 30 fraction chambers. The fractions were then collected into glass test tubes before 
being analysed by western blot for BPIFA2 and α-Amylase. 
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2.3.7 Recombinant BPIFA2 

2.3.7.1 S2-Cell expressed BPIFA2 

 Drosophila Schneider 2 (S2) Cell line 

The non-adherent Insect cell line, Drosophila Schneider 2 (S2) expressing 

recombinant BPIFA2, was kindly donated by Dr Lynne Bingle (Appendix 6.4). 

 Maintenance 

The S2 cell lines were maintained in Ex-cell 420 Serum Free Medium for Insect Cells 

(Sigma, UK) supplemented with 10% heat inactivated foetal calf serum (FCS) and 

100UmL-1 Penicillin/Streptomycin at a density of between 1x106 - 5x106 cells ml-1. 

On a weekly basis the cells were centrifuged at 1000rpm for 5 minutes and 

resuspended in fresh media, unless stimulation was taking place. 

 Expression 

S2 cells were centrifuged at 1000rpm for 5 minutes and resuspended at a density of 

8-10x106 cells ml-1 in media with or without serum. The S2 cells were stimulated 

with 500µM filter sterilised copper sulphate either overnight (with serum) or for 15 

days (without serum). The S2 cells were then centrifuged at 1000rpm for 5 minutes 

and the conditioned media was collected into a glass bijou and analysed by dot blot 

or western blot.  

2.3.7.2 NI-NTA bead BPIFA2 purification 

Initially, a small column was packed with 2mls of Ni-NTA beads (Qiagen) and 

conditioned media, from stimulated S2 cells with serum, was added to the column 

and allowed to run through. The column was washed with 1 column volume of 

20mM IMAC buffer (Appendix 6.6), 1 column volume of 25mM IMAC buffer, and 
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then weakly bound proteins were washed off the column with 2 column volumes of 

50mM IMAC buffer. Bound proteins were eluted with 2 column volumes of 

increasing concentrations of IMAC buffer (150mM, 250mM and 500mM), with an 

intermittent wash step of 1 column volume of 20mM IMAC buffer. 

A second method involved the addition of the Ni-NTA beads to the stimulated S2 

media (with FCS) and incubation on a roller overnight at 4°C. The beads were 

centrifuged at 3500rpm for 10 minutes and any unbound protein was removed. The 

unbound protein was washed from the beads twice with 4 column volumes of 

50mM IMAC buffer before being loaded into a column. The beads were washed a 

final time with 4 column volumes of 50mM IMAC buffer before the bound proteins 

were eluted with 2 column volumes of 150mM IMAC buffer followed by 2 column 

volumes of 250mM IMAC buffer. Following this 3 column volumes of 500mM IMAC 

buffer were passed over the column to remove any proteins still bound to the 

beads. The fractions were analysed by western blotting.  
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2.4 Results 

2.4.1 BPIFA2 Enrichment  

2.4.1.1 Formation of Saliva Film 

As previously highlighted, proteomic studies have shown that BPIFA2 is a significant 

component of the dental pellicle. These observations, coupled with experimental 

data using a similar salivary film and shown in a presentation to our department by 

an external speaker, suggested that there was an enrichment of a protein 

corresponding to the molecular weight of BPIFA2. This led us to believe that the use 

of a saliva film would allow us to collect a sample enriched with native protein. 

Whole saliva was placed in a small glass dish and a film was naturally allowed to 

form at room temperature. BPIFA2 was present in this film but we noticed that 

much of the BPIFA2 remained in the lower portion of the sample (Figure 2-2A). This 

indicated that although BPIFA2 did contribute to the saliva film, we could not use 

this as a purification method as too much protein was being lost and there was not 

sufficient enrichment of the protein for use in downstream functional assays. In 

addition, the long incubation period at room temperature was not ideal and the 

presence of a number of contaminant proteins (Figure 2-2B) meant that further 

purification steps would be needed; this process was not used in further 

purification attempts. 
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Figure 2-2: Enrichment of BPIFA2 following the formation of a saliva film 

2-5mls of saliva was placed into a glass dish and incubated for 30-150 minutes. The film that formed 
at the air liquid interface was collected, concentrated by Polyethylene glycol or a 10kDa spin 
concentrator before being analysed by western blot (A) and Instant Blue protein staining (B). BPIFA2 
was detected by western blot following concentration of the sample. Although it appeared that the 
BPIFA2 was enriched in the sample, a large number of contaminant proteins were still present. This 
method was not used further during the project.  

  

2.4.2 Purification of BPIFA2 

2.4.2.1 Ammonium Sulphate Fractionation 

Figure 2-3A demonstrates Instant Blue staining of salivary proteins following 

precipitation with ammonium sulphate. 40-50% ammonium sulphate resulted in 

significant protein precipitation whilst 70-80% ammonium sulphate resulted in little 

further precipitation. Western blot analysis of the precipitated proteins for BPIFA2 

identified that BPIFA2 precipitated at all of the concentrations of ammonium 

sulphate (Figure 2-3B). 
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Figure 2-3:  Ammonium Sulphate precipitation of BPIFA2 from Saliva 

Proteins precipitated by increasing concentrations of ammonium sulphate were analysed by instant 
blue stained SDS-PAGE gel (A). Precipitation of BPIFA2 was detected by western blot (B). BPIFA2 was 
seen to be precipitated at every ammonium sulphate concentration. 

 

2.4.2.2 Ion Exchange Chromatography 

Approximately half of the salivary proteins in the sample passed through the 

column without binding and these were washed out prior to the addition of the 

NaCl buffer.  A 280nm absorption peak identified the elution of these proteins 

between 0mM and 0.2mM NaCl followed by an elution of a higher concentration of 

proteins at 0.5M NaCl. A small absorption peak was identified following an increase 

in NaCl concentration to 1.0M. These peaks, corresponding to fractions 2-9, 14-26 

and 45-46, were analysed by dot blot for BPIFA2 (Figure 2-4). 
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Figure 2-4: Ion exchange chromatography  

Peaks identified on the chromatogram corresponding to fractions 2 and 17-27 showed positivity for 
BPIFA2 following dot blot analysis 

Fractions 2 and 17-27 were also positive for BPIFA2. Fraction 17-27 were combined 

and concentrated by lyophilisation and passed over a second Q-sepharose ion 

exchange column at a shallower NaCl gradient to further separate any proteins. 

Protein peaks were identified between fractions 28-32, 38-44 and 61-66. These 

fractions were analysed by dot blot analysis, which identified fractions 62 and 63 as 

being positive for BPIFA2. Western blot analysis for BPIFA2 confirmed this positivity 

(Figure 2-5).  
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Figure 2-5: Ion exchange chromatography 

Fractions 17-27 were combined and concentrated; proteins in the sample were further separated on 
a second ion exchange Q-sepharose column. Protein peaks identified on the chromatogram 
corresponding to fractions 28-32, 38-44 and 62-66 were analysed by dot blot analysis. Fractions 62 
and 63 showed positivity for BPIFA2, which was confirmed by western blot analysis. 
Chemiluminescent activity was collected over 5 minutes using the G:box, gel documentation and 
analysis system (Syngene, Cambridge, UK). 

 

2.4.2.3 Ethanol Precipitation (Campos et al, 2004) 

Some BPIFA2 present in whole saliva was solubilised in 75% Ethanol and 

precipitated proteins were removed by centrifugation. Most proteins present in 

whole saliva were successfully precipitated and removed as contaminants, 

however, in addition to BPIFA2, a number of salivary proteins between 

approximately 10 and 15kDa remained soluble in the 75% ethanol. Disappointingly 

some of the BPIFA2 was insoluble in 75% ethanol and was lost in the ethanol pellet 

(Figure 2-6). 
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Figure 2-6: Ethanol precipitation of native BPIFA2 from whole saliva 

The western blot (A) identified that some BPIFA2 was lost following the initial centrifugation to 
remove debris from the saliva (Post centrifuge 1 pellet); all BPIFA2 present in the sample was 
successfully precipitated by acetone. Much of the BPIFA2 was lost following solubilisation with 
ethanol. The western blot showed that BPIFA2 was absent from the 75% ethanol. The final acetone 
precipitation led to the concentration of BPIFA2 remaining in the sample, allowing it to be detected 
by western blot analysis. Silverstain analysis (B) identified that ethanol precipitation reduced the 
number of salivary proteins in the final sample however purification of BPIFA2 was unsuccessful. 
Blue arrows highlight the position of BPIFA2. Figure demonstrates representative results from a 
number of preparations (in excess of 15). A schematic of the Ethanol Precipitation procedure is 
included for clarity (C). Samples for SDS-PAGE were taken at the points highlighted in green and red. 
Red arrows indicate where the resulting sample was removed from the procedure and black arrows 
indicate the progression to the next stage. 
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2.4.2.4 Size Exclusion Chromatography 

BPIFA2 partially purified by ethanol precipitation was further purified using a size 

exclusion column. Protein peaks were recorded between fractions 7 and 28 (Figure 

2-7), these fractions were analysed by dot blot analysis. No BPIFA2 was detected 

following dot blot analysis, possibly due to the dilution of the sample, from 2mls to 

3.5mls per fraction; however concentration of the sample failed to locate any 

BPIFA2 in the fractions. 

 

Figure 2-7: Size exclusion chromatography of BPIFA2 purified by the Ethanol Precipitation method. 

Peaks were detected between fractions 7-12 and 18-27 and these fractions were analysed by dot 
blot for presence of BPIFA2, none of the fractions positively detected BPIFA2. 

 

  

Fraction: 1     2    3    4    5     6     7     8   9   10   11   12  13   14   15  16   17   18   19    20  21   22   23   24 25  26 27 
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2.4.3 Native Gel Electrophoresis Systems 

2.4.3.1 Protein Elution 

Salivary proteins were separated using large native polyacrylamide gel 

electrophoresis (Figure 2-8) before being eluted into 30 small fractions.  

 

Figure 2-8: Coomassie stained native polyacrylamide gel of salivary proteins before electroelution. 

Salivary proteins were separated by native polyacrylamide gel electrophoresis, before being electro-
eluted into 30 different fractions of tris-glycine buffer. The gel demonstrates the separation of the 
salivary proteins throughout the gel.  

 

These fractions were analysed by dot blot and the BPIFA2 positive fractions were 

collected and combined. The original method identified a contaminant band of 

around 50kDa, this was later identified as α-amylase. Dot blot analysis of each of 

the fractions for BPIFA2 and α-amylase identified that not all of the BPIFA2 positive 
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fractions were contaminated with α-amylase and so by discarding the α-amylase-

containing fractions, pure BPIFA2 could be collected.  

Western blot analysis identified that BPIFA2 fractions could be consistently 

collected without α-amylase contamination (Figure 2-9A). Further preparations 

identified that this method consistently produced pure BPIFA2. Instant Blue protein 

staining confirmed that BPIFA2 was successfully purified from whole saliva using 

this method (Figure 2-9B). 

 

Figure 2-9: Purified nBPIFA2 by protein elution from a large Bio-Rad native polyacrylamide gel 
electrophoresis 

Initial purification attempts highlighted that BPIFA2 samples were contaminated with α-amylase. 
Consistantly successful purification of BPIFA2 was achieved by the seperation of nBPIFA2 positive; α-
amylase negative fractions (A: Prep 2-5) from BPIFA positive; α-amylase positive fractions (A: Prep 
1). Whole saliva (WS) was used as a positive control. Purity was assessed using Instant Blue protein 
staining (B) which demonstrated the purity of the BPIFA2 sample. Preparations shown are 
representative of the many performed (>20). 
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2.4.4 Recombinant BPIFA2 

2.4.4.1 S2-Cell expressed BPIFA2 

Expression of rBPIFA2 in S2 cells was achieved by stimulating transfected cells with 

500 µM copper sulphate in the presence and absence of FCS. For further 

purification of BPIFA2 by Ni-NTA beads, expression of BPIFA2 had to be performed 

in the presence of FCS as serum free media stripped the nickel from the column. For 

the media which was not purified by the Ni-NTA beads, BPIFA2 was expressed into 

serum-free media to reduce the number of mammalian proteins present in the 

sample. Cells that were stimulated in the presence of FCS expressed detectable 

concentrations following 24 hour stimulation (Figure 2-10A), however in the 

absence of FCS detectable levels of rBPIFA2 were only achieved after a 15 day 

stimulation (Figure 2-10B). 
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Figure 2-10: rBPIFA2 expression in Drosophila Schneider (S2) cells 

Stimulation of the BPIFA2 transfected S2 cells in the presence of serum showed detectable levels of 
BPIFA2 after 24 hours (A), in the absence of serum a 15 day stimulation was required before levels 
were high enough to be detected (B). S2 cells not transfected with BPIFA2 did not show any 
positivity for BPIFA2 on stimulation.  

 

2.4.4.2 NI-NTA bead BPIFA2 purification 

Purification of rBPIFA2 from S2 cell expression was attempted using Ni-NTA agarose 

beads. The 6xHIS tag on the rBPIFA2 allowed for the purification using this method. 

Original attempts at purification by adding the stimulated media directly to a 

packed column led to the elution of rBPIFA2 protein at all of the wash stages (Figure 

2-11), indicating that the concentration of rBPIFA2 protein was overloading the 

column and insufficient washing was taking place. 
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Figure 2-11: Purification by sequential elution of rBPIFA2 from Ni-NTA beads 

Passing conditioned media over a packed Ni-NTA column led to the elution of rBPIFA2 at every 
concentration of IMAC Buffer (samples of sequential fractions subjected to western blotting). Blot is 
representative of a number of repeated attempts (>5). 

 It was decided that the stimulated media should be batch adsorbed to the beads 

by placing them in a glass bijou bottle on a roller at 4°C overnight, and washing 

thoroughly by centrifugation before being packed into the column. This led to a 

much improved purification method with rBPIFA2 elution taking place at 150mM 

IMAC buffer (Figure 2-12).   
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Figure 2-12: Purification of rBPIFA2 with Ni-NTA beads following an overnight incubation and 
centrifugal washing step 

Incubating Ni-NTA beads with the conditioned media of BPIFA2 transfected S2 cells and washing via 
centrifugation before packing the beads into a column lead to improved protein elution when 
compared to traditional column methods. rBPIFA2 eluted at 150mM IMAC buffer. (Samples of 
sequential fractions subjected to western blotting) Blot is representative of a number of repeated 
attempts (>5). 
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2.5 Discussion 

The presence of BPIFA2 in saliva allows for its collection in a rapid and simple way. 

However, the presence of a number of other proteins in saliva, particularly 

antimicrobial proteins, means that BPIFA2 must be purified before it can be used in 

functional studies. The aim of this study was to assess the currently utilised 

methods of purification and, if necessary, develop an alternative method in order to 

produce a pure form of BPIFA2.  

The use of pure BPIFA2 protein is beneficial as it removes the risk of contaminating 

proteins interfering with any later functional studies. Also, purification of native 

BPIF proteins is the only way to ensure true post-translational modifications of the 

protein, such as glycosylation, are present. Several studies have described the 

purification of BPIF proteins from natural sources (Abdolhosseini et al., 2012, 

Geetha et al., 2003, McGillivary and Bakaletz, 2010, Campos et al., 2004), utilising a 

number of methods, including immuno-affinity chromatography (Geetha et al., 

2003), ethanol precipitation (Abdolhosseini et al., 2012, Campos et al., 2004) and 

electroelution from an SDS-PAGE gel coupled with column chromatography and re-

naturation of the BPIFA1 (McGillivary and Bakaletz, 2010).  

The immuno-affinity chromatography method of purification appears to be quite 

successful in some laboratories, with the purification of native BPIFA2 from human 

saliva. In this study, ion exchange chromatography was used to purify BPIFA2 from 

whole saliva. Ion-exchange chromatography was also used by Beeley, et al (1986) to 

purify a protein, latherin (BPIFA4), from horse sweat. Beeley et al (1986) 

demonstrated successful purification of latherin using ion exchange 
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chromatography following gel filtration. Although BPIFA2 was collected into just 2 

fractions following two ion exchange runs, there was a concern that a significant 

proportion of BPIFA2 protein would be lost from such a long process leading to the 

need for a large sample size.  

Abdolhosseini et al (2012) and Campos et al (2004) reported that BPIFA2 and 

BPIFA1 were soluble in ethanol whilst other contaminating proteins were not and 

thus had used this as a means of purifying the proteins from whole saliva and from 

airway lining fluid respectively. We adapted the methods of these published studies 

and out early results suggested this would indeed be a suitable purification method 

as protein staining indicated out BPIFA2 preparation was free of contaminating 

proteins. Unfortunately, closer examination of the SDS-PAGE gel using a silver 

staining method highlighted the presence of small contaminating proteins (10-

15kDa), similar to the contaminants identified by Abdolhosseini et al (2012). As 

previously mentioned, these proteins could be antibacterial proteins, cystatin, 

histatin, statherin and/or lysozyme. N-terminal sequencing did in fact identify 

cyctatin in our preparation (unpublished data from BSc Dissertation). In addition, 

following western blot analysis of the ethanol precipitation fractions it was evident 

that much of the BPIFA2 protein was lost in the ethanol precipitate pellet. The use 

of size exclusion chromatography in order to remove the contaminant proteins lead 

to significant reduction in the concentration of BPIFA2 protein to undetectable 

levels. Concentration of the fractions did not aid in the detection of BPIFA2 in the 

fractions, this could have been due to loss of the protein through interactions with 

the stationary phase of the column, if this was the case a high concentration of 
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BPIFA2, and so a very large starting volume, would be required with no guarantee 

of pure, functional BPIFA2 protein. It was believed that BPIFA2 could be enriched by 

the formation of a saliva film at an air-liquid interface; this method of enrichment of 

BPIFA2 had not been described previously. It was hoped that the enrichment of 

BPIFA2 would result in the removal of the small contaminating proteins prior to 

ethanol precipitation. Initial results indicated that these small proteins had been 

successfully removed; however, trace amounts were present which became 

apparent on further concentration. In addition to these problems, proteins have 

been shown to denature in the presence of ethanol at temperatures of above 0°C 

(Zellner et al., 2005), also human serum albumin has been reported to change 

structurally following incubation with ethanol at concentrations as low as 10%, 

which becomes more pronounced as incubation time increases (Lin et al., 2004). 

Therefore the use of 75% ethanol to purify BPIFA2 from saliva and the periods 

where BPIFA2 is held at 4°C, provide ample opportunity for conformational change 

and even denaturation of the BPIFA2 protein and may render the purified BPIFA2 

non-functional. For these reasons formation of a saliva film followed by ethanol 

purification was concluded not to be a suitable method for purification. 

Ammonium sulphate fractionation had not previously been described as a method 

to purify BPIF proteins; however it is a common method for the initial enrichment 

of many other proteins. Unfortunately BPIFA2 failed to partition into a particular 

fraction or fractions of ammonium sulphate. 

The most successful method of BPIFA2 purification from whole saliva involved the 

separation of salivary protein using native polyacrylamide gel electrophoresis, 
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coupled with electro-elution. Previous attempts to purify BPIFA1 from cultured 

primary chinchilla nasopharynx cell secretions involved separation of proteins by 

SDS-PAGE in the absence of β-mercaptoethanol, excision of bands, electro-elution, 

dialysis and lyophilisation. The resuspended sample was then passed through a 

detergent removal column, denatured and renatured using increasing 

concentrations of urea. The re-natured protein was then further dialysed; 

lyophilised and resuspended before being subject to function assays. This method, 

although reported to be successful, contains a number of opportunities for the 

incorrect folding, permanent denaturation and/or loss of the protein. It was the aim 

of this study to develop a method with a minimal number of these opportunities. 

Therefore, purification under native conditions was attempted. Initial attempts 

involving the pooling of all BPIFA2 positive fractions lead to the co-purification of 

BPIFA2 and amylase from the gel, but by identifying the BPIFA2 fractions that 

lacked contaminating amylase and discarding those, pure BPIFA2 could be 

collected. The purified BPIFA2 required dialysis to reduce the salt concentration 

prior to functional analysis but no further process was required, reducing the 

chance of denaturation or deformation of the final protein, unlike the method 

described by McGillivary and Bakaletz (2010). 

Quantification of the native purified BPIFA2 was attempted, using a BioRad protein 

quantification kit and using western blot and densitometry to compare with a 

commercial BPIFA2 sample, however, results were highly variable (results not 

shown). As native concentrations of BPIFA2 in saliva have not yet been determined, 

and as the functional investigations were in an early stage of development, it was 
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decided that the importance would be placed upon the collection of as much 

purified protein as possible for use in functional assays. Thus the absolute 

concentration and/or yield of protein from any given sample were not a priority. 

Future development of the project, including yield of the purified protein and a 

more restricted functional assessment is planned based on the findings of this 

project. 

A novel observation in this project is the interaction between BPIFA2 and 

laboratory plastics. A number of purification methods failed to result in detectable 

levels of BPIFA2 due to this interaction. BPIFA2 has shown itself to be a ‘sticky’ 

protein, strongly adhering to many surfaces, which may indicate some functional 

significance.  

We intended to use purified recombinant BPIFA2, produced in S2 cells for 

functional comparison. Other groups have described recombinant BPIF protein 

production in E. coli and although the use of E. coli would have allowed for rapid 

and low cost production of BPIFA2 it was thought that the use of bacteria to 

produce a potentially antibacterial protein may lead to production problems or 

issues with functional studies, in addition to the absence of eukaryotic 

glycosylation. Consequently an attempt was made to stably transfect the BPIFA2 

gene into mammalian CHO cells to allow fully glycosylated protein production, 

however yields from these cells were almost undetectable, resulting in insufficient 

protein for future studies (results not shown). S2 cells, cultured at room 

temperature, without CO2, are able to produce glycosylated protein, which allowed 

for BPIFA2 to be produced close to its native form. Previous expression levels were 
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reported to be up to 22mg/L (Johanson et al., 1995) making this expression system 

preferential over bacterial and other mammalian systems. For the purification of 

recombinant BPIFA2 from the culture medium by Ni-NTA beads, the cells were 

stimulated in the presence of FCS. It was reported in the Drosophila expression 

system literature that the absence of FCS caused the nickel ion to strip from the 

beads, therefore expression of proteins using this system and purification on Ni-

NTA beads in the absence of FCS would have been unsuccessful. FCS was required 

in order to successfully purify the rBPIFA2.  As previously mentioned, in the 

presence of FCS the S2 cells secreted detectable levels of BPIFA2 protein after just 

24 hours, however the use of FCS introduced a number of contaminating proteins 

to the conditioned media. Furthermore, purification of the BPIFA2 protein was 

successful when desorbing with 150mM IMAC buffer, however, unfortunately 

residual imidazole, even at very low concentrations caused significant killing of a 

number of bacteria in initial assays (results not shown). It was decided that, even 

with extensive dialysis to remove the imidazole, there was a high chance that any 

bacterial killing seen could be due to the presence of imidazole confounding 

interpretation of a function for the BPIFA2 protein. Commercial rBPIFA2 was 

considered, however, it was deemed too expensive for the volumes required in our 

functional assays. It was decided therefore, that the conditioned media, in the 

absence of FCS would be used in further functional assays comparing with 

conditioned media from untransfected S2 cells as a control. The major 

disadvantages of this were the 15 day culture required to achieve detectable levels 

of BPIFA2 in the media and the presence of numerous contaminant proteins. 
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A suitable method of purification of the recombinant BPIFA2 would need to be 

developed, maybe similar to that identified for native BPIFA2, which does not lead 

to problems with later functional analysis. This would then allow true comparisons 

to be made between rBPIFA2 and purified nBPIFA2. 

 

A number of methods have been assessed in order to successfully purify native 

BPIFA2 from whole saliva including ammonium sulphate fractionation, ethanol 

precipitation, ion exchange and size exclusion chromatography and native gel 

electrophoresis with protein elution. The main failing of many of the methods, 

including column chromatography and ethanol precipitation, was the repeated loss 

of the protein to undetectable levels, indicating that an extremely large starting 

volume would be required in order to purify sufficient protein for functional assays. 

The most successful method was native gel electrophoresis with protein elution. 

This method, although initially resulting in amylase contamination, resulted in 

detectable pure nBPIFA2 and unlike many other methods attempted             

required no chemicals that could result in conformational change or denaturation 

of the protein. This method is novel in the BPIF protein field and demonstrates a 

simple but effective method for native BPIFA2 purification. 
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Chapter 3.  Functional Analysis of BPIFA2 

3.1 Introduction 

Since the discovery of the first BPIF protein, BPIFA1 in 1999, the function of the BPIF 

family of proteins has remained a mystery. Many theories have been suggested; 

however no conclusive proof has yet been published. 

The BPIFA1 gene was initially identified in the developing palate of the murine 

embryo, with a defined expression pattern evident around the time of palatal shelf 

elevation and fusion. Although this expression was noted to occur during 

development it was not believed to play a role in these stages of morphogenesis of 

the murine palate, and was suggested to play a more regulatory role in the 

development of the nasal collumella, sinus cavities and common nasal passage. 

Expression analysis of the adult mouse identified continued expression of the 

BPIFA1 gene in the trachea and bronchial passages (Weston et al., 1999) suggesting 

that the function of this protein extends further than regulation of morphogenesis 

during gestation. The diminished expression of the BPIFA1 gene in the distal regions 

of the bronchial passages strongly indicates that the BPIFA1 protein is unlikely to 

function in gas exchange in the alveolus (Weston et al., 1999, Bingle and Bingle, 

2000), however since the initial discovery this has been a frequently suggested 

function. It has recently been proposed that one of the functions of the BPIF 

proteins is to act in a surfactant-like manner by reducing surface tension following 

studies with recombinant human BPIFA1 protein (Bartlett et al., 2011, Gakhar et al., 

2010) and recombinant Latherin; an equine member of the human BPIF family 

expressed in the saliva and sweat (McDonald et al., 2009). However, this study 
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failed to explain the abundance of Latherin in saliva, since surfactant activity is not 

as important in the upper airway and mouth as it is in the lungs. What is more likely 

is their second suggestion, that Latherin, and so other members of the BPIF protein 

family, affect the ability of bacteria to attach to host cells either via coating the host 

epithelium or by inhibiting bacterial surface proteins (McDonald et al., 2009). 

As previously mentioned, BPIF proteins are relatives of the innate immune protein 

family containing BPI and LBP, whose primary role is to bind to bacterial LPS to 

increase or hinder the immune response. The predicted structural similarity 

between the BPIF proteins, BPI and LBP further strengthens the initial suggestion of 

BPIF-bacterial interaction being a primary function of the BPIF family. BPI and LBP 

bind to bacterial LPS via the functional domain predicted to be present in each of 

the BPIF proteins, leading to the belief that BPIF proteins also have the ability to 

bind to bacterial LPS. Different techniques have been utilised in an attempt to 

demonstrate the ability of BPIF protein binding to bacterial LPS; ethanol 

precipitated BPIF proteins from human and bovine saliva failed to show binding to 

LPS (Geetha et al., 2003, Campos et al., 2004, Haigh et al., 2008), however following 

purification of human BPIFA2 by the same ethanol precipitation technique, 

Abdolhosseini et al (2012) identified binding to sepharose beads coated with P. 

aeruginosa LPS, which was further confirmed using recombinant BPIFA2. Other 

methods include the adsorption of LPS to polystyrene tubes followed by incubation 

with BPIFA1 in whole nasal lavage fluid (Ghafouri et al., 2004), which identified the 

binding of BPIFA1 to E. coli LPS and agglutination and adhesion techniques with 

synthetic peptides derived from BPIFA2 (Geetha et al., 2005). These peptides 
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showed positive binding to P. aeruginosa and E. coli LPS. Geetha (2005) also 

demonstrated that pre-incubation of bacterial LPS with these BPIFA2 peptides lead 

to an inhibition of the binding of LPS to LBP. Later studies identified that the 

presence of the synthetic peptides leads to an inhibition of P. aeruginosa adhesion 

(biofilm) (Gorr et al., 2008), as did a study involving recombinant BPIF protein 

(Gakhar et al., 2010).  

In addition to bacterial binding, various other functions have been studied including 

growth inhibition, bacterial killing and agglutination, where varied responses have 

been reported. Contrasting data has been published regarding the function of BPIF 

proteins, some groups report that BPIF proteins inhibit the growth of bacteria such 

as Mycoplasma pneumoniae (recombinant mouse BPIFA1) and P. aeruginosa 

(purified native and recombinant BPIFA2A and BPIFA2B) (Haigh et al., 2008, Chu et 

al., 2007) though published work using BPIFA2 peptides showed no inhibition (Gorr 

et al., 2008). Similarly, the data surrounding the bactericidal function of BPIF 

proteins is not in agreement; purified chinchilla BPIFA1 and recombinant BPIFA2 

protein reduced the viability of Haemophilus influenzae and P. aeruginosa 

respectively (McGillivary and Bakaletz, 2010, Geetha et al., 2005, Geetha et al., 

2003). This is, however, disputed by other workers, who have reported no 

bactericidal activity with recombinant hamster BPIFA2, recombinant human BPIFA1 

or BPIFA2 peptides (Bartlett et al., 2008, Khovidhunkit et al., 2005, Gorr et al., 

2008). 
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3.2 Hypothesis and Aim 

Hypothesis 

The predicted structure of BPIF proteins identifies similarities with both BPI and 

LBP, which are involved in the innate immune response. We hypothesise that the 

function of BPIFA2 is related to the innate immune response, either directly, by 

binding to bacteria and increasing or inhibiting the inflammatory responses, or 

indirectly by preventing bacterial adhesion and growth.  

Aim 

As the research surrounding BPIFA function is quite contradictory there is no 

consensus regarding the function. Many studies have involved the use of P. 

aeruginosa but few studies have described the effect of BPIFA2 on other bacteria. 

The aim of the work reported in this chapter was to examine a variety of functions 

of BPIFA2, including: bacterial binding ability; inhibition of growth; bacterial killing 

and agglutination against a number of different bacteria including oral commensal 

bacteria (S. gordonii and S. mutans), oral pathogens (P. gingivalis and T. forsythia), 

non-oral commensal bacteria (P. aeruginosa and E. coli), a respiratory commensal 

organism (S. aureus) and a respiratory pathogen (β-haemolytic streptococcus).  
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3.3 Materials and Methods 

3.3.1 Bacteria 

Table 3.1: Bacterial strains 

Bacteria (strain) Mutation Antibiotic 
Resistance 

Origin 

Streptococcus gordonii (Challis) - - Lyophilised stocks 
within the School 
of Clinical 
Dentistry, 
Sheffield, UK  

Streptococcus mutans (Ingbritt) - - 

Staphylococcus aureus (Oxford) - - 

Escherichia coli (U125643) - - 

Porphyromonas gingivalis(W50) - - 

Β-haemolytic streptococcus 
(Clinical strain) 

- - Hallamshire 
Hospital 
Microbiology 
Diagnostic Service,  
Sheffield, UK 

Pseudomonas aeruginosa 
(Clinical strain) 

- - 

Haemophilus influenza  
(Clinical strain) 

- - 

Porphyromonas gingivalis 
mutant (E8) 

Δrgp:ArgpB 
(parent strain 
W50) 

10µg ml-1 

erythromycin 
M. Curtis, Barts 
and The London 
School of 
Medicine and 
Dentistry, London 
UK 

Porphyromonas gingivalis 
mutant (K1A) 

Δkgp 
(parent strain 
W50) 

10µg ml-1 

erythromycin 

Porphyromonas gingivalis 
mutant (EK18) 

ΔrgpA:rgpB 

Δkgp 
(parent strain 
W50) 
 

10µg ml-1 

erythromycin 
20µg ml-1 

chloramphenicol 

J. Higham 
University of 
Sheffield, UK 

Tanerella forsythia (ATCC 43037) - - S. Roy 
University of 
Sheffield 
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3.3.2 Culture of Bacteria 

All growth media was prepared according to the manufacturer’s instructions using 

distilled water and sterilised by autoclaving at 15 psi (121°C) for 15 minutes on 

liquid cycle. 

S. gordonii, S. pyogenes and S. mutans were maintained on Columbia blood agar 

base (Oxoid, Hampshire, UK) supplemented with 5% (v/v) horse blood (Oxoid, 

Hampshire, UK) (referred to from here as BA) at 37ºC in CO2 (5% CO2/95% air). 

Liquid cultures were grown overnight in Brain Heart Infusion (BHI) broth (Oxoid, 

Hampshire, UK) supplemented with Yeast Extract (5mg ml-1) (Oxoid, Hampshire, UK) 

in CO2 (5% CO2/95% air) at 37ºC. 

S. aureus, P. aeruginosa and E. coli were maintained on BA at 37ºC in aerobic 

conditions. Liquid cultures were grown overnight aerobically at 37ºC in BHI broth 

supplemented with Yeast Extract (5mg ml-1). 

P. gingivalis strains were maintained on Fastidious anaerobe (FA) agar (LabM 

Limited, Lancashire, UK) containing 5% horse blood, anaerobically (80% N2, 10% H2, 

10% CO2) (miniMACS Anaerobic Workstation, Don Whitley Scientific, UK) for 48 

hours. Liquid cultures were grown anaerobically in BHI broth supplemented with 

Yeast Extract (5mg ml-1), Haemin (5µg ml-1) (Sigma, UK), Cysteine-hydrochloride 

(0.5mg ml-1) (ICN Biomedicals Inc, Basingstoke, UK) and Vitamin K (1µg ml-1) (Sigma, 

UK) overnight. Mutant strains of P. gingivalis were grown in these conditions with 

the addition of the required antibiotics (Table 3.1). 
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T. forsythia was maintained on FA agar supplemented with 5% horse blood, NAM 

(0.17mM) (Sigma, UK) and gentamicin (15µg ml-1) (Sigma, UK). Liquid stocks were 

grown in tryptic soy broth (TSB) supplemented with Yeast Extract (5mg ml-1), 

Haemin (1mg ml-1), Vitamin K (1mg ml-1), N-acetylmuramic acid (NAM) (1µg ml-1) 

and gentamicin (15µg ml-1) 

For use in all assays, all bacteria were grown in liquid cultures overnight. 

3.3.3 Treatments  

Table 3.2: Functional Study treatments 

Treatment Origin (See Chapter 2. Purification of BPIFA2) 

Native (n)BPIFA2  Native gel elution 

Native Elution buffer (control)  See appendix. (6.5 - Protein Purification) 

Ethanol precipitated native BPIFA2 Ethanol Precipitation 

Native (Enriched) BPIF Film enrichment 

Saliva Healthy volunteer 

Recombinant (r)BPIFA2  BPIFA2 transfected S2 cell conditioned media 

S2 cell conditioned media (control) Untransfected S2 cell conditioned media 

PBS - 

dH2O - 

3.3.4 BPIFA2 binding to bacteria  

The A(600) of the overnight culture of P. aeruginosa, E. coli, P. gingivalis (W50, E8, 

K1A), S. gordonii, S. mutans, T. forsythia and a β-haemolytic streptococcus was 

measured and 1ml of bacteria with OD1 was removed per treatment. The bacteria 

were washed in 1ml PBS twice by centrifugation (13,000rpm for 5 minutes). The 

bacteria were incubated in 50µl of saliva, purified nBPIFA2 or PBS for 1 hour at 

37°C. The bacteria were centrifuged (13,000rpm for 5 minutes) and the supernatant 

removed. The bacteria were washed with 1 ml PBS by centrifugation before being 

transferred to a new microfuge tube. The bacteria were washed twice before SDS 

lysis buffer was added and the bacteria boiled at 95°C for 5 minutes. 



Functional Analysis of BPIFA2 
Materials and Methods 

- 88 - 
 

Binding of BPIFA2 to the bacteria was established by western blot analysis (2.3.3). 

3.3.5 Growth Curve  

Cuvettes were sterilised by submersion in 100% ethanol overnight followed by a 

wash with sterile water and air drying in sterile conditions. 

The A(600) of the overnight culture was measured and a bacterial suspension of 

OD0.1 in 2 x BHI was added to a sterile cuvette containing an equal volume of 

either filter sterilised purified nBPIFA2 or sterile dH2O. The cuvette was sealed with 

parafilm before being secured within a 25mL tube with sponges. Bacteria were 

incubated as described in 3.3.2 above for 60 minutes on a spyra-mixer before the 

bacteria were pipetted and the A(600) was recorded. Readings were taken every 60 

minutes until the bacteria reached stationary growth phase. 

3.3.6 Bacterial Killing  

3.3.6.1 Paper Discs 

A sterile cotton bud was soaked in an overnight culture of each bacterium and 

streaked onto a suitable agar plate (3.3.2) in a minimum of three different 

directions. Discs of filter paper (5mm diameter) were sterilised by autoclaving, 

dried, then soaked in either rBPIFA2, purified nBPIFA2, saliva, PBS or Spectinomycin 

(50mg ml-1) and then placed onto the streaked plate. The bacteria were incubated 

overnight as described in 3.3.2 and any zone of inhibition measured. 

3.3.6.2 Direct  

A sterile cotton bud was soaked in an overnight culture of each bacterium and 

streaked onto a suitable agar plate (3.3.2) in a minimum of 3 different directions. 
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5µl of each treatment (rBPIFA2, purified nBPIFA2, Saliva, PBS or Spectinomycin 

(50mg ml-1) was dotted onto each lawn. Bacteria were incubated as in 3.3.2 

overnight and the zone of clearance was measured. 

3.3.7 Bacterial Killing 2 

The A(600) of the overnight culture was measured and bacteria were added to either 

purified nBPIFA2, PBS or Mutanolysin (10µg ml-1) at an OD of 0.05. These were 

incubated in as in 3.3.2 for 3 hours before being serially diluted 1:10 and 5µl of this 

dilution dotted onto agar plates in triplicate. The plates were incubated overnight 

as in 3.3.2 and any colonies formed were counted. 

3.3.8 Agglutination 

Set up 

S. mutans, S. gordonii, P. aeruginosa, S. aureus, E. coli, P. gingivalis (W50, E8, K1A 

and EK18) and β-haemolytic streptococcus were cultured overnight, as described in 

3.3.2, in liquid cultures, counted and adjusted to 2x109 ml-1. 1mL of this adjusted 

suspension was washed in PBS by centrifugation (13,000rpm for 5 minutes). The 

bacteria were resuspended in 1.5mls PBS containing 2µL fluorescein isothiocyanate 

1 (FITC) to fluorescently label the bacteria and incubated, in the dark, for 15 

minutes at 4°C with gentle agitation. Following incubation the bacteria were 

washed four times with 1.5 mls PBS to remove excess FITC label and resuspended in 

1mL PBS. 200µL was added to the first well of a polystyrene, U-bottomed 96 well 

plate. The bacteria were then serially diluted 1:2 and incubated in darkness at 4°C 

overnight. Photographs were taken using the Syngene G:box, Gel Documentation 
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and Analysis System (Syngene, Cambridge, UK) to establish optimum bacterial 

numbers for the agglutination assay. 

Assay 

The agglutination was performed with bacteria with and without FITC staining to 

ensure that the FITC labelling did not affected the results. All bacteria were 

subjected to the same processes, with the omission of FITC from the non-stained 

bacteria. 

 An overnight culture of bacteria was adjusted to 5x108 ml-1. 1mL of this adjusted 

suspension was washed in PBS by centrifugation (13,000rpm for 5 minutes) and the 

bacteria resuspended in 1.5mls PBS containing 2µL FITC (or not in the case of the 

unstained bacteria). This was incubated, in darkness, for 15 minutes at 4°C with 

gentle agitation. Following incubation the bacteria were washed four times with 1.5 

mls PBS to remove excess FITC label and resuspended in 1mL PBS. 100µL per 

treatment was added to microfuge tubes, centrifuged (13,000rpm for 5 minutes) 

and resuspended in 100µL of purified nBPIFA2, rBPIFA2, S2 media, Saliva or PBS. 

This was added to U-bottomed 96 well plates (Greiner, UK) and incubated in 

darkness at 4°C overnight. Photographs were taken using the Syngene G:box, Gel 

Documentation and Analysis System (Syngene, Cambridge, UK) to determine if any 

agglutination occurred. 

3.3.9 Biofilm Disruption 

Purified nBPIFA2 was added to polystyrene 96 well plates and incubated overnight 

to allow the BPIFA2 to bind to the plastic wells. The wells were washed with PBS 
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and P. aeruginosa, S. gordonii, T. forsythia or S. mutans added to the wells at an OD 

of 0.05. Biofilms were allowed to form over 48-96 hours before the planktonic 

bacteria were removed and each well washed two to three times with PBS. Biofilms 

were then stained with 0.1% Crystal Violet at room temperature for 10 minutes. 

The crystal violet was removed and each well was washed 4-5 times with PBS. 

Photographs were taken of each biofilm.  

3.3.10 Protein-Lipid Overlay Assay 

Membrane Lipid Strips (Echelon, Salt Lake City, UT) were blocked with TBS-Tween 

20 (0.25% Tween-20) containing 1% (w/v) non-fat dry milk overnight at 4°C. They 

were then incubated for 1 hour at room temperature with rBPIFA2, conditioned 

media from untransfected S2 cells, enriched BPIFA2 (film method) or the positive 

control, PI(4,5)P2 Grip™ (0.5µg ml-1). The membrane lipid strips were washed three 

times for 10 minutes each with TBS-Tween and incubated for 1 hour at room 

temperature with primary antibody (Anti-BPIFA2-B (1:500) or Anti-GST (Sigma, UK) 

(1:2000)). The wash step was repeated before the lipid strips were incubated for 30 

minutes at room temperature with the appropriate secondary antibody (Anti-

Rabbit HRP (1:2000) for Anti-BPIFA2-B and Anti-mouse HRP (1:2000) for Anti-GST). 

The lipid strips were washed twice in TBS-Tween followed by a final wash with TBS. 

The binding of BPIFA2 to the membrane lipids was detected using ECL (Thermo 

Fisher Scientific Inc, USA). 
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3.4 Results 

3.4.1 Bacterial Binding 

To establish if BPIFA2 binds to bacteria in a targeted manner, a number of different 

bacteria were mixed with whole saliva incubated for 1 hour at 37°C before being 

extensively washed and analysed by western blot. 

With the exception of P. gingivalis, all bacteria tested bound BPIFA2 from saliva 

(Figure 3-1A). Repeating the binding assay with the P. gingivalis mutants showed 

that in the absence of lysine specific gingipains, BPIFA2 bound to and could be 

recovered from these bacterial cells (Figure 3-1B). 

Although this method shows binding of BPIFA2 to a number of different bacteria it 

does not determine whether BPIFA2 is directly binding to the bacteria or whether it 

is binding indirectly by virtue of being complexed with another salivary protein, 

such as amylase or mucin, which is directly binding to the bacteria.  

BPIFA2 was purified by native gel elution and incubated with each bacterium. 

Purified nBPIFA2 showed no binding to S. gordonii, P. aeruginosa or E. coli. Binding 

was seen with S. mutans and β-haemolytic streptococcus. S. aureus showed some 

non-specific binding of the anti-BPIFA2 antibody so BPIFA2 binding could not be 

determined using this method.  No false positives were seen with the PBS controls 

(Figure 3-1A). 
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Figure 3-1: Binding of BPIFA2 in whole saliva and purified nBPIFA2 with bacteria 

A 1ml (OD 1) aliquot of an overnight culture of P. aeruginosa, E. coli, P. gingivalis (W50, E8, K1A), S. 
gordonii, S. mutans, β-haemolytic streptococcus and T. forsythia was removed and washed before 
being incubated with whole saliva or purified nBPIFA2 for 1 hour at 37°C. The bacteria were washed 
before being added to SDS lysis buffer and subjected to western blot analysis to assess binding of 
BPIFA2. 

Incubation of many of the species (A) for 1 hour at 37°C with whole saliva showed binding of BPIFA2, 
however incubation with purified nBPIFA2 only showed positive binding with β-haemolytic 
streptococcus, and S. mutans. No BPIFA2 binding was seen with S. gordonii, P. aeruginosa or E. coli. 
Non-specific binding was observed with S. aureus. No positivity was detected with the PBS control. 

Following incubation with whole saliva, binding was seen with all bacteria tested with the exception 
of P. gingivalis (B). Here P. gingivalis (W50) showed no binding to BPIFA2, along with the arginine 
gingipain mutant (E8). However removal of the lysine specific gingipain (K1A) lead to detection of 
bound BPIFA2 to the bacteria.  

rBPIFA2 collected from cultured Drosophila Schneider 2 (S2) was used as a positive control.  

Western blots shown here are representative of a number of repeats (>10). 

A

B

34

72

43

26

T.
 f

o
rs

yt
h

ia

P.
 g

in
gi

va
lis

 W
50

P.
 g

in
gi

va
lis

 E
8

P.
 g

in
gi

va
lis

 K
1A

rB
PI

FA
2 

Po
si

ti
ve

 c
on

tr
ol

M
(kDa)

36

22

55

S. mutans

Sa
liv

a

PB
S

nB
PI

FA
2

β-haemolytic 
streptococcus

Sa
liv

a

PB
S

nB
PI

FA
2

E. coli

Sa
liv

a

PB
S

nB
PI

FA
2

Sa
liv

a

PB
S

nB
PI

FA
2

P. aeruginosa S. gordonii

Sa
liv

a

PB
S

nB
PI

FA
2

S. aureus

Sa
liv

a

P
B

S

n
B

P
IF

A
2

26

34
43

M
(kDa)

M
(kDa)



Functional Analysis of BPIFA2 
Results 

 

- 94 - 
 

3.4.2 Growth Curve  

Growth curves using purified nBPIFA2 were used to collect initial data regarding the 

the effect of BPIFA2 on the growth of a number of bacteria. As physiological 

concentrations of BPIFA2 have yet to be determined we decided that for our initial 

investigations we would focus on the effect of the presence or absence of BPIFA2 

by using a single, unkown concentration of purified nBPIFA2, and not a range of 

concentrations. It is intended that future studies of functional analysis will include a 

concentration curve in line with physiological levels once this has been  

determined.  

Normal growth of S. mutans (Figure 3-2A) had an average doubling time of 47.6 

minutes under the conditions employed here and in the presence of BPIFA2 this 

doubling time was only slightly increased to 62 minutes giving only a 1.3-fold 

increase in doubling time. S. gordonii growth in the absence of BPIFA2 (Figure 3-2B) 

had a doubling time of 45 minutes and this, in the presence of BPIFA2 was inhibited 

throughout the time course, such that the doubling time in the presence of BPIFA2 

was twice that seen with the normal control (90 minutes). Interestingly the 

maximum cell density of S. gordonii in the presence of BPIFA2 was reduced 

considerably in comparison with the control. 

Growth of E. coli (Figure 3-3A) and P. aeruginosa (Figure 3-3B) were also minimally 

affected by the presence of BPIFA2, with an increase in doubling time of just 1.4-

fold and 1.42-fold respectively. The maximum cell densities were only slightly 

reduced for both bacteria in the presence of BPIFA2. 



Functional Analysis of BPIFA2 
Results 

 

- 95 - 
 

As a preliminary investigation, and due to limited volumes of purified BPIFA2 

protein, this assay was only completed once. As a result no valid comment on the 

significance of our results can be made and any interpretation of results must be 

done with caution.  

 
n=1 

Figure 3-2: Preliminary results of the growth of S. mutans (A) and S. gordonii (B) in the presence 
and absence of purified nBPIFA2 

S. mutans and S. gordonii were resuspened at an OD of 0.1 in 2 x BHI broth. PBS or purified nBPIFA2 
was added at 1:1 and the OD(600) was measured at time 0. The cuvette was sealed with parafilm, 
secured within a 25mL tube and incubated on a spyra-mixer in CO2 for 60 minutes before being 
removed, mixed by pipetting and the OD(600) recorded this was repeated until the stationary phase 
was evident. 

The presence of BPIFA2 increased the doubling time of the S. mutans 1.3-fold compared the control 
sample. The final maximum cell density was slightly reduced following 5 hours incubation. 

The presence of BPIFA2 considerably reduced the doubling time and the maximum cell density of 
the S. gordonii compared the control sample following 5 hours of growth. In the presence of BPIFA2 
the doubling time of S. gordonii increased 2-fold. 
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n=1 

Figure 3-3: Preliminary results of the growth of E. coli (A) and P. aeruginosa (B) in the presence 
and absence of purified nBPIFA2 

E. coli and P. aeruginosa were resuspened at an OD of 0.1 in 2 x BHI broth. PBS or purified nBPIFA2 
was added at 1:1 and the OD(600) was measured for time 0. The cuvette was sealed with parafilm, 
secured within a 25mL tube and incubated on a spyra-mixer in CO2 for 60 minutes before being 
removed, mixed by pipetting and the OD(600) recorded this was repeated until the stationary phase 
was evident. 

The presence of BPIFA2 only slightly affected the growth of both E. coli and P. aeruginosa resulting 
in a 1.4-fold and a 1.42-fold increase in doubling time respectively compared to the control. 
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3.4.3 Bacterial Killing  

To determine whether the presence of BPIFA2 was causing a reduction in the 

viability of the cells unpurified rBPIFA2-, purified nBPIFA2-, saliva-, spectinomycin- 

(50mg ml-1) or PBS-soaked paper disks were added to agar plates streaked with S. 

gordonii, E. coli, S. mutans, S. aureus, β-haemolytic streptococcus or P. aeruginosa.  

Spectinomycin was selected as a positive control as it is a well-researched antibiotic 

known to have antimicrobial activity against both gram-negative and gram-positive 

bacteria. Additionally, in our assays it showed a clear zone of inhibition in both agar 

killing assays and demonstrated bactericidal activity. A zone of inhibition was seen 

surrounding the disks soaked in spectinomycin (50mg ml-1) for all bacteria and no 

zone of inhibition was seen surrounding the PBS soaked paper disk. However, no 

zone of inhibition was observed around the discs soaked in purified nBPIFA2, 

rBPIFA2 or saliva (Figure 3-4). 

To assess whether this lack of killing was due to the inability of the samples to 

diffuse through the agar, 5µl of unpurified rBPIFA2, purified nBPIFA2, saliva, 

spectinomycin (50mg ml-1) or PBS were dotted directly onto an agar plates streaked 

with the same bacterial species. As before, spectinomycin (500µg ml-1) produced a 

zone of inhibition, whilst the PBS, rBPIFA2, purified nBPIFA2 and saliva did not 

(Figure 3-5). 
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Figure 3-4: Zone of inhibition assay – paper discs 

β-haemolytic streptococcus, S. mutans, P. aeruginosa, S. gordonii, S. aureus and E. coli were 
streaked onto an agar plates. Sterile paper discs were soaked in rBPIFA2, purified nBPIFA2, saliva, 
spectinomycin or PBS and added to the plates. Following incubation (3.3.2) any zone of inhibition 
was measured. A clear zone of inhibition was present with the antibiotic positive control; however 
no zone of inhibition, in excess of that seen with the PBS control was seen with any of the other 
treatments. Pictures are representative of 4 repeats.  
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Figure 3-5: Zone of inhibition assay - Direct application 

β-haemolytic streptococcus, S. mutans, P. aeruginosa, S. gordonii, S. aureus and E. coli were 
streaked onto an agar plates. rBPIFA2, purified nBPIFA2, saliva, spectinomycin or PBS were directly 
added to the plates and allowed to soak into the agar. Following incubation (3.3.2) any zone of 
inhibition was measured. No zone of inhibition was observed with the negative control, and clear 
zones of inhibition were observed with the antibiotic positive control, however no zone of inhibition 
was seen with rBPIFA2, purified nBPIFA2 or saliva for any of the bacteria. Pictures are representative 
of 4 separate experiments. 
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3.4.4 Bacterial Killing 2 

To establish whether BPIFA2 possesses the ability to kill bacteria in a broth culture, 

purified nBPIFA2 was incubated with S. mutans and S. gordonii for 3 hours before 

being serially diluted and spotted onto agar plates for colony counts to determine 

the number of viable bacteria per ml. 

No difference in the bacterial numbers was seen with S. gordonii in the presence of 

BPIFA2 compared with the PBS negative control. For both bacteria, the presence of 

mutanolysin (10µg ml-1) reduced the viable bacterial count by approximately a third 

compared to the PBS control. In contrast a 75% reduction in viable S. mutans was 

seen in the presence of purified nBPIFA2 when compared to the PBS control and 

approximately 30% less than the positive control (Figure 3-6). 
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N=3 
Figure 3-6: Killing of bacteria with purified nBPIFA2 
From an overnight bacterial broth, bacteria were added to nBPIFA2, PBS or antibiotic, mutanolysin 
(10µg ml-1) at an OD(600) of 0.05. The bacteria were incubated (3.3.2) for 3 hours before being serially 

diluted in PBS and 5l dotted onto BA plates in triplicate. Plates were incubated overnight (3.3.2) 
and the number of colonies were counted and the number of bacteria per ml was calculated. 

No change in viability of S. gordonii (A) was seen in the presence of purified nBPIFA2. 

S. mutans (B) showed a reduction in viability in the presence of purified nBPIFA2 of approximately 4 
times less than that seen with mutanolysin and 5 times less than the PBS control. Data presented is 
the mean of 3 repeats in triplicate, error bars are standard error of the mean. 
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3.4.5 Agglutination 

Bacteria were labelled with FITC and incubated overnight in native elution buffer, 

purified nBPIFA2, rBPIFA2, conditioned media from empty S2 cells, saliva or PBS. An 

indication of no agglutination was determined by the visualisation of a tight button 

of bacteria at the bottom of the well, whilst an indication of agglutination was 

determined by presence of a matt or reduction of the size of the button. 

Following incubation of S. mutans with PBS, conditioned media from S2 cells and 

native elution buffer a tight button was formed, showing that this strain of S. 

mutans does not autoaggregate in PBS, conditioned media from untransfected S2 

cells or native elution buffer. In the presence of saliva and purified nBPIFA2 the 

button was less dense, suggesting that in the presence of nBPIFA2, S. mutans 

agglutinates. However, in the presence of rBPIFA2 no agglutination was evident.  

Neither the β-haemolytic streptococcus nor S. gordonii were agglutinated by either 

rBPIFA2 or purified nBPIFA2, however, they were by whole saliva. 

Agglutination of P. aeruginosa showed inconclusive results as no tight button of 

bacteria could be seen following incubation with PBS and native buffer. However 

faint buttons of bacteria could be seen following treatment with the conditioned S2 

cell media, purified nBPIFA2 and rBPIFA2. 

The most convincing result was seen with S. aureus. Clear tight buttons of bacteria 

could be seen in PBS and native elution buffer and a faint button of bacteria was 

seen following treatment with conditioned S2 media. In contrast, purified nBPIFA2, 

rBPIFA2 and saliva all showed clear agglutination of S. aureus (Figure 3-7). 
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As with P. aeruginosa, E. coli showed inconclusive results. Faint buttons of bacteria 

were seen following treatment with PBS and conditioned S2 media, however 

positive agglutination was seen with native elution buffer, purified nBPIFA2, 

rBPIFA2 and saliva.   

P. gingivalis strains W50, E8, K1A and EK18 were incubated with only purified 

nBPIFA2 and PBS. P. gingivalis W50, E8 and K1A showed no button formation in 

PBS, while strain EK18 showed a tight button of bacteria, however in the presence 

of BPIFA2 this button became less pronounced and much smaller, suggesting that 

some agglutination was occurring. 
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Figure 3-7: Agglutination of bacteria by purified nBPIFA2 

5x108 ml-1 bacteria per treatment were labelled with FITC, following extensive washing to remove 
excess FITC, the bacteria were centrifuged (13,000rpm for 5 minutes) and resuspended in 100µl 
native elution buffer, purified nBPIFA2, rBPIFA2, conditioned S2 media saliva or PBS in a U-bottomed 
96 well plate and incubated overnight at 4°C. Photographs were taken of each well using the 
Syngene G-box-imaging system for fluorescence. 

The results seen with P. aeruginosa and E. coli were inconclusive. All of the other bacteria (S. 
mutans, β-haemolytic streptococcus, S. gordonii and S. aureus)(A) showed clear agglutination 
following incubation with saliva and none of the bacteria showed agglutination following incubation 
with conditioned S2 media or conditioned S2 media. S. mutans and S. aureus showed agglutination 
in the presence of purified nBPIFA2 and S. aureus also showed positive agglutination in the presence 
of rBPIFA2 to a slightly lesser degree.  β-haemolytic streptococcus and S. gordonii showed no 
agglutination in the presence of purified nBPIFA2 or rBPIFA2. 

In the presence of PBS and purified nBPIFA2, P. gingivalis (W50, E8 and K1A)(B) showed no dot of 
bacteria at the base of the well, however P. gingivalis EK18 shows a clear dot in the absence of 
BPIFA2 which becomes less distinct in the presence of purified nBPIFA2. Data is representative of 3 
repeats. 
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3.4.6 Biofilm Disruption 

It was interesting to observe the interaction between BPIFA2 and laboratory 

plastics during the purification stages of this project, which could suggest a possible 

functional significance. A biofilm assay would allow us to assess any functional 

activity associated with bound BPIFA2.  

A key process in the survival of oral bacteria is their ability to adhere to surfaces 

and form biofilms. It has been proposed that the ability of P. aeruginosa to form 

biofilm can be inhibited in the presence of BPIFA2 peptides and rBPIFA1 (Gorr et al., 

2008, Gakhar et al., 2010). The following results show that the presence of BPIFA2 

reduced the ability of some bacteria to form biofilm. Development of the biofilm 

assay was carried out by a fellow student and she demonstrated that the control 

protein, bovine serum albumin, did not affect biofilm formation (unpublished data). 

The biofilm experiments for this study were performed alongside those of my 

colleague, and so control data was not collected, simply observed. 

 In the presence of purified nBPIFA2, T. forsythia biofilm became thinner with less 

bacteria binding to the 96 well plates compared with the PBS control. The biofilm 

produced by S. mutans in the absence of BPIFA2 appears to be evenly spread over 

the surface of the 96 well plates, however in the presence of BPIFA2 this biofilm 

was less evenly spread and showed clear signs of clumps of bacteria. P. aeruginosa 

and S. gordonii biofilm was not reduced by the presence of BPIFA2 and in fact 

appeared to have increased in thickness (Figure 3-8). However this is a very 

subjective method and a more quantitative method is required. 
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Figure 3-8: Biofilm disruption by BPIFA2 

Polystyrene 96 well plates were pre-incubated with purified nBPIFA2 (right) or PBS (Left) before 
being washed to remove excess purified nBPIFA2. Bacteria were added at OD(600) of 0.05 and 
biofilms were allowed to form over 48-96 hours, these were washed and stained with crystal violet. 

Biofilm formed by P. aeruginosa and S. gordonii showed no reduction in biofilm formation, the 
biofilm appears thicker in the presence of BPIFA2 when compared to the normal control. The biofilm 
produced by T. forsythia in the presence of BPIFA2 is much thinner, aggregation of the bacteria to 
each other looks to be greatly reduced when compared with the normal control. 

The normal biofilm formed by S. mutans looks evenly distributed throughout the plate, the bacteria 
do not aggregate in big thick masses as with T. forsythia, however in the presence of BPIFA2 the 
biofilm looks much less uniform in nature, and it appears that the bacteria have formed small 
aggregated clumps rather than the ‘blanket’ of cells previously seen. Images are representative of 3 
repeats.  
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3.4.7 Protein-Lipid Overlay Assay 

Due to the predicted structural similarities between BPIF proteins and BPI, it is 

believed that BPIFA2 contains a hydrophobic cleft ideal for the binding of lipid-like 

molecules. Therefore, we assessed which lipids, if any, bind to BPIFA2. Commercial 

strips, dotted with 15 biologically active lipids present within cell membranes were 

used in a BPIFA2-lipid overlay assay. As expected, the conditioned media from 

untransfected S2 cells showed no binding to any of the lipids present on the 

membrane (Figure 3-9A), whilst the PI(4,5)P2 Grip™ positive control did so (Figure 

3-9B). Lipid binding by BPIFA2 appeared to be affected by the source of the protein. 

The enriched saliva (Figure 3-9C) showed clear binding to the PIP lipids (PtdIns(4)P, 

PtdIns(4,5)P2 and PtdIns(3,4,5)P3) and Phosphatidic acid, whereas the S2 cell-

expressed BPIFA2 only showed binding to PtdIns(4,5)P2 and weak binding to 

PtdIns(3,4,5)P3 (Figure 3-9D). 
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Figure 3-9: Interaction between BPIFA2 and membrane lipids. 

Membrane Lipid Strips (Echelon, Salt lake city, UT) were incubated with Conditioned empty S2 cell 
media, Conditioned media from BPIFA2 expressing S2 cells, Enriched BPIFA2 from saliva or PI(4,5)P2 
(positive control) for 1 hour at room temperature before the bound BPIFA2 was detected by 
antibody detection. 

As expected the untransfected S2 conditioned media (A) showed no binding and the PI(4,5)P2 Grip™ 
positive control (B) strongly highlighted PI(4,5)P2. 

Incubation with enriched BPIFA2 from saliva (C) identified binding to the PtdIns and Phosphatidic 
Acid whereas rBPIFA2 (D) only identified binding of BPIFA2 to PtdIns (4,5)P2 and PtdIns (3,4,5) P3. 
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3.5 Discussion 

The oral cavity contains over 700 species of bacteria, most of which have yet to be 

cultivated. The oral cavity contains gram positive Streptococcus, such as S. mitis, S. 

oralis, S. sanguis and S. mutans; gram-negative cocci and bacilli, such as Neisseria 

and Fusobacterium and gram-positive bacilli and filaments, such as Actinomyces 

and Corynebacterium. Oral pathogens may also be present and include P. gingivalis, 

T. forsythia, Treponema denticola and Actinomyces species. The oro-pharynx and 

pharynx contains its own microflora, predominantly consisting of alpha-haemolytic 

streptococci. Although it would be highly beneficial to examine all of the cultivable 

bacteria present in the oral cavity and upper airways, particularly for BPIFA2 

binding, it was decided to focus on a select few bacteria. Thus two oral commensal 

species, S. gordonii and S. mutans; two oral pathogens, P. gingivalis and T. 

forsythia; one respiratory commensal species, S. aureus; one respiratory pathogen, 

β-haemolytic streptococci and two non-oral commensal species, P. aeruginosa and 

E. coli were used to examine the function of BPIFA2. Unusually, the literature has 

mainly focused on determining the function of various BPIFAs by studying effects 

on non-oral commensal bacteria, E. coli and P. aeruginosa, even those looking at 

the function of BPIFA2. As previously mentioned, BPIFA2 expression is isolated to 

the oral cavity and upper airways and if the function of BPIFA2 is in fact 

antimicrobial, based on the level of expression, it would be expected that BPIFA2 

would act against bacteria that it is regularly exposed to otherwise the function 

would be redundant and expression senseless. Therefore, the study of purely non-

oral bacteria does not appear to be the most rational choice. In contrast, here were 
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studied the effect of BPIFA2 on a variety of bacteria, including representative oral 

species, which showed some interesting contrasts.  

Of the many bacteria tested, a number showed no significant response to BPIFA. 

For example, purified nBPIFA2 did not bind to E. coli, the initial investigation 

suggested that the growth was not affected in the presence of purified nBPIFA2 and 

no killing was observed. These results are in agreement with some of the previously 

published data relating to a number of BPIF family proteins. Ethanol purified native 

BPIFA1 from tracheobronchial secretions did not show any binding to E. coli LPS 

when competing with LBP (Campos et al., 2004). However as previously mentioned, 

exposure of protein to ethanol has led to denaturation and changes in structural 

conformation of other proteins such as human serum albumin (Lin et al., 2004) and 

this could influence binding capability. Furthermore, recombinant bovine BPIF 

proteins, BPIFA2A and BPIFA2B, also failed to show binding to E. coli LPS (Haigh et 

al., 2008). This recombinant protein was expressed in an E. coli expression system; 

it may be that the lipid binding sites of the purified recombinant protein already 

contain LPS, following the previous exposure to E. coli. These studies limit the 

binding assessment to E. coli LPS, and do not consider binding of alternative lipid 

like molecules such as lipoteichoic acid (LTA) of gram-positive bacteria, unlike in this 

study. Here a range of gram-positive and gram-negative bacteria were tested 

allowing for the assessment of the binding of BPIFA2 to a range of bacterial surface 

molecules. It must be assumed that the similarity between the BPIF proteins and 

BPI, which bind to gram-negative bacterial LPS, was the reason E. coli LPS was used 

in both the Haigh et al (2008) and Campos et al (2004) studies, however other 
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members of the BPI family, such as CETP and PLTP, bind cholesteryl esters, 

triglycerides and phospholipids but not bacterial LPS, demonstrating that not all 

members of this family bind the same lipid-like molecules. In contrast, Gahfouri et 

al (2003, 2004) believe that BPIFA1 does bind to E. coli LPS, however in both 

publications unpurified nasal lavage fluid was used as the source of BPIFA1. Nasal 

lavage fluid contains over 1000 proteins including a number of antibacterial 

proteins such as, lysozyme, lactoferrin and SLPI (Cole et al., 2002) and mucins (Ali et 

al., 2002), which could interfere with the binding of BPIFA1 to bacteria. The data 

shown here supports the hypothesis that BPIF protein binding from complex 

secretions may be through other accessory proteins. BPIFA2 in whole saliva bound 

to all of the bacteria tested. However, following purification of BPIFA2, binding was 

restricted to only two species, S. mutans and the β-haemolytic streptococcus, 

suggesting that the initial binding was via a second protein present in saliva, such as 

mucin. The absence of evidence demonstrating binding to E. coli or E. coli LPS may 

explain the small range of functional data currently available. Most of the 

previously published results have recorded that BPIFA2 does not have antibacterial 

activity towards E. coli (Khovidhunkit et al 2004; Bartlett et al 2008; Chu et al 2007). 

Our results are therefore in agreement with previously published studies.  

Purified nBPIFA2 did not show any killing or agglutination activity against S. gordonii 

and the growth of S. gordonii biofilm was not affected in the presence of purified 

nBPIFA2. However the initial investigation into growth rate suggests that there may 

be a reduction in the doubling time of S. gordonii in the presence of purified 

nBPIFA2. Of the bacteria tested this was the largest reduction in growth rate seen 

http://en.wikipedia.org/wiki/Cholesteryl_ester
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and resulted in a reduced final cell density, suggesting that some effect on cell 

membranes and/or metabolism is occurring. However, due to the absence of 

evidence supporting a direct interaction between BPIFA2 and S. gordonii (binding 

and agglutination) and our inability to demonstrate killing activity of purified 

nBPIFA2 against S. gordonii, further investigations are required determine if this 

reduction in growth is significant and, if so, to establish mechanism of action 

against this organism. Gorr et al (2008) demonstrated agglutination of this 

bacterium with an engineered BPIFA2 peptide GL13NH2, however removal of the 

amine group (NH2) resulted in a 50% reduction of agglutination and addition of a 

second amine group resulted to an increase in agglutination. This demonstrates 

that the presence, and number of amine groups in these peptides appears to 

influence their binding function. For this reason, the peptide results must be 

interpreted with caution as the GL-13 peptides (GQIINLKASLDLL-) referred to were 

synthesised based on the functional region of BPI and LBP. This set of 13 amino acid 

peptides do not contain a large portion of the whole protein; there is no certainty 

therefore, that this domain in the natural protein has the opportunity to interact 

with bacteria as the rest of the BPIFA2 structure may sterically hinder it.   

No binding of BPIFA2 to P. aeruginosa was observed, and the initial growth curve 

assay suggests there may be a very minimal increase in growth rate (1.41-fold). The 

agglutination assay gave inconclusive results, we are not able to confirm or 

otherwise this interpretation. It was expected that incubation of the bacteria with 

PBS and native elution buffer would provide a tight button of bacteria, however, in 

the case of P. aeruginosa, there was autoaggregation in the both buffers. The 
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agglutination method adopted here was chosen due to the small volume of pure 

BPIFA2 protein available, ideally it would have been beneficial to repeat the 

agglutination assays in solution with continuous optical density monitoring, 

however these assays would require much more pure BPIFA2, a volume which was 

not available at the time.  In addition, no reduction or change in biofilm growth 

and/or quality was observed in our assays. Similar results have been reported 

previously (Haigh et al., 2008) using recombinant bovine BPIF proteins, BPIFA2A and 

BPIFA2B, which failed to show any direct binding though there was a significant 

suppression of P. aeruginosa growth. In that study no assessment of biofilm 

disruption or agglutination was made. As with S. gordonii, the BPIFA2 peptide 

GL13NH2 was shown to cause agglutination of P. aeruginosa in a dose dependent 

manner, however minimal inhibitory concentration assays showed no reduction in 

growth, similar to the results seen in this study. Abdolhosseini et al (2012) reported 

binding of BPIFA2 to P. aeruginosa with both human rBPIFA2 expressed in rat 

pituitary GH4C1 cells and ethanol purified nBPIFA2 from human saliva, no further 

functional studies have been published to date.  

Binding of purified nBPIFA2 to β-haemolytic streptococcus was also noted, however 

no antibacterial activity against this organism was observed, including killing and 

agglutination. 

The most interesting results from this part of the study were with S. mutans, a gram 

positive, oral commensal species which is an important player in the development 

of dental caries. Purified nBPIFA2 showed positive binding to this gram-positive 

bacterium, positive agglutination and an altered biofilm growth with the initial 



Functional Analysis of BPIFA2 
Discussion 

 

- 114 - 
 

growth curve assay suggesting that there may be a very slight suppression of 

growth (1.3-fold). It is possible that the agglutination of the bacteria by BPIFA2 is 

the cause of the slight reduction in growth rate (judged by change in optical 

density) and also the change in biofilm appearance. However, following incubation 

of S. mutans with purified nBPIFA2, surviving bacteria were counted on agar plates, 

it was noted that in the presence of purified nBPIFA2, the number of viable bacteria 

reduced, indicating that BPIFA2 does seem to have some antibacterial activity 

against S. mutans. Although, killing was not observed in the presence of BPIFA2 

(both in the form of whole saliva and purified nBPIFA2) by diffusion through agar or 

by direct application of the agar surface. Consequently, the apparent reduction in 

viability of S. mutans in the presence of nBPIFA2 may be due to clumping of 

bacteria so reducing the number of colony forming units in the bacterial suspension 

and this would have little effect in the growth assay on agar. It should be noted that 

due to the limited volume of nBPIFA2 and the high volume required to complete 

the growth curve assays, these results are based on a single set of data and so have 

been included as a preliminary data set and should be viewed as such. Much more 

investigaton is required with this technique to establish any true relationship 

between purified nBPIFA2 and planktonic bacterial growth. 

The binding results obtained from the assay using unpurified BPIFA2 (whole saliva) 

initially indicated that BPIFA2 was binding in a non-targeted manner, as the BPIFA2 

bound to most of the bacteria tested, including E. coli, S. gordonii, P. aeruginosa, S. 

mutans, β-haemolytic streptococcus, T. forsythia and P. gingivalis (K1A), the only 

negative binding was seen with P. gingivalis (W50 and E8), however this was 



Functional Analysis of BPIFA2 
Discussion 

 

- 115 - 
 

probably due to destruction of the BPIFA2 by the lysine specific gingipain since it 

was recovered from the cells surface of a mutant that lacks this enzyme (K1A). 

Indeed it is possible that binding of BPIFA2 from saliva to all these bacteria actually 

reflects binding of a complex of proteins, amongst which one is BPIFA2. Support for 

this comes from our observation that purified nBPIFA2 did not bind to many 

species, only to S. mutans and β-haemolytic streptococcus. Previous studies have 

suggested that murine BPIFA2 and amylase expression is coordinated in the parotid 

gland, and this may further indicate that these proteins are naturally in association 

with each other. During the purification of nBPIFA2 we observed co-purification of 

BPIFA2 and amylase. The most well-known function of amylase is the digestion of 

starch; however amylase has also been shown to inhibit the growth of Neisseria 

gonorrhoeae and bind to oral streptococci including S. gordonii, S. mitis, and S. 

anginosus but not to S. sanguis, S. oralis or S. mutans and many gram-negative 

bacteria (Scannapieco et al., 1993). Amylase binding is known to be via two specific 

binding proteins (Gwynn and Douglas, 1994, Rogers et al., 1998). Amylase has also 

been found in the enamel pellicle indicating that amylase also binds to the tooth 

surface. It is believed that the binding of amylase to oral streptococci and the tooth 

surface aids in the formation of dental plaque. It may be interesting to compare the 

binding ability of BPIFA2 to the bacteria found to bind and not to bind amylase from 

saliva since it may be for some species their binding is synergistic.   In addition, the 

assessment of bacterial binding to the tooth surface in the presence and absence of 

BPIFA2 could be examined, using hydroxyapatite, to determine if BPIFA2 also 

increases the binding of bacteria to the tooth surface in a similar way to amylase. 

These binding assays were conducted early in the project, prior to the successful 
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production of rBPIFA2. Unfortunately due to the time constraints of the project 

rBPIFA2 was never assessed in this assay. This assay will be repeated in future 

studies with unpurified BRIFA2, purified nBPIFA2 and rBPIFA2.  

As mentioned in the introduction, the predicted structural similarity of the BPIF 

proteins and the LBP-BPI-PLTP-CETP protein family has led to the belief that BPIF 

proteins share functional attributes with BPI and LBP proteins, which interact with 

gram negative bacteria in the innate immune pathway. It is interesting that our 

data suggests that BPIFA2 may selectively bind to gram-positive bacteria and not to 

gram-negative bacteria; however no binding was observed between BPIFA2 and the 

gram-positive respiratory commensal, S. aureus or gram-positive oral commensal S. 

gordonii. Thus a simple distinction cannot be the case. The β-haemolytic 

streptococcus and S. mutans are both considered opportunistic pathogens of the 

upper respiratory tract and oral cavity: S. mutans, as mentioned previously, is 

believed to be an important coloniser of the tooth surface and under the correct 

conditions, may contribute to dental caries while β-haemolytic streptococci, such as 

Streptococcus pyogenes, is a common cause of pharyngitis and tonsillitis (Kreth et 

al., 2005). Infections are rare with the bacteria which did not bind to BPIFA2: E. coli, 

S. aureus and S. gordonii. P. aeruginosa, which also did not bind, has been shown to 

colonise the upper airways, particularly the nasopharynx and oropharynx of cystic 

fibrosis patients (Taylor et al., 1992) but infections of uncompromised upper airway 

tissues are rare. This preliminary data suggests that bacteria, known to colonise the 

oral cavity and upper respiratory tract are targeted by BPIFA2, with the exception of 

P. aeruginosa.  
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Interestingly, demonstration of the binding of purified nBPIFA2 to P. gingivalis was 

dependent upon the removal of the lysine specific gingipain. P. gingivalis expresses 

three gingipains which are trypsin-like cysteine proteinases. RgpA and RgpB act to 

degrade the Arg-Xaa peptide bond. The third gingipain, Kgp, targets the Lys-Xaa 

peptide bond. BPIFA2 is a protein which contains a large number of lysine residues 

and only 1 arginine. The degradation of the peptide bonds between the lysine 

residues causes total degradation of the protein, leading to the loss of function, 

therefore explaining why BPIFA binding to W50 (wild type) and E8 strains of P. 

gingivalis could not be demonstrated (they still express the lysine specific 

gingipain). BPIFA2 only contains 1 arginine residue at position 221. Degradation of 

the Arg(221)-Ile(222) peptide bond by the arginine specific gingipain would lead to 

the removal of the terminal region of BPIFA2 (27 amino acids), resulting in a much 

less severe degradation than seen with the lysine-specific gingipain. Also, since 

BPIFA2 clearly bound to the kgp mutant, P. gingivalis K1A, the arg(221)-Ile(222) 

peptide bond within BPIFA2 does not appear to affect the binding ability of the 

protein to this organism, and possibly others.  

Biofilm formation is important in the initiation of periodontal disease, as formation 

of a bacterial biofilm leads to an innate immune inflammatory response. Although 

this can lead to the recruitment of immune cells to prevent the invasion of bacteria 

into the system, it can also lead to the weakening of the gingiva supporting the 

teeth (Kinane et al., 2008). Therefore, it may be beneficial to the host, particularly 

in cases of chronic inflammation, to elicit a system which reduces the bacterial load 

before inflammation occurs. It is therefore conceivable that some salivary proteins, 
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such as BPIFA2, act upon bacterial biofilms to disrupt and prevent an inflammatory 

infiltrate, reducing the effects of chronic inflammation on the supporting structures 

of the teeth. No previous data has been published relating to the important 

periodontopathogens, although there were clear effects of BPFIA2 on T. forsythia 

biofilm as well as on S. mutans biofilms. Others have reported on disruption of a P. 

aeruginosa biofilm by BPIFA2 peptides (Gorr et al., 2008); which contradicts the 

results seen in this study, although, as previously mentioned, this was done with a 

peptide, rather than the intact protein. As biofilms are made up of a combination of 

bacteria, it would be interesting to see how the presence of BPIFA2 affects biofilms 

containing both T. forsythia and S. mutans.  

Future studies will require purification of rBPIFA2 without the use of imidazole or 

after the imidazole has been successfully removed. The current study found that 

the low concentrations of imidazole used to elute recombinant protein from the 

nickel resin, resulted in bacterial killing, and thus  any rBPIFA2 preparations 

containing imidazole would not be suitable for assays investigating growth, killing 

and biofilm growth. As agglutination of bacteria was not reliant upon live bacteria, 

possible contaminating antibacterial agents present did not affect the results and so 

“non-purified” rBPIFA2 protein could be used in this assay without concern. 

There is very little information available regarding the interaction between BPIFA2 

and lipids. This study highlighted the binding of BPIFA2 to a number of different 

lipids depending upon the source of the BPIFA2. BPIFA2, enriched using saliva film 

method, suggested BPIFA2 binds to three PIP lipids, PtdIns(4)P, PtdIns(4,5)P2, 

PtdIns(3,4,5)P3 and phosphatidic acid, whilst recombinant BPIFA2 from S2 cells 
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showed binding to PtdIns(4,5)P2 and PtdIns(3,4,5)P3. As the native BPIFA2 was not 

pure and the preparation contained a number of other salivary proteins, it is 

possible that some of the lipid binding observed was due to the binding of BPIFA2 in 

conjunction with salivary proteins such as mucin or amylase. It is also possible that 

the differences in binding may be due to differential glycosylation of the native 

BPIFA2 and the rBPIFA2. Although the rBPIFA2 was also not pure, the other proteins 

present would originate from the drosophila, not human, and so may not interact 

with the lipids explaining the difference in binding seen in this assay. Both 

recombinant and purified native BPIFA2 bound to phosphatidylinositol 4,5-

bisphosphate (PtdIns(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate 

(PtdIns(3,4,5)P3), located in plasma membranes. It has been suggested that binding 

to these membrane lipids may be involved in the localisation of BPIFA2 protein into 

granules of the acinar cells for release into the salivary ducts (Venkatesh et al., 

2011). If this is the case, the functional significance of this binding is minimal. 

However, it is possible that some interaction with bacterial lipids occurs but further 

investigation of the functional basis of lipid binding is clearly warranted.  

 

It has been demonstrated here that BPIFA2 binds non-specifically to a number of 

oral commensal and oral non-commensal bacteria in the presence of other salivary 

proteins, however in their absence BPIFA2 shows specific binding to the gram-

positive bacteria S. mutans and β–haemoltic streptococcus. It has been 

hypothesised that BPIFA2 shares functional similarities with BPI and/or LBP and 

thus would target gram-negative bacterium this is, therefore a novel finding. In 
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addition to the binding of S. mutans and β–haemoltic streptococcus it has been 

demonstrated, using agar and planktonic killing assays, that BPIFA2 shows no 

bactericidal activity against a number of bacteria including E. coli, S. aureus, P. 

aeruginosa, S. gordonii and β-haemolytic streptococcus, however, preliminary 

studies suggest that the planktonic growth of S. mutans is reduced in the presence 

of BPIFA2. As BPIFA2 caused agglutination of S. mutans it is possible that the 

reduced planktonic viability is due to agglutination rather than a reduction in 

viability. This has not yet been supported by similar experiments with rBPIFA2. An 

altered S. mutans biofilm in the presence of BPIFA2 was also demonstrated, in that 

an evenly distributed biofilm changed to a more uneven, aggregated biofilm. Again 

activity against gram-positive bacterium have, to date, not been reported in the 

literature and so these results suggest a new focus for the function of BPIF proteins, 

particularly BPIFA2.  
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Chapter 4.  Molecular Mimicry 

4.1 Introduction 

It is almost 100 years since the house dust mite was proposed as a causative agent 

in allergic reactions. This suggestion was, however, largely ignored and it was not 

until 1964 that it was truly considered (Voorhorst et al., 1964). Over the past few 

decades it has been conclusively shown that both deceased and living house dust 

mites contribute to the development of respiratory allergies, such as extrinsic 

asthma and allergic rhinitis. The proteolytic nature of dust mite allergens is 

reported to damage the lung epithelium, which in addition to an exaggerated  

immune response to LPS in the presence of dust mite allergens leads to 

inflammation and the classical symptoms of asthma (Nadchatram, 2005). 

The families of mites known to induce an allergic response include Acaridae, 

Pyroglyphidae and Glycophagidae and of these, the Pyroglyphidae family is believed 

to be the most allergenic, particularly the Dermatophagoides species (Thomas and 

Hales, 2007). Dermatophagoides pterontssinus allergens 1 and 2 (Der p 1 and Der p 

2) are believed to be the most important allergens accounting for 80% of allergic 

cases. These allergens are believed to be present at high concentrations in dust 

mite extract (20-100µg ml-1). Although Group 3 (Der p 3), 5 (Der p 5), 7 (Der p 7), 10 

(Der p 10), 11 (Der p 11) and 14 (Der p 14) allergens are believed to be present at 

low concentrations in comparison to group 1 and 2 allergens, they are believed to 

be very potent, inducing a high allergic response. The concentrations of other dust 

mite allergens are unknown. Dust mite allergens have a wide variety of biochemical 

functions which characterise them, for example, group 1 allergens are all cysteine 
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proteases, group 9 allergens are collagenolytic serine proteases and group 13 

allergens are fatty acid binding proteins (Table 4.1). Functions of all groups have not 

been defined though, including groups 5 and 7 (Table 4.1) (Thomas et al., 2004). A 

number of research groups have hypothesised that the interaction of bacterial LPS 

and some dust mite allergens can either initiate or exacerbate allergic reactions 

(Mueller et al., 2010). 

Table 4.1: House Dust Mite Allergens and their biochemical functions 

Group Biochemical Function 

1 cysteine protease 

2 (Niemann Pick C3 homologue) 
3 trypsin 

4 α-amylase 

5 unknown 

6 chymotrypsin 

7 unknown 

8 glutathione-S-transferase 

9 collagenolytic serine protease 

10 tropomyosin 
11 paramyosin 

12 unknown 

13 fatty acid binding protein 

14 vitellogenin/apolipophorin-like 

15 98K chitinase 

16 gelsolin 

17 Ca binding EF protein 
18 chitinase 

19 anti-microbial peptide 

(Thomas et al., 2004) 

Der p 7 from Dermatophagoides pteronyssinus is a protein of 198 amino acids that 

can be differentially glycosylated to give 3 proteins of between 22 and 31 kDa. 

Structural analysis has identified an elongated protein containing two 4-stranded β 

sheets in a head to toe orientation wrapped around a C-terminal helix. The 
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structure is described as having a cleft at the N-terminal helix between adjacent β 

sheets. Recent analysis has determined that juvenile hormone binding protein, 

Takeout proteins and BPI are significantly structurally similar to Der p 7 (Mueller et 

al., 2010). In particular, the ‘super roll’, present in the N-terminal domain of BPI, has 

been described as having a significant match to Der p 7 with an alignment RMSD of 

3.5 Å over 174 Cα atoms. This similarity has led to the hypothesis that Der p 7 may 

have a similar mechanism of action to BPI whereby bacterial LPS leads to the 

initiation of an immune reaction (Mueller et al., 2010).  

BPI is found in the cytoplasmic granules of polymorphonuclear leukocytes and, as 

previously mentioned, has strong antimicrobial properties towards LPS of gram-

negative bacteria (Weiss et al., 1992). It has also been shown that BPI and N-

terminal BPI proteins within the blood stream act to bind and neutralise gram-

negative bacteria, reducing their potency and inhibiting the action of the immune 

response (Weiss et al., 1984, Beamer et al., 1998). In contrast to this action LBP, 

expressed by the hepatocytes of the liver and released into the blood stream, 

causes an enhancement of the immune system (Beamer et al., 1998). LBP is 

structurally (45% amino acid identity) and functionally related to BPI and both have 

been identified as gram-negative bacterial LPS-binding proteins (Weiss et al., 1984, 

Lei and Morrison, 1988, Mannion et al., 1989, Halling et al., 1992). 

As previously mentioned, although the structure of the BPIF family of proteins has 

yet to be established, it has been predicted that all of the BPIFs contain a fold 

similar to that seen in BPI with a 95% confidence value based on the primary amino 

acid structure (Bingle and Craven, 2002). 
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The oral cavity and respiratory tract is one of the first areas exposed to extrinsic 

pathogens via inhalation and ingestion. Recognition and clearance of these 

pathogens in a rapid manner is important to survival. The innate immune system 

provides this rapid protection, allowing time for the adaptive immune system to 

react in a slower but more specific way. 

The tight intercellular junctions of the oral and respiratory epithelial cells provide a 

barrier against the invasion of bacteria (Davies et al., 1998). As previously 

mentioned, the production and secretion of saliva into the oral cavity repeatedly 

washes away planktonic bacteria and exposes bacteria to a number of antimicrobial 

proteins, peptides and mucins, which work in concert to minimise adhesion, 

colonisation and invasion of the oral tissues (Staines et al., 1993). This physical and 

mechanical defence does not require any form of recognition; it is non-specific and 

non-selective over organic and inorganic molecules.  

The immune system also recognises pathogens by their expression of conserved 

antigens known as pathogen-associated molecular patterns (PAMPs) not found on 

host cells (Akira et al., 2006). PAMPs include gram-negative bacterial LPS, 

lipoproteins of eubacteria, LTA of gram-positive bacteria, CpG, peptidoglycan and 

Lipoarabinomannan of mycobacteria, N-formyl-Met of prokaryotes, heat shock 

proteins of both prokaryotes and eukaryotes and mannans, mannoproteins and cell 

walls of yeast (Aderem and Ulevitch, 2000).  

PAMPs are detected by preformed, non-specific, germline-encoded pattern-

recognition receptors (PRRs), which are constitutively expressed by cells of the 
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innate immune system (Akira et al., 2006). PRRs include cytoplasmic receptors, such 

as retinoic acid inducible gene-I (RIG-I)-like receptors and nucleotide-binding 

oligomerization domain (NOD)-like receptors and membrane bound and DNA 

receptors, such as TLRs. The founding member of the TLR protein family was 

initially identified in Drosophila fruit fly in 1985 when the toll gene was identified as 

being necessary for the development of the dorsoventral polarity. Later it was 

proposed that not only did the toll gene control embryogenesis but it also played a 

vital role in the immunity of the fruit fly. It was shown that through binding of toll 

to a ventralisation inducer protein, spatzle, the NF-kB pathway was activated 

(Lemaitre et al., 1996) and that a lack of Toll in the fruit fly left it susceptible to 

fungal infections (Takeda et al., 2003).   

The human homologue of toll was reported in 1997 (Medzhitov et al., 1997) and it 

is believed that mammals have 10-15 TLR genes (Iwasaki and Medzhitov, 2004) with 

TLR-4 being the founding member (Takeda et al., 2003). TLRs are integral proteins 

containing an extracellular domain made up of leucine-rich-repeat motifs of varying 

lengths, a transmembrane segment and an intracellular signalling domain named 

the toll/IL-1 receptor homology (TIR) domain (Akira et al., 2006). The 

overexpression of TLRs has been shown to induce a number of inflammatory 

cytokine and co-stimulatory molecule genes. TLRs recognise conserved elements 

common to a number of pathogens for example: TLR-2 recognises lipoproteins and 

LTA of gram-positive bacteria; TLR-5, flagellin; TLR-9, CpG DNA; TLR-3, dsRNA and 

TLR-7, ss viral RNA (Iwasaki and Medzhitov, 2004). TLR-4 has been shown to 

recognise the LPS portion of gram-negative bacteria (Takeda et al., 2003) with the 
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help of innate immune component, LBP. Only a small concentration of LPS is 

required to activate TLR-4 (Takeda and Akira, 2005). As mentioned previously, the 

recognition of LPS by TLR-4 leads to an increased affinity of the cellular receptor 

CD14. This complex then interacts with both TLR-4 and MD-2.  This complex 

activates the intracellular domain of TLR-4 resulting in a cytoplasmic signalling 

cascade leading to the activation of NF-kB, and increased expression of 

inflammatory cytokines such as IL-8 (Figure 4-1). 

 

 Finlay and Hancock (2004) 
Figure 4-1: Activation of NF-kB in response to gram-negative bacerial LPS 

Bacterial LPS associated with LBP is transported to CD14, leading to the formation of a complex 
consisting of LPS, CD14, TLR-4 and MD-2. The association of each component of this complex leads 
to the interaction of the intracellular toll-interleukin receptor domain of TLR-4 with an intracellular 
protein, MyD88 and following a cytoplasmic signalling cascade, NF-κB is activated which up-
regulates the expression of various inflammatory genes including the IL-8 gene.  
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4.2 Hypothesis and Aim 

The recognition of bacterial LPS by TLR-4 requires a number of accessory molecules. 

LPS is collected by LBP, which delivers it to membrane bound CD14 (Wright et al., 

1990). This complex then transfers the LPS to MD-2 and TLR-4 which results in a 

series of reactions leading to the activation of NF-κB (Takeuchi et al., 1999). NF-κB is 

a family of transcription factors that, when activated, lead to immune and 

inflammatory responses including the increased expression of the chemoattractant 

IL-8. Molecular mimicry has previously been demonstrated by house dust mite 

allergens in that Der p 2 can hijack the TLR4/MD-2 interaction. The related protein, 

Der p 7, has structural similarity to BPI and LBP  and thus could mimic LBP and 

either instigate an innate immune response against gram-negative bacterial LPS or 

prevent LBP from presenting LPS to CD14 resulting in a reduction in the innate 

immune response. 

Hypothesis  

As BPIFA2 is predicted to share structural homology with the N-terminal domain of 

BPI (and so also with LBP and Der p 7), we hypothesised that the mimicry of LBP by 

Der p 7, could suggest a possible mode of action for BPIFA2. 

Aim 

The aim of this chapter was to identify the effect Der p 7 has on the innate immune 

pathway in the presence and absence of LBP and to use the same assay system to 

determine whether BPIFA2 has a similar functional role.  
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4.3 Materials and Methods 

4.3.1 Cell lines 

THP-1 cells, an acute monocytic leukaemia cell line, were kindly provided by Dr 

Craig Murdoch (University of Sheffield Dental School, Sheffield, UK), and were 

cultured in a humidified atmosphere at 37°C and 5% CO2 in RPMI-1640 with L 

glutamine (Sigma, UK) supplemented with 10% tissue culture grade (low endotoxin 

≤10EU/mL) FCS (Sigma, UK), 100U ml-1 penicillin and 100µg ml-1 Streptomycin 

(Sigma, UK). The cells were centrifuged every 3 to 4 days at 1000rpm for 5 minutes 

and resuspended in fresh media. The THP-1 cells were maintained at 6-8 x105 cells 

ml -1. 

HEK 293 cells were kindly supplied by Dr Clare Byrant (University of Cambridge, 

Cambridge, UK) and were cultured in a humidified atmosphere at 37°C and 5% CO2 

in DMEM supplemented with 10% FCS (Sigma, UK), 2mM L-glutamine (Sigma, UK) 

100U ml-1 penicillin and 100µg ml-1 Streptomycin (Sigma, UK). Media was changed 

every 2-3 days and cells were passaged when 70-80% confluent. Cells were washed 

in PBS and then incubated with 0.05% trypsin-EDTA (Sigma, UK) for 5 minutes. Cells 

were pelleted by centrifugation, 1000rpm, 5 minutes, and resuspended in 1 ml 

complete media before re-seeding 1:10 in a T-75 flask. 

All cells were regularly tested for mycoplasma infection. 

Frozen stocks of both cell lines were stored in 50% complete media, 40% FCS and 

10% dimethylsulphoxide (DMSO) (Sigma, UK). 
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4.3.2 Bacterial LPS Extraction 

Escherichia coli (U125643), Pseudomonas aeruginosa (clinical strain), 

Porphyromonas gingivalis (W50) and Haemophilus Influenzae (clinical strain) were 

cultured as previously described (3.3.2) and the LPS was extracted using an LPS 

extraction kit (Intron Biotechnologies), according to the manufacturer’s 

instructions. The LPS was analysed using an LPS polyacrylamide gel with LPS 

silverstain and developed with silverstain plus (BIORAD).  

4.3.3 LPS SDS-Polyacrylamide gel electrophoresis and LPS silverstain 

Bacterial LPS was separated on an SDS-Polyacrylamide gel containing 0.8M UREA. 

The gel was then fixed in 0.7% periodic acid, 40% ethanol and 5% Acetic Acid. 

Following a 2 hour wash under running water the gel was soaked in staining 

reagent containing Ammonia (2mls), 20% Silver nitrate (5mls), distilled water 

(115ml) and 0.1M NaOH (drop wise until solution becomes clear). After three 15 

minute washes the gel was developed with silverstain plus developer (BIORAD) until 

bands reached the desired intensity. The reaction was stopped in 5% acetic acid 

and the gel scanned with Lab Scanner Image Master (Amershem). 

4.3.4 THP-1 Cell Culture 

For all assays, THP-1 cells were seeded at a density of 6x105 viable cells ml-1 in 200μl 

volumes (1.2x105 cells per well) and incubated overnight in the presence and 

absence of FCS. For FCS free samples, the cells were centrifuged (1000rpm for 5 

minutes) and resuspended in FCS free medium 2 times, to remove any residual FCS, 

before being added to the plate. 
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4.3.5 IL-8 Enzyme-linked immunosorbent assay 

To detect changes in inflammatory response, via the TLR 4 pathway, expression of 

IL-8 was measured following treatment of the THP-1 cells using an Enzyme-linked 

immunosorbent assay (ELISA). Due to large variations in the level of responses 

between replicate experiments all results were normalised to the culture media 

negative control and expressed as fold change.  

ELISA analysis was performed using the BD OptEIA™ Human IL-8 ELISA kit 

(Minimum detection limit - 0.8pg/ml, BD Biosciences). The ELISA plate (NUNC, 

Thermo Scientific, UK) was coated with IL-8 antibody overnight at 4°C. The plate 

was then blocked with PBS containing 10% FCS for 1 hour at room temperature. 

Conditioned media or prepared standards (Figure 4-2) were then added to the plate 

to allow the IL-8 to complex with the coating antibody for 2 hours at room 

temperature. Samples with high concentrations of IL-8 and those which exceeded 

the standard curve limit were diluted appropriately and all of the samples re-tested 

to ensure accurate concentrations were collected. IL-8 was then detected with IL-8 

antibody conjugated with streptavidin-HRP for 1 hour at room temperature and the 

final addition of substrate solution. The reaction was stopped with 2N H2SO4 and 

the absorbance was read at 570nm and 450nm to allow for wavelength correction. 

Concentrations were calculated using Delta Soft Microplate Analysis Software 

(Delta Soft Inc). 
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Figure 4-2: Representitive IL-8 standard curvedemonstarting the range of the assay  

The concentration of IL-8 was determined using the BD OptEIA™ Human IL-8 ELISA kit. A standard 
curve was determined alongside the samples. This standard curve is representative of the standard 
curves throughout the project. The sensitivity of the ELISA is reported to be 0.8pg/ml, the minimum 
concentration detected from the negative controls exceeded 8pg/ml, well within this minimum 
detection limit. 

 

4.3.6 Effect of Bacterial LPS on the inflammatory response via the TLR4/MD-
2/CD14 pathway in THP-1 cells 

To determine which bacterial LPS THP-1 cells responded to, the cells were treated 

with E. coli, P. aeruginosa, P. gingivalis or H. influenzae LPS and TNF-α (40ng ml-1) 

and incubated at 37°C for 1.5, 3.0, 4.5, 6.0, 7.5 and 9.0 hours. The samples were 

centrifuged at 1000rpm for 5 minutes to remove the THP-1 cells and the 

conditioned media stored at -20°C before analysis by ELISA. 

4.3.7 LPS optimisation 

THP-1 cells were treated with E. coli (0111:B4) LPS in the presence and absence of 

FCS. THP-1 cells were treated with increasing concentrations of E. coli (0111:B4) LPS 

and incubated for 6 hours at 37°C. The samples were centrifuged (1000rpm, 5 
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minutes) to remove the THP-1 cells and the conditioned media was stored at -20°C 

until analysed by ELISA. 

4.3.8 rDer p 7 optimisation 

THP-1 cells were treated with rDer p 7 (Indoor Biotechnologies, Charlottesville, VA) 

in the presence and absence of FCS. THP-1 cells were treated with increasing 

concentrations of rDer p 7 and incubated for 6 hours at 37°C. The samples were 

centrifuged (1000rpm, 5 minutes) to remove the THP-1 cells and the conditioned 

media was stored at -20°C until analysed by ELISA. 

4.3.9 Mimicry of LBP by Der p 7  

THP-1 cells were treated with low concentrations of E. coli LPS (3.125ng ml-1, 6.25ng 

ml-1 and 12.5ng ml-1) in the presence and absence of rDer p 7 (2µg ml-1, 1µg ml-1, 

0.5µg ml-1, 0.25µg ml-1) and in the presence and absence of FCS. Cells were treated 

for 6 hours, centrifuged (1000rpm, 5 minutes) to remove the THP-1 cells and the 

conditioned media was stored at -20°C before analysis by ELISA. 

4.3.10 Data and Stastistical Analysis 

IL-8 assay data was normalised to the negative control and is presented as fold 

changed due to a large amount of variability seen in the THP-1 cells during the 

determination of suitable timescales assays (Appendix 6.7). 

Where possible all data is presented as means + SEM. Statistical analysis was 

performed using the student’s t-test for comparisons between two groups. All data 

was analysed compared to the corresponding negative control to determine any 
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significant increase in IL-8 activation. Values were considered significant if p values 

were <0.05. 

4.3.11 TLR4/MD-2/CD14 Transient Transfection 

HEK 294 cells were seeded into a flat bottomed 96 well plate at 1.5x105 cells ml-1. 

Following a 48 hour incubation, cells were transfected using jetPEI transfection 

reagent (polyplus transfection) with 10ng pcDNA5-frt-V5-His-Topo/BPIFA1, 

pcDNA5-frt-V5-His-Topo/BPIFA2, pcDNA5-frt-V5-His-Topo/BPIFB1 or pcDNA3 along 

with TLR-4 pathway specific DNA, pcDNA3/TLR-4, pEFIRES/MD2, pcDNA3/CD14 and 

luciferase (pNF-κβ-luc) and renilla (hRG-TK) as internal controls for transfection 

efficiency (Table 4.2) (Lee Hopkins, University of Cambridge, Cambridge UK) to a 

total concentration of 100ng/well. 

Following 48 hours incubation the media was removed and LPS was added at 

0.05ng ml-1 or 0.5ng ml-1 in FCS free medium. Following a 6 hour incubation at 37°C 

the medium was removed and the HEK-293 cells were washed with PBS before lysis 

with 1x passive lysis buffer (Promega). Plates were stored at -80°C until analysis. 

Luciferase activity was quantified using the Dual Luciferase kit (Promega) according 

to the manufacturer’s instructions and the GloMax-96 Microplate luminometer 

(Promega), which assessed the NF-κB response. Data was normalised to the 

equivalent 0ng ml-1 treatment for analysis.  
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Table 4.2. Transient transfection set up 

(Stock Concentration (ng/µl))  (volume µl per 10 wells)  

 Control BPIFA1 BPIFA2 BPIFB1 

pcDNA3/TLR-4 (100) 1 1 1 1 

pEFIRES/MD-2 (10) 1 1 1 1 

pcDNA3/CD14 (100) 1 1 1 1 

pNF-κβ-luc (10) 10 10 10 10 

hRG-TK (10) 5 5 5 5 

pcDNA3 (100) 6.4 6.3 6.3 6.3 

pcDNA5-frt-V5-His-Topo /BPIFA1 (10) - 1 - - 

pcDNA5-frt-V5-His-Topo /BPIFA2 (10) - - 1 - 

pcDNA5-frt-V5-His-Topo /BPIFB1 (10) - - - 1 

10x TE 2.44 2.44 2.44 2.44 

150mM NaCl 23.16 22.26 22.26 22.26 

Total Volume (µl) 50 50 50 50 
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4.4 Results 

4.4.1 Initial Experiments 

4.4.1.1 Determination of suitable timescales for IL-8 assays   

LPS from E. coli, P. aeruginosa, P. gingivalis and H. influenzae were extracted and 

analysed by SDS-polyacrylamide gel electrophoresis to ensure that LPS preparations 

were representative and that LPS was present in each of the samples. LPS is 

composed of varying length carbohydrate chains in association with Lipid A which 

allows them to be anchored to the outer membrane of gram-negative bacteria. 

Migration through the gel is based on the length of the carbohydrate chain; Lipid A 

with smaller carbohydrate chains travels further than Lipid A with larger chains. 

Lipid A molecules with the same length of carbohydrate chains will migrate 

together, producing a denser band in the LPS gel. The pattern seen from this 

migration is unique to each bacterium and these ‘profiles’ can vary considerably. If 

no LPS were purified, no pattern would be seen. Clear carbohydrate patterns can be 

seen following LPS Polyacrylamide gel electrophoresis (Figure 4-3) for each 

bacterium indicating that LPS was successfully isolated.  

THP-1 cells were treated with each bacterial LPS to determine their response via 

the TLR-4/MD-2/CD14 pathway resulting in the immune response of increased IL-8 

expression.  
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Figure 4-3: SDS-PAGE analysis of extracted bacterial LPS 

LPS from E. coli, P. aeruginosa, H. influenzae and P. gingivalis were extracted using the LPS 
Extraction Kit (Intron Biotechnologies). LPS presence was confirmed by SDS polyacrylamide gel 
electrophoresis and LPS silverstain and comparison with previously extracted LPS from the same 
species of bacteria, using the same method.  

 

No increased IL-8 expression, over that of the negative control, was seen following 

treatment of the THP-1 cells with 1µl ml-1 of extracted P. gingivalis LPS for 1.5 hours 

and 3.0 hours (0.9 fold and 0.6 fold respectively). IL-8 expression increased slightly 

following 4.5 hours treatment (1.3 fold), but this diminished after 6.0 hours and 7.5 

hours (1.0 fold and 0.8 fold respectively) (Figure 4-4A). Treating the THP-1 cells for 

extended time periods failed to increase the expression of IL-8. 

No increase in IL-8 expression was observed at any time point in response to 

treatment with 1µl ml-1 of extracted P. aeruginosa LPS (Figure 4-4B). 
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 n=3 

Figure 4-4: Change in IL-8 expression following incubation of the monocytic cell line, THP-1, with P. 
gingivalis (A) and P. aeruginosa (B) for various periods of time 

THP-1 cells were treated with extracted LPS from P. gingivalis or P. aeruginosa; samples were taken 
at varying time points to assess the levels of IL-8 expression. P. gingivalis showed a slight increase in 
IL-8 expression at 4.5 hours with a 1.3 fold increase and no increase at any of the other time points 
tested. P. aeruginosa failed to cause any increase in IL-8 expression following 7.5 hours of 
treatment. The negative control was culture media. 
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In contrast, treatment with H. influenzae LPS (Figure 4-5A) led to a significant IL-8 

response, with almost a 20 fold increase in expression following treatment for 3 

hours. The response reduced gradually after 4.5, 6.0 and 7.5 hours to 13.6, 7.5 and 

7.4 fold respectively. 

The largest response was seen with E. coli LPS (Figure 4-5B) as after just 1.5hours 

the IL-8 expression increased by almost 15 fold compared to the untreated control, 

and this gradually increased to 19.3 fold after 3.0 hours and finally peaked after 4.5 

hours to a 48 fold increase in IL-8 expression. The IL-8 expression diminished to 24.4 

and 17.7 fold that of the negative control following treatment for 6.0 and 7.5 hours. 
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n=3 

Figure 4-5: Change in IL-8 expression following incubation of the monocytic cell line, THP-1, with H. 
influenzae (A) and E. coli (B) for various periods of time. 

THP-1 cells were treated with LPS extracted from H. influenzae or E. coli; samples were taken at 
varying time points to assess the levels of IL-8 expression. H. influenzae caused a rapid increase in IL-
8 expression from 2.2 fold increase at 1.5 hours to almost a 20 fold increase at 3 hours. E. coli 
showed a more dramatic effect on the expression of IL-8 with almost a 15 fold increase after 1.5 
hours peaking at almost 50 fold after 4.5 hours. IL-8 expression reduced at 6 hours and then again at 
7.5hours. The negative control was culture media. 
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4.4.1.2 Dose response of LPS concentration on IL-8 production 

To ensure the results were consistent and reliable, commercial E. coli (0111:B4) LPS 

was used for further assays. THP-1 cells were treated with increasing 

concentrations of E. coli (0111:B4) LPS ranging from 0.3ng ml-1 to 20ng ml-1 in the 

presence of FCS, and thus LBP, to establish basal levels of the IL-8 response.  IL-8 

expression levels increased in a dose dependent manner with increasing LPS 

concentrations ranging from a 2-fold increase with 0.3ng ml-1 to 10-fold with 20ng 

ml-1 (Figure 4-6 - black).  

THP-1 cells were also treated with similar concentrations of LPS in the absence of 

FCS, and thus absence of LBP. THP-1 cells failed to respond at these concentrations 

of E. coli (0111:B4) LPS (Figure 4-6 - grey).  

Data is displayed as fold change compared to the negative control. IL-8 

concentrations (pg/ml) can be seen in appendix 6.8. 
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 Figure 4-6: IL-8 concentration following treatment with increasing doses of E. coli (0111:B4) LPS in 
the presence of FCS (black) and absence of FCS (grey) to establish a normal response. 

In the presence of FCS the IL-8 expression increased in a dose dependent manner showing a 10 fold 
increase in expression after treatment of 20ng ml-1 E. coli (0111:B4) LPS for 6 hours at 37°C. In 
contrast in the absence of FCS the IL-8 expression fails to increase at low concentrations of E. coli 
LPS. The negative control was culture media. Values are means of 3 experiments in triplicate. Error 
bars are standard error of the mean. Statistical analysis was performed using the student’s t-test. 
Comparisons are made between samples with FCS and the associated sample without FCS. 
Significance is based on expression of IL-8 compared to the sample with/without FCS (n=3).   

 

 

  

0.00

2.00

4.00

6.00

8.00

10.00

12.00

E.
C

ol
i 0

.3
ng

/m
l

E
.c

o
li 

1
.2

n
g

/m
l

E.
C

ol
i 5

ng
/m

l

E.
C

ol
i 1

0n
g

/m
l

E.
C

ol
i 2

0n
g

/m
l

N
eg

at
iv

e 

Fo
ld

 c
ha

ng
e 

in
 IL

-8
 c

on
ce

nt
ra

ti
on

IL-8 concentration following treatment with E.coli LPS or Der p 7 at increasing concentrations in the presence and absence 
of Serum.

**, P<0.01
*, p<0.05

n=3

*

*

**



Molecular Mimicry 
Results 

 

- 142 - 
 

4.4.1.3 Dose response of rDep p7 on IL-8 expression 

To determine if the rDer p 7 allergen had the potential to induce an immune 

response via the TLR4/MD2/CD14 pathway in the absence of LPS, THP-1 cells were 

treated with 0.25 to 2µg ml-1 rDer p 7 in the presence (Figure 4-7: black) and 

absence of FCS (Figure 4-7: grey), and so the presence and absence of LBP. With the 

exception of a slight increase (1.4 fold) observed following the addition of 0.25µg 

ml-1 rDer p 7 no increase in IL-8 expression was detected. 

 

Figure 4-7: IL-8 concentration following treatment with increasing doses of rDer p 7 in the 
presence of FCS (black) and absence of FCS (grey) to establish a normal response. 

Treating THP-1 cells for 6 hours with rDer p 7 did not induce expression of IL-8. With the exception 
of 0.25µg ml-1 (1.4 fold), all treatments showed expression in line with the negative control 
containing no rDer p 7. The negative control was culture media. Values are means of 3 experiments 
in triplicate. Error bars are standard error of the mean. Statistical analysis was performed using the 
student’s t-test. Comparisons are made between samples with FCS and the associated sample 
without FCS. Significance is based on expression compared to the sample with/without FCS (n=3).   
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4.4.2 Induction of IL-8 by bacterial LPS in the absence of LBP and the presence of 
rDer p 7. 

To establish if rDer p 7 has the ability to mimic the action of LBP the THP-1 cells 

were treated with low concentrations of E. coli LPS and Der p 7 in the absence of 

FCS. 

THP-1 cells were treated with 12.5ng ml-1, 6.25ng ml-1, 3.125ng ml-1 or 0ng ml-1 E. 

coli (0111:B4) LPS at the same time as being treated with rDer p 7 at concentrations 

of 2µg ml-1, 1µg ml-1, 0.5µg ml-1, 0.25µg ml-1 or 0µg ml-1. THP-1 cells were treated 

with 100ng ml-1 E. coli LPS as a positive control. 

In the absence of LBP and rDer p 7, E. coli LPS, as seen in preliminary assays, did not 

increase IL-8 expression at any concentration (12.5ng ml-1, 6.25ng ml-1. 3.125ng ml-

1). Treatment of the THP-1 cells with 12.5ng ml-1 E. coli LPS and 0.25µg ml-1 rDer p 7 

increased IL-8 expression in excess of that produced by the 100ng ml-1 positive 

control. The expression of IL-8 increased in a dose dependent manner as the 

concentration of E. coli was increased (Figure 4-8A). A similar pattern was observed 

with 0.5µg ml-1, 1µg ml-1 and 2µg ml-1 rDer p 7 (results not shown) but interestingly, 

increasing the rDer p 7 concentration further did not lead to any more increase in 

IL-8 expression, showing that the response had reached a plateau at 0.25g ml-1 

rDer p 7. 

It was considered that suitable statistical analysis of this data would be a two-way 

ANOVA with post-hoc tests, however due to the simple structure of the Der p 7 

treatment, i.e. present or absent, it was subsequently decided that a Levene’s Test 

of Equality of Error Variancies followed by an Analysis of Co-varience (ANCOVA) 
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would be more beneficial. This analysis identified a non-parallel relationship 

between LPS treatments with and without Der p 7 (Figure 4.8B) indicating a clear 

difference between the response in the presence and absence of Der p 7. This is 

further supported by the ANCOVA analysis (Appendix 6.7) which indicates that Der 

p 7 affects the IL-8 response only through its interaction with LPS. However, the 

Levene’s Test has highlighted concerns regarding the homogeneity of varience 

assumption and the quality of fit. Further investigation wil be required to determine 

significance. 

 

Figure 4-8. IL-8 concentration following treatment with E. coli LPS and rDer p 7 in the absence of 
FCS. 

In the absence of E. coli LPS the presence of the rDer p 7 allergen fails to cause an increase in IL-8 
expression, and similarly the presence of E. coli LPS at low concentrations in the absence of rDer p 7 
fails to induce an IL-8 response. However, with the addition of as little as 0.25µg ml-1 rDer p 7 
allergen the THP-1 cells can be induced to express IL-8 at a higher level compared to the positive 
control of 100ng ml-1 E. coli LPS. ANCOVA analysis has identified a non-zero intercept and a non-
parallel relationship between treatments with and without Der p 7, indicating that Der p 7 affects 
the IL-8 response only through its interaction with LPS. The negative control was culture media. 
Values are means of 3-6 experiments in triplicate. Error bars are standard error of the mean. 
Statistical analysis was performed using the Levene’s Test and Analysis of Covarience (n=3-6).   
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4.4.3 Transfection of HEK-293 cell line with TLR4/MD-2/CD14 and BPIF genes 

HEK-293 cells were transiently transfected with TLR-4, CD-14, MD-2 and either 

pcDNA5-frt-V5-His-Topo/BPIFA1, pcDNA5-frt-V5-His-Topo/BPIFA2, pcDNA5-frt-V5-

His-Topo/BPIFB1 or empty pcDNA3 and treated with low concentrations of E. coli 

(0111:B4) LPS (0.05 and 0.5ng mL-1). Expression of the BPIF protein in this vector 

have previously described using in vitro transcription/translation reactions and 

western blot analysis (Bingle et al 2009). 

As a transfection control, a LPS dose response was performed with HEK-293 cells 

transfected with TLR-4, CD14, MD2, pcDNA3, Luciferase and Renilla (internal 

control for transfection efficiency). Although a dose response to the LPS was 

observed, indicating the success of the transfection, a maximum response (with 

50ng ml-1 E. coli (0111:B4) LPS) of only a 2-fold increase in NF-κB activity was seen 

compared to that in the absence of E. coli (0111:B4) LPS (Figure 4-9). Initial 

observations indicate that no clear difference in NF-κB activity occurs in the cells co-

transfected with any of the BPIF genes (Figure 4-10); however a trend of increased 

activation can be observed with BPIFA1, which requires further investigation. 
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n=2 

Figure 4-9: Dose response in NF-κB following treatment of TLR-4/MD-2/CD14 transfected HEK293 
cells with E. coli LPS 

HEK-293 cells were transiently transfected with TLR-4, MD-2 and CD14. The cells were treated with 
increasing concentrations of E. coli (0111:B4) LPS to establish levels of activation. The transfected 
HEK-293 cells showed dose dependent response to the LPS; however 50ng ml-1 of LPS only showed a 
2-fold increase in NF-κB activation.  
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n=2 

Figure 4-10: Effect of BPIF proteins on the activation of NF-κB 

HEK-293 cells were transiently transfected with TLR-4, CD14, MD2, Renilla and Luciferase (as a 
transfection control) and either BPIFA1, BPIFA2 or BPIFB1 before being treated with either 0.05ng 
ml-1 or 0.5ng ml-1 E. coli (O111:B4) LPS. Data was normalised to the equivalent 0ng ml-1 treatment to 
assess any changes. Transfection of HEK-293 cells with BPIFA1 (A), BPIFA2 (B) or BPIFB1 (C) did not 
appear to affect the NF-κB pathway. Treatment with 0.05ng ml-1 and 0.5ng ml-1 resulted in no 
significant difference in NF-κB activation compared to the negative controls, however these 
preliminary studies have identified a trend of increased activation can be seen with BPIFA1. Values 
are means of duplicate experiments in triplicate (n=2). 
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4.5 Discussion 

TLR-4 recognises gram-negative bacterial LPS, and results in an immune response; 

however this requires a number of accessory proteins. A complex, containing LPS, 

CD14, MD-2 and TLR-4, has the ability to elicit an immune response but the system 

requires LBP to deliver the LPS to CD14 in order to maximise this response. It has 

previously been demonstrated that dust mite allergen, Der p 2, shares structural 

homology to the accessory protein MD-2, and that this structural similarity allows 

functional mimicry by Der p 2 restoring the LPS-driven TLR-4 signalling in the 

absence of the essential MD-2 molecule (Trompette et al., 2009). Recently, dust 

mite allergen Der p 7 has been reported to share structural homology with the N-

terminal region of BPI, both sharing the characteristic "super-roll" architecture 

(Mueller et al., 2010). BPIFA2 is also predicted to share close structural homology 

with the N-terminal domain of BPI, though this has yet to be determined 

experimentally. Due to the method adopted for the purification of nBPIFA2 it was 

presumed that the purified nBPIFA2 would be contaminated with LPS as the use of 

LPS free materials was not possible for the whole process. As a result of this 

presumed contamination, any studies involving the activation of the TLR-4 pathway 

would not be reproducible or valid as the concentration and type of LPS in the 

nBPIFA2 sample is unknown. Quantification of this LPS would be possible using 

assays such as the limulus amoebocyte lysate (LAL) assay; however this was not 

performed as this would only indicate the concentration of LPS in the sample and 

not the type of LPS nor its origin, which could affect the result of the immunological 

assays. Removal of this presumed contaminant LPS was attempted using the Pierce 
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endotoxin removal resin (Thermo Scientific, UK), unfortunately resulting in a loss of 

nBPIFA2.  Therefore, due to the predicted structural similarity between Der p 7 and 

BPIFA2, endotoxin free rDer p 7 was used to investigate the potential functional 

role of BPIFA2 in the TLR-4 pathway. Following the mimicry of Der p 2 to MD-2, it 

was hypothesised that Der p 7 could also mimic the action of either BPI or the 

structurally similar protein LBP in the TLR-4 complex. Furthermore, it seemed 

reasonable to consider that BPIFA2 could mimic BPI and /or LPS in the oral cavity 

and upper airways in a similar manner to Der p 7. 

The initial experiments in this study demonstrated activation of the TLR-4 complex, 

in the presence of LBP supplied by FCS, by some bacterial LPS but not others. P. 

gingivalis and P. aeruginosa did not produce a response in the THP-1 cell line, whilst 

H. influenzae and E. coli did. It has previously been reported that P. gingivalis LPS 

leads to a significant rise in IL-8 expression by THP-1 cells after only 4 hours of 

stimulation. This increase continued for 7 days following the addition of LPS (Baqui 

et al., 1999). A similar increase in IL-8 expression was thus expected in this study. 

Similarly an increase in IL-8 expression was expected with P. aeruginosa based on 

previously published data (Cigana et al., 2009). Although LPS was successfully 

extracted from these species it could not be accurately quantified. The inability to 

standardise the LPS dosage is likely to be a major cause of the differences in IL-8 

expression between the previously published data and the results in this study.  

Incubation of THP-1 cells with E. coli for 4.5 hours caused a significant increase in IL-

8 expression, which gradually declined over the following 6 hours of incubation. 

Due to the extremely high response at 4.5 hours it was decided that the 6 hour 
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incubation period would allow more accurate detection and quantification in future 

assays. In addition, the decision as to whether H. influenzae or E. coli should be 

used was made solely on the availability and ease of access to relevant material and 

E. coli LPS (0111:B4) was commercially available. This also overcame the problem of 

quantification so that we could be sure a consistent amount of LPS was being added 

to the assay system.  

As expected, commercial E. coli (0111:B4) LPS resulted in an increase in IL-8 

production by THP-1 cells in a dose dependent manner in the presence of LBP 

provided by FCS in the culture medium. Removal of LBP from the assay, through the 

use of FCS free media, prevented this increase in IL-8 expression, until higher doses 

of E. coli LPS (25-100ng ml-1) were used and these resulted in IL-8 expression levels 

similar to those seen with E. coli concentrations of less than 5ng ml-1 in the 

presence of LBP. 

Activation of the TLR-4 complex involves the interaction between LBP and LPS; 

followed by an interaction between CD14, MD-2 and TLR-4, ultimately leading to 

the initiation of an inflammatory response. To verify rDer p 7 was able to mimic LBP 

and thus only act on the TLR-4 pathway through this mimicry, the levels of IL-8 

expression were assessed both in the presence and absence of LBP. Although 

previous studies have described an increase in inflammatory cytokines, including IL-

8, by the direct actions of house dust mite extracts (Hongjia et al., 2010) and Der p 

2 (Osterlund et al., 2009), no increase in IL-8 was observed by Der p 7 in the 

presence of LBP (without LPS). Although this is in contrast to the literature, the 

house dust mite extract used by Hongjia et al (2010) was shown to contain 44ng of 
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LPS per 100µg protein and the Der p 2 utilised by Osterlund et al (2009) contained 

up to 632ng LPS/mg protein. Osterlund et al (2009) demonstrated a response with 

10µg Der p 2, which would have contained 6.3ng LPS. This study has demonstrated 

that LPS concentrations of 20ng can elicit a 10-fold increase in IL-8 expression in the 

presence of FCS and concentrations of as low as 0.3ng ml-1 increased the IL-8 

response above the background levels. Also we are confident that the rDer p 7 

allergen used in our study was not contaminated with LPS and consequently no 

increase in IL-8 expression was detected. The increase in cytokine levels in the 

previous studies are therefore probably due to the presence of contaminant LPS, 

not the presence of the dust mite extract or Der p 2.   

Replacing the LBP in FCS free media with rDer p 7 restored TLR-4 activity, 

suggesting that Der p 7 may be able to mimic the role of LBP by completing the TLR-

4-MD-2-CD14 complex. This supported our hypothesis that BPIFA2 may play a 

similar role in TLR-4 activation in the oral cavity. FCS contains a number of 

molecules involved in the TLR-4 pathway including LBP and soluble CD14. Although 

not absolutely proven our results suggest that mimicry of LBP is occurring, based on 

the structural similarity between Der p 7 and LBP, rather than that of an alternative 

molecule such as CD14. Further studies to determine the accuracy of this 

suggestion are required, including the differentiation of the THP-1 cells into 

monocytes, and the use of primary monocytes. In addition, although an IL-8 

response was seen after just 6 hours of treatment during the initial investigation, 

resulting in this timepoint being chosen for later assays, it would also be beneficial  
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for future studies to extend the treatment times to 12, 24 and 48 hours to 

determine if the responses seen are comparable over a longer timeframe. 

It would be ideal to compare these results with other activators; however this assay 

was specifically designed to assess the ability of Der p 7 to mimic LBP and result in 

an IL-8 output as a measure of induction of the inflammatory response, not as a 

comparable method to other activators used in a similar system. Therefore, 

comparisons with other activators in similar systems would not be beneficial or 

appropriate. 

Removal of LPS from the purified nBPIFA2 protein was attempted, using the Pierce 

endotoxin removal resin (Thermo Scientific, UK), and was repeatedly unsuccessful 

and thus a different assessment method was attempted. HEK-293 cells, which do 

not express TLR-4 and MD-2, were co-transfected with TLR-4, MD-2, CD14, renilla 

(internal control for transfection efficiency), luciferase and a number of BPIF genes 

to assess activation of NF-κB following LPS stimulation. In these assays the LPS dose 

response only showed a 2 fold increase in NF-κB following stimulation with 50ng/ml 

E.coli LPS. Initially it was thought that this response was low, however compared 

with work recently published by Herre et al (2013), who demonstrated that 

stimulation with 100ng/ml E.coli LPS induces an increase in NF-κB activation of just 

4-fold, these values are considered reasonable. No difference in NF-κB activation 

was observed following transfection of any of the BPIF genes. Herre et al (2013) 

performed a similar investigation, using the cat allergen Fel D 1 in place of our BPIF 

proteins. They demonstrated a significant increase in NF-κB activation of 

approximately 15-fold. This further suggests that, as transfection of BPIF genes into 
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this systemshowed no real increase in NF-κB, unlike Der p 7, the BPIF proteins have 

no role in the stimulation of the TLR-4 pathway and the activation of NF-κB. 

However, it is possible that the BPIF proteins influence an alternative pathway, such 

as TLR-2, or bind bacterial molecules other than gram-negative bacterial LPS, such 

as gram-positive bacterial lipoteichoic acids (LTA), which have previously been 

shown to stimulate an increase in TNF-α, IL-1β, IL-6 and IL-10 but not IL-8 (Hermann 

et al., 2002). LTA is a surface associated molecule found in gram-positive bacteria 

such as streptococci, pneumococci and staphylococci (Ginsburg, 2002). 

Streptococcus mutans LTA has been shown to induce periodontal lesions and is 

considered a major cause of caries development (Bab et al., 1979). LTA induces the 

activation of NF-κB via TLR-2 positive macrophages and it has been suggested that 

LTA may be neutralised by proteins resembling BPI (Ginsburg, 2002). Thus LTA is a 

potential target for BPIFA2 in the oral cavity and warrants further investigation.  

 

The investigation of Der p 7, as an indicator for the role of BPIFA2, in the TLR-4 

pathway has demonstrated that upon removal of FCS (as a source of LBP), the 

addition of Der p 7 can increase the expression of IL-8 in excess of the levels seen 

with high (100ng ml-1) E.coli LPS stimulation. The predicted structural similarity 

between Der p 7 and BPIFA2 and the proven function of LBP as an important part of 

the TLR-4 pathway therefore lead to the suggestion that BPIFA2 may also posses 

the ability to influence the activation of this pathway. In order to further investigate 

this purified, LPS-free BPIFA2 needs to be collected and quantified, a key focus in 

the progression of this project. The activation of the TLR-4 pathway with the 
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allergen Der p 7 has not yet been reported in the literature, and so these findings 

may provide a basis for further investigation into the connection between dust mite 

allergy, the innate immune response and allergy. 
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Chapter 5.  Final Discussion  

The oral cavity is a complex environment and in order to ensure that it remains 

healthy, it is supplied with approximately 1500mL of saliva per day (Zalewska et al., 

2000), which provides moisture, digestive enzymes, buffering agents and immune 

defence molecules. It has been hypothesised that BPIFA2, a protein expressed in 

major and minor salivary glands and secreted in saliva, plays a role in immune 

regulation. This hypothesis is based on predicted structural similarities to 

acknowledged innate immune molecules, BPI and LBP. The aim of this study was to 

establish a method that would allow purification of native BPIFA2 from human 

saliva in which the pure protein would retain its heavily glycosylated state and to 

use this protein to determine its true function. A number of purification methods 

were attempted, based on the current literature, and we were able to successfully 

purify native, glycosylated protein. The activity of purified BPIFA2 was examined 

against a range of bacteria using a variety of assays including bacterial binding, 

growth, killing and agglutination, with recombinant protein being used for 

comparison. Interesting results were observed against gram-positive, oral 

commensal bacteria, S. mutans. We also investigated the TLR4/MD-2/CD14 

pathway to demonstrate the potential for BPIFA2 to mimic the action of BPI or LBP. 

The optimal method for purification of native, active BPIFA2 from human saliva 

with the highest probability of the correct glycosylation was through electro-elution 

following native gel electrophoresis with the final product being stabilised in a 

buffer compatible with functional assays by dialysis. A number of methods 

previously described in the literature for purification of similar proteins and family 
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members of BPIFA2 were examined; however a number of problems were 

highlighted. Precipitation with both ammonium sulphate and ethanol/acetone have 

been used to purify the founding family member, BPIFA1 (Campos et al, 2004) but 

in the experiments conducted here, ammonium sulphate fractionation proved to be 

the most ineffective method with no separation of BPIFA2 from other salivary 

proteins. Our initial experiments suggested that ethanol precipitation alone would 

provide a relatively simple but successful method for purification of BPIFA2, 

however, further analysis demonstrated the presence of significant amounts of 

contaminant proteins between 10-15kDa. Specifically, N-terminal sequencing 

identified cystatin, a known antibacterial protein, as a contaminant protein.  Size 

exclusion chromatography was used to remove contaminating proteins; however, 

this led to a dramatic decrease in the yield of BPIFA2 protein, which appeared to 

adhere non-reversibly to the column. Similar problems were encountered using ion 

exchange chromatography implying that impractically large volumes of saliva would 

be required in order to purify detectable and useable concentrations of BPIFA2 

protein. In addition to the problems seen with concentrations, additional concerns 

were raised regarding the quality of the purified protein as the method involved 

relatively high concentrations of ethanol (75%) and the many ethanol purification 

steps needed were carried out at temperatures greater than 4°C which have 

previously been shown to result in protein deformation and denaturation (Zellner 

et al., 2005, Lin et al., 2004).  

Data presented by McGillivary and Bakaletz (2010) provided the basis for the 

electro-elution method from native polyacrylamide gels. The published method 
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included electrophoresis, detergent removal, denaturation, renaturation, dialysis 

lyophilisation and resuspension, which, unlike the optimal method we developed, 

provides numerous opportunities for the incorrect folding of the protein. The 

method finally developed, using a native gel, allows for the separation of native 

protein from other salivary proteins, with a final dialysis step being necessary as the 

salts present in the elution buffer were not compatible with the downstream 

functional assays. The optimised method uses fewer steps than that of McGillivary 

and Bakaletz (2010) thus limiting the risk of deformation and denaturation. 

As the project progressed it became evident that a significant proportion of protein 

was being lost. As described in Chapter 2 (2.5) this has posed a major problem due 

to the tendency of BPIFA2 to adhere firmly to many surfaces, including laboratory 

plastics, This was highlighted as a particular problem when attempting column 

chromatography, as the sample was fed through numerous plastic tubes, and also 

in the many centrifuge steps required for ethanol precipitation. The interaction 

with plastic surfaces was less of a problem with the native gel elution method as 

there are many fewer steps in the process and throughout the protein rarely comes 

into contact with plastic surfaces; protein losses are thus minimised. The reason for 

this interaction is unknown, however it could be suggested that the predicted 

hydrophobic cleft in the BPIFA2 protein may be involved due to the aqueous nature 

of the buffer. However, if this were the case it would be expected that BPIFA2 

protein would interact with all surfaces and not just laboratory plastics as observed 

during this study. This interaction may indicate some functional significance, as 

BPIFA2 could potentially coat hard surfaces of the oral cavity, such as the teeth, and 
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protect from colonisation by pathogenic bacteria. To understand this interaction 

fully, more information is required regarding the structure of BPIF2. It would also 

be beneficial to investigate these interactions further to assess if BPIFA2 shows 

specific affinity to the oral structures. This is something that will be studied further 

in the future of the project.  

Although purification of BPIFA2 protein from a native source is the most accurate 

for functional studies, a level of variation has previously been seen between saliva 

donors (data not shown) and so recombinant protein would provide a more 

consistent supply of BPIFA2 protein and would give the project more independence 

without the reliance of saliva donors. It is unclear why the expression of BPIFA2 was 

so unsuccessful in CHO cells; however expression using the insect cell (S2) system 

was very successful. Purification of this rBPIFA2, however, proved to be quite a 

problem. Successful purification was achieved using imidazole buffer, however the 

presence of this buffer resulted in the killing of bacteria compromising further 

functional analysis of the BPIFA2 protein. In order to conduct functional analysis on 

the rBPIFA2 protein, unpurified protein was used in subsequent experiments, using 

conditioned media from untransfected S2 cells as a control. The inability to purify 

the rBPIFA2 prevented true comparisons between the purified nBPIFA2 however 

the use of the empty S2 cell media as a control strengthened the results seen with 

the rBPIFA2. As with nBPIFA2, no killing was observed with any of the bacteria but 

recombinant protein did cause agglutination of S. aureus in a similar manner to the 

native protein. Unfortunately, the activity of the two protein forms was very 

different with regard to agglutination of S. mutans; nBPIFA2 presence resulted in 
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clear agglutination of S. mutans whilst rBPIFA2 did not. This difference could be due 

to a number of reasons. Indications from our previous investigations (data not 

shown), that BPIFA2 is a glycosylated protein and although insect cell line 

glycosylation is reported to be similar to that of mammalian cells, there still could 

be significant differences in the level of glycosylation of rBPIFA2 expressed in the 

insect cell line compared with the nBPIFA2 and this could affect the function. 

However, if this were true, it might have been expected that rBPIFA2 would also 

have been less effective against S. aureus, it could also suggest that the binding of 

BPIFA2 to S. mutans is different from that to S. aureus, either via a different binding 

site or method. An alternative reason for the different results could be that 

although bacterial numbers and protein concentration were consistent between 

each bacterium, more protein may be required to agglutinate certain bacteria than 

others. Alternatively, the arrangement of the bacteria may be important; for 

example S. aureus grows in clusters, while S. mutans grows in pairs and chains. Thus 

as BPIFA2 agglutinates two or more S. aureus it could be agglutinating preformed 

clusters and this may appear to be more efficient than cross-linking chains of cells. 

It may be then that we would see similar amounts of agglutination of the S. mutans 

if the concentration of BPIFA2 is higher.  

Unfortunately, a successful quantification method has yet to be discovered for the 

purified BPIFA2 protein and the problems encountered in the purification of 

recombinant protein, again, prevented successful quantification. However if 

quantification was possible equal quantities of recombinant and native protein 

could have been added to the assays allowing for more direct and accurate 
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comparisons to be made. The differences observed between nBPIFA2 and rBPIFA2 

in this study, therefore, may be attributable to differences in concentration of 

rBPIFA2 and nBPIFA2.  

No previous studies have examined the activity of BPIFA2 on such an extensive 

range of bacterial species as used in this study. The results presented are thus more 

overarching, giving a wider picture of the true function of this novel protein.  

The results reported here demonstrate that in its native environment (whole saliva) 

BPIFA2 binds to a number of bacterial species, however, following purification the 

protein only bound to two of the eight species tested, S. mutans and β-haemolytic 

streptococcus, suggesting the binding to the other 6 bacteria was via, alternative or 

intermediary (i.e. complexed) salivary constituents. An interesting observation 

made, in relation to bacterial binding, was the ability of BPIFA2 to bind to P. 

gingivalis following the removal of the lysine-specific gingipain enzyme.  

In addition to the binding of BPIFA2 to S. mutans, further assays supported the 

hypothesis that BPIFA2 plays a vital role in the immune response to this bacterium. 

A small inhibition of growth; a reduction in viable bacteria following incubation; 

positive agglutination and an altered biofilm growth all implicate BPIFA2 in the 

innate immune response against this bacterium. The predicted structural 

similarities between LBP, BPI and BPIFA2 initially suggested that binding might 

selectively occur between BPIFA2 and gram-negative bacterial LPS; however S. 

mutans is a gram-positive bacterium. This was a novel discovery in the field and 

indicates that BPIFA2 may bind LPS-like molecules found on gram-positive bacteria, 

i.e. lipoteichoic acid (Stashenko et al., 1986). The project may have yielded many 
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more interesting results if a wider range of gram-positive bacteria were tested, 

however the hypothesis was raised based on the structural similarities to BPI and 

LBP, both of which bind and respond to the presence of gram-negative bacterial 

LPS. In order to extend the project further, a larger range of bacteria need to be 

included in each of the assays, particularly gram-positive bacteria; it would also be 

interesting to see how BPIFA2 affects different strains of the same species. 

Purified nBPIFA2 positively bound to two species, S. mutans and β-haemolytic 

streptococcus, and it is interesting to note that each of these poses a threat to the 

health of the oral cavity and upper airway: S. mutans is an important cariogenic 

organism (Bab et al., 1979) and β-haemolytic streptococcus is a common cause of 

pharyngitis and tonsillitis (Kreth et al., 2005). Although binding alone may not pose 

a great threat to the bacteria, with the exception of agglutination, the fact that 

binding occurs opens the possibility that other defence molecules complexed with 

BPIFA2 would be brought close to the bacterial surface and so potentiate their 

action.  

Technical difficulties were encountered in removing all LPS from the purified 

sample of BPIFA2 and this would have interfered with the assay system used for our 

TLR4/MD2/CD14 studies. For this reason we initially carried out experiments with a 

dust mite allergen, Der p 7, which like BPIFA2, is also predicted to share structural 

homology with the N-terminal domain of BPI. It has previously been shown that 

dust mite allergen, Der p 2, mimics the action of MD-2 in the TLR-4 pathway 

(Trompette et al., 2009) and so we hypothesised that this structurally similar 

protein could mimic the action of LBP in the same pathway. The development of 
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this assay, using Der p 7, would also provide a suitable method to examine whether 

BPIFA2 has the ability to mimic LBP in the TLR-4 pathway, following successful 

removal of contaminant LPS. Successful activation of the TLR-4 pathway was 

achieved using E. coli O111:B4 in the presence of LBP, inactivation was observed 

when the LBP was removed and activation was restored in the presence of Der p 7, 

implying that Der p 7 mimics the action of LBP in activating an immune response in 

the presence of gram-negative bacterial LPS. Using Der p 7 in our initial 

experiments allowed us to develop the assay system but as we were never able to 

completely remove all LPS from our purified nBPIFA2 without sacrificing too much 

of the protein we could not use this assay to fully determine the potential for 

BPIFA2 to mimic the activity of LBP. In order to elucidate any functional role for 

BPIFA2 in the TLR pathway a different assay system was used in which HEK293 cells 

were transiently transfected with BPIFA2 and the TLR-4 machinery prior to an E. coli 

LPS challenge. We hypothesised that in an LBP-deprived assay, the presence of 

BPIFA2 would increase TLR-4 activation; however no such activation was observed. 

The most interesting advance made throughout these studies into BPIFA2 function 

was the positive interaction and antibacterial actions occurring between BPIFA2 

and gram-positive bacteria, particularly S. mutans. These included direct binding to 

the bacterial surface, agglutination, slight growth inhibition and an altered biofilm. 

The binding and action of BPIFA2 to gram-positive bacteria rather than gram-

negative bacteria could provide an explanation to the absence of a change in 

response through the TLR-4 pathway. The absence of LPS on gram-positive bacteria 

leads to the belief that the binding of BPIFA2 to S. mutans, β-haemolytic 

streptococcus and potentially S. aureus may be through lipoteichoic acid present. If 
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this is the case, activation of NF-kB, via the TLR path way would not occur via the 

TLR-4 receptor but via the TLR-2 receptor and pathway, explaining the negative 

activation of NF-κB via the TLR-4 pathway described in chapter 3. It is interesting to 

speculate then that subject-to-subject variation in the levels and glycosylation type 

of BPIFA2 may correlate with oral colonisation by S. mutans and other species.  

These findings suggest that further work is required to examine this new hypothesis 

and so it would be beneficial to repeat this assay using TLR-2 and LTA from gram-

positive bacteria, including S. mutans, to identify any change in NF-kB activation 

through this pathway in the presence of the purified nBPIFA2.  

In addition, although glycosylation is not exclusive to immune proteins and the 

glycosylation could simply function to stabilise the protein, glycosylation of immune 

proteins allows for host cell-protein interaction via lectins. Identification of specific 

interactions between BPIFA2 protein and host cells, particularly immune cells could 

provide further evidence that the protein has some immune function. 
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Chapter 6.  Appendices  

6.1 SDS-Polyacrylamide Gel Electrophoresis 

 2x SDS PAGE sample buffer 

0.5M Tris-HCl pH6.8    - 1.25ml 
10% SDS     - 2ml 
Glycerol     - 2ml 
1M DTT     - 1ml 
Protease Inhibitor tablets (roche) - 1ml 
Bromophenol Blue   - 0.05g 
Distilled water    - 3.55ml 

 SDS-PAGE Running buffer  

10x Native Tank Buffer   - 100mls 
10% SDS     - 10ml 
dH2O     - 890ml 

 12% Denaturing Polyacrylamide Gel 

1.5M Tris HCl with SDS, pH 8.8 

Tris Base     -  54.5g 
SDS     - 30g 
Distilled Water    -  150mls 
Adjust pH to 8.8 with 1M HCl and top up to 300ml with distilled 
water. 

0.5M Tris-HCl with SDS, pH 6.8 

Tris Base     - 6g 
SDS     - 10g 
Distilled Water    - 60mls 
Adjust pH to 6.8 with 1M HCl and top up to 100ml with distilled 
water. 

12% Polyacrylamide Gel Composition 

 

 

 Acrylamide  
(40%)(ml) 

1.5M Tris HCl 
with SDS 

(pH8.8) (ml) 

0.5MTris HCl 
with SDS 

(pH6.8) (ml) 

dH2O 
(ml) 

TEMED 
(µl) 

APS 
(10%) 

(µl) 

Resolving 3.0 2.5 - 4.3 5 350 

Stacking 0.975 - 2.1 4.725 17 1000 
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6.2 Bio-Rad Silver Stain Procedure 

Fixative Step: 20 minutes 

Methanol     - 200mL 
Acetic Acid     - 40mL 
Fixative Enhancer Concentrate  - 40mL 
dH2O     - 120mL 

Rinse Step: 20 minutes 

3 x 10 minute washes with dH2O 

Staining/Development Step: 20 minutes 

dH2O     - 35mL 
Silver Complex Solution   - 5mL 
Reduction Moderator Solution  - 5mL 
Image Development Reagent  - 5mL 
Development Accelerator Solution  - 50mL 

Stop Step: 15 minutes 

5% Acetic acid solution 

6.3 Western Blot 

 Transfer Buffer 

Methanol     - 20mls per gel 
NuPAGE (10x) Transfer Buffer (Invitrogen) - 10ml 
Distilled Water    - Up to 200mls 

 Tris-buffered Saline (TBS) 

Tris pH 7.5     - 50nM 
NaCl     - 0.15M 
dH2O     - Up to 1L 

 Tris-buffered Saline with Tween (TBST) 

Tris pH 7.5     - 50nM 
NaCl     - 0.15M 
Tween 20      - 500µl 
dH2O     - Up to 1L 

 Transfer Buffer 

Methanol     - 20mls per gel 
NuPAGE (10x) Transfer Buffer (Invitrogen) - 10ml 
Distilled Water    - Up to 200mls 
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6.4 Transfection of Drosophila S2 Cells 

BPIFA2/pMT plasmids were purified from Top10 cells using the Qiagen mini prep kit 

according to manufacturer’s instructions and sequenced confirmed using the 

pMTfor 5'd[CATCTCAGTGCAACTAAA]3' and BGHRev BGH Rev 

5´d[TAGAAGGCACAGTCGAGG]3´ primers. High quality DNA suitable for transfection 

of Drosophila Schneider S2 cells were purified using the Qiagen midiprep kits. 

For stable transfections, BPIFA2/pMT vectors (19 μg plasmid per transfection) were 

co-transfected with 1μg pCoBlast plasmid (Invitrogen). Following transfections, cells 

were incubated for 24h at 20°C and then washed twice before incubation with 

selection media (complete media supplemented with 25μg/ml blasticidin) to select 

for resistance to blasticidin and generate stable cell lines. Stable cells were 

passaged and maintained in selection media. Protein expression was induced as by 

the addition of 500 μM CuSO4 and confirmed by Western Blotting with the BPIFA2 

and an anti-His antibody 

 

6.5 Protein Purification 

 Phosphate Buffered Saline (PBS) 

NaCl     - 8g 
KCl      - 0.2g 
Na2HPO4     - 1.44g 
KH2PO4     - 0.24g 
Distilled Water    - 1L 

 2x Native loading buffer 

0.5M Tris-HCl pH6.8   - 1.0mls 
Glycerol     - 2.0mls 
Distilled Water    - 6.55mls 
Bromophenol Blue    - 0.05g 
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 10x Native running buffer and Native Elution Buffer 

Trizma Base    - 15.15g 
Glycine     - 72g 
dH2O     - 500mls 

 12% Native Polyacrylamide Gels 

1.5M Tris HCl, pH 8.8 

Tris Base     -  54.5g 
Distilled Water    -  150mls 
Adjust pH to 8.8 with 1M HCl and top up to 300ml with distilled 
water. 

0.5M Tris-HCl, pH 6.8 

Tris Base     - 6g 
Distilled Water    - 60mls 
Adjust pH to 6.8 with 1M HCl and top up to 100ml with distilled 
water. 

Gel composition 

 
 

6.6 IMAC Buffer 

 Buffer base 

NaCl     - 300mM 
NaH2PO4     - 50mM 
 
Add imidazole to required concentration: 
20mM, 25mM, 50mM, 150mM, 250mM, 500mM 
 
 

 Acrylamide  
(40%)(ml) 

1.5M Tris HCl 
(pH8.8) (ml) 

0.5M Tris 
HCl  

(pH6.8) (ml) 

dH2
O 

(ml) 

TEMED 
(µl) 

APS 
(10%) 

(µl) 

Resolving 24 15 - 21 30 2100 

Stacking 2.6 - 5 12.4 68 200 
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6.7 Determination of suitable timescales for IL-8 assay Raw Data.    

 

 

 

 

  

E. coli LPS n 1 n 2 n 3 Average

1.5 hours 312.962 2737.661 1920.522 1657.048

3.0 hours 851.59 4107.454 1190.11 2049.718

4.5 hours 1082.27 4495.586 1346.05 2307.969

6.0 hours 1043.329 3724.014 2097.284 2288.209

7.5 hours 761.991 4186.86 1372.189 2107.013

9.0 hours 192.375 3137.935 1008.888 1446.399 0
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1.5 hours 11.328 161.463 325.871 166.221
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6.8 IL-8 data displayed at pg/ml 

 

IL-8 concentration following treatment with increasing doses of E. coli (0111:B4) LPS in the 
presence of FCS (black) and absence of FCS (grey) to establish a normal response. 

In the presence of FCS the IL-8 expression increased in a dose dependent manner following 

incubation of E. coli (0111:B4) LPS for 6 hours at 37°C. In contrast in the absence of FCS the 

IL-8 expression fails to increase at low concentrations of E. coli LPS. The negative control 

was culture media. Values are means of 3 experiments in triplicate. Error bars are standard 

error of the mean. 
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 IL-8 concentration following treatment with increasing doses of rDer p 7 in the presence of FCS 
(black) and absence of FCS (grey) to establish a normal response. 

Treating THP-1 cells for 6 hours with rDer p 7 did not induce expression of IL-8. With the 

exception of 0.25µg ml-1 (from 25pg/ml to 39pg/ml), all treatments showed expression in 

line with the negative control containing no rDer p 7. The negative control was culture 

media. Values are means of 3 experiments in triplicate. Error bars are standard error of the 

mean. 

6.9 ANCOVA analysis 

 

N.B. Significance identifies that there is a non-zero intercept, indicating that Der p 7 affects 

the IL-8 response only through interaction with LPS. 
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increasing concentrations in the presence of Serum.

n=3

Tests of Between-Subjects Effects 

Dependent Variable:   IL8   

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 229633.770a 3 76544.590 26.428 .000 .538 

Intercept 21927.476 1 21927.476 7.571 .008 .100 

DerP7 27.342 1 27.342 .009 .923 .000 

LPS 64136.277 1 64136.277 22.144 .000 .246 

DerP7 * LPS 66836.745 1 66836.745 23.076 .000 .253 

Error 196949.574 68 2896.317    

Total 706644.603 72     

Corrected Total 426583.344 71     

a. R Squared = .538 (Adjusted R Squared = .518) 
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IL-8 concentration following treatment with E. coli LPS and rDer p 7 in the absence of FCS. 

In the absence of E. coli LPS the presence of the rDer p 7 allergen fails to cause an increase 

in IL-8 expression, and similarly the presence of E. coli LPS at low concentrations in the 

absence of rDer p 7 fails to induce an IL-8 response. However, with the addition of as little 

as 0.25µg ml-1 rDer p 7 allergen the THP-1 cells can be induced to express IL-8 at a higher 

level compared to the positive control of 100ng ml-1 E. coli LPS. The negative control was 

culture media. Values are means of 3-6 experiments in triplicate. Error bars are standard 

error of the mean. 
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